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Abstract: We address the engineering of Fano resonances and metasurfaces, by placing it in 
the general context of open non-Hermitian systems composed of coupled antenna-type 
resonators. We show that eigenfrequency solutions obtained for a particular case of scattering 
matrix are general and valid for arbitrary antenna radiative rates, thanks to an appropriate 
transformation of parametric space by simple linear expansion and rotation. We provide 
evidence that Parity-Time symmetry phase transition path and bound states in continuum 
(BIC) path represent the natural axis of universal scattering matrix solutions in this parametric 
coupling-detuning plane and determine the main characteristics of Fano resonance. 
Specifically, we demonstrate the control of asymmetry and sharpness of Fano resonance 
through navigation between BIC and PT-symmetric phase transition exceptional point. In 
particular, we demonstrate a fully symmetric Fano resonance in a system of two coupled 
bright and dark mode resonators. This result goes beyond current wisdom on this topic and 
demonstrates the universality of scattering matrix eigenfrequency solutions highlighted in our 
study. The validity of our approach is corroborated through comparison with experimental 
and full 3D numerical simulations results published in the literature making it thus possible to 
grasp a large body of experimental work carried out in this field. The detrimental impact of 
absorption losses on the contrast of the Fano resonance, which must be two orders of 
magnitude lower than the radiative losses, is also evidenced. 

1. Introduction 

Plasmonic metasurfaces (PMs) are a preferred avenue as sensors for the label-free detection 
of biological or chemical analytes [1-5]. PMs are made of two-dimensional arrays of 
plasmonic scatterers and support global resonances that arise from the coupling of local 
resonances, which occur on each scatterer due to the presence of localized surface plasmons. 
In recent years, this governing principle has been used to design several metasensors [5-8]. 

Both the sensing detection limit and accuracy are greatly increased by using narrow width 
spectral features [9]. Most often, it is obtained by combining a super-radiating resonator, 
bearing an electric dipolar momentum and acting as a radiative or bright mode, with a sub-
radiating resonator bearing a quadrupolar electric or magnetic dipolar momentum and acting 
as a trapped or dark mode (DM) [9-12]. 

Entering the territory of coupled resonators with generic radiative coupling, several 
concepts are of order: (i) Associated with dark mode is the concept of electromagnetically 
induced transparency (EIT), which grants narrow-band resonances in the middle of broad 
absorption peaks; (ii) When coupling and losses are involved in two resonators, exceptional 
points (EP) may arise [13-20], as has been popularized in Parity-Time (PT) symmetric system 



[21-23]. Here the “passive-PT” depiction applies, whereby a loss difference in the two 
resonators combined with adequate coupling strength gives rise to eigenmodes that either 
break or preserve the symmetry, and coalesce at the very EP. 

In this work, we discuss the role of EPs but only briefly address their role in EIT in 
Supplementary Material (SM), for the sake of completeness. Rather, we mostly retain the role 
of EPs as structuring points of the parameter space that we shall depict, namely the coupling–
detuning plane, called CDP in short. Based on a temporal coupled-mode theory (t-CMT), we 
show that this space provides a general (“universal”) map that greatly helps navigating the 
resulting Fano-resonance configurations (control of spectral response asymmetry and its 
relation to DM and EP).  

This result provides a global vision on the problem of sensing using metasurfaces based 
on bright and dark mode resonators coupling, and thus makes it possible to synthesize the 
strategies of a large body of the experimental work carried out in this field. The universality 
of the scattering matrix solutions evidenced in our work provides a general recipe for an 
unlimited diversity of optimal designs, answering bespoke sensors demands with tailored 
spectral responses, especially in the wavelength range from microwave to 10 THz. 

Special attention is given to explicitly take into account the open nature of a system due to 
the antenna radiation properties of plasmonic resonators. In particular, it is pointed out that 
the loss engineering is an important factor in the control of the contrast of Fano resonance. 

