
HAL Id: hal-04480308
https://hal.science/hal-04480308v2

Submitted on 21 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Impact of Hardware Variability on Applications
Packaged with Docker and Guix: a Case Study in

Neuroimaging
Gaël Vila, Emmanuel Medernach, Inés Gonzalez, Axel Bonnet, Yohan

Chatelain, Michaël Sdika, Tristan Glatard, Sorina Camarasu-Pop

To cite this version:
Gaël Vila, Emmanuel Medernach, Inés Gonzalez, Axel Bonnet, Yohan Chatelain, et al.. The Impact of
Hardware Variability on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging.
ACM REP’24, ACM, Jun 2024, Rennes, France. �10.1145/3641525.3663626�. �hal-04480308v2�

https://hal.science/hal-04480308v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Impact of Hardware Variability on Applications Packaged
with Docker and Guix: a Case Study in Neuroimaging

Gaël Vila∗
Univ Lyon, INSA-Lyon, Université
Claude Bernard Lyon 1, UJM-Saint
Etienne, CNRS, Inserm, CREATIS

UMR 5220, U1294
Villeurbanne, France

gael.vila@protonmail.com

Emmanuel Medernach∗
IPHC, CNRS/IN2P3, Université de

Strasbourg
Strasbourg, France

emmanuel.medernach@iphc.cnrs.fr

Inés Gonzalez Pepe
Department of Computer Science and
Software Engineering, Concordia

University
Montreal, Canada

i_gon@encs.concordia.ca

Axel Bonnet
Univ Lyon, INSA-Lyon, Université
Claude Bernard Lyon 1, UJM-Saint
Etienne, CNRS, Inserm, CREATIS

UMR 5220, U1294
Villeurbanne, France

axel.bonnet@creatis.insa-lyon.fr

Yohan Chatelain
Department of Computer Science and
Software Engineering, Concordia

University
Montreal, Canada

yohanmichelbenoit.chatelain@concordia.ca

Michaël Sdika
Univ Lyon, INSA-Lyon, Université
Claude Bernard Lyon 1, UJM-Saint
Etienne, CNRS, Inserm, CREATIS

UMR 5220, U1294
Villeurbanne, France

michael.sdika@creatis.insa-lyon.fr

Tristan Glatard
Department of Computer Science and
Software Engineering, Concordia

University
Montreal, Canada

tristan.glatard@concordia.ca

Sorina Camarasu-Pop
Univ Lyon, INSA-Lyon, Université
Claude Bernard Lyon 1, UJM-Saint
Etienne, CNRS, Inserm, CREATIS

UMR 5220, U1294
Villeurbanne, France

sorina.pop@creatis.insa-lyon.fr

ABSTRACT
The reproducibility of neuroimaging analyses across computational
environments has gained significant attention over the last few
years. While software containerization solutions such as Docker
and Singularity have been deployed to mask the effects of software-
induced variability, variations in hardware architectures still im-
pact neuroimaging results in an unclear way. We study the effect
of hardware variability on linear registration results produced by
the FSL FLIRT application, a widely-used software component in
neuroimaging data analyses. Using the Grid’5000 infrastructure,
we study the effect of nine different CPU models using two soft-
ware packaging systems (Docker and Guix), and we compare the
resulting hardware variability to numerical variability measured
with random rounding. Results show that hardware, software, and
numerical variability lead to perturbations of similar magnitudes —
albeit uncorrelated — suggesting that these three types of variability

∗These authors have contributed equally to this work and share first authorship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM REP ’24, June 18–20, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0530-4/24/06
https://doi.org/10.1145/3641525.3663626

act as independent sources of numerical noise with similar magni-
tude. Therefore, random rounding is a practical solution to measure
the effect of numerical noise induced by hardware variability in
this application. The effect of hardware perturbations on linear
registration remains moderate, with average translation errors of
0.1 mm (maximum: 0.5 mm) and average rotation errors of 0.02 deg
(maximum: 0.2 deg). Such variations might impact downstream
analyses when linear registration is used as initialization step for
other operations.

KEYWORDS
Reproducibility, Neuroimaging, CPU micro-architecture, Software
packaging, Random rounding
ACM Reference Format:
Gaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan
Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop. 2024.
The Impact of Hardware Variability on Applications Packaged with Docker
and Guix: a Case Study in Neuroimaging. InACMConference on Reproducibil-
ity and Replicability (ACM REP ’24), June 18–20, 2024, Rennes, France. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3641525.3663626

1 INTRODUCTION
The last few years have seen a growing awareness of reproducibil-
ity concerns in many areas of science. The neuroimaging research
community has been particularly active on the subject, producing
multiple studies and recommendations [2, 14, 15]. Reproducibility
is contingent on multiple factors [11] including study design, data

https://doi.org/10.1145/3641525.3663626
https://doi.org/10.1145/3641525.3663626


ACM REP ’24, June 18–20, 2024, Rennes, FranceGaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop

acquisition and analysis approaches, software implementations and
their dependencies, and execution hardware. Several studies con-
centrated on software factors. To cite a few examples from the
neuroimaging domain, the work in [3] reported extensive differ-
ences in the results produced by different software packages in
functional MRI analysis, the work in [5] evaluated the reproducibil-
ity of tumor segmentations produced by different versions of the
same application, and the study in [7] evaluated the reproducibility
of neuroimaging analyses across operating systems.

The main approach to circumvent software variability has been
to containerize software using Docker or Singularity (now renamed
Apptainer) [19]1. Containers allow developers to package and run
an application and its dependencies — including all configuration
files and dependent libraries — in a portable environment. The
discrepancies in software versions, configurations, and dependen-
cies that often arise between different execution environments
are thus minimized. A few platforms, including Neurodesk [19],
BIDS apps [8] or Boutiques [6], rely on Docker and Singularity
containers to reproduce neuroimaging results across execution en-
vironments. However, Docker and Singularity containers often lack
transparency, in particular when their creation "recipe" is not avail-
able, resulting in software black boxes. In contrast, Guix [21] is a
framework to build reproducible computational environments that
accurately document the software building chain and its dependen-
cies. Guix packages are defined in modules exportable as Docker
containers or other types of archives.

Software containers do not control for hardware heterogene-
ity. The extent to which hardware — for instance CPU micro-
architecture — impacts computational neuroimaging results is un-
clear. In [19], minor differences between results obtained in different
environments were observed despite the use of Docker containers,
which was attributed to hardware variability. In particular, hetero-
geneity between CPU instruction sets — such as support for Ad-
vanced Vector Extensions or AVX — may introduce numerical per-
turbations that could impact results similarly to software-induced
numerical perturbations studied in [7] or [12].

Numerical perturbations impact neuroimaging applications dif-
ferently depending on the numerical stability of their implementa-
tion. Monte-Carlo Arithmetic [16], and in particular random round-
ing, is a technique to investigate numerical stability experimentally
in large and complex code bases. Previous studies showed that ran-
dom rounding can accurately simulate operating system updates
in neuroimaging data analyses [20]. However, it remains unclear
whether random rounding could be a good model for numerical
perturbations resulting from hardware updates.

