

Medical Imaging Research Laboratory

🌵 Inserm

Gaël Vila ¹ Emmanuel Medernach ² Inés Gonzalez Pepe ³ Axel Bonnet ¹ Yohan Chatelain ³ Michaël Sdika ¹ Tristan Glatard ³ Sorina Camarasu-Pop ¹

The Impact Of Hardware Variability On Applications Packaged With Docker And Guix: A Case Study In Neuroimaging

¹CREATIS, CNRS (UMR 5220), INSERM (U1294), INSA Lyon, Université de Lyon, France

 ² IPHC, CNRS/IN2P3, Université de Strasbourg, Strasbourg, France
³Department of Computer Science and Software Engineering, Concordia University Montreal, Canada

Reproducibility Issues in Neuroimaging

Medical Imaging Research Laboratory

www.creatis.insa-lyon.fr

Setup

CREATIS

- 1 dataset
- 70 teams
- 9 hypotheses

Findings

- Analytical flexibility
- Variability of results
- Optimism bias

H1 + H3: +gain, equal indifference 0.75 R 0.5 0.25 z = 52z = -24z = -107=32 z = 64H2 + H4: +gain, equal range H7: +loss, equal indifference H5: -loss, equal indifference H8: +loss, equal range

<u>R. Botvinik-Nezer *et al*</u>, "Variability in the analysis of a single neuroimaging dataset by many teams" *Nature* 2020

Computational reproducibility

Main causes

CREATIS

Software dependencies and their evolution over time

Medical Imaging Research Laboratory

- Numerical instability due to floating point arithmetic
- Containerization 📛

- Guix
 - Functional package manager

www.creatis.insa-lyon.fr

Reproducible computational environments

What about hardware heterogeneity?

<u>A.I. Renton *et al*</u>, Neurodesk Nature 2024

Numerical instability and MCA

- Floating point arithmetic
 - Approximate real numbers within a limited precision => rounding errors
- Monte Carlo Arithmetic (MCA)
 - Noise injection into in floating-point operations: $inexact(x) = x + 2^{e_x^{-t}}\xi$
- Random Rounding (RR)
 - Perturbs the function output
 - MCA Implementations
 - <u>Verificarlo</u>
 - Fuzzy Github repository

Variability measured in the segmentations produced by FreeSurfer recon-all and the FastSurfer CNN model [Gonzalez-Pepe *et al*, 2023]

Objectives

- Evaluate the impact of hardware variability
- Compare and correlate hardware variability to
 - Software variability encountered in different software packages
 - Numerical variability resulting from MCA RR

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

original image

reference

registered image

FSL FLIRT

- FMRIB Software Library (<u>FSL</u>)
 - Library of analysis tools for FMRI, MRI and diffusion brain imaging data
- FLIRT: FMRIB's Linear Image Registration Tool
 - Affine brain registration: align a brain scan with another one through rotation, translation, scaling and shearing
 - FLIRT outputs

•

- Registered brain image in NIfTI format (.nii.gz)
- Transformation matrix in text format (.mat)

0	0	0	1
0	0	0	1
0.01111236612	-0.413128704	1.142416095	-28.62331337
-0.004720817456	1.028899087	0.3437343964	-50.46994368
1.129633431	0.009161432163	-0.002279976965	-2.0975 <mark>1</mark> 1242

Example of transformation matrix (.mat file)

Grid'5000 research infrastructure

- Large-scale testbed for experiment-driven research in computer science
- Access to a wide spectrum of hardware

Cluster	CPU	Model	Micro-arch	ISE	
uvb	Intel	Xeon X5670	Westmere	SSE4.2	
hercule	Intel	Xeon E5-2620	Sandy Bridge	AVX	
taurus	Intel	Xeon E5-2630	Sandy Bridge	AVX	
parasilo	Intel	Xeon E5-2630 v3	Haswell	AVX2	Eucod Multiply Add (EMA)
nova	Intel	Xeon E5-2620 v4	Broadwell	AVX2	
chifflot	Intel	Xeon Gold 6126	Skylake	AVX-512	
chiclet	AMD	EPYC 7301	Zen	AVX2	
neowise	AMD	EPYC 7642	Zen 2	AVX2	
abacus21	AMD	EPYC 7F72	Zen 2	AVX2	