 

2. Temporal Coupled Mode Theory model 

The ingredients of the t-CMT developed below are (i) a set of two resonators that are coupled 
radiatively to outer space (ii) a set of coefficients (matrices), partly related, that describes the 
coupling of waves to resonators and also the non resonant background (essential to Fano-type 
operation). The system of coupled resonators is schematically represented in Fig. 1.  

 
Fig. 1. Sketch of single-layer metasurface. The coupling to a specific incoming and outgoing 
waves (scattering matrix) are not represented. 

Based on previous work [24-28], a set of coupled ordinary differential equations then 
embodies the (t-CMT) as follows: 

( ) T
A R + +

da
=j �+j� +j� a+K s

dt
 (1) 

- + -s =Cs +K a  (2) 
Here, lowercase bold letters designate vectors whereas uppercase bold letters designate 

matrices. a describes resonance amplitude, +s  incoming waves, and −s  outgoing waves. In 
the parenthesis of Eq.(1) right hand side, there are three matrices detailed later: � describes 
the Hermitian part of the resonator dynamics (not coupled to outside), A�  partial decay rates 

due to absorption, R� partial decay rates due to radiation, ±K  coupling between resonances 
and incoming or outgoing waves. C  describes the non-resonant contribution to the scattering 
matrix. 



Due to reciprocity and time-reversal symmetry of the radiative coupling [24-29], these 
matrices obey additional relations and constraints as follows: 

- +K =K =K  (3) 

†
R
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2
 (4) 

*C K = -K  (5) 
It is convenient to express the general result through the effective Hamiltonian: 

eff A RH =�+j� +j�  (6) 
In the frequency domain, the scattering matrix that relates incoming and outgoing waves 

is then simply given by: 

[ ]( )-1* T
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For the effective non-Hermitian Hamiltonian Heff, we consider a generic model of two 
coupled resonators that lie on a single metasurface layer: 
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Here ωj is the resonance frequency of a single and uncoupled resonator, κ is the near-field 
coupling coefficient between both resonators, γ1 and γ2 are the partial decay rates due to 
radiation towards port 1 and 2. The off-diagonal elements 1 2� �  describe the indirect 

coupling, or in other terms the radiative coupling, between the resonances induced by the 
interaction between each resonator and the free space. This is an important constraint that is 
key to several simplifications. We assume no absorption for the moment (ΧA=0).  

Let us note for convenience δ=(ω2-ω1)/2, ( )1 2�= � +� 2 , η=(γ2-γ1)/2 and 0 1 2� = � � . 

They respectively represent the detuning, the (arithmetic) average radiative loss, the radiative 
loss contrast and the “far-field” radiative coupling (the geometric average loss). 

The eigenmodes of Heff are poles of the transmission matrix, the inner term of Eq.(7), and 
correspond to sharp features in the spectral response. They can be classified as either 
symmetric (even, ω+), or antisymmetric (odd, ω- ). As follows directly from Eqs. (1,8-10) and 
using above notations we get: 

( ) ( )2 21 2
± 0

� +�
� = +j�± �+j	 + �+j�

2
  (11) 

 

3. Engineering of Fano resonances 

Let us have some first insight on the control of the Fano resonance asymmetry. We shall 
demonstrate that a symmetric spectral response of a Fano resonance corresponds to the 
condition of operation along the PT-symmetry phase transition path. In turn, the largest Fano 
resonance asymmetry is obtained when operating away from the PT-symmetry path and close 
to the DM condition also identified as bound state in continuum (BIC) [30–34]. 