This paper aims to: (1) evaluate the impact of hardware variabil-
ity on results produced by a neuroimaging application, (2) compare
and correlate hardware variability to software variability encoun-
tered in different software packages, and (3) compare and correlate
hardware variability to numerical variability resulting from ran-
dom rounding applied to elementary mathematical functions. We
focus on the FSL FLIRT [10] application, a software tool frequently
used as a building block in neuroimaging analyses. We execute FSL
FLIRT on a representative dataset of 148 MRIs, comparing results
obtained with nine different CPU models accessed in the Grid’5000

1See also https://epcced.github.io/2020-12-08-Containers-Online

Table 1: Subset of Grid’5000 clusters used in our experiments

Cluster CPU Model Micro-arch ISE

uvb Intel Xeon X5670 Westmere SSE4.2
hercule Intel Xeon E5-2620 Sandy Bridge AVX
taurus Intel Xeon E5-2630 Sandy Bridge AVX
parasilo Intel Xeon E5-2630 v3 Haswell AVX2
nova Intel Xeon E5-2620 v4 Broadwell AVX2
chifflot Intel Xeon Gold 6126 Skylake AVX-512
chiclet AMD EPYC 7301 Zen AVX2
neowise AMD EPYC 7642 Zen 2 AVX2
abacus21 AMD EPYC 7F72 Zen 2 AVX2

research infrastructure [1], using two packaging systems (Docker
and Guix), and testing different compilation options.

2 MATERIALS AND METHODS
Figure 1 summarizes the execution environments compared in our
experiments. The remainder of this section details each of these
components more thoroughly.

Figure 1: Summary of the Grid’5000 experiment

2.1 Computing Infrastructure
We used the Grid’5000 [1] research infrastructure for our exper-
iments. Grid’5000 is a large-scale testbed deployed in France for
experiment-driven research in all areas of computer science. Among
others, it gives access to a wide spectrum of hardware2, which is
particularly interesting for this study. In our experiments, we used
a subset of computing nodes with different CPU models summa-
rized in Table 1 and using the Debian 11 operating system (OS)
as it was the default Grid’5000 OS at the time we conducted our
experiments. Grid’5000 also supports OS customization. Appendix
A briefly describes how to access Grid’5000 nodes.

Table 1 lists the computing clusters and the associated CPU
models involved in our experiments, with additional information
on the CPU micro-architecture and Instruction Set Extension (ISE).
Micro-architecture refers to the way that a given instruction set
architecture (ISA) is implemented in a particular processor. An ISA
describes the instruction set available on the processor. An ISE is a
set of specific instructions that extends the ISA basis. It works as a
2https://www.grid5000.fr/w/Hardware

https://epcced.github.io/2020-12-08-Containers-Online


The Impact of Hardware Variability on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging ACM REP ’24, June 18–20, 2024, Rennes, France

layer, a.k.a next generations of ISE support previous generations
(AVX512 supports AVX2 that supports AVX that supports SSE4.2).

Advanced Vector Extensions (AVX, also known as Sandy Bridge
New Instructions) are SIMD (Single Instruction, Multiple Data) ex-
tensions to the x86 instruction set architecture. They were proposed
by Intel in 2008 and first supported with the Sandy Bridge processor.
AVX-2 (also known as Haswell New Instructions) expands most in-
teger commands to 256 bits and introduces new instructions. They
were first supported with the Haswell processor in 2013. Finally,
AVX-512 extends 256-bits AVX instructions to 512 bits.

The design and optimization of micro-architecture are critical
to the development of modern CPUs, GPUs, and other types of
processors, but they can also be a source of non-reproducibility.

Floating-point operations can yield different results on proces-
sors supporting different versions of SIMD extensions like AVX
and AVX-2. AVX-2 introduced new instructions and capabilities not
present in the original AVX, such as Fused Multiply-Add (FMA).
FMA is a floating-point multiply–add operation performed in one
step (fused operation), with a single rounding. FMA can speed up
and improve the accuracy of computations that involve the accu-
mulation of products. AVX-512, in its Foundation version, does not
add new instructions introducing a different accuracy like FMA
does. However, by extending the length of vectorized arithmetic
operations, it may impact the results of vectorized operations, such
as vectorized sum, because floating-point arithmetic lacks associa-
tivity.

The Grid’5000 research infrastructure was used to run FSL FLIRT
experiments on the different CPU micro-architecture listed in Ta-
ble 1. For random rounding experiments, we used the Narval clus-
ter operated by Calcul Québec in the Digital Alliance of Canada
which include AMD Rome 7502, AMD Rome 7532, and AMD Milan
7413 CPUs which support AVX-2. In addition to these comput-
ing resources, we also used the SCIGNE3 cloud infrastructure for
deploying our Guix and CVMFS servers.

2.2 Neuroimaging Application
The FMRIB Software Library4 (FSL [9]) is a comprehensive library of
analysis tools for FMRI, MRI and diffusion brain imaging data. FSL-
FLIRT is a neuroimaging tool for affine brain registration. Affine
brain registration consists of aligning an input object (in our case, a
brain scan) with another one through rotation, translation, scaling,
and shearing. In 3D, this results in a linear transformation with 12
degrees of freedom.

In this case, brain registration was performed using a subject
image as input image and the T1-weighted MNI152 template brain
with a voxel resolution of 1x1x1mm as reference image. In neu-
roimaging studies, linear registration to a template brain is com-
monly performed as an initialization step for spatial normaliza-
tion which is a common pre-processing step for group analyses.
The application was run with minimal configuration using the
MNI152_T1_1mm.nii.gz template as detailed in appendix B.

3https://scigne.fr/
4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

Table 2: Software versions used in Docker vs Guix

FSL gcc libm OpenBlas

Docker 6.0.5.1 4.8.5 2.27 0.3.3
Guix 6.0.5.1 9.5.0 2.33 0.3.20

2.3 Compilation and Packaging
Compilation affects the results of floating-point operations. Com-
pilers may optimize floating-point calculations differently based
on the available instruction set. For example, a compiler might
use FMA instructions when they are available (as in AVX-2) but
resort to separate multiplication and addition instructions on an
AVX-only processor. The "march" (machine architecture) flag can
help optimize software to run efficiently on specific hardware and
is used in this study to evaluate its impact on the reproducibility of
results.

We packaged the application with Docker and Guix using
software versions reported in Table 2. For Docker, we used the FSL
Docker image vnmd/fsl_6.0.5.1 provided on Docker Hub by the
NeuroDesk community organization. The image choice
corresponds to that of a researcher targeting FSL version 6.0.5.1,
but with no further requirements on the underlying environment
and dependencies. The executable remained identical across
experiments. The FLIRT binary was compiled with gcc-4.8.5
using -O3 -fexpensive-optimizations optimization flags. The
-march flag was not specified, resulting in the generation of
assembly code that is portable across all existing x86_64
architectures. We retrieved the gcc version by using the readelf
-p .comment flirt command. The optimization flags were found
in the /opt/fsl-6.0.5.1/build.log log file. FLIRT was linked
with OpenBLAS v0.3.3 built for multiple targets with runtime
detection of the target CPU. We installed Docker on the Grid’5000
nodes from package docker-desktop-4.20.1-amd64.deb, and
we pulled the Docker image on each node at the beginning of our
allocation. We processed the dataset nine times with this Docker
container, once for every CPU model in Table 1.

For Guix, we built four different executables: one with the de-
fault compilation options, and three with compilation flags target-
ing specific micro-architectures (-march= sandybridge, haswell or
skylake)5. We wrote FSL Guix modules to compile FSL and all its
dependencies in a reproducible manner. In Guix, all packages are
installed in separate directories. We adapted the compilation scripts
to reference these paths. Package compilation with Guix was done
using the guix pack command and using relocatable packages
options (see appendix C).

