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Regularization by denoising: Bayesian model and
Langevin-within-split Gibbs sampling
Elhadji C. Faye, Mame Diarra Fall and Nicolas Dobigeon, Senior Member, IEEE

Abstract—This paper introduces a Bayesian framework for
image inversion by deriving a probabilistic counterpart to
the regularization-by-denoising (RED) paradigm. It additionally
implements a Monte Carlo algorithm specifically tailored for
sampling from the resulting posterior distribution, based on an
asymptotically exact data augmentation (AXDA). The proposed
algorithm is an approximate instance of split Gibbs sampling
(SGS) which embeds one Langevin Monte Carlo step. The
proposed method is applied to common imaging tasks such as
deblurring, inpainting and super-resolution, demonstrating its
efficacy through extensive numerical experiments. These contribu-
tions advance Bayesian inference in imaging by leveraging data-
driven regularization strategies within a probabilistic framework.

Index Terms—Inverse problems, Bayesian inference, Markov
chain Monte Carlo algorithms, deep learning.

I. INTRODUCTION

This paper is interested in conducting Bayesian inference
about an image x ∈ Rn given the measurements y ∈ Rm

related to x through a statistical model specified by the
likelihood function

p(y|x) ∝ exp [−f(x,y)] . (1)

In (1), the potential function f(x,y) is a fidelity term, i.e.,
accounting for the consistency of x with respect to (w.r.t.) the
measured data y. In what follows, this potential function will
be assumed to be convex and Lf -smooth, i.e., continuously
differentiable and its gradient is Lipschitz continuous with
Lipschitz constant Lf . This problem is in line with the
most frequently encountered imaging inverse problems such
as denoising, deblurring, and inpainting relying on a linear
forward model and a Gaussian perturbation. For such tasks,
the potential function writes f(x,y) = 1

2σ2 ∥Ax− y∥22 where
A ∈ Rm×n is the degradation matrix. Estimating x from y is
generally an ill-posed or, at least, ill-conditioned problem. The
Bayesian paradigm consists in assigning a prior distribution to
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x, which summarizes the prior knowledge about x and acts as
a regularization. This prior distribution writes

p(x) ∝ exp [−βg(x)] (2)

where g : Rn → R stands for the regularization term and the
parameter β > 0 controls the amount of regularization enforced
by the prior distribution. The posterior distribution p(x|y) is
derived from the likelihood p(y|x) and the prior distribution
p(x) using the Bayes’ rule

p(x|y) ∝ exp [−f(x,y)− βg(x)] . (3)

This posterior distribution provides a comprehensive description
of the solutions and allows various Bayesian estimators and
uncertainty measures to be derived. In particular, computing the
maximum a posteriori (MAP) estimator boils down to solving
the minimization problem

min
x

f(x,y) + βg(x). (4)

Numerous works from the literature have focused on the
difficult task of designing a relevant prior distribution p(x)
or, equivalently, a relevant potential function g(x). These
regularizations usually promote specific expected or desired
properties about x. More specifically, conventional optimization
methods solving (4) are generally based on explicit model-
based regularizations, such as total variation (TV) promoting
piecewise constant behavior [1], Sobolev promoting smooth
content [2] or sparsity-promoting regularizations based on the
use of ℓp-norm with p ≤ 1 [3], [4]. However, designing an
appropriate model-based regularization remains an empirical
and subjective choice. Moreover, their ability of characterizing
complex image structures is generally limited or comes at
the price of a significant increase of the resulting algorithmic
burden. More recently, a different route has been taken by
devising smart strategies avoiding the empirical design of
handcrafted model-based regularizations. The seminal work by
Venkatakrishnan et al. has introduced the concept of plug-and-
play (PnP) as an implicit prior [5]. This framework naturally
emerges whenever the algorithmic scheme designed to solve
(4) embeds the proximal operator associated with g(·). Possible
schemes include the alternating direction method of multipliers
(ADMM) [4], half quadratic splitting (HQS) [6] or Douglas-
Rachford splitting [7]. Interestingly, this proximal mapping
can be interpreted as a denoising task under the assumption
of an additive white Gaussian noise. PnP approaches replace
this proximal step by a more general denoiser D : Rn → Rn,
including non-local means (NLM) [8], block-matching and 3D
filtering (BM3D) [9] or any more recently proposed learning-
based denoisers such as DnCNN [10] or DRUNet [11]. Thanks
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to its effectiveness and its simplicity, this framework has gained
in popularity for a wide range of applications in the context
of imaging problems [11]–[14].