We see from Eq. (11) that the loss difference 	 is combined with the detuning � and that 
the “radiative coupling” �0 is combined with the near-field coupling �. Furthermore, it is 
generically possible for the two squared complex numbers in the square root to cancel out 
(say, �+j	 and �+j�0 just differ by 
/2 in argument, while having same module), thus causing 
eigenvalue degeneracy that corresponds to the exceptional point (EP). The real and imaginary 
parts of ω+ and ω- eigenvalues coalesce at the EP when the following conditions are 
simultaneously fulfilled: 

 

0 1 2�=-� =- � �  (12a) 

( )2 1�=	= � - � /2  (12b) 
For didactic purposes, we formally extend these solutions to the negative values of the 

coupling coefficient κ. The crossing of the EP corresponds to the PT-symmetry phase 
transition when the operating point of the system in the two-dimensional κ-δ space (the CDP) 
evolves along the path delimited by the relation: 

1 20
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As depicted in Fig. 2(a) it corresponds to a dotted line passing through the point of origin 
and forming an angle ϕ=-atan(γ0/η) with the CDP abscissa axis. Substituting Eq. (13) in  
Eq. (11) the characteristic expression for PT-symmetry phase transition is easily obtained: 
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By introducing a generalized “radial” evolution parameter � such that � cos(�)= � 
corresponding to the distance between the CDP origin and a given point on the PT-symmetry 
phase transition path, Eq. (14) comes into the more convenient form: 
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Obviously, in the CDP, solutions in the range |ρ|<| � | correspond to the broken PT-
symmetric phase, while those where |ρ|>| � | correspond to the PT-symmetric phase. The 
coordinates {κ,δ} of exceptional points EP- and EP+ corresponding to |ρ|=| � | are then {η,-γ0} 
and {-η,γ0}, respectively. The colormap of real and imaginary components of 
eigenfrequencies as well as the evolution of these components along different paths in the 
CDP are represented in Figs. S1 and S2 of SM, respectively. 



 
Fig. 2. Logarithmic-scale colormap representation of the imaginary part of the antisymmetric mode eigenfrequency 
Im(ω-) in the �-� CDP. a). Parameters of the coupled resonators system used in numerical modeling: ω1=10, γ1=0.8, 
γ2=0.2. All values are given in normalized frequency units. The contour curves corresponding to Im(ω-)=0.001; 0.01; 
0.1 are plotted as thin dashed lines. The dotted line at angle ϕ corresponds to the evolution along PT-symmetric path. 
The two black bold dots indicate exceptional points EP±. The three bold white dots correspond to CDP points whose 
spectral responses are shown in Fig. 4; b) Parameters of the coupled resonators system used in numerical modeling: 
ω1=10, γ1=0.5, γ2=0.5 in normalized frequency units. The two black black bold dots indicate exceptional points EP±. 
The three bold white dots correspond to the points in CDP whose spectral responses are shown in Fig. 3. 

 

It is easy to observe that the distance �  between the origin and the EP
 
does not depend on 

the ratio between γ1 and γ2 as long as their sum, i.e. the trace of the matrix ΓR, is constant. As 
shown in Appendix A, the variation of the ratio γ1/γ2 corresponds indeed to the CDP rotation 
around origin. Since the distance between arbitrary eigenvalues remains constant under the 
rotation operation, this characteristic reflects the isometric properties of the Hamiltonian 
solutions given by Eq. (11). On the other hand, a variation of the trace of the matrix ΓR is 
equivalent to a uniform contraction or expansion in the CDP. In other words, the solution of 
Eq. (11) are homothetic with respect to the variation � . Therefore, the eigenfrequency 
solutions obtained for a particular case of ΓR matrix are general and valid for arbitrary values 
of γ1 and γ2 by means of elementary appropriate transformations of the CDP by linear 
extension and rotation. 