Our Guix build server was a virtual machine deployed on a local
cloud infrastructure (SCIGNE). We also installed a local CVMFS6
server in a virtual machine. The packages were build on our Guix
build server with gcc compiler version 9.5.0 and then deployed
using CVMFS. After reserving a node on Grid’5000, we installed a
CVMFS client to access files on our CVMFS server. This deployment
strategy allowed the computing nodes to download only the files
needed at runtime from the packages.
5https://gitlab.in2p3.fr/reprovip/reprovip-guix/-/tree/master/GUIX/FSL/compilation
6https://cernvm.cern.ch/fs/

https://scigne.fr/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://gitlab.in2p3.fr/reprovip/reprovip-guix/-/tree/master/GUIX/FSL/compilation
https://cernvm.cern.ch/fs/


ACM REP ’24, June 18–20, 2024, Rennes, FranceGaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop

We processed the dataset with Guix once for each of the four
compilation configurations (one default and three targeting specific
micro-architectures: sandybridge, haswell or skylake)) and for each
of the nine CPU models in Table 1, resulting in 36 different runs.
Additionally, the Docker and Guix experiments were run twice with
the default compilation options to check that application runs were
deterministic.

2.4 Dataset
The data used in this experiment consisted of 148 brain scans from
39 healthy subjects (31 subjects × 4 scans + 8 subjects × 3 scans)
sampled from the OASIS-I dataset [13]. All images had the same
voxel size (1 × 1 × 1.25mm) and dimensions (256 × 256 × 128 voxels).

The original scans in the OASIS-I dataset were available in a
legacy .hdr format, which caused FSL to misinterpret the ori-
entation information, a documented problem that requires man-
ual correction7. Image orientation was therefore manually set to
standard RAS (Right-Anterior-Superior) using the FSL commands
fslorient and fslswapdim, after being converted to NIfTI format
using fslchfiletype. Images were visually inspected for correct
registration using fsleyes.

2.5 Random Rounding
Random rounding is a type of Monte Carlo Arithmetic [16], a
stochastic arithmetic technique to empirically evaluate numeri-
cal stability by injecting noise into floating point operations and
quantifying the resulting error at a given virtual precision. While
Monte-Carlo Arithmetic provides different noise injection modes,
we only used random rounding (RR). RR simulates rounding er-
rors by applying the following perturbation to all floating-point
operations of an application:

𝑟𝑎𝑛𝑑𝑜𝑚_𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝑥 ◦ 𝑦) = 𝑟𝑜𝑢𝑛𝑑 (𝑖𝑛𝑒𝑥𝑎𝑐𝑡 (𝑥 ◦ 𝑦))

where 𝑥 and 𝑦 are floating-point numbers, ◦ is an arithmetic op-
eration, and 𝑖𝑛𝑒𝑥𝑎𝑐𝑡 is a random perturbation defined at a given
virtual precision:

𝑖𝑛𝑒𝑥𝑎𝑐𝑡 (𝑥) = 𝑥 + 2𝑒𝑥−𝑡 𝜉

where 𝑒𝑥 is the exponent in the floating-point representation of
𝑥 , 𝑡 is the virtual precision, and 𝜉 is a random uniform variable of
(− 1

2 ,
1
2 ). To measure numerical uncertainty, we applied a pertur-

bation of 1 ulp (unit of least precision, a.k.a the spacing between
two consecutive floating-point numbers), which corresponds to a
virtual precision of 𝑡 = 24 bits for single-precision and 𝑡 = 53 bits
for double-precision. We applied random rounding only to the ele-
mentary mathematical functions used in FSL FLIRT, as done in [20].
Elementary mathematical functions are widely used in linear reg-
istration, and their rounding is a main source of variability across
computing environments. FSL FLIRT was instrumented through
the Verificarlo [4] tool, a clang-based compiler. Verificarlo substi-
tutes floating-point operations with a call to one of the various
configurable floating-point models available. We used Verificarlo
through “fuzzy libmath" v0.9.1 that we added to FSL Docker con-
tainer vnmd/fsl\_6.0.5.1, converted to a Singularity image sup-
ported by the execution cluster, and executed through the Boutiques

7https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained

library. We executed 10 executions of random rounding for each of
the 148 images processed with FSL FLIRT on the Narval cluster.

2.6 Reproducibility Measures
The outputs of FSL-FLIRT are (i) the registered brain image in
NIfTI format (.nii.gz) resampled in the geometry of the template
brain, and (ii) the transformation matrix in text format (.mat). Re-
producibility analyses were conducted on both outputs on a local
computer where all output files were copied from the Grid’5000
infrastructure.

We tested bitwise reproducibility by computing the MD5 sums
of the output files. To facilitate the identification of experimental
conditions producing identical results for all the 148 input images,
we computed the checksum of the global output dataset, i.e., of all
148 registered brain scans and transformation matrices. For each
unique global output dataset we compared checksums on individual
output files, i.e., each registered brain scan and transformation
matrix.

Transformation matrices were compared through their transla-
tion and rotation parameters. We extracted the translation vector
and the rotation vector of Euler angles (roll, pitch, yaw). Given
that the output affine transformation matrix can also include scal-
ing and shearing, we removed these components and isolated the
pure rotation part of the matrix using the polar decomposition.
The matrix 𝐴 was decomposed into 𝐴 = 𝑆𝑅 where 𝑆 is a positive
symmetric matrix and 𝑅 is the best rotation approximating 𝐴. This
decomposition was implemented using the singular decomposi-
tion (numpy.linalg.svd). Translation and rotation errors between
transformations 𝑎 and 𝑏 were then computed using the Euclidean
distance between translation or rotation vectors:

𝑡𝑟𝑒𝑟𝑟 =

√√√ 2∑︁
𝑖=0

(
𝑡𝑎
𝑖
− 𝑡𝑏

𝑖

)2
and 𝑟𝑜𝑡𝑒𝑟𝑟 =

√√√ 2∑︁
𝑖=0

(
𝑟𝑎
𝑖
− 𝑟𝑏

𝑖

)2
(1)

where (𝑡0, 𝑡1, 𝑡2) is the translation vector (expressed in mm) and
(𝑟0, 𝑟1, 𝑟2) is the rotation vector of Euler angles (roll, pitch, yaw
expressed in degrees).

Transformation matrices were also compared using the frame-
wise displacement (FD) metric8. The FD metric is derived from the
study of motion artefacts. It computes the displacement of a voxel
located 50 mm from the center of the brain, i.e., approximately on
the brain skull [18]. FDwas computed between two transformations
𝑎 and 𝑏 using the following formula (from [17]):

𝐹𝐷𝑎,𝑏 =

2∑︁
𝑖=0

|𝑡𝑎𝑖 − 𝑡𝑏𝑖 | + 50 · 𝜋

180
·

2∑︁
𝑟=0

|𝑟𝑎𝑖 − 𝑟𝑏𝑖 |,

where (𝑡0, 𝑡1, 𝑡2) is the translation vector (expressed in mm) and
(𝑟0, 𝑟1, 𝑟2) is the rotation vector of Euler angles (roll, pitch, yaw
expressed in degrees).

2.7 Availability of Code and Data
The scripts and notebooks used to generate our results are available
at the following locations:

• FSL Docker image: hub.docker.com/r/vnmd/fsl_6.0.5.1

8https://wiki.cam.ac.uk/bmuwiki/FMRI#Framewise_Displacement

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Orientation%20Explained
https://hub.docker.com/r/vnmd/fsl_6.0.5.1
hub.docker.com/r/vnmd/fsl_6.0.5.1
https://wiki.cam.ac.uk/bmuwiki/FMRI#Framewise_Displacement


The Impact of Hardware Variability on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging ACM REP ’24, June 18–20, 2024, Rennes, France

• FSL Guix modules and Grid’5000 scripts: gitlab.in2p3.fr/
reprovip/reprovip-guix, also archived on Software Heritage

• Post-processing for the reproducibility analysis:
gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-
scripts, also archived on Software Heritage

• Dockerfile, Boutiques descriptor and analysis scripts used
for random rounding: github.com/big-data-lab-team/fuzzy-
linreg/tree/acm-rep-2024, also archived on Software Her-
itage.

