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Abstract

Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer pa-
tients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The deple-
tion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very
poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular
mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal
models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turn-
over is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capac-
ities, as well as the proteolytic capacity (ubiquitin–proteasome system, autophagy–lysosome system and calpains) of
skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory
mechanisms such as insulin/IGF1–AKT–mTOR pathway, endoplasmic reticulum stress and unfolded protein response,
oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα–NF-κB and IL6–JAK–STAT3 pathways), TGF-ß
signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid
signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description
of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular
and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates,
regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted
and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and
understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting
in cancer patients.

Keywords Autophagy–lysosome; Cancer cachexia; Glucocorticoids; Inflammation; Myostatin; Oxidative stress; Proteostasis; Skeletal
muscle; Ubiquitin–proteasome

Received: 28 October 2021; Revised: 15 June 2022; Accepted: 14 August 2022
*Correspondence to: Damien Freyssenet, Laboratoire Interuniversitaire de Biologie de la Motricité, Faculté de Médecine, 10 rue de la Marandière, 42 270 Saint Priest en
Jarez, France. Email: damien.freyssenet@univ-st-etienne.fr

REV IEW

© 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Journal of Cachexia, Sarcopenia and Muscle 2023; 14: 1150–1167
Published online 2 March 2023 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jcsm.13073

https://orcid.org/0000-0002-6130-8207
mailto:damien.freyssenet@univ-st-etienne.fr
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcsm.13073&domain=pdf&date_stamp=2023-03-02


Introduction

Cancer cachexia is a systemic hypoanabolic and catabolic syn-
drome characterized by a progressive unintentional loss of
body mass that cannot be reversed by nutritional support.1

The prevalence of cachexia is quite variable, reaching up to
70% in pancreatic cancer patients.2 Skeletal muscle repre-
sents the primary site of protein loss during cancer cachexia.3

Image analysis indicates that muscle depletion varies from 7
to 30%,4,5,S1–S6 (references S1 to S215 are listed as a supple-
mentary reference list) the depletion worsening with the se-
verity of the disease.5 Another noteworthy feature is muscle
weakness, which often may precede muscle lossS7,S8 and
which aggravates with cachexia.S7 Besides muscle, the syn-
drome can also affect other tissues including bone, heart,
liver and/or adipose tissue.6 Overall, cancer cachexia in-
creases the risk of surgical complications7,S9 and chemother-
apy toxicityS10–S13 and lead to functional impairments, respi-
ratory complications and fatigue that markedly reduce
patients’ quality of life and ultimately patients’ survival. It
has been estimated that in 2013, 15.8 subjects per 10 000
of the total population in European Union suffered from can-
cer cachexia.8

Over the past 15 years, considerable progress has been
made in elucidating the molecular pathways involved in mus-
cle mass loss, thus providing outstanding information about
the pathophysiological mechanisms involved in cancer ca-
chexia. However, our current knowledge comes mainly from
animal models. Even though the number of human studies

exploring the biological mechanisms of muscle wasting is in-
creasing, human studies remain scarce, thus raising the ques-
tion of the translatability of animal findings to human clinical
research. This is a critical point as therapeutic targets may dif-
fer between human and animals. Surprisingly, a detailed com-
parative analysis between cachectic human patients and ca-
chectic cancer animals is missing.

This review provides a comprehensive analysis of the mo-
lecular mechanisms involved in cancer cachexia-associated
muscle mass loss in preclinical and clinical studies. Article da-
tabase of the US National Library of Medicine (PubMed) were
searched using ‘cancer cachexia’ AND (muscle or ‘skeletal
muscle’) AND specific terms (corresponding to the studied
scientific area of each section). Any additional relevant litera-
ture was obtained from the reference lists of the published
papers. This methodology has been applied for each section
of the current review. Preclinical and clinical studies dealing
with cancer, but for which cachexia was not characterized
or demonstrated, were not included.

Protein synthesis and degradation
rates

Little information is presently available on muscle protein
turnover in cachectic cancer patients (Figure 1). A decline
in muscle protein synthesis rate has been reported in ca-
chectic cancer patients compared with healthy subjects.9,10

Figure 1 Relative variation in protein synthesis and degradation rates in clinical and preclinical studies. Variations have been calculated from data re-
ported in quoted references. All data are expressed relative to controls or non-cachectic cancer patients (indicated by an asterisk).
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Colorectal cancer patients with lower leg muscle mass than
control subjects display unchanged muscle protein synthesis
and a trend towards increased muscle protein breakdown,
but reduced postprandial muscle protein synthesis,11 which
overall may confer a net catabolic status. Surprisingly, a lower
protein degradation rate has been reported in weight-losing
cancer patients than in healthy controls.12 This was also ac-
companied by a blunted anabolic response to feeding.12

Higher protein synthesis rates have even been documented
in skeletal muscle of cachectic cancer patients,13,14 suggesting
the existence of a compensatory mechanism that may bridle
the magnitude of muscle mass loss.

Animal studies clearly show a reduction in muscle protein
synthesis15–21,S14–S17 and an increase in protein
breakdown,15,17–20,22–29,S14,S17–S21 (Figure 1), the extent of
the variation being associated with the severity of
cachexia.17,18,S16 Of note, unchanged muscle protein synthe-
sis rates have also been frequently reported in animal
experiments.22–26,S18,S19,S22

Therefore, currently available human data on muscle pro-
tein turnover in cachectic cancer patients are very limited
and sometimes contradictory, even if a reduction in protein
synthesis emerges as a mechanism that contributes to a net
catabolic status. In animal models, a decrease in protein syn-
thesis and an increase in protein degradation lower muscle
mass. It is important to remind that cancer cachexia develops
much more slowly in patients compared with animal models
of cancer cachexia. Thus, it would be expected that protein
degradation rate would be less easily identified as increased
in human, compared with animals. More sensitive methods
applied to the kinetic analysis of protein turnover during dis-
ease progression would be therefore necessary to provide a
clear picture of skeletal muscle protein turnover in cachectic
cancer patients.

Gene expression capacity during cancer
cachexia

Transcriptional and translational capacities are essential for
skeletal muscle homoeostasis. The transcriptional capacity is
determined by the efficiency of the transcriptional machinery
and the number of myonuclei, whereas the translational ca-
pacity depends on the ribosomal content and the global cel-
lular RNA pool that is available to sustain the synthesis of
myofibrillar protein.

Myonuclear death

Although not systematically observed,S23 hallmarks of nuclear
death by apoptosis have been reported in skeletal muscle of
cachectic cancer patients (PARP and DNA fragmentation,S24

increased BAX pro-apoptotic factor mRNA level,S25 increased
p53 phosphorylation,30 activation of caspase-8 and caspase-
930). Animal studies also show the presence of
TUNEL-positive nuclei,27,31,S20,S26–S28 an increase in PARP
cleavageS29 and DNA fragmentation32,S30–S32 in cachectic
skeletal muscle. Increases in BAX pro-apoptotic-to-BCL2
anti-apoptotic protein and mRNA ratiosS30,S33–S35 and BAX
mRNA levelS36 as well as increased expressionS33,S34 and
cleavageS35 of caspase-3, along with increased caspase-1, cas-
pase-3, caspase-6, caspase-7, caspase-8 and caspase-9
activities,32,S29,S37 have also been described. Accordingly,
transcriptomic studies highlight heightened expression of ap-
optosis genes in muscle of cachectic cancer mice.33,34

As skeletal muscle is a very heterogeneous tissue, where
approximately half of its nuclei reside outside of muscle
fibres,S38 it is essential to distinguish myonuclei from those
of neighbouring mononuclear cells. Whereas most of stud-
ies presented above did not report the localization of
nuclei,27,30,S20,S26,S28 some animal studies detected
TUNEL-positive nuclei outside (mononucleated cells)31,S27 and
insideS27 the muscle fibre, suggesting the existence of
myonuclear death. The multinucleated nature of the muscle fi-
bre also implies that the death of a single myonucleus does
not mean the destruction of the entire fibre. Accordingly, the
whole number of fibres is maintained in skeletal muscle of hu-
man cachectic patientsS3,S39 and cancer mice.31 Therefore,
myonuclear death during cancer cachexia may trigger individ-
ual nuclei decay segmentally along the fibre, which may, over
an extended period of time, locally weaken the transcriptional
capacity of the fibre and contribute to atrophy and muscle
dysfunction.