The universality of the solutions obtained greatly simplifies the problem, as it can be 
reduced to the analysis of the system behavior along the PT-symmetry phase transition path 
on the base of a single selected example. To calculate the transmission and reflection 
coefficients of the PMs we use the t-CMT formalism [24-28]. The scattering matrix is then: 
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Where r and t describe non-resonant, real reflection and transmission coefficients 
( 2 2r t 1+ = ). For what follows, we consider that the reflection of the substrate is negligible 
and we set r=0 and t=1. As mentioned above, to analyze the evolution of the behavior of the 
scattering coefficients, it is sufficient to consider only one particular example of PT-
symmetry phase transition path in CDP. For this purpose, the case of two resonators with an 
equal rate of radiative decay, i.e. 1 2 0� =� =�=� , can be considered. It follows then that, 

according to Eq. (12b), κ=0. It should also be remembered that for the moment absorption 
losses are neglected (χ1=χ2=0). This greatly simplifies the algebra of the Eq. (16). The 
reflection (S11) and transmission (S12) coefficients of the scattering matrix S are then: 
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Note that this particular case corresponds to the situation where the angle ϕ=π/2, i.e. the 
PT-symmetry phase-transition path coincides with the δ-axis in CDP, as represented in 
Fig. 2(b). Taking into account that ω2=ω1+2δ and considering the resonance frequency of the 
first resonator fixed, the evolution of the spectral response as a function of the detuning of the 
resonance frequency of the second resonator is illustrated in Fig. 3. Since ρ=δ, it corresponds 
to operation at different points along the PT-symmetry phase transition path. For the selected 
examples the operation points corresponds to: (a) and (b) broken PT-symmetric phase  
[(a) ρ=0.01 � , (b) ρ=0.5 � ]; (c) EP (ρ= � ); (d) PT-symmetric phase (ρ=1.5 � ). 

 
Fig. 3. Scattering matrix coefficients spectral response at different points along PT-symmetric 
path. a) ρ=0.01 �  − broken PT and also near vicinity of the dark mode; b) ρ=0.5 �  − broken 

PT; c) ρ= �  − EP; d) ρ=1.5 �  − PT-symmetric. Parameters of the coupled resonators system 

used in numerical modeling: ω1=10,  γ1=γ2= � =0.5. All values are given in normalized 

frequency units. 

As can be seen, Fano resonance as well as the accompanying EIT effect are observed in 
all cases, the spectral responses being qualitatively similar. Their particularity is to be 
perfectly symmetric with respect to the frequency of the EIT maximum. According to  
Eq. (17) the maximum of EIT, i.e. S11=0, occurs when ( )1 2ˆ�=�= � +� 2  while the minima, 

i.e. S12=0, occur at 1�=� =�−
� and + 2 1�=� =� � +2�=�  (using a hat ˆ for maxima and an anti-

hat ˘ for minima). It is evident that there is no abrupt change that one would naively expect in 



the vicinity of the EP. The half-width δ of the EIT resonance varies linearly with path 
evolution parameter ρ, and becomes infinitesimally narrow in the close vicinity of the origin 
point. This reflects the fact that, as shown in Fig. 2(b), at the origin point one obeys Im(ω-)=0, 
i.e. the DM (BIC) condition. The presence of the transition from broken to PT-symmetric 
path can be however evidenced in absorption spectra, as detailed in Fig. S6 of SM. 

When the operating point evolves on a trajectory different from the PT-symmetric path, 
then the Fano resonance becomes more classically asymmetrical, especially when located in 
the near vicinity of the BIC path condition given by the expression [34]: 

2 1

0 1 2

� -�� 	
= =
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 (18) 

It corresponds to the blue diagonal wedges in Fig. 2(a) forming an angle ψ = π/2 - ϕ with 
the CDP ordinate axis (additional discussion on BIC behavior is presented in Sec. 2 of SM). 
To illustrate this, in virtue of the isometric properties of the eigenfrequencies of the effective 
Hamiltonian given by Eq. (3), we consider the situation illustrated in Fig. 4, where the 
operating point evolves from EP to BIC along the CDP path κ=const for the system 
considered in Fig. 2(a).  

 
FIG. 4. Scattering matrix coefficients spectral response at different points along the κ=0.3 
path. a) δ=0.4 - EP; b) δ=0.1; c) δ=-0.2 close to BIC ; d) δ=-0.5. Parameters of the coupled 
resonators system used in numerical modeling: ω1=10, γ1=0.8, γ2=0.2. All values are given in 
normalized frequency units. 