We used FSL v6.0.5.1, fuzzy libmath v0.9.1, Docker v4.20.1
(package docker-desktop-4.20.1-amd64.deb), cvmfs v2.11.2 and
Guix channels as defined in channels.scm9.

The OASIS dataset used in our experiments is available at oasis-
brains.org/#data.

The transformation matrix results (.mat files) are available at
zenodo.org/records/10649569.

3 RESULTS
We define “hardware variability" as the output differences caused by
using CPU micro-architectures with or without AVX2 support (Ta-
ble 1), “software variability" the variability resulting from different
compilation environments in Docker and Guix, mostly influenced
by the FSL, gcc, libm, and OpenBlas versions (Table 2), and “numer-
ical variability" the variability resulting from random rounding.

3.1 Hardware variability was measurable in
Docker and Guix

Table 3 summarizes the results obtained across all CPU types. The
global checksum identifies the whole output dataset, i.e. all the 148
registered brain scans and transformation matrices. Experiments
were run on the 9 clusters listed in Table 1, but the reporting in
Table 3 was simplified because no difference was observed among
the results obtained between the clusters with the same micro-
architecture.

The experiments associated with the first three enclosed row
groups in Table 3 were executed twice. Each pair of identical ex-
ecutions produced the same global output dataset (same global
checksum), confirming that FSL FLIRT results were deterministic
and bitwise reproducible.

Each packaging method (Docker or Guix) led to a different global
checksum for two micro-architecture subsets, resulting in a total
of four different global checksums. For the Docker experiments
we used the same Docker image with a pre-built FSL binary (see
section 2.3 for compilation options). Differences in results were
due to differences in micro-architectures, divided in two categories.
The first category (Intel Sandy Bridge and Westmere) does not pro-
vide support for AVX-2, while the second category (Intel Haswell,
Broadwell, Skylake, AMD Zen, Zen 2) does, which suggests that dif-
ferences in results were due to AVX-2 support. Moreover, Skylake’s
AVX-512 support did not influence the outcomeswhich underscores
AVX2’s significance in the observed variations.

For the Guix experiments, we generated four different packages,
corresponding to four different FSL FLIRT executables. The first
one was built with the default compiler options and was executed
9https://gitlab.in2p3.fr/reprovip/reprovip-guix/-/blob/master/GUIX/FSL/
compilation/v0.1/channels.scm?ref_type=heads

successfully on all Grid’5000 clusters listed in Table 1, yielding
bit-wise reproducible results on all types of micro-architectures
(third enclosed row group in Figure 3). This implies OpenBLAS was
compiled for a generic x86_64 architecture, disabling dynamic ar-
chitecture support. We then created modified packages for different
micro-architectures by adding specific -march= flags.

The Guix modified package built using the Sandy Bridge flag
was, understandably, unable to run on the Westmere nodes, while
the one using Haswell or Skylake flags was unable to run on Sandy
Bridge or Westmere. We retrieve the same two micro-architectures
categories leading to different results as with Docker. We note
that a Guix package always gave the same results on all the nodes
on which it was able to run. Using the default compiler options
(-march=x86_64 -O3) allows to (i) execute the application on all
nodes and (ii) obtain bit-wise reproducible results. However, it
renders inaccessible the latest micro-architecture optimizations.

3.2 Variability was data-dependent
Among the four sets of outputs, three of them shared a few identi-
cal (bit-wise reproducible) results, while the fourth one (Guix-75e)
shared no common result with the three others. The intersections
between the three overlapping sets are summarized in Figure 2.
We note that groups Guix-b48 and Docker-03f (corresponding to
the group of microarchitectures without AVX-2 support) count 43
(i.e., more than a third) identical results. Visual inspection of the
inputs producing bit-wise reproducible results provided no insight
to explain this behaviour. Previous works [5] have already shown
that variability in segmentation outcomes was dependent on the
input data. Figure 3 plots the framewise displacement across sub-
jects, showing important variability across subjects. The fact that
reproducibility results are data-dependent reiterates the necessity
to conduct such experiments on large image databases.

Figure 2: Intersections between result sets (matrix files) ob-
tained on Grid’5000 for three of the four experiments. The
fourth result set is disjoint.

https://gitlab.in2p3.fr/reprovip/reprovip-guix
gitlab.in2p3.fr/reprovip/reprovip-guix
https://gitlab.in2p3.fr/reprovip/reprovip-guix
gitlab.in2p3.fr/reprovip/reprovip-guix
https://archive.softwareheritage.org/swh:1:dir:50419f74d4f0e5de85b4d0bd8ad09e1694e10fdb;origin=https://gitlab.in2p3.fr/reprovip/reprovip-guix;visit=swh:1:snp:559da884e8c3d61947031d55d9c7366eca8cb6ea;anchor=swh:1:rev:4bec93cf1e035401850253c0495506456c5ae6bd
https://gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-scripts
gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-scripts
https://gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-scripts
gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-scripts
https://archive.softwareheritage.org/swh:1:dir:deac4bdb0597c3d5b4ef5ef772ffd2b20bdb1032;origin=https://gitlab.in2p3.fr/reprovipgroup/reprovip-notebooks-and-scripts;visit=swh:1:snp:1121478412dc60a1f6bfc82ad1b9fc83b8f26ff5;anchor=swh:1:rev:aa4096928815e69890143c669bb4d0006222e9f6
https://github.com/big-data-lab-team/fuzzy-linreg/tree/acm-rep-2024
github.com/big-data-lab-team/fuzzy-linreg/tree/acm-rep-2024
https://github.com/big-data-lab-team/fuzzy-linreg/tree/acm-rep-2024
github.com/big-data-lab-team/fuzzy-linreg/tree/acm-rep-2024
 https://archive.softwareheritage.org/swh:1:dir:a456a5b5395b000d7301bb3cc64e80d5de2f28f0;origin=https://github.com/InesGP/reprovip_acm_paper;visit=swh:1:snp:77626e70cc594a1b21a91d8728f8582556290935;anchor=swh:1:rev:70ba4ebb8877ae12e24554b824542ef63345bca6
 https://archive.softwareheritage.org/swh:1:dir:a456a5b5395b000d7301bb3cc64e80d5de2f28f0;origin=https://github.com/InesGP/reprovip_acm_paper;visit=swh:1:snp:77626e70cc594a1b21a91d8728f8582556290935;anchor=swh:1:rev:70ba4ebb8877ae12e24554b824542ef63345bca6
https://oasis-brains.org/#data
oasis-brains.org/#data
https://oasis-brains.org/#data
oasis-brains.org/#data
https://zenodo.org/records/10649569
zenodo.org/records/10649569
https://gitlab.in2p3.fr/reprovip/reprovip-guix/-/blob/master/GUIX/FSL/compilation/v0.1/channels.scm?ref_type=heads
https://gitlab.in2p3.fr/reprovip/reprovip-guix/-/blob/master/GUIX/FSL/compilation/v0.1/channels.scm?ref_type=heads


ACM REP ’24, June 18–20, 2024, Rennes, FranceGaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop

Packaging Compilation Microarchitecture ISE Global checksum
flags (-march=) of the execution node

Docker x86_64 Intel Westmere SSE4.2 03f8688da59b02bc55922c9dca322fe2
Docker x86_64 Intel Sandy Bridge AVX 03f8688da59b02bc55922c9dca322fe2