Muscle fibre microenvironment

Pioneering studies at the beginning of the 20th century35 and
laterS40 reported an increased number of nuclei in the vicinity
of the sarcolemma. More recently, inflammatory cells,36

macrophages and fibro-adipogenic progenitors cells37 have
been identified in muscle of cachectic cancer patients. A
higher number of activated satellite cells,38 activated stem
cells,38 undifferentiated cellsS41,S42 and inflammatory
cells27,39,40,S20,S26,S28 have also been detailed in muscle of
cachectic cancer mice.

The presence of inflammatory cells and macrophages, to-
gether with an augmented cytokine content (see below), sug-
gests the persistence of unresolved inflammation in cachectic
skeletal muscle, which may alter the properties of myogenic
precursors.S43 It has thus been shown that although progeni-
tor cells do commit to the myogenic programme, they do not
completely differentiate.38 Muscle frailty may also cause lo-
calized episodes of muscle regeneration, as exhibited in ca-
chectic cancer patients37,S44 and in cancer mice,27,39,S20,S28

and also illustrated by the presence of centralized
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myonuclei.27,37,39,S20,S28,S44 Furthermore, skeletal muscle of
cachectic cancer mice regenerates less efficiently after freeze
clamping-induced38,S45 or cardiotoxin-inducedS46 muscle in-
jury. Therefore, cancer cachexia is associated with an altered
regenerative capacity of skeletal muscle that could lead to a
reduction in the renewal of myonuclei by myogenic precursor
cells, whose activity would be further impaired by unresolved
inflammation, thus ultimately contributing to decrease the
transcriptional capacity of the fibre.

Ribosomal content

Reductions in skeletal muscle rRNA level,16,20 28S rRNA
levelS47 and ribosomal S6 protein content41 have been re-
ported in skeletal muscle of tumour-bearing animals, along
with defective transcriptional activity of polymerase I,S48

the enzyme responsible for ribosomal gene transcription
and a drop in ribosomal gene transcription.42 Ribophagy (se-
lective ribosome degradation by the autophagy–lysosome
pathway) would be also increased.42 Consequently, ribosomal
gene transcription and protein machineries appear to be
compromised in muscle during cancer cachexia. Clearly, the
mechanisms regulating skeletal muscle ribosomal content
warrants further research to determine the functional rele-
vance of the translational capacity in controlling muscle
wasting during cancer cachexia.

Proteolytic capacity during cancer
cachexia

Ubiquitin–proteasome system

Skeletal muscle proteins targeted for degradation are marked
by the 26S proteasome complex through an ATP-dependent
ubiquitination process (Figure 2). The covalent attachment
of a chain of ubiquitin molecules to the substrate protein in-
volves a three-step enzymatic cascade driven by E1 (ubiqui-
tin-activating enzymes), E2 (ubiquitin-conjugating enzymes)
and E3 (ubiquitin-ligase enzymes). Ubiquitinated proteins
are then docked to the proteasome for degradation.S49 The
activation of the ubiquitin–proteasome system has largely
been inferred from increased expression of the E3 ligases,
MuRF1 (TRIM63) and MAFbx/Atrogin1 (FBXO32) in multiple
atrophy conditions.S50 MuRF1 targets sarcomeric proteins
(actin, myosin heavy chain, troponin) for degradation,S51–S53

whereas MAFbx targets MyoD and the translational enhancer
EIF3F for degradation.S54,S55

Although some studies show increased transcript and
protein levels of MuRF1,36,43,S37,S56,S57 and MAFbx,36,S37,S57

in skeletal muscle of cachectic cancer patients, a majority
of investigations report unchanged expression of

MuRF1,11,44–50,S37,S58 and MAFbx,11,43–45,47–50,S37,S58 in muscle
of cachectic cancer patients compared with non-cachectic pa-
tients or healthy subjects (Figure 2). A decrease in MAFbx ex-
pression has even been documented.46 By contrast, increased
ubiquitin mRNA51,52,S59,S60 and protein37,52 levels,
ubiquitinated proteins36,S56 and mRNA and protein levels of
proteasome subunits11,53 have been frequently reported in
skeletal muscle of cancer patients, even if some discrepancies
still persist.36,50,54,S61 The activity of the ubiquitin–proteasome
system also correlates with the severity of body mass loss.S59

Finally, transcriptomic analyses provide divergent results with
either increased,S62 unchangedS58 or decreased45 expression
of genes related to the ubiquitin–proteasome system in mus-
cle of cachectic cancer patients.

Animal models consistently highlight an augmentation in the
mRNA level of MAFbx,18,21,41,43,44,55–77,S17,S26,S33,S34,S57,S63–S87

and MuRF1,18,21,41,43,44,56–62,64,65,67–69,71–76,78,79,S17,S26,S33,S34,S57,
S64–S68,S70–S83,S85,S87–S90 in skeletal muscle of cachectic cancer
animals (Figure 2). This has also been confirmed at the protein
level.18,80–83,S20,S42,S57,S69,S82,S85,S91–S94 Ubiquitin
mRNA23,24,32,56,59,62,73,75,84,85,S17–S19,S57,S71,S72,S95–S98 and
protein82,S86 levels, the content of ubiquitinated
proteins18,21,27,29,59,75,76,82,83,S20,S26,S66,S67,S86,S99 and the
transcript18,20,24,28,32,62,73,85,S17–S20,S26,S95,S96 and proteinS100,S101

levels of several proteasome subunits are also increased in mus-
cle of cachectic cancer mice. Transcriptomic studies also feature
an up-regulation of genes related to the ubiquitin–proteasome
system in muscle of cachectic cancer animals.33,34,55,73,78,86–88,
S70,S72,S92,S102,S103 Consistent with these observations, protea-
some enzyme activity is elevated in muscle of cachectic cancer
mice.28,89,S75,S100,S104

Regardless of a lesser number of investigations in human
cancer patients, the analysis of MuRF1 and MAFbx expression
presented above suggests that the ubiquitin–proteasome sys-
tem does not contribute to muscle mass loss in cancer pa-
tients, which is in line with the observation that there is cur-
rently no clear evidence of an increase in muscle proteolysis
rate in cachectic cancer patients. This would thus give prom-
inence to a major interspecies difference. However, a careful
examination of the data reveals that whereas the picture is
effectively contrasted when looking at MuRF1 and MAFbx, a
much more nuanced picture appears when looking at ubiqui-
tin mRNA level, proteasome subunit mRNA level,
ubiquitinated proteins and ubiquitin–proteasome activity
(Figure 2). Therefore, when considering all markers of the
ubiquitin-proteasome system, and not solely MuRF1 and
MAFbx, currently available data rather indicate that the ubiq-
uitin–proteasome system would be activated in human ca-
chectic cancer patients. One may also consider the function
of other E3 ligases such as MUSA1/Fbxo30S105 and SMART/
Fbxo21,S106 all required for skeletal muscle atrophy. Although
one study reports a decrease in MUSA1 transcript level in
muscle of tumour-bearing mice,S66 other studies show that
MUSA121,43,71,73 and SMART43 transcript levels are increased.
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Expression of MUSA1 is also heightened in skeletal muscle of
cachectic cancer patients.43 Expression of Fbxo31, a novel E3
ligase that is induced during denervation and fasting,S106 is
also elevated in muscle of cachectic cancer mice.71,73 It now
remains to determine which substrates are targeted for degra-
dation by these E3 ligases and to what extent they are as-
sociated with the regulation of the ubiquitin–proteasome

system. Finally, the kinetic of cancer cachexia is very different
between patients and animals. In tumour-bearing mice, the
subcutaneous injection of cancer cells induces a rapid and vio-
lent tumour burden in a couple of days/weeks and a fast and
important depletion of muscle compartment. This allows for
a well-controlled and accurate kinetic analysis of the ubiqui-
tin–proteasome system. This is also true for genetic models