As can be seen, at EP, the spectral response shown in Fig. 4(a) is symmetric despite the 
strong asymmetry of the radiative losses, as in the case shown in Fig. 3 where γ1=γ2. This 
result goes beyond current wisdom on this topic and demonstrates the universality of 
eigenfrequency solutions due to isometric and homothetic properties of scattering matrix. As 
one moves away from PT-symmetric phase transition path Fano resonance becomes strongly 
asymmetrical [Fig. 4(b)] and extremely sharp in close proximity to BIC [Fig. 4(c)]. Beyond 



the BIC condition, the sharpness of the Fano edge is gradually reduced [Fig. 4(d)]. The PT-
symmetric phase transition path and BIC path corresponding to two radically different types 
of Fano resonance behavior are therefore natural orthogonal axis in the CDP for scattering 
matrix eigenvalues. 

At this stage, we could wonder what happens if we restore nonzero absorption losses, e.g. 
χ=χ1=χ2>0. Intuitively, the balance that governs the situation is the one between Im(ω-) and 
χ. This means that a substantial impact occurs only in a “ribbon” around the blue wedge of 
Fig. 2(a). Logically, no line sharper than the value dictated by χ can be observed. However, 
having in mind the generality of Fig. 2 versus rotations (but no more versus homothetical 
changes), let us stress that the sharpness depends on where the BIC wedge (even smeared out 
by absorption losses) is intersected. Hence, it is convenient to use as a reference the ψ=0 case 
corresponding to Fig. 2(b), because in this case, varying the detuning does correspond to the 
most direct crossing of the DM wedge (vertical trajectory in CDP) and EIT type spectral 
response. We signal in Appendix B many analytical expressions that can be developed in this 
case. 

In terms of the resonance itself, the contrast is the most affected property. For instance, it 
vanishes for the exact BIC condition (a sharp line becomes nil). More elaborate modeling 
results taking into account the presence of absorption losses are presented in Fig. S6 of SM. 
In summary, the EIT resonance contrast in the presence of absorption losses gradually 
decreases when approaching the BIC condition. 

We can introduce the ratio Q= � /ρ as the measure of the spectral sharpness of the EIT 

resonance. Within the limits of low absorption losses (χ<< � ), the following approximate 
expressions can be used:  

�= 2��  (19) 

As it follows from Eq. (19), to get an observable Fano resonance of width ρ, absorption 
losses as low as 1/Q² are needed. This explains the inherent difficulty in achieving highly 
resonant behavior using plasmonic resonators in the optical and even in the THz domain, 
where metal-related ohmic losses are sizable. More detailed discussion on the impact of 
absorption losses is presented in Sec. 3 of SM. 
 

4. Comparison of t-CMT model predictions with experimental results 

To confirm the validity of our approach, we compared the results of the t-CMT model with 
those reporting an ultra-high-Q Fano resonance for a metasurface with a unit cell composed 
of an array of asymmetrically-split ring resonators (ASRs) [8], each cut in two pieces, and 
operating in the THz domain, schematically shown as insets in Figs. 5 and 6. Asymmetry in 
the ASRs controlling the detuning δ of the two resonators (the half-rings) is introduced by 
displacing by distance d the lower gap gradually from the central vertical axis. To carry out 
the comparison, the graphs represented in Fig. 2 of Ref. 8 were digitized, for accurate enough 
extraction of the experimental data as well as the full 3D numerical simulations data. 



 
FIG. 5. Transmission amplitude for experimental and 3D numerical simulations data extracted 
from Ref. 8 as well as t-CMT model as function of asymmetry parameter variation. a) d=1µm; 
b) d=3µm; c) d=5µm; d) d=10µm. The inset show the direction of electric field polarization. 