Docker x86_64 Intel Haswell AVX-2 6a92985a9f458557cd62fb3eb0f0cebf
Docker x86_64 Intel Broadwell AVX-2 6a92985a9f458557cd62fb3eb0f0cebf
Docker x86_64 AMD Zen AVX-2 6a92985a9f458557cd62fb3eb0f0cebf
Docker x86_64 AMD Zen2 AVX-2 6a92985a9f458557cd62fb3eb0f0cebf
Docker x86_64 Intel Skylake AVX-512 6a92985a9f458557cd62fb3eb0f0cebf

Guix x86_64 Intel Westmere SSE4.2 b482bbfec28a23013196942185754132
Guix x86_64 Intel Sandy Bridge AVX b482bbfec28a23013196942185754132
Guix x86_64 Intel Haswell AVX-2 b482bbfec28a23013196942185754132
Guix x86_64 Intel Broadwell AVX-2 b482bbfec28a23013196942185754132
Guix x86_64 AMD Zen AVX-2 b482bbfec28a23013196942185754132
Guix x86_64 AMD Zen2 AVX-2 b482bbfec28a23013196942185754132
Guix x86_64 Intel Skylake AVX-512 b482bbfec28a23013196942185754132

Guix sandybridge Intel Westmere SSE4.2 flirt execution not possible (incompatibility)
Guix sandybridge Intel Sandy Bridge AVX b482bbfec28a23013196942185754132
Guix sandybridge Intel Haswell AVX-2 b482bbfec28a23013196942185754132
Guix sandybridge Intel Broadwell AVX-2 b482bbfec28a23013196942185754132
Guix sandybridge AMD Zen AVX-2 b482bbfec28a23013196942185754132
Guix sandybridge AMD Zen2 AVX-2 b482bbfec28a23013196942185754132
Guix sandybridge Intel Skylake AVX-512 b482bbfec28a23013196942185754132

Guix haswell Intel Westmere SSE4.2 flirt execution not possible (incompatibility)
Guix haswell Intel Sandy Bridge AVX flirt execution not possible (incompatibility)
Guix haswell Intel Haswell AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix haswell Intel Broadwell AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix haswell AMD Zen AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix haswell AMD Zen 2 AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix haswell Intel Skylake AVX-512 75ec7e47fe5e2bd35aa6903398b47dcf

Guix skylake Intel Westmere SSE4.2 flirt execution not possible (incompatibility)
Guix skylake Intel Sandy Bridge AVX flirt execution not possible (incompatibility)
Guix skylake Intel Haswell AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix skylake Intel Broadwell AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix skylake AMD Zen AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix skylake AMD Zen 2 AVX-2 75ec7e47fe5e2bd35aa6903398b47dcf
Guix skylake Intel Skylake AVX-512 75ec7e47fe5e2bd35aa6903398b47dcf

Table 3: Checksums obtained with different packaging methods and compilation flags on different microarchitectures

3.3 Effect of all perturbations remained
moderate

Figure 4 quantifies the translation and rotation errors (Equation 1)
within the four sets of results taken two by two. For all types of
perturbations, translation errors remained under 0.6 mm, and rota-
tion errors remained under 0.2 deg. While such differences remain
moderate, they could impact downstream analyses initialized with
linear registration.

Figure 5 illustrates the visual differences in results for the two
outputs with the largest differences in translation and rotation (pink
dot in the upper right-hand side of Figure 4) along with correspond-
ing inputs (subject 31, scan 2). The corresponding animated gif is
available online10.

10https://raw.githubusercontent.com/big-data-lab-team/fuzzy-linreg/main/anim.gif

3.4 Hardware, software, and numerical
variabilities were of comparable magnitude

No significant differences were observed between numerical and
hardware variability (Figures 6 and 7), except between the numeri-
cal variability and the Docker experiments for rotation error (Fig-
ure 7) where the average difference between rotation errors was of
0.02 deg. Significant but small differences were observed between
software variability and hardware variability, and between software
variability and numerical variability. Overall, numerical, hardware,
and software variability were of comparable magnitude.

3.5 Hardware, software, and numerical
variabilities were uncorrelated

Correlation tests were conducted between numerical, hardware, and
software perturbation types, comparing rotation and translation
errors using the Spearman correlation coefficient as implemented

https://raw.githubusercontent.com/big-data-lab-team/fuzzy-linreg/main/anim.gif


The Impact of Hardware Variability on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging ACM REP ’24, June 18–20, 2024, Rennes, France

Figure 3: Framewise displacement across subjects

Figure 4: Distributions of rotation and translation differences
in the transformation matrix results (‘.mat‘ result files). Dif-
ferences are computed for the six result pairs corresponding
to hardware, software or (hardware & software) variability.

in Scipy’s stats package (Table 4 and 5). No significant correlation
was found between hardware variability and numerical variability,
or between hardware variability and software variability. It means
that for a given subject, hardware variability cannot be reliably
predicted from numerical or software variability. Unsurprisingly, a
moderate but significant correlation was observed between hard-
ware variability in the Docker experiments and hardware variability
in the Guix experiments, for both translation and rotation errors.

4 DISCUSSION
We studied the impact of hardware variability on the reproducibility
of results of a neuroimaging application (FSL FLIRT) deployed on
Grid’5000 clusters using Docker and Guix. We then used random
rounding to empirically evaluate the numerical stability of the appli-
cation, which we compared to the variability of results from the first

Figure 5: Sagittal, coronal and axial views of differences in
results along with the corresponding input file. Differences
on the top line are computed between outputs belonging to
groups Docker-6a9 and Guix-b48 and representing the pair
of outputs with the largest difference in translation and ro-
tation. Input slices on the second line correspond to subject
31, scan 2.

Table 4: Correlations between hardware, software and numer-
ical variability measured in translation vectors. Hardware
(Docker): Docker-03f vs Docker-6a9. Hardware (Guix): Guix-
b48 vs Guix-75e. Software (Docker vs Guix): Docker-03f vs
Guix-b48. *p < 0.05, Bonferroni corrected.

Variability 1 Variability 2 Spearman
correlation

Hardware (Docker) Numerical (RR) 0.04
Hardware (Guix) Numerical (RR) 0.11
Software (Docker vs Guix) Numerical (RR) -0.11
Software (Docker vs Guix) Hardware (Guix) 0.20
Software (Docker vs Guix) Hardware (Docker) 0.11
Hardware (Guix) Hardware (Docker) 0.41*

experiments. Results show that hardware, software and numerical
variability lead to variations in results of similar magnitudes but



ACM REP ’24, June 18–20, 2024, Rennes, FranceGaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop

Numerical
(random rounding)

Hardware
(Docker)

Hardware
(GUIX)

Software
(Docker vs GUIX)

0.0

0.2

0.4

0.6

0.8

Tr
an

sla
tio

n 
er

ro
r (

m
m

)

* * *

* * *
* * *

Figure 6: Comparison between translation errors measured
for numerical, hardware, and software variability, for each
subject. Numerical variability: average error across n=10 RR
repetitions. Hardware (Docker): Docker-03f vs Docker-6a9.
Hardware (Guix): Guix-b48 vs Guix-75e. Software (Docker
vs Guix): Docker-03f vs Guix-b48. *p < 0.05; ***p < 0.01. p-
valueswere obtainedwith a two-sample t-test and Bonferroni
corrected.