Figure 2 Comparative analysis of the transcript and protein levels of components of the ubiquitin–proteasome system in cachectic skeletal muscle of
cancer patients and animals. Proteins are targeted for degradation by the 26S proteasome through covalent attachment of a chain of ubiquitin mol-
ecules. The E1 ubiquitin-activating enzyme hydrolyses ATP to bind ubiquitin. E2 ubiquitin-conjugating enzymes receive ubiquitin from E1 and brings it
to the E3 ubiquitin-ligase enzymes, which catalyse the transfer of the ubiquitin from E2 to the substrate. This reaction is the rate-limiting step of the
ubiquitination process. The ubiquitinated protein is then docked to the proteasome for degradation. One gene encodes the E1 enzyme, whereas one
hundred genes encode the E2 enzymes and almost one thousand genes the E3 enzymes. Significant variations are reported in red (increase) or blue
(decrease). Unchanged levels are reported in white.
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of cancer cachexia, even if they display a greater heterogeneity
in disease progression and appearance of cachexia-associated
symptoms. By contrast, the complexity of the clinical context
in cancer patients, the difficulty of determining the onset of
the tumour surge and the onset of cachexia and the lower rate
of skeletal muscle depletion render the kinetic analysis of the
ubiquitin–proteasome system during the cachectic syndrome
particularly challenging.

Autophagy–lysosome system

The autophagy–lysosome system is responsible for eliminat-
ing long-lived proteins and large supramolecular structures,
including dysfunctional mitochondria.S49 Proteins and organ-
elles to be degraded are engulfed during the formation of a
double-membrane structure called the autophagosome,
which then fuse with lysosomes allowing acidic proteolytic
degradation of their contents by cathepsins. Because autoph-
agy is constantly active to remove damaged proteins and or-
ganelles, a defect in autophagy will result in muscle func-
tional impairment,S107 but excessive autophagy will also
contribute to muscle mass loss.S108,S109 Therefore, a tight reg-
ulation of the autophagy–lysosome system is necessary for
skeletal muscle homoeostasis.

The protein level of autophagy-related genes such as
ATG5, ATG7, Beclin1 and LC3B is increased in skeletal mus-
cle of cachectic cancer patients,30,47,68,90,S39,S56 together
with the number of autophagosomes,S56 suggesting an in-
crease in autophagosome formation. The number of auto-
phagosomes results from a dynamic equilibrium between
autophagosome formation and autophagosome docking
and fusion with lysosomes. Therefore, an accumulation of
autophagosomes can be also interpreted as a default in
autophagosome clearance. The multidomain protein p62/
SQSTM1 is a cargo adaptor protein involved in selectively
targeting protein aggregates to autophagosomes.S110 Be-
cause p62 is constantly removed by autophagy, a rise in
p62 protein content is a good marker of disturbances in au-
tophagosome turnover. p62 protein content68,90,S56 and p62
aggregates37 are increased in skeletal muscle of cachectic
cancer patients, an observation that is consistent with a
disrupted clearance of autophagosomes and suggests that
defects in lysosomal rejuvenation/biogenesis and proteo-
lytic capacity could be involved in impaired autophagosome
turnover. Nevertheless, the mRNA levels of TFEB,90 a mas-
ter regulator of lysosome biogenesis,S111 and cathepsin
D54 are unchanged in muscle of cachectic cancer patients,
whereas the mRNA level of cathepsin B54 is even increased.
Although very limited, these data suggest that disturbances
in autophagosome turnover may primarily be due to induc-
tion of pathways that promote autophagosome formation
that are not properly matched to those promoting auto-
phagosome clearance. Of note, some studies do not report

any difference in the mRNA44,45,49 and protein36 levels of
autophagy markers nor in autophagosome number,36 sug-
gesting that autophagy can be also properly balanced in
muscle of cachectic cancer patients.

Expression of autophagy-related genes is increased in skel-
etal muscle of cachectic cancer animals.27,41,44,67,68,72,73,77,79–
81,91,S26,S28,S66,S78,S88,S112 This has also been confirmed by
transcriptomic analysis.73,86,88,S70,S72 Cathepsin
expression20,32,62,69,77,79,92,S17,S81,S95 and activity25,26,29,S95 as
well as lysosomal proteolysis,18,29,77,S95 are also increased.
Together, these findings indicate that autophagy and the
clearance of autophagosomes are activated in skeletal muscle
of cachectic cancer mice. However, one should note that
some studies mention either unchanged24 or even
decreased77,84 cathepsin activity and unchanged lysosomal
proteolysis24,89 in muscle of cachectic cancer animals.
Furthermore, an accumulation of p62 in muscle of cachectic
cancer animals,68,77,80,91,S26,S112 with an increase in auto-
phagosome number,68 suggests a disequilibrium between
autophagosome formation and clearance.

The E3 ligase TRAF6 mediates the conjugation of
Lys63-linked polyubiquitin chains to ULK1 and BECLIN1,S113

a post-translational modification that regulates their activ-
ity. TRAF6 expression is up-regulated in skeletal muscle of
cancer patients52 and in tumour-bearing mice.S66,S88

Muscle-restricted ablation of TRAF6 also preserves muscle
mass in cancer miceS88 and restores LC3B and BECLIN1 ex-
pression to control levels,S88 suggesting an important role
for TRAF6 during cancer cachexia. To what extent TRAF6
may impact the proteolytic capacity of the autophagy–lyso-
some system is currently unknown.

Animal studies showed marked alterations in mitochon-
drial function and network in cachectic muscle.93 Therefore,
the role of mitophagy in controlling mitochondriostasis needs
to be questioned. The core mitophagy process is led by the
kinase PINK1, which phosphorylates the E3 ligase
PARKIN,S113 whereas other proteins (BNIP3, NIX) are involved
in ubiquitin-independent mitophagy.S113 The protein level of
PINK1 and PARKIN is either unchanged90 or decreasedS114 in
skeletal muscle of cachectic cancer patients, whereas the
mRNA and protein levels of BNIP3 and NIX are unchanged.90

In muscle of cachectic cancer animals, PINK1 protein level is
either unchanged94 or increased,91 whereas that of PARKIN
remains unchanged.94 Consequently, human and animal data
may suggest that mitophagy would be either unchanged or
decreased. Mitochondrial fusion and fission proteins are es-
sential in regulating organelle dynamic. The expression of fu-
sion proteins is diminished (MFN2)S114 or unchanged
(OPA1),30S114 in muscle of cachectic cancer patients, whereas
the mRNA level encoding the fission protein FIS1 is
augmented,30S114 Expression of mitochondrial fusion proteins
(MFN1, MFN2, OPA1) is unchanged79,94 or reduced95,S36 in
skeletal muscle of cachectic cancer mice, whereas expression
of FIS1 is unchanged94,S78 or elevated.94,95,S36 Therefore, the
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fission of mitochondria would be favoured in cachectic mus-
cle, which, together with unchanged or decreased mitoph-
agy, would lead to an accumulation of dysfunctional organ-
elles. Clearly, the data currently available suggest that our
view of the mechanisms involved in mitophagy during
cancer cachexia is still fragmented and needs further
exploration.