When referring to our analytical model, the case of the polarization of the electric field 
along the split arms, shown as insets in Fig. 5, corresponds approximately to an operation 
along the PT-symmetry phase transition path. The spectral response reported in Ref. 8 and 
reproduced in Fig. 5 indeed presents an essentially symmetric EIT resonance. The spectral 
bandwidth and the contrast of the EIT resonance both increase with the growth of detuning 
parameter d, which is in full agreement with the prediction of our model [Fig. S7 of SM]. The 
t-CMT model was then used to fit the experimental data extracted from Ref. 8. The agreement 
between t-CMT modeling and experimental results is similar to that given by full 3D 
numerical simulations. Note that we deliberately do not introduce any correction factors liable 
to improve the quality of fit in our model, such as the frequency dependence of absorption 
losses. Our goal is to demonstrate that even a basic model with fixed parameters does capture 
the essential physics governing the behavior of two coupled resonators. The fitted parameters 
of coupled resonators system used in t-CMT modeling are provided in table I: 

 
Table 1. Parameters of coupled resonators system used in numerical modeling shown in Fig. 5 

d 

(µm) 

κ 
(THz) 

χ 
(THz) 

ω1 

(THz) 

ω2 

(THz) 

γ1 

(THz) 

γ2 

(THz) 

1 0 0.01 1.140 1.160 0.075 0.075 

3 0 0.01 1.125 1.165 0.075 0.075 

5 0 0.01 1.115 1.170 0.075 0.075 

10 0 0.01 1.075 1.185 0.075 0.075 
 



The other interesting situation for our study occurs when the polarization of the electric 
field, shown as inset in Fig. 6, is perpendicular the split arms. It corresponds to operation in 
the vicinity of the DM condition with asymmetric cliff-like Fano resonance. The variation of 
the detuning parameter d is then equivalent to the tuning of the decay-rate for the anti-
symmetric dark mode appearing from the asymmetry of the structure, as detailed in Ref. 35. 
The t-CMT fit results presented in Fig. 6 are in good agreement with those of experimental 
and numerical modeling in Ref. 8, thus confirming the validity of our analytical approach. 

 
FIG. 6. Transmission amplitude for experimental and 3D numerical simulations data extracted 
from Ref. 8 as well as t-CMT model as function of asymmetry parameter variation. a) d=1µm; 
b) d=3µm; c) d=5µm; d) d=10µm. The inset show the direction of electric field polarization. 

The parameters of coupled resonators system used in numerical modeling are provided in 
Table II. Note how different they are from those of Table I, reflecting the distinct ways the 
half-rings eigenmodes are different for the corresponding mode symmetry. 

With respect to the variety of more specific approaches reported in the literature, ours is a 
synthetic view on the engineering of the Fano resonance spectral shape that was lacking to the 
best of our knowledge. Empirically, a majority of the work targeting DM regime has focused 
on the intentional introduction of asymmetry either in the radiative-decay using subradiant 
and superradiant resonators [4,6,7,10,12,29] while a minority proceeded through detuning 
their resonant frequencies [8,9,11], but the fact that there is a unifying common picture had 
not emerged from these works. 

 



 

Table 2. Parameters of coupled resonators system used in numerical modeling shown in Fig. 6 

d 

(µm) 

κ 
(THz) 

χ 
(THz) 

ω1 

(THz) 

ω2 

(THz) 

γ1 

(THz) 

γ2 

(THz) 

1 0 0.01 0.516 0.695 0.299 0.001 

3 0 0.01 0.525 0.705 0.296 0.004 

5 0 0.01 0.505 0.680 0.282 0.018 

10 0 0.01 0.516 0.722 0.267 0.033 
 

Summary and conclusions 

The aim of the article is to provide guidelines for the engineering of Fano resonances hinging 
on BIC and EP conditions. It has been shown that the eigenfrequency solutions obtained for a 
particular case are general and valid for arbitrary values of scattering matrix by means of an 
appropriate transformation of the κ-δ coordinates by linear expansion and rotation. The power 
of our analytical approach lies in its ability to provide, on the basis of a mathematical 
formalism, the prediction of the spectral behavior of the system without going through more 
complex and time-consuming complete 3D numerical simulations which are still necessary, 
but rather at next stages, when translating the mathematical model into a practical design. 