Numerical
(random rounding)

Hardware
(Docker)

Hardware
(GUIX)

Software
(Docker vs GUIX)

0.00

0.05

0.10

0.15

0.20

Ro
ta

tio
n 

er
ro

r (
de

gr
ee

s)

* * * *
* * *

* * *

Figure 7: Comparison between rotation errors measured for
numerical, hardware, and software variability, for each sub-
ject. Numerical variability: average error across n=10 RR
repetitions. Hardware (Docker): Docker-03f vs Docker-6a9.
Hardware (Guix): Guix-b48 vs Guix-75e. Software (Docker vs
Guix): Docker-03f vs Guix-b48. *p < 0.05; ***p < 0.01: p-values
were obtained with a two-sample t-test and Bonferroni cor-
rected.

uncorrelated with each other. Variations remained moderate but
might impact downstream analyses given that linear registration is
often used as an initialization step to other operations.

Table 5: Correlations between hardware, software and nu-
merical variability mesured in rotation vectors. Hardware
(Docker): Docker-03f vs Docker-6a9. Hardware (Guix): Guix-
b48 vs Guix-75e. Software (Docker vs Guix): Docker-03f vs
Guix-b48. *p < 0.05, Bonferroni corrected.

Variability 1 Variability 2 Spearman
correlation

Hardware (Docker) Numerical (RR) 0.00
Hardware (Guix) Numerical (RR) 0.01
Software (Docker vs Guix) Numerical (RR) -0.12
Software (Docker vs Guix) Hardware (Guix) 0.22
Software (Docker vs Guix) Hardware (Docker) 0.08
Hardware (Guix) Hardware (Docker) 0.36*

Docker and Guix, the two packaging solutions used in our exper-
iments are known to mitigate software variability. From a computa-
tional bit-wise reproducibility point of view, experiments conducted
in this study show that the two packaging solutions lead to similar
conclusions: results are bit-wise reproducible when using the same
packaged FLIRT executable on equivalent micro-architectures. We
note however that, despite using the same version of the FLIRT
source code, the two solutions yielded different outputs for most
of the input files (but not for all). This is due to the software vari-
ability resulting from different compilation environments, mostly
influenced by the gcc, libm and OpenBlas versions. The Docker
image is a black box providing little or no information on how
the executable was built (both on the compilation process, and on
software dependency stack). In contrast, the Guix solution enforces
full transparency on both compiling and runtime environments,
requesting for the description and availability of all dependencies.
The Guix package is thus more complex to produce than a Docker
image, but, once available, variations can be easily built by mod-
ifying compiler options or by using other versions of dependent
packages.

Regarding the compilation options, we only studied the impact
of the "march" (machine architecture) flag, directly connected to
the hardware aspects in the study. The "march" option can help
optimizing software to run efficiently on specific hardware, but it’s
important to be aware of the portability issues it may engender. In
our experiments, using "haswell" or "skylake" options prevented
the FLIRT execution on Sandy Bridge and Westmere architectures.
Other compilation options (not studied here) are also known to
impact reproducibility. As an example, different optimization levels
(-O0, -O1, -O2, -O3, -Os) can lead to different execution paths in
the code, potentially causing variations in results, especially in
floating-point computations.

In our study, results suggest that differences in FSF FLIRT outputs
related to hardware variability are due to AVX-2 support. Further
work is needed for a finer analysis of the differences observed.

Random rounding had already been shown to accurately simulate
the effect of operating system updates in a similar neuroimaging
application [20]. The present results show that RR introduces per-
turbations of a similar magnitude when compared to executions on



The Impact of Hardware Variability on Applications Packaged with Docker and Guix: a Case Study in Neuroimaging ACM REP ’24, June 18–20, 2024, Rennes, France

different micro-architectures, which establishes RR as a practical
method to simulate both hardware and operating system updates.

The lack of correlation observed between hardware and numeri-
cal variability indicates that both types of variability are different
in nature and essentially act as independent sources of numerical
noise with similar magnitude. This observation seems reasonable
given that AVX-2 instructions involved in hardware variability and
elementary numerical functions involved in numerical variability
impact different parts of the application.

5 FUNDING
This work was supported by the French ANR through the ReproVIP
project (ANR-21-CE45-0024-01). This work was also supported by
the Canada Research Chairs program.

ACKNOWLEDGMENTS
Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see www.grid5000.fr). The authors
acknowledge the support of the Grid’5000 andGuix teams, as well as
the support and resources provided by France Grilles and the IPHC
Computing team. This work was performed within the framework
of the LABEX PRIMES (ANR-11-LABX-0063). Random rounding
experiments were executed on the Narval cluster operated by Calcul
Québec in the Digital Alliance of Canada.

REFERENCES
[1] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,

Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel,
Cyril Rohr, and Luc Sarzyniec. 2013. Adding Virtualization Capabilities to the
Grid’5000 Testbed. In Cloud Computing and Services Science, Ivan I. Ivanov,
Marten van Sinderen, Frank Leymann, and Tony Shan (Eds.). Communications in
Computer and Information Science, Vol. 367. Springer International Publishing,
3–20. https://doi.org/10.1007/978-3-319-04519-1_1

[2] Rotem Botvinik-Nezer, Felix Holzmeister, Colin F. Camerer, Anna Dreber, Juergen
Huber, Magnus Johannesson, Michael Kirchler, Roni Iwanir, Jeanette A. Mumford,
R. Alison Adcock, Paolo Avesani, Blazej M. Baczkowski, Aahana Bajracharya,
Leah Bakst, Sheryl Ball, Marco Barilari, Nadège Bault, Derek Beaton, Julia Beit-
ner, Roland G. Benoit, Ruud M.W.J. Berkers, Jamil P. Bhanji, Bharat B. Biswal,
Sebastian Bobadilla-Suarez, Tiago Bortolini, Katherine L. Bottenhorn, Alexan-
der Bowring, Senne Braem, Hayley R. Brooks, Emily G. Brudner, Cristian B.
Calderon, Julia A. Camilleri, Jaime J. Castrellon, Luca Cecchetti, Edna C. Cieslik,
Zachary J. Cole, Olivier Collignon, Robert W. Cox, William A. Cunningham,
Stefan Czoschke, Kamalaker Dadi, Charles P. Davis, Alberto De Luca, Mauricio R.
Delgado, Lysia Demetriou, Jeffrey B. Dennison, Xin Di, Erin W. Dickie, Ekaterina
Dobryakova, Claire L. Donnat, Juergen Dukart, Niall W. Duncan, Joke Durnez,
Amr Eed, Simon B. Eickhoff, Andrew Erhart, Laura Fontanesi, G. Matthew Fricke,
Shiguang Fu, Adriana Galván, Remi Gau, Sarah Genon, Tristan Glatard, En-
rico Glerean, Jelle J. Goeman, Sergej A. E. Golowin, Carlos González-García,
Krzysztof J. Gorgolewski, Cheryl L. Grady, Mikella A. Green, João F. Guassi Mor-
eira, Olivia Guest, ShabnamHakimi, J. Paul Hamilton, Roeland Hancock, Giacomo
Handjaras, Bronson B. Harry, Colin Hawco, Peer Herholz, Gabrielle Herman,
Stephan Heunis, Felix Hoffstaedter, Jeremy Hogeveen, Susan Holmes, Chuan-
Peng Hu, Scott A. Huettel, Matthew E. Hughes, Vittorio Iacovella, Alexandru D.
Iordan, Peder M. Isager, Ayse I. Isik, Andrew Jahn, Matthew R. Johnson, Tom
Johnstone, Michael J. E. Joseph, Anthony C. Juliano, Joseph W. Kable, Michalis
Kassinopoulos, Cemal Koba, Xiang-Zhen Kong, Timothy R. Koscik, Nuri Erkut
Kucukboyaci, Brice A. Kuhl, Sebastian Kupek, Angela R. Laird, Claus Lamm,
Robert Langner, Nina Lauharatanahirun, Hongmi Lee, Sangil Lee, Alexander
Leemans, Andrea Leo, Elise Lesage, Flora Li, Monica Y.C. Li, Phui Cheng Lim,
Evan N. Lintz, Schuyler W. Liphardt, Annabel B. Losecaat Vermeer, Bradley C.
Love, Michael L. Mack, Norberto Malpica, Theo Marins, Camille Maumet, Kelsey
McDonald, Joseph T. McGuire, Helena Melero, Adriana S. Méndez Leal, Ben-
jamin Meyer, Kristin N. Meyer, Glad Mihai, Georgios D. Mitsis, Jorge Moll, Dy-
lan M. Nielson, Gustav Nilsonne, Michael P. Notter, Emanuele Olivetti, Adrian I.