Calpains

The calpain family consists of a group of 15 calcium-activated
cysteine proteases.S115 The ubiquitously expressed calpain-1
and calpain-2 as well as the muscle-specific isoform
calpain-3 are expressed in skeletal muscle. Calpains have
originally been described as facilitators of protein turnover
by releasing myofilaments from myofibrills.S115,S116

In human, one study demonstrates increased calpain activ-
ity in skeletal muscle of non-weight-losing cancer patients,S117

whereas another one does not show any difference.S118

Although former experiments indicated that
calcium-dependent proteolysis would not be involved in mus-
cle proteolysis in cachectic cancer animals,20,24 a more recent
examination shows that calcium-dependent proteolysis is acti-
vated in tumour-bearing mice.S21 Regarding calpain activity per
se, investigations show unchanged23,S75,S119 or increased
activityS33,S100,S104 in muscle of cachectic cancer mice. This last
result agrees with reports showing heightened expression of
calpain isoforms24,27,32,62,S17,S21,S71,S72,S74 and decreased
expressionS21,S33 and activityS119 of calpastatin, the endoge-
nous specific inhibitor of calpain. Therefore, considering the
major impact of cancer cachexia on skeletal muscle structure
and the remodelling function attributed to calpains,S115 a
deeper understanding of calpain function during cancer ca-
chexia would be beneficial.

Insulin/IGF1–AKT–mTOR pathway

Insulin and IGF1

Insulin and IGF1 activate a cascade of phosphorylation that
coordinately regulate protein synthesis and degradation
(Figure 3). IGF1 is mainly produced by the liver under the
control of pituitary-secreted growth hormone and accounts
for 70–80% of serum IGF1.S120 However, liver IGF1 only con-
tributes approximately to 30% of adult body size,S121 indicat-
ing that IGF1 originating from other tissues, including skeletal
muscle, also contributes to the regulation of tissue growth.
Among the different IGF1 isoforms expressed in skeletal
muscle, IGF1-Ea, and to a lesser extent IGF1-Eb (IGF1-Ec in
human), are the most powerful in increasing muscle mass
and force in mice.S122

Data show that the driving force of the pathway is reduced
in cachectic muscle. Circulating IGF1S123 and muscle IGF1-Ec
transcript level46 are decreased in cachectic cancer patients.
The circulating level of insulin,26,83,S124 and IGF1,56,76,83,S64

as well as muscle IGF1-Ea56,S63 and IGF1-Eb,18,55,S15,S94 tran-
script levels, and muscle IGF1 protein contentS64 are also de-
creased in cachectic cancer animals.

The pathway

Insulin/IGF1 signalling impinges a crucial regulatory step in
the pathway, that is, the reaction catalysed by the serine/
threonine protein kinase AKT. Under its phosphorylated ac-
tive form, AKT indirectly activates the kinase mTOR. mTOR
and then signals to the translation machinery via the activa-
tion of S6K, which controls the ribosomal protein S6, and
the inhibition of 4EBP1, which hinders translation initiation
by sequestering EIF4E.S125 AKT also phosphorylates and in-
hibits GSK3, thus relieving GSK3-dependent inhibition of
EIF2B.S126

AKT protein level50,96 and the phosphorylation of GSK3,96

mTOR96 and S6K50,96 are decreased in skeletal muscle of ca-
chectic cancer patients compared with non-cachectic cancer
patients, along with the phosphorylated inactive form of the
translational repressor 4EBP150 (Figure 3). Transcriptomic anal-
yses also show that the expression of genes involved in pro-
tein anabolism is down-regulated45,S127 or alteredS62 in skele-
tal muscle of cachectic cancer patients. Therefore, both
transcriptional and post-translational events regulate the path-
way. In animal models, a large majority of studies reports an
inhibition of the pathway, as shown by the decrease in the
phosphorylation of AKT,S26,S64,S65,S91 mTOR,18,S15,S20,S91,S100,S128

S6K,18,21,41,82,S15,S20,S66,S91,S128 S6,21,41,82,S66,S94 and
4EBP1.18,41,S15,S94,S100,S128 These events are also associated
with weight loss,18,S15,S128 attesting that the greater is the in-
hibition of the pathway, the greater is the extent of ca-
chexia. Microarray analyses also highlight a transcriptional
regulation of the pathway in skeletal muscle.33 Conse-
quently, evidence based on global transcript and biochemical
analyses indicate that the activity of the insulin/IGF1–AKT–
mTOR pathway is reduced in cachectic muscle of cancer pa-
tients and cancer animals.

However, some discrepancies exist between studies both
in human and animals. Some human investigations reveal
unchanged11,30,36,49,50 or even increased AKT
phosphorylation47 in skeletal muscle of cachectic cancer pa-
tients, together with unchanged phosphorylation of
GSK3,47,50 mTOR,47,50 S6K11,47,50 and 4EBP111,47 (Figure 3).
Similarly, AKT phosphorylation remains unchanged,57,58,S20,
S63,S66,S67, or even increased,18,97,S94 in muscle of cachectic
cancer animals. A few works also describe unchanged phos-
phorylation of S6K,39,58 S697 and GSK3,S68 and sometimes
even increased phosphorylation of S6K,57,S63 4EBP1S91 and
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GSK3.S63 Divergences between studies are important to con-
sider. First, an activation of the pathway, which is at first
counter-intuitive, could be interpreted as a compensatory re-
sponse aimed at limiting the magnitude of muscle mass loss.
Second, these results also strongly suggest that the pathway
can be turned on or off depending on the clinical/experimen-
tal context (cancer type, severity of the disease and progres-
sion through the disease) and that a temporal regulation of
the pathway may occur during the time course of the disease.

Is the insulin/IGF1–AKT–mTOR pathway constantly repressed
to maintain the driving force of cancer cachexia, or are there
episodes of reactivation of the pathway that succeed/alter-
nate to episodes of repression? The data presented above
hint at the second possibility would be an interesting alterna-
tive to consider. Finally, these data also suggest that regula-
tory influences coming not only from insulin/IGF1 but from
other sources may converge to the pathway to modulate
its activity.S125 For instance, the accumulation of amino

Figure 3 Comparative analysis of the regulation of the insulin/IGF1–AKT–mTOR pathway in clinical and preclinical studies. Upon receptor activation,
IRS1 promotes the phosphorylation of phosphatidylinositol 4,5-bisphosphate into phosphatidylinositol 3,4,5-triphosphate at the plasma membrane by
recruiting the kinase PI3K. Phospholipid phosphorylation promotes AKT recruitment and activation by PDK1. AKT positively or negatively regulates mul-
tiple targets including mTOR from the mTORC1 complex (not represented) and FOXO transcription factors. AMPK, whose activity is increased by energy
stress, is another important modulator of the pathway. Black arrows indicate post-translational regulation. Red arrows indicate transcriptional regu-
lation. Significant variations are reported in red (increase) or blue (decrease). Unchanged levels are reported in white.
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acids released from catabolized proteins may mitigate the
down-regulation of mTOR.S129 Conversely, AMPK, a meta-
bolic sensor that down-regulates mTOR signaling,S130 is acti-
vated in muscle of cachectic cancer mice18,97,S15,S66,S94 and
may thus further exacerbate mTOR inhibition.