Overview of experiments on Grid'5000

Overview of MCA experiments

Hardware variability

- Comparison of global checksums
 - tarball of the 148 results for each one of the 45 experiments

Deployment	Compilation flags (-march=)	Microarchitecture of the execution node	ISE	Global checksum	
Docker	x86_64	Intel Westmere, Sandy Bridge	SSE4.2, AVX	03f	
Docker	x86_64	Intel Haswell, Broadwell, Skylake, AMD Zen, Zen 2	AVX-2	6a9	
Guix	x86_64	All	SSE4.2, AVX, AVX-2	b48	
Guix	sandybridge	Intel Sandy Bridge	AVX	b48	
Guix	haswell or skylake	Intel Haswell, Broadwell, Skylake, AMD Zen, Zen 2	AVX-2	75e	
Guix	sandybridge	Intel Westmere	SSE4.2	incompatibility	
Guix	haswell or skylake	Intel Westmere, Sandy Bridge	SSE4.2, AVX	incompatibility	

Four different global checksums

Two micro-architecture subsets: with and without AVX-2

Variability depends on input data

- Comparison of the 148 individual results among the four sets of results
- Three of the four sets share a few identical results

Intersections between result sets (individual matrix files) for three of the four experiments.

Variability across subjects

=> importance of using large image databases

Effects on the registration

www.creatis.insa-lyon.fr

Medical Imaging Research Laboratory

CREATIS

Distributions of rotation and translation differences in the transformation matrix results ('.mat' result files)

Differences between outputs (belonging to groups Docker-6a9 and Guix-b48) with the largest difference in translation and rotation (subject 31, scan 2)

Variabilities of comparable magnitude

Comparison between rotation errors for numerical, hardware, and software variability, for each subject

Correlation

Variability 1	Variability 2	Spearman correlation	Variability 1	Variability 2	Spearman correlation
Hardware (Docker)	Numerical (RR)	0.04	Hardware (Docker)	Numerical (RR)	0.00
Hardware (Guix)	Numerical (RR)	0.11	Hardware (Guix)	Numerical (RR)	0.01
Software (Docker vs Guix)	Numerical (RR)	-0.11	Software (Docker vs Guix)	Numerical (RR)	-0.12
Software (Docker vs Guix)	Hardware (Guix)	0.20	Software (Docker vs Guix)	Hardware (Guix)	0.22
Software (Docker vs Guix)	Hardware (Docker)	0.11	Software (Docker vs Guix)	Hardware (Docker)	0.08
Hardware (Guix)	Hardware (Docker)	0.41*	Hardware (Guix)	Hardware (Docker)	0.36*

Correlations in translation vectors

Correlations in rotation vectors

Conclusions

- Hardware, software and numerical variability lead to variations
 - of similar magnitudes but
 - uncorrelated with each other
- RR introduces perturbations of similar magnitude
 - Practical method to simulate both hardware and OS updates
- Variations remained moderate but might impact downstream analyses
- Both packaging solutions (Docker and Guix) produced
 - Each one bit-wise reproducible results when using the same packaged FLIRT executable on equivalent micro-architectures
 - Different outputs from one another due to the software variability

Discussion

- Packaging solutions
 - Docker image: little or no information on how the executable was built
 - Guix: full transparency on both compiling and runtime environments
- Compilation options
 - Only studied the impact of the "march" flag, directly related to hardware
 - Other compilation options (e.g. optimization levels) are also known to impact reproducibility
- In our case hardware variability was due to AVX-2 support
 - Further work is needed for a finer analysis of the differences observed

Availability of code and data

- FSL Docker image: <u>hub.docker.com/r/vnmd/fsl_6.0.5.1</u>
- FSL Guix modules and Grid'5000 scripts: <u>gitlab.in2p3.fr/reprovip/reprovip-guix</u>, also archived on <u>Software Heritage</u>
- Post-processing for the reproducibility analysis: <u>gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-andscripts</u>, also archived on <u>Software Heritage</u>
- Dockerfile, Boutiques descriptor and analysis scripts used for random rounding: <u>github.com/big-data-lab-team/fuzzy-linreg</u>, also archived on <u>Software Heritage</u>
- The OASIS dataset used in our experiments: <u>oasisbrains.org/#data</u>
- The transformation matrix results (.mat files): zenodo.org/records/10649569

Medical Imaging Research Laboratory www.creatis.insa-lyon.fr

XXXXXX XXXXXX