Specifically, we demonstrated the control of asymmetry and sharpness of the Fano 
resonance obtained through navigation between BIC and exceptional point corresponding to a 
PT-symmetric phase transition. In particular, we demonstrate the possibility of achieving a 
fully symmetric Fano resonance through appropriate engineering of near-field coupling and 
resonator detuning despite the use of bright and dark mode resonators with significantly 
different radiative rates. This non-trivial result, unanticipated in previously reported studies, 
illustrates the generality of the scattering matrix solutions highlighted in our study. To prove 
the validity of our approach, we compared it with experimental and full 3D numerical 
simulations results published in the literature and found them to be in good agreement with 
those of our analytical model. Furthermore, the same formalism can also be applied to 
describe the behavior of complementary metasurfaces by simply setting for the substrate r=1 
and t=0. 

Special care in the analysis was given to explicitly take into account the open nature of a 
system due to the antenna radiation properties of plasmonic resonators. It has been shown that 
radiative loss engineering is an important factor that determines the spectral sharpness (or 
quality factor Q) of the EIT resonance. In order to obtain even a very modest Q≈10, the level 
of absorption losses must be two orders of magnitude lower than the radiative losses. This 
explains the inherent difficulty in achieving highly resonant behavior using plasmonic 
resonators in the optical and even in the upper THz domain, where metal-related ohmic losses 
are important. 

These results provides a global vision on the problem of sensing using metasurfaces based 
on bright and dark mode resonators coupling, and thus makes it possible to synthesize the 
strategies of a large body of the experimental work carried out in this field. 

The physics and design methods described here have a broad validity that can be applied 
to a variety of systems, appreciably differing from metasurfaces. We notably think of systems 
composed of resonant nanostructures of various types interacting with waveguides (e.g. 
biosensors, plasmonic components, optical antennas…). 
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Appendix A 

Let consider a matrix: 
� �

=
� �

� �
� �
� �

 (A1) 

where � =(γ1+γ2)/2 is the trace of the matrix R� . Then we multiply Σ from left with 

matrix of rotation by angle θ and from right with matrix of rotation by angle -θ: 
cos� -sin� � � cos� sin�
sin� cos� � � -sin� cos�
� �� �� �
� �� �� �
� �� �� �

 (A2) 

The final result of this operation is: 
1-sin2� cos2�

�
cos2� 1+sin2�

� �
� �
� �

 (A3) 

This matrix becomes identical to the matrix R� defined by the Eq. (10) at the condition 
that: 

1 2

1 2

2 � �
cos2�=

� +�
 (A4) 

The validity of this assertion can be easily verified by taking into account that 

( )Rdet 0=� . Same relation holds also for the determinant of matrix given by Eq. (A3).  

By consequence, when keeping constant the trace of the matrix R� , the variation of the 
ratio γ1 to γ2 is equivalent to a mere rotation of the coordinate plane κ- δ around the origin 
point, which means isometric properties of the eigenfrequencies of the effective Hamiltonian 
given by Eq. (11). 

Appendix B 

The resonances observable in the system are those associated with eigenfrequencies for which 
holds: 

( )-Im � �≥  (B1) 

Since we consider a special case when γ1=γ2 it follows from Eq. (15) that: 

( )
2

- 2

�
Im � =�-� 1-

�

� �
� �
� �

 (B2) 

Combining Eqs. (B1) and (B2) we get 

( )�= 2� �-�  (B3) 

 



References 

1. K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. 
Rev. Phys. Chem. 58, 267–297 (2007). 

2. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). 
3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic 

nanosensors,” Nat. Mater. 7(6), 442–453 (2008). 
4. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang “Plasmon-induced transparency in metamaterials,” 

Phys. Rev. Lett. 101(4), 047401 (2008). 
5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, W. Zhang, “Thin-film sensing with planar 

terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). 
6. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar 

Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 
10(4), 1103–1107 (2010). 