FOXO transcription factors

AKT inhibits the FOXO family of transcription factors by
phosphorylation.S131 FOXO regulate the expression of MuRF1
and MAFbx, as well as that of genes of the
autophagy-lysosome system.S106,S108,S109,S132,S133 AKT thus al-
lows a coordinated regulation of protein synthesis and
degradation.

FOXO-related genes are up-regulated in skeletal muscle of
cachectic cancer patients,37 and the transcript levels of
FOXO1 and FOXO3 negatively correlate with body mass and
muscle mass.98 The ratio of the phosphorylated-to-total
forms of FOXO136 and FOXO336,96 is diminished in skeletal
muscle of cachectic cancer patients (Figure 3), suggesting
heightened FOXO nuclear translocation and transcriptional
activity. Importantly, the reduction in FOXO1 and FOXO3
phosphorylation reported in Puig-Vilanova et al.36 was ac-
companied by an increase in MuRF1 and MAFbx protein con-
tent, which is consistent with a FOXO-dependent regulation
of these E3 ligase. Similarly, unchanged transcript level of
MuRF1 and MAFbx was associated with unchanged phos-
phorylated-to-total forms of FOXO1 and FOXO3 in muscle of
cachectic cancer patients.47

In animal models of cancer cachexia, FOXO3,18,75,S15,S26,S94

phosphorylation is lowered, which agrees with increased
FOXO3 nuclear localization83 and transcriptional activity69 re-
ported by other studies (Figure 3). Furthermore, microarray
analysis of FOXO-regulated transcripts34 and motif analysis
of promoter sequencesS70 identify FOXO as a transcription
factor involved in muscle atrophy during cancer cachexia.
This concurs with the observation showing that blocking
FOXO prevents muscle fibre atrophy and spares force deficits
in tumour-bearing mice.34 Nevertheless, a promoter analysis
applied to skeletal muscle of cancer patients shows that
weight-loss associated genes have only fewer FOXO binding
sites,S58 highlighting that the molecular characteristics of
skeletal muscle from cachectic cancer patients may be differ-
ent from those of preclinical models.

Finally, some animal studies report unchanged FOXO1S26

and FOXO341 phosphorylation, whereas others even report
increased FOXO127,S63 phosphorylation and decreased FOXO1
DNA binding activity.S63 This may be interpreted as a com-
pensatory mechanism to limit the extent of muscle mass loss.
These data also remind us that additional FOXO-regulatory
mechanisms exist, including phosphorylation by
FOXO-activating kinases, such as AMPK, acetylation, ubiquiti-
nation and methylation.S131 This adds another level of com-

plexity to the FOXO code and may dictate the transcription
of different FOXO target genes.

Endoplasmic reticulum stress and
unfolded protein response

The endoplasmic reticulum (ER) is an organelle involved in
the folding, maturation and trafficking of newly synthesized
proteins.S134,S135 ER stress, which leads to an abnormal accu-
mulation of unfolded or misfolded proteins, is perceived by
three key transducers of the unfolded protein response
(UPR). ATF6, IRE1α and PERK act as a surveillance system to
relieve ER stress and regulate proteostasis.S136 Although
adaptive UPR contributes to skeletal muscle homoeostasis,
its prolonged or exacerbated activation leads to muscle
atrophy.S137

The expression of several ER stress markers (GRP78,
HSP60, HSP70, calnexin and calreticulin mRNA; PDIA3 and
PI3K mRNA and protein) and the UPR (ATF6, XBP1 and CHOP
mRNA and protein) is up-regulated in skeletal muscle of ca-
chectic cancer patients,S37 as well as the ratio of the phos-
phorylated-to-total forms of PERK and eIF2α.S37 Together,
these data indicate the existence of an ER stress and the ac-
tivation of the UPR in muscle of cachectic cancer patients.
Nevertheless, supplementary investigations are needed to
obtain reliable clinical data regarding the implication of ER
stress and the UPR in cancer cachexia. In animal models of
cancer cachexia, the induction of ER stress and all three arms
of the UPR has been demonstrated.S66 These findings were
recently corroborated by several animal studies,S138–S141 thus
providing robust evidence of ER stress and UPR activation
during cancer cachexia. One should note, however, that a
study mentions unchanged expression of multiple markers
of ER stress and the UPR.S112 This also agrees with repressed
phosphorylation of eIF2α reported in skeletal muscle of ca-
chectic cancer rodents.S63

A relevant question raised by these data is the function
of ER stress and UPR activation during cancer cachexia. Un-
der experimental ER stress, PERK-mediated eIF2α phosphor-
ylation contributes to stoppage of translation.S142 The UPR
represses the insulin/IGF1–AKT–mTOR pathway and acti-
vates autophagy.S143 Furthermore, ATF4 transcription factor
(PERK arm), whose expression is increased in cachectic skel-
etal muscle,78 promotes muscle atrophy by modulating a
subset of atrogenes like Gadd45α, which induces the re-
modelling of chromatin to repress genes involved in ana-
bolic signalling and to activate pro-atrophy genes.S144

During cancer cachexia, the activation of ER stress and
the UPR is associated with a noticeable inhibition of the in-
sulin/IGF1–AKT–mTOR pathway and increased AMPK
activity.S66 Therefore, an interplay between ER stress, the
UPR, the insulin/IGF1–AKT–mTOR pathway, AMPK and the
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expression of atrogenes may contribute to down-regulate
protein synthesis and activate proteolysis. Intriguingly, the
use of 4-phenylbutyrate (ER stress pan-inhibitor) or the
targeted ablation of PERK in skeletal muscle aggravates
the deleterious effects of cancer cachexia in tumour-bearing
mice,S66,S138 suggesting that ER stress and the UPR (PERK
arm) could be also viewed as a response originally aimed
at limiting the effects of cancer cachexia.

Oxidative stress

Oxidative stress (OxS) is due to an excessive production of re-
active oxygen species (ROS) and reactive nitrogen species, to-
gether with impaired antioxidant defence, which results in an
accumulation of oxidized and damaged proteins, organelles,
membranes and DNA.S145 In skeletal muscle, OxS reduces
muscle strength and triggers atrophy.S146

OxS is increased in skeletal muscle of cachectic cancer pa-
tients, as shown by the elevation in total protein
carbonylation36 and malondialdehyde-protein adducts,36,S147

and the reduced expression of genes encoding antioxidant
proteins,S25 such as superoxide dismutase 2, glutamate–cys-
teine ligase (involved in glutathione synthesis) and Nrf2 (a
transcription factor that regulates the expression of multiple
cytoprotective genes). However, an increase in the protein
level and activity of the antioxidant enzymes, superoxide dis-
mutase 1 and 2, has also been reported in skeletal muscle of
cachectic cancer patients,36 which may illustrate the induc-
tion of a compensatory mechanism to alleviate increased
ROS production.

OxS is also increased in skeletal muscle of cachectic
cancer mice, as indicated by higher levels of ROS,91,94,S75,S148

lipid peroxidation40,63,99,100,S75,S149 and protein
carbonylation,27,40,63,99,100,S20,S67,S82,S91,S150 as well as by the in-
crease in oxidized-to-reduced glutathione ratio,63,91,S74,S75,S112,
S149,S151 the decrease in glutathione peroxidase activityS148 and
the depletion of reduced glutathione and antioxidant
peptides.S152 The expression of antioxidant enzymes has been
documented to be either decreased27,55,S20,S28,S75,S148

unchanged27,91,94,95,99,100,S28,S67,S148 or even
increased,40,55,91,100,S28,S67,S74 suggesting that the main factor
responsible for augmenting OxS in muscle of cachectic cancer
rodents is an increased ROS production. Transcriptomic analy-
ses in mice also highlight increased transcriptional response of
OxS-related genes.33,55,78 Importantly, OxS would be more sig-
nificant in Type II myofibres100 and would also precede muscle
mass loss,94 suggesting that OxS could be a precocious event.
Altogether, these data indicate that cachectic skeletal muscle
is subjected to a chronic OxS that mainly results from in-
creased ROS production associated or not with lowered antiox-
idant defence.