Onicas, Paolo Papale, Kaustubh R. Patil, Jonathan E. Peelle, Alexandre Pérez,
Doris Pischedda, Jean-Baptiste Poline, Yanina Prystauka, Shruti Ray, Patricia A.
Reuter-Lorenz, Richard C. Reynolds, Emiliano Ricciardi, Jenny R. Rieck, Anais M.
Rodriguez-Thompson, Anthony Romyn, Taylor Salo, Gregory R. Samanez-Larkin,
Emilio Sanz-Morales, Margaret L. Schlichting, Douglas H. Schultz, Qiang Shen,
Margaret A. Sheridan, Jennifer A. Silvers, Kenny Skagerlund, Alec Smith, David V.
Smith, Peter Sokol-Hessner, Simon R. Steinkamp, Sarah M. Tashjian, Bertrand
Thirion, John N. Thorp, Gustav Tinghög, Loreen Tisdall, Steven H. Tompson,
Claudio Toro-Serey, Juan Jesus Torre Tresols, Leonardo Tozzi, Vuong Truong,
Luca Turella, Anna E. van ’t Veer, Tom Verguts, Jean M. Vettel, Sagana Vijayara-
jah, Khoi Vo, Matthew B. Wall, Wouter D. Weeda, Susanne Weis, David J. White,
DavidWisniewski, Alba Xifra-Porxas, Emily A. Yearling, Sangsuk Yoon, Rui Yuan,
Kenneth S.L. Yuen, Lei Zhang, Xu Zhang, Joshua E. Zosky, Thomas E. Nichols,
Russell A. Poldrack, and Tom Schonberg. 2020. Variability in the Analysis of
a Single Neuroimaging Dataset by Many Teams. Nature 582, 7810 (June 2020),
84–88. https://doi.org/10.1038/s41586-020-2314-9

[3] Alexander Bowring, Camille Maumet, and Thomas E Nichols. 2019. Exploring
the impact of analysis software on task fMRI results. Human brain mapping 40,
11 (2019), 3362–3384.

[4] C. Denis, P. De Oliveira Castro, and E. Petit. 2016. Verificarlo: Checking Floating
Point Accuracy through Monte Carlo Arithmetic. In 2016 IEEE 23nd Symposium
on Computer Arithmetic (ARITH). IEEE Computer Society, Los Alamitos, CA, USA,
55–62. https://doi.org/10.1109/ARITH.2016.31

[5] Morgane Des Ligneris, Axel Bonnet, Yohan Chatelain, Tristan Glatard, Michaël
Sdika, Gaël Vila, Valentine Wargnier-Dauchelle, Sorina Pop, and Carole Frindel.
2023. REPRODUCIBILITY OF TUMOR SEGMENTATION OUTCOMES WITH A
DEEP LEARNING MODEL. In International Symposium on Biomedical Imaging
(ISBI). Cartagena de Indias, Colombia. https://hal.science/hal-04006057

[6] Tristan Glatard, Gregory Kiar, Tristan Aumentado-Armstrong, Natacha Beck,
Pierre Bellec, Rémi Bernard, Axel Bonnet, Shawn T Brown, Sorina Camarasu-Pop,
Frédéric Cervenansky, et al. 2018. Boutiques: a flexible framework to integrate
command-line applications in computing platforms. GigaScience 7, 5 (2018),
giy016.

[7] T. Glatard, L. Lewis, R. Ferreira da Silva, R. Adalat, N. Beck, C. Lepage, P. Rioux,
M.-E. Rousseau, T. Sherif, E. Deelman, N. Khalili-Mahani, and A. Evans. 2015.
Reproducibility of neuroimaging analyses across operating systems. Frontiers in
Neuroinformatics (2015), 1–14. https://doi.org/10.3389/fninf.2015.00012

[8] Krzysztof J Gorgolewski, Fidel Alfaro-Almagro, Tibor Auer, Pierre Bellec, Mi-
hai Capotă, M Mallar Chakravarty, Nathan W Churchill, Alexander Li Cohen,
R Cameron Craddock, Gabriel A Devenyi, et al. 2017. BIDS apps: Improving ease
of use, accessibility, and reproducibility of neuroimaging data analysis methods.
PLoS computational biology 13, 3 (2017), e1005209.

[9] Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Woolrich,
and Stephen M Smith. 2012. Fsl. Neuroimage 62, 2 (2012), 782–790.

[10] Mark Jenkinson and Stephen Smith. 2001. A global optimisation method for
robust affine registration of brain images. Medical image analysis 5, 2 (2001),
143–156.

[11] David N. Kennedy, Sanu A. Abraham, Julianna F. Bates, Albert Crowley, Satra-
jit Ghosh, Tom Gillespie, Mathias Goncalves, Jeffrey S. Grethe, Yaroslav O.
Halchenko, Michael Hanke, Christian Haselgrove, Steven M. Hodge, Dorota
Jarecka, Jakub Kaczmarzyk, David B. Keator, Kyle Meyer, Maryann E. Mar-
tone, Smruti Padhy, Jean-Baptiste Poline, Nina Preuss, Troy Sincomb, and
Matt Travers. 2019. Everything Matters: The ReproNim Perspective on Re-
producible Neuroimaging. Frontiers in Neuroinformatics 13 (2019), 1. https:
//doi.org/10.3389/fninf.2019.00001

[12] Gregory Kiar, Pablo de Oliveira Castro, Pierre Rioux, Eric Petit, Shawn T. Brown,
Alan C. Evans, and Tristan Glatard. 2020. Comparing Perturbation Models for
Evaluating Stability of Neuroimaging Pipelines. arXiv:1908.10922 [q-bio.NC]

[13] Daniel S. Marcus, Tracy H. Wang, Jamie Parker, John G. Csernansky, John C. Mor-
ris, and Randy L. Buckner. 2007. Open Access Series of Imaging Studies (OASIS):
Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented
Older Adults. Journal of Cognitive Neuroscience 19, 9 (09 2007), 1498–1507. https:
//doi.org/10.1162/jocn.2007.19.9.1498 arXiv:https://direct.mit.edu/jocn/article-
pdf/19/9/1498/1936514/jocn.2007.19.9.1498.pdf

[14] Thomas E Nichols, Samir Das, FAU Eickhoff, Alan C Evans, Tristan Glatard,
Michael Hanke, Nikolaus Kriegeskorte, Michael P Milham, Jean-Baptiste Pol-
drackand Poline, Bertrand Proal, Erikaand Thirion, and B T Thomas Van Es-
senand White, Tonyaand Yeo. 2017. Best practices in data analysis and shar-
ing in neuroimaging using MRI. Nature neuroscience (2017), 299–303. https:
//doi.org/10.1038/nn.4500