In the same vein as PnP, the regularization-by-denoising
(RED) framework relies on the sole ability of performing a
denoising task to define an explicit image-adaptive Laplacian-
based prior [15]. The RED framework requires specific
assumptions on the denoiser D(·), such as differentiability,
local homogeneity, strong passivity and Jacobian symmetry
[15], [16]. Moreover, the theoretical analyses of most of the
iterative algorithms designed to solve the resulting RED-based
optimization problems require the denoiser D(·) to satisfy
nonexpansiveness properties [17], [18]. Empirical observations
show that such algorithms can even exhibit numerical insta-
bilities when using a denoiser which violates this assumption
[17]. One strategy to ensure convergence when using learning-
based denoisers consists in imposing spectral normalization
during the training phase [13], [19]. More generally, even if it
may be difficult nay impossible to ensure that denoisers (e.g.
learning-based) satisfy all these quite restrictive assumptions,
RED has proven to be empirically effective when performing
many restoration tasks and has motivated several subsequent
research works. In particular, in the seminal works [5] and
[15], the canonical definitions of the so-called PnP and RED
frameworks differ by the fact they rely on implicit and
explicit functionals, respectively. However, more recent works
have introduced a denoiser-based regularization that relaxes
the symmetric Jacobian constraint imposed by RED while
inherently preserving a similar key property of its gradient
[14], [20], [21]. Using this so-called “gradient step denoiser”
within a PnP scheme is shown to ensure convergence of the
iterates towards a stationary point of an explicit functional.
Beyond this convergence guarantee, a noticeable contribution
of these works is the following: despite their distinct roots,
the PnP and RED frameworks are shown to be much more
related than a crude distinction between implicit and explicit
functionals.

All the variational approaches discussed above treat x
in a deterministic way and generally produce only point
estimates approximating the solution of the minimization
problem (4). As an alternative, the Bayesian framework models
the image x as a random variable and generally seeks a
comprehensive description of the posterior distribution p(x|y).
As such, Bayesian methods are able to go beyond a sole point
estimation, by enhancing it with a quantification of uncertainty
in a probabilistic manner in terms of variance and credibility
intervals. This ability to quantify uncertainty is particularly
useful for decision-making and reliability assessment [22]. As
an archetypal illustration of this usefulness, one can mention the
field of astronomy where uncertainty quantification contributes
to the identification of reliable structures in cosmic images
provided by instruments such as radio interferometers [23], [24].
Another field particularly concerned by this need of uncertainty
quantification is medical imaging [25], [26]. Indeed, it allows
to assess risks and variabilities in diagnostic decisions by
computing uncertainties from probabilistic models. This is
critical when handling high-stakes decisions, such as in the
cases of cancer detection or post-stroke brain analysis. Accurate

uncertainty estimations offered by Bayesian techniques improve
decision-making and model reliability, ensuring meaningful
interpretations. Exploring the posterior distribution is generally
carried out by generating samples asymptotically distributed
according to this target distribution using Markov chain Monte
Carlo (MCMC) methods. Most of the works dedicated to the
development of MCMC algorithms for inverse problems in
imaging relies on conventional model-based prior distributions.
As their deterministic counterparts, they encode expected
characteristics of the image prescribed beforehand and chosen
based on quite empirical arguments. Very few recent works
have attempted to depart from this paradigm by incorporating
data- or task-driven regularizations as prior distributions. For
instance, available training samples can be used to learn a
mapping from an instrumental latent distribution towards the
image prior. Benefiting from advances in the machine learning
literature, this mapping can be chosen as a deep generative
model, such as a variational autoencoder [27] or a normalizing
flow [28]. Devising a PnP prior in the context of Monte Carlo
sampling has been investigated in [29], resulting in the so-called
PnP unadjusted Langevin algorithm (PnP-ULA). Its rationale
follows the same motivation as its deterministic counterpart,
namely avoiding the explicit definition of the prior distribution
by the ability of performing a denoising task.