This obviously raises the question of the origin of ROS and
the mechanisms linking OxS to muscle wasting during cancer
cachexia. The main sources of ROS in skeletal muscle are
complexes I and III of the mitochondrial respiratory chain
and NADH oxidases, but also ER and peroxisomes where en-
zymatic complexes generate ROS.S145 Sources of ROS are
probably multiple during cancer cachexia, but previously re-
ported alterations in muscle mitochondrial metabolism of ca-
chectic cancer mice,79,93,101,S153 should significantly contrib-
ute to ROS production by increasing leakage of electrons
and the subsequent formation of superoxide anion. OxS inte-
grates signal transduction pathways by regulating
post-translational modifications of proteins through the redox
regulation of the thiol side chain of cysteine amino acids.S154

Redox proteomic studies have revealed that several hun-
dred proteins contain reactive and potentially modulatory
cysteine residues,S155 including transcription factors (FOXO
and NF-κB) and kinases (AMPK and mTOR), which func-
tional implication in the loss of muscle mass during cancer
cachexia we have demonstrated. Furthermore, the wide
spectrum of action of OxS on other biomolecules (lipid
and DNA) also suggests that OxS may target other path-
ways that contribute to muscle wasting during cancer
cachexia.

Inflammatory cytokines and
downstream pathways

Circulating and skeletal muscle inflammatory
cytokines

Systemic inflammation is a well-described feature of cancer
cachexia. Increased circulating level of C-reactive protein
(CRP) is associated with weight loss in cancer
patients.4,47,51,102,103,S4,S156,S157 The circulating levels of
pro-inflammatory cytokines such as IL1ß,S158 IL4,104

IL6,47,50,51,104,105,S159–S163 IL8,47,104,105,S160,S162,S163 IL10,105

IFNγ104 and TNFα104,S158,S162,S164 are also elevated in cachec-
tic cancer patients. Similar observations have been done in
mice models of cancer cachexia for the circulating levels of
CRP,S91 IL1ß,75,S82,S91 IL6,18,39,43,55,72,74,75,80,87,95,105,106,S8,S15,
S42,S73,S82,S85,S165–S167 IL10,55 IL11,87 IFNγ,55,80,S168

TNFα22,55,75,80,87,S19,S82,S85,S91,S124,S167 and Tweak.S91

The shock wave of this systemic inflammatory response is
largely perceived by skeletal muscle. A large majority of hu-
man studies shows increased protein contents of IL1ß,36

IL6,50,S169 IFNγ,36 TNFαS169 and TweakS91 in skeletal muscle
of cachectic cancer patients. Only one work reports un-
changed IL6 and TNFα protein levels.36 IL1ß,S92 IL6,S64,S85

IFNγ27 and TNFαS28,S64,S85 protein levels are also augmented
in muscle of cachectic cancer mice, whereas one report
shows unchanged IL1ß, IL6 and TNFα protein levels.27 One
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may also consider that skeletal muscle itself can produce cy-
tokines. However, a majority of investigations reports un-
changed transcript levels (IL4,S170 IL6S25 and TNFα50S25) in
muscle of cachectic cancer patients, whereas one study re-
ports an increase in IL6 mRNA level.50 The picture is more
contrasted in animal models of cancer cachexia with a fairly
equivalent number of experiments describing increased
(IL1ß,S8,S92 IL6,21,43,58,106,S8,S74,S77,S92,S94 and TNFαS92) or un-
changed (IL6,95,S67,S69 TNFα58,S67,S74 and Tweak41) mRNA
levels in muscle of cachectic cancer mice. Therefore, these
data suggest that although non-muscle tissues (host immune
system, tumour cells) seem to mainly contribute to skeletal
muscle inflammation, it could also be partly supported by
an increase in cytokine production by skeletal muscle. Corol-
lary, the contribution of skeletal muscle fibre, resident and/or
recruited mononucleated cells in producing cytokines needs
to be evaluated.

IL1ß/TNFα-NF-κB pathway

Omic studies in humanS62,S127 and animals33,34,55,87,88,S92,
S103,S171 indicate that cachectic skeletal muscle is subjected
to a persistent activation of a pro-inflammatory cytokine
signalling. NF-κB transcription factor relays information
from various cytokines (mainly IL1ß and TNFα). Five NF-κB
transcription factors [p65 (Rel A), Rel B, c-Rel, p52, p50]
are expressed in skeletal muscle.S172 Activation of cytosolic
NF-κB occurs when the IκB kinase phosphorylates IκB,
resulting in its ubiquitination and proteasomal degradation.
This allows NF-κB to translocate into the nucleus and regu-
late the expression of target genes. NF-κB activation in
mouse skeletal muscle overexpressing IκB kinase leads to
severe muscle wasting associated with increased MuRF1 ex-
pression and ubiquitin–proteasome proteolysis.S173 Here,
we will mainly discuss about the canonical p65 pathway,
whose activation is associated with pathological conditions.

The phosphorylation level of NF-κBp65 is similar in skeletal
muscle of cachectic cancer patients compared with
non-cachectic patients.S39 However, mRNA level of NF-κB1
(precursor of p50)50 and NF-κBp65 protein content36,S169

are increased compared with healthy controls, suggesting a
precocious activation of NF-κB pathway before the develop-
ment of cancer cachexia. A majority of animal experiments
reports an increase in the phosphorylated active form of
NF-κB,27,57,74,82,97,S8,S20,S26,S67,S94 the phosphorylated inactive
form of IκB,41 the nuclear localization of NF-κB,S92 NF-κB DNA
bindingS88,S89,S92,S101,S173 and transcriptional activity27 in ca-
chectic muscle. The phosphorylated active form of NF-
κBp65 also negatively correlates with body mass loss and
muscle force in cachectic cancer mice.S8 Although still
debated,88 motif analysis of promoter sequences also identi-
fied NF-κB as a transcription factor involved in muscle atro-
phy during cancer cachexia.S70 Of note, studies report un-

changed NF-κBp65 phosphorylation41,88,S75 and NF-κB DNA
binding activity.32,88,S98,S174

IL6–JAK–STAT3 pathway

The JAK-STAT pathway is activated by IFNα, IFNβ, IFNγ, IL2
and IL6.S175 Upon cytokine binding, activated JAK tyrosine ki-
nase phosphorylates STAT proteins, which translocate into
the nucleus to regulate the expression of target genes.S176

STAT transcriptional activation contributes to muscle wasting
by indirect activation of myostatin expression and expression
of MAFbx and MuRF1.S177,S178

Limited information in patients indicate that the phosphor-
ylation level of STAT3 is similar in cachectic compared with
non-cachectic muscle.S39 By contrast, numerous evidence of
IL6–JAK–STAT3 pathway activation have been reported in
preclinical models. Circulating IL6 level correlates with the
development of cachexia in tumour-bearing mice.95,S166

STAT3 activation74,82,95,97,106–108,S8,S15,S69,S82,S94 and the ex-
pression of STAT3 target genes87 are increased in skeletal
muscle of cachectic cancer mice. The active form of STAT3
negatively correlates with body mass and muscle force,S8

and media conditioned with serum of tumour-bearing mice
activate STAT3 in C2C12 myotubes.S178 In silico analysis of
transcriptome data also reveals STAT3 as a transcription fac-
tor involved in muscle atrophy during cancer cachexia.S70 Fi-
nally, hyperactivation of STAT3 in cancer mice exacerbates
weight and muscle mass losses compared with control cancer
mice.109 Interestingly, recent results show that the IL6–JAK–
STAT3 pathway contributes to the regulation of Noggin, an in-
hibitor of the anti-catabolic BMP-SMAD1/5/8 signalling
pathway43 (see below).