[15] Guiomar Niso, Rotem Botvinik-Nezer, Stefan Appelhoff, Alejandro De La Vega,
Oscar Esteban, Joset A. Etzel, Karolina Finc, Melanie Ganz, Rémi Gau, Yaroslav O.
Halchenko, Peer Herholz, Agah Karakuzu, David B. Keator, Christopher J.
Markiewicz, Camille Maumet, Cyril R. Pernet, Franco Pestilli, Nazek Queder, Tina
Schmitt, Weronika Sójka, Adina S. Wagner, Kirstie J. Whitaker, and Jochem W.
Rieger. 2022. Open and reproducible neuroimaging: From study inception to pub-
lication. NeuroImage 263 (2022), 119623. https://doi.org/10.1016/j.neuroimage.
2022.119623

https://anr.fr/Projet-ANR-21-CE45-0024
https://www.grid5000.fr
www.grid5000.fr
https://anr.fr/ProjetIA-11-LABX-0063
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1109/ARITH.2016.31
https://hal.science/hal-04006057
https://doi.org/10.3389/fninf.2015.00012
https://doi.org/10.3389/fninf.2019.00001
https://doi.org/10.3389/fninf.2019.00001
https://arxiv.org/abs/1908.10922
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1162/jocn.2007.19.9.1498
https://arxiv.org/abs/https://direct.mit.edu/jocn/article-pdf/19/9/1498/1936514/jocn.2007.19.9.1498.pdf
https://arxiv.org/abs/https://direct.mit.edu/jocn/article-pdf/19/9/1498/1936514/jocn.2007.19.9.1498.pdf
https://doi.org/10.1038/nn.4500
https://doi.org/10.1038/nn.4500
https://doi.org/10.1016/j.neuroimage.2022.119623
https://doi.org/10.1016/j.neuroimage.2022.119623


ACM REP ’24, June 18–20, 2024, Rennes, FranceGaël Vila, Emmanuel Medernach, Inés Gonzalez Pepe, Axel Bonnet, Yohan Chatelain, Michaël Sdika, Tristan Glatard, and Sorina Camarasu-Pop

[16] Douglass Stott Parker. 1997. Monte Carlo Arithmetic: Exploiting Randomness
in Floating-Point Arithmetic. University of California (Los Angeles). Computer
Science Department.

[17] Ameera X. Patel, Prantik Kundu, Mikail Rubinov, P. Simon Jones, Petra E. Vértes,
Karen D. Ersche, John Suckling, and Edward T. Bullmore. 2014. A Wavelet
Method for Modeling and Despiking Motion Artifacts from Resting-State fMRI
Time Series. NeuroImage 95 (July 2014), 287–304. https://doi.org/10.1016/j.
neuroimage.2014.03.012

[18] Jonathan D Power, Kelly A Barnes, Abraham Z Snyder, Bradley L Schlaggar, and
Steven E Petersen. 2012. Spurious but Systematic Correlations in Functional
Connectivity MRI Networks Arise from Subject Motion. Neuroimage 59, 3 (Feb.
2012), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

[19] Angela I. Renton, Thanh Thuy Dao, David F. Abbott, Saskia Bollmann, Megan
E. J. Campbell, Jeryn Chang, Thomas G. Close, Korbinian Eckstein, Gary F. Egan,
Stefanie Evas, Kelly G. Garner, Marta I. Garrido, Anthony J. Hannan, Renzo
Huber, Tom Johnstone, Jakub R. Kaczmarzyk, Lars Kasper, Levin Kuhlmann,
Kexin Lou, Paris Lyons, Jason B. Mattingley, Akshaiy Narayanan, Franco Pestilli,
Aina Puce, Fernanda L. Ribeiro, Nigel C. Rogasch, Thomas B Shaw, Paul F. Sow-
man, Gershon Spitz, Ashley Stewart, Ryan P. Sullivan, David J. White, Xincheng
Ye, Judy D. Zhu, Aswin Narayanan, and Steffen Bollmann. 2022. Neurodesk:
An accessible, flexible, and portable data analysis environment for repro-
ducible neuroimaging. bioRxiv (2022). https://doi.org/10.1101/2022.12.23.521691
arXiv:https://www.biorxiv.org/content/early/2022/12/23/2022.12.23.521691.full.pdf

[20] Ali Salari, Yohan Chatelain, Gregory Kiar, and Tristan Glatard. 2021. Accurate
simulation of operating system updates in neuroimaging using Monte-Carlo
arithmetic. In Uncertainty for Safe Utilization of Machine Learning in Medical
Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis: 3rd Interna-
tional Workshop, UNSURE 2021, and 6th International Workshop, PIPPI 2021, Held
in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings
3. Springer, 14–23.

[21] Nicolas Vallet, David Michonneau, and Simon Tournier. [n. d.]. Toward practical
transparent verifiable and long-term reproducible research using Guix. Scientific
Data 9 ([n. d.]). https://doi.org/10.1038/s41597-022-01720-9

A APPENDIX A: GRID’5000 OARSUB
Grid’5000 nodes can be accessed through different site frontends.
Once connected on a site frontend, users can reserve resources
(nodes) using the OAR batch scheduler. Listing 1 gives an example
of how to ask for an interactive reservation of one node from the
hercule cluster for 4 hours during day time with the OAR scheduler.

Listing 1: Grid’5000 example of an interactive node reserva-
tion from the hercule cluster for 4 hours with OAR scheduler
oarsub − I − l ho s t =1 , wa l l t ime =4 : 0 0 − t day −p h e r c u l e

B APPENDIX B: FSL COMMAND LINE
The application was run with minimal configuration using the
command shown in Listing 2, where $FILE was the path to the
input brain scan.

Listing 2: FSL command line
f l i r t − in $FILE \

− r e f $FSLDIR / da t a / s t anda rd /MNI152_T1_1mm . n i i . gz \
−omat $FILE . mat −o $FILE . n i i . gz

C APPENDIX C: GUIX RELOCATABLE
PACKAGE

Guix allows to build archives that can be used on any machine that
does not have Guix, so that one can run the exact same binaries on
different machines. Listing 3 gives the command line to create a
relocatable package.

Listing 3: Guix comand line to create a relocatable package
gu ix pack −− tune= sky l ak e −RR − f t a r b a l l −S / s b i n = s b i n
−S / sha r e = sha r e −S / l i b = l i b −S / c on f i g = c on f i g

−S / e t c = e t c −S / var=var −S / e x t r a s = e x t r a s
−S / nvvm=nvvm −S / l i b e x e c = l i b e x e c −S / s r c = s r c
−S / doc=doc −S / python=python −S / l i b 6 4 = l i b 6 4
−S / b in=b in −S / r e f d o c = r e f d o c −S / da t a = da t a
−S / i n c l u d e = i n c l u d e −S / t c l = t c l
−− save −provenance
−−man i f e s t =$ {MANIFEST } / man i f e s t : s ky l ak e . scm

https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1101/2022.12.23.521691
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/12/23/2022.12.23.521691.full.pdf
https://doi.org/10.1038/s41597-022-01720-9

	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Computing Infrastructure
	2.2 Neuroimaging Application
	2.3 Compilation and Packaging
	2.4 Dataset
	2.5 Random Rounding
	2.6 Reproducibility Measures
	2.7 Availability of Code and Data

	3 Results
	3.1 Hardware variability was measurable in Docker and Guix
	3.2 Variability was data-dependent
	3.3 Effect of all perturbations remained moderate
	3.4 Hardware, software, and numerical variabilities were of comparable magnitude
	3.5 Hardware, software, and numerical variabilities were uncorrelated

	4 Discussion
	5 Funding
	Acknowledgments
	References
	A Appendix A: Grid’5000 oarsub
	B Appendix B: FSL command line
	C Appendix C: Guix relocatable package