7. B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses 
in plasmonic nanostructures,” ACS Nano 7(8), 6978 (2013). 

8. W. Cao, R. Singh, I. A. Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic 
Fano metamaterials,” Opt. Lett., 37(16), 3366-3368 (2012). 

9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances 
in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). 

10. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a 
terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009). 

11. R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and  
W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken 
symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011). 

12. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander and S. A. 
Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). 

13. J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: 
application to microcavity sensors for single particle detection,” Phys. Rev. Lett. 112(20), 203901 (2014). 

14. A. Kodigala, T. Lepetit, and B. Kanté, “Exceptional points in three-dimensional plasmonic nanostructures,” 
Phys. Rev. B 94(20), 201103 (2016). 

15. M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using 
singular points,” New J. Phys. 19(6), 065002 (2017). 

16. H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and  
M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548(7666), 187 (2017). 

17. Q. Zhong, J. Ren, M. Khajavikhan, D. Christodoulides, S. Ozdemir, and R. El-Ganainy, “Sensing with 
exceptional surfaces: combining sensitivity with robustness,” Phys. Rev. Lett. 122(15), 153902 (2019). 

18. N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, 
“Fluctuations and noise-limited sensing near the exceptional point of PT-symmetric resonator systems,” Optica 
10(5), 1342-1346 (2018). 

19. J.-H. Park, A. Ndao, W. Cai, L.-Y. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-
induced plasmonic exceptional points and nanoscale sensing,” Nat. Physics 16(4), 462–468 (2020). 

20. S. H. Park, S.-G. Lee, S. Baek, T. Ha, S. Lee, B. Min,. S. Zhang, M. Lawrence and T.-T. Kim, “Observation of 
an exceptional point in a non-Hermitian metasurface,” Nanophotonics 9(5), 1031–1039 (2020). 

21. �. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity–time symmetry and exceptional points in photonics,” 
Nat. Mater. 18(8), 783–798 (2019). 

22. S. Longhi, “Parity-time symmetry meets photonics: A new twist in non-Hermitian optics,” Europhys. Lett. 
120(6), 64001, (2017). 

23. K. Takata, N. Roberts, A. Shinya, and M. Notomi, “Imaginary couplings in non-Hermitian coupled-mode 
theory: Effects on exceptional points of optical resonators,” Phys. Rev. A 105(1), 013523 (2022). 

24. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided 
resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005). 

25. H. Haus, “Waves and Fields in Optoelectronics”, Englewood Cliffs, NJ: Prentice-Hall (1984). 
26. S. Fan, W. Suh, J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical 

resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). 
27. W. Suh, Z. Wang, and S. Fan, “Temporal Coupled-Mode Theory and the Presence of Non-Orthogonal Modes 

in Lossless Multimode Cavities,” IEEE J. Quant. Elec. 40(10), 1511–1518 (2004). 
28. T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum coupling in high-permittivity 

dielectric metamaterials,” Phys. Rev. B 82(19), 195307 (2010). 
29. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of 

electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758 (2009). 
30. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 

3231–3242 (1985). 
31. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. 

Lett. 100(18), 183902 (2008). 



32. T. Lepetit and B. Kanté, “Controlling multipolar radiation with symmetries for electromagnetic bound states in 
the continuum,” Phys. Rev. B 90(24), 241103 (2014). 

33. M. F.Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. 
Photonics 11(9), 543–554 (2017). 

34. M. F. Limonov, “Fano resonance for applications,” Adv. Opt. Photonics 13(3), 703–771 (2021). 
35. E. Bochkova, A.-N. Burokur, A. de Lustrac, and A. Lupu, “Direct dark modes excitation in bi-layered 

enantiomeric atoms-based metasurface through symmetry matching,” Opt. Lett. 41(2), 412−415 (2016). 
 
 
 