TGF-ß signalling pathways

Myostatin–SMAD2/3 signalling pathway

Myostatin is a TGF-ß superfamily member acting as a master
negative regulator of skeletal muscle growth during
embryonic and postnatal development in animalsS179,S180

and humanS181 and also in adulthood.110 Myostatin binds
to activin type IIB receptors (ActRIIB and ActRIIA) leading
to the recruitment of TGF-ß Type I receptors (ALK4 and
ALK5)S182 and activation of SMAD2 and SMAD3 proteins
(Figure 4). Once activated by phosphorylation, SMAD2/3 re-
cruit SMAD4 to regulate the transcription of target genes.S183

Myostatin also inhibits the insulin/IGF1–AKT–mTOR
pathway.111

Surprisingly, myostatin circulating level is reduced in ca-
chectic cancer patients compared with healthy controlsS184,
S185 and decreased4 or unchangedS185 when compared with
non-cachectic cancer patients (Figure 4). Myostatin mRNA
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level is also unchanged11,47,48,50 or diminished46 in skeletal
muscle of cachectic cancer patients. Accordingly, myostatin
protein level,36 as well as the phosphorylation of SMAD2
and SMAD3,47,S39 is unchanged in muscle of cachectic cancer
patients. Circulating4 and muscle transcript48 levels of
follistatin, an inhibitor of myostatin and activin signalling,
are also unchanged. Therefore, these studies indicate that
myostatin signalling is not activated in skeletal muscle of ca-
chectic cancer patients, even if this conclusion must be nu-
anced in the light of investigations showing that genes re-
lated to TGF-ß signalling37 are up-regulated in skeletal
muscle of cachectic cancer patients and that the transcript
level of ActRIIB negatively correlates with muscle mass in
cancer patients.98

How to reconcile the fact that myostatin is a master nega-
tive regulator of muscle mass in humanS181 and the observa-

tion that myostatin expression and signalling are not acti-
vated in muscle of cachectic cancer patients? One may first
consider that as myostatin is produced by skeletal muscle,
myostatin circulating level can thus simply be lowered as a
consequence of the reduction in muscle mass during cancer
cachexia. Furthermore, the data described above do not ex-
clude the possibility that myostatin expression had increased
earlier during the disease when muscle mass had not started
to decrease yet. In support of this hypothesis, a strict tempo-
ral regulation of myostatin expression has been demon-
strated in mice models of atrophy.112,S186 Kinetic analysis of
its expression during the time course of cachexia would allow
to answer this question.

Animal studies show that the circulating level of myo-
statin is either elevatedS91 or unchanged75,S187 (Figure 4). Al-
though some studies report unchanged myostatin expression

Figure 4 Comparative analysis of the regulation of myostatin/activin A signalling in cachectic skeletal muscle of cancer patients and in animal models
of cancer cachexia. Myostatin and activin A bind to activin Type II receptors (ActRIIB/IIA) that activate Type I receptors (ALK4/5/7), which phosphor-
ylate and induce SMAD2/3 to form a complex with SMAD4 and translocate into the nucleus. Myostatin and activin A binding is modulated by the in-
hibitory action of follistatin. Significant variations are reported in red (increase) or blue (decrease). Unchanged levels are reported in white.
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in skeletal muscle of cachectic cancer rodents,21,41,65,80,S80,S97 a
majority of works report an increase in both myostatin
mRNA61,62,75,113,S80,S187,S188 and protein27,S26,S68,S91,S187,S188

levels. Downstream, the mRNA level of ActRIIBS97 and the
phosphorylation of SMAD275,80 and SMAD374,S91 are also in-
creased in muscle of cachectic cancer mice. Muscle follistatin
mRNA level is either unchanged113,S68 or decreased,S80,S97

which is also consistent with increased myostatin activity.
However, a reduction in ActRIIB mRNA level,41 unchanged
ALK4/5 mRNA level41 and SMAD2/3 phosphorylation41,80,106

have also been reported in tumour-bearing mice. Conse-
quently, and even if this cannot be generalized to all studies,
myostatin signalling is commonly activated during cancer ca-
chexia in rodents.

Activin A–SMAD2/3 signalling pathway

Activin A is another TGF-ß family member that binds to
ActRIIA and ActRIIB and activate SMAD2/3 signalling with
comparable potencies and efficacy as myostatin does.S189 In-
creasing circulating activin A levels in mice increases E3 ligase
expression, inhibits the insulin/IGF1–AKT–mTOR-pathway
and reduces muscle mass and function.S190

Activin A circulating level is consistently elevated in ca-
chectic cancer patients,4,43,104,105,114,S185,S191 as well as in ca-
chectic cancer mice43,74,75,80,105,106,115,116,S192 (Figure 4). By
contrast, studies indicate that skeletal muscle activin A mRNA
level is either decreased21,106,S192 or unchanged,41,43 whereas
activin A protein level is increased.S192 Therefore, circulating
activin A may thus come from another source than skeletal
muscle, in particular tumour cells.21,75,116,S76,S192–S194 Impor-
tantly, while myostatin circulating level is higher in mouse
than in humanS189 and is the main negative regulator of mus-
cle mass in mouse,S87 activin A circulating level is higher in
human than in mouse.S189 Therefore, activin A could play a
more prominent role in cachectic cancer patients than
myostatin.

BMP–SMAD1/5/8 signalling pathway

BMP (BMP7, BMP13 and BMP14) bind to BMP Type II recep-
tor (BMPRII), ActRIIB or ActRIIA and promote the recruitment
and activation of Type I receptors BMPRIA (ALK3), BMPRIB
(ALK6) or ActRIA (ALK2). This triggers the phosphorylation
of SMAD1, SMAD5 and SMAD8, which, together with SMAD4,
regulate the expression of target genes. As SMAD4 is shared
by SMAD1/5/8 and SMAD2/3, BMP–SMAD1/5/8 and myo-
statin–SMAD2/3 pathways operate in parallel, and in opposi-
tion. Increased BMP-SMAD1/5/8 pathway activity in muscle
induces hypertrophy,S105,S195 whereas its inhibition causes
muscle atrophyS105,S195 and abolishes the hypertrophic phe-

notype of myostatin-deficient mice,S105 indicating that this
pathway is dominant over myostatin signalling.

Diminished BMP signalling and augmented expression of
the BMP inhibitor Noggin are observed in skeletal muscle of
cancer patients and mildly cachectic mice.43 Importantly,
both IL6 and activin A trigger the expression of Noggin,43 a
BMP–SMAD1/5/8 pathway inhibitor. BMP signalling inhibi-
tion is also associated with neuromuscular junction
impairment.43 Therefore, perturbed BMP signalling appears
to be a critical pathogenic mechanism regulating muscle mass
and function in cancer patients and animals.

Glucocorticoid signalling

Glucocorticoids are steroid hormones produced by the adre-
nal glands under the control of the hypothalamic–pituitary
axis. The hypothalamus secretes CRH, which stimulates the
secretion of ACTH by the anterior pituitary gland. ACTH then
binds its receptor on the adrenal cortex to activate the bio-
synthesis and release of glucocorticoids. Glucocorticoids bind
the nuclear receptor NR3C1 of target tissues to activate or in-
hibit the transcription of multiple target genes.S196 Glucocor-
ticoids are well known to exert strong catabolic effects on
skeletal muscle by activating the expression of multiple genes
involved in proteolysis while inhibiting those involved in
proteosynthesis.S197,S198

Circulating glucocorticoid level is increased in cachectic
cancer patients117,S199,S200 and in cachectic cancer
mice.22,23,26,85,86,118,S124,S201–S203 Hypothalamic CRH mRNA
level67 and pituitary ACTH secretionS204 are also increased
in animals, as well as the adrenal gland mass in cachectic can-
cer patientsS205 and animals.25,S204,S206 More recently, our
group established that the hypothalamic–pituitary–adrenal
axis was activated in cachectic cancer mice, along with
increased corticosterone level in serum and muscle, and
increased skeletal muscle expression of glucocorticoid--
responsive genes.119 Interestingly, the analysis of transcripto-
mic data also reveals an increase in the expression of multiple
glucocorticoid-responsive genes in muscle of cachectic cancer
mice.33,34,44,55,73,78,86–88,S70,S72,S83,S92,S102,S103 Therefore, a
neuroendocrine mechanism that involves the hypothalamic–
pituitary–adrenal axis may also contribute to the transcrip-
tional regulation of skeletal muscle catabolism.

Therapeutic perspectives

A brief description of the effects of therapeutic strategies in
preclinical models is presented below.

1162 A. Martin et al.

Journal of Cachexia, Sarcopenia and Muscle 2023; 14: 1150–1167
DOI: 10.1002/jcsm.13073

 1353921906009, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcsm

.13073 by C
ochrane France, W

iley O
nline L

ibrary on [11/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



IGF1

IGF1 treatment reduces weight loss and improves outcome in
a rat model of cancer cachexia.S207 Anamorelin is a ghrelin
agonist that increases the production of growth hormone
from the pituitary gland and stimulates the liver to secrete
IGF1.S208,S209 Anamorelin has proven efficacy to limit the ex-
tent of cancer cachexia in human,S210,S211 suggesting poten-
tial positive effects on the regulation of insulin/IGF1–AKT–
mTOR pathway in skeletal muscle. However, care should be
taken as IGF1 may promote tumour growth, even if there
was no clear trend of increased tumour progression due to
anamorelin.S210

ER stress and the UPR

Targeted ablation of XBP1 (IRE1α arm of the UPR) in skeletal
muscle reduces muscle mass loss in tumour-bearing mice,S139

whereas targeted ablation of PERK worsened muscle
wasting.S138 Different arms of the UPR may thus be impli-
cated differently and provide different signalling outcomes.

Oxidative stress

Administration of different antioxidants (α-tocopherol, dehy-
droepiandrosterone, cocktail of catechins, quercetin and vita-
min C) have provided contrasted results. Some studies show
a sparing effect on muscle mass loss,S75 reduced expression
of E3 ligases63S75 and a restoration of MyoD and myogenin
expression,S75, whereas another investigation reports an ac-
celeration of cachexia by increasing muscle atrophy and pro-
moting tumour growth.S76

TNFα–NF-κB

Therapeutic strategies invalidating TNFα receptor,S18,S19,S31 as
well as the injection of anti-TNFα antibody,22 failed to provide
beneficial results. However, the pharmacological inhibition of
NF-κB has proven its efficiency in cancer cachectic animals.27

Besides, selective pharmacological inhibition of iNOS, which
is a downstream effector of NF-κB pathway and is highly
expressed in cachectic muscle,120 ameliorates cancer ca-
chexia in mouse.120

IL6–JAK–STAT3

Cancer mice lacking IL6107,109,S69 do not develop cachexia. In-
jection of an anti-IL6 antibodyS166 or an anti-IL6 receptor
antibody18 prevents cachexia progression in tumour-bearing
animals. STAT3 inhibition also reduces muscle wasting in
tumour-bearing mice.S178,S212

Myostatin/activin A-SMAD1/3

Cancer cachexia is blocked by myostatin gene invalidation,41

the administration of a myostatin antisense RNA,S188 a myo-
statin antibody,31 a soluble form of ActRIIB,21,62,75,113,S17,S192

an ALK4/5 receptor antagonist,66 and by the administration
of IMB0901 (myostatin signalling inhibitor).S93 AAV-targeted
inhibition of myostatin and activin A also prevents muscle
wasting in tumour-bearing mice.S87

BMP–SMAD1/5/8

Increasing BMP signalling in skeletal muscle of
tumour-bearing mice by gene delivery or pharmacological
means can prevent muscle wasting.43

Glucocorticoids

Ablation of adrenal glands does not attenuate cachexia26,S213

in tumour-bearing animals. However, adrenalectomy itself in-
duces weight loss.S214 The steroid inhibitor RU486 shows
contrasted results, with some positive effects on the attenu-
ation of body weight lossS202 or not.118,S201 However, RU486
also exerts anti-progestogenic and anti-androgenic effects,
which may mitigate the potential anti-catabolic effects of glu-
cocorticoid inhibition. Muscle wasting is abrogated in
muscle-specific glucocorticoid receptor knockout mice inocu-
lated with LLC cells.61 This spatially targeted tissue approach
suggests that targeting glucocorticoids through the hypotha-
lamic–pituitary–adrenal axis by specific molecular tools may
be promising in preclinical models of cancer cachexia.

Conclusion and future directions

This analysis of the literature highlights several points and re-
draw the contours of some accepted ideas.

Our analysis shows the existence of species-dependent mo-
lecular and biochemical responses. This is an essential factor
to consider when evaluating the relevance of preclinical data
to the clinical field. This also raises the question of the preclin-
ical models used for research that should reproduce as closely
as possible the complexity of the clinical context. Important
factors are the model used (syngeneic ectopic/orthotopic
graft, human tumour xenograft, genetic engineered mouse),
the rate of disease progression and tumour growth, the age
of the animals, the presence of metastasis or not and the
use of additional chemotherapy or not.S215

There are still uncertainties whether protein degradation
rate and MuRF1 and MAFbx expression are increased in skel-
etal muscle of cachectic cancer patients. This remains a key
issue, even though data suggest that the ubiquitin–protea-
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some system would be activated in muscle of human cancer
patients.

Activin A may play a more pre-eminent role in cachectic
cancer patients than myostatin, the reverse being true in
animals.

The regulation of the molecular mechanisms involved in
cancer cachexia is not a linear process during the natural his-
tory of the disease. A temporal analysis of the mechanisms
involved in muscle proteostasis should be performed in pre-
clinical models. In cancer patients, due to the complexity of
the clinical context and the impossibility to determine the on-
set of tumour growth, a time-course analysis of muscle atro-
phy and muscle function will help to more accurately deter-
mine the cachectic state of the patients throughout the
course of the disease.

Emerging evidence indicate that muscle fibre microenvi-
ronment contributes to cancer cachexia. Whether or not this
is quantitatively important in determining muscle wasting re-
mains to investigate.

One major unsolved question is the influence of gender on
the molecular and biological expression of cancer cachexia.
This is a key issue that needs to be addressed.

Finally, although substantial progress has been made in de-
veloping therapeutic strategies in preclinical models, treat-
ments of cancer cachexia are not available in the clinic. Con-
sidering the numerous molecular mechanisms that are
coordinately regulated within a specific time frame during
the disease, multi-targeted strategies could be more effective
in addressing the diversity and complexity of cancer cachexia.
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