Surprisingly, despite its interesting performance and
abundance of works devising on the RED paradigm within
a variational framework, up to authors’ knowledge, RED
has never been considered from a Bayesian perspective and
embedded into a Monte Carlo algorithm. The main objective
of this paper is to fill this gap. More precisely, the main
contributions reported hereafter can be summarized as follows.
First, Section II introduces a probabilistic counterpart of
RED by defining a new distribution that can be subsequently
chosen as a prior distribution in a Bayesian inversion task.
Then, Section III introduces a new Monte Carlo algorithm
that is shown to be particularly well suited to sample from the
resulting posterior distribution. It follows an asymptotically
exact data augmentation (AXDA) scheme [30], resulting in a
nonstandard instance of the split Gibbs sampler (SGS) [31].
It is worth noting that similar splitting-based samplers have
been implemented in very recent works to allow denoising
diffusion models to be easily embedded as generative priors
into Bayesian models [32]–[34]. All of them, as well as the
proposed algorithm, depart from the the canonical instance of
the split Gibbs sampler whose theoretical properties have been
deeply investigated in [35]. More precisely, they replace the
exact sampling of the auxiliary (i.e., splitting) variable by an ad
hoc sampling step conveniently afforded to the specific nature
of the prior model. Thus Section III also reports a thorough
theoretical analysis to ensure and quantify convergence of
the proposed algorithm. This analysis relies on standard
assumptions frequently encountered in the optimization and
Monte Carlo sampling literature. Some of these assumptions
may appear to be technical as they may be difficult to assess in
practical scenarios, in particular when leveraging recent deep
networks whose comprehensive theoretical characterization
is out of reach. However, this analysis ensures that the
proposed algorithmic scheme is sound in a more formal
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setting. Besides, the rationale of the proposed approach is
also put into perspective w.r.t. recently proposed Monte Carlo
algorithms, in particular PnP-ULA, drawing some connections
between AXDA and RED leveraging the Tweedie’s formula
[36]. Then, the proposed algorithm is instantiated to solve
three ubiquitous inversion tasks, namely deblurring, inpainting
and super-resolution. Extensive numerical experiments are
conducted in Section IV to compare the performance of the
proposed algorithm to state-of-the-art variational and Monte
Carlo methods. One would like to emphasize that the primary
ambition of the work reported in this paper is not to naively
promote the RED engine as the consistently state-of-the-art
regularization to be universally considered for solving all
imaging inverse problems. Instead, it is rather to show that
there is a way to reframe this framework into a fully Bayesian
setting, benefiting from the advantages of RED while being
aware of its limitations discussed above.

Notations and conventions. The Euclidean norm on Rn is
denoted by ∥ · ∥. We denote by N (µ,Q−1) the Gaussian
distribution with mean vector µ and precision matrix
Q. The (n × n)-identity matrix is denoted In. For any
matrix S ∈ Mn (R), if we denote 0 the zero matrix, the
notation 0 ≼ S means that S is semi-definitive positive. The
Wasserstein distance of order 2 between two probability
measures τ and τ ′ on Rn with finite 2-moments is defined by
W2(τ, τ

′) = (infζ∈T (τ,τ ′)

∫
Rn×Rn ∥ V − V ′ ∥2 dζ(V, V ′))1/2,

where T (τ, τ ′) is the set of transport plans of τ and τ ′.

II. BAYESIAN FORMULATION OF RED INVERSION

This section starts by recalling some background about
RED. Then it proposes a probabilistic counterpart of the
regularization, that can be subsequently used as a prior within
a Bayesian framework.

A. Regularization by denoising (RED)

The RED engine defines g(·) as the explicit image-adaptive
Laplacian-based potential [15]

gred(x) =
1

2
x⊤ (x− Dν(x)) (5)

where Dν : Rn → Rn is a denoiser with ν controlling the
denoising strength, designed for the removal of additive white
Gaussian noise. Although it offers a significant flexibility in
the choice of the denoisers that can be used, RED requires
Dν(·) to obey the following assumptions, referred to as the
RED conditions.
(C1) Local homogeneity: ∀x ∈ Rn,

Dν ((1 + ϵ)x) = (1 + ϵ)Dν(x) (6)

for any sufficiently small ϵ > 0.
(C2) Differentiability: the denoiser Dν(·) is differentiable with

Jacobian denoted ∇Dν(·).
(C3) Jacobian symmetry [16]: ∀x ∈ Rn, ∇Dν(x)

⊤ =
∇Dν(x).

(C4) Strong passivity: the Jacobian spectral radius satisfies
η (∇Dν(x)) ≤ 1.

The major implication of local homogeneity (C1) is that the
directional derivative of Dν(·) along x can be computed by
applying the denoiser itself, i.e.,

∇Dν(x)x = Dν(x). (7)

The Jacobian symmetry (C3) and the strong passivity (C4)
ensure that applying the denoiser does not increase the norm
of the input:

∥Dν(x)∥ = ∥∇Dν(x)x∥ ≤ η (∇Dν(x)) · ∥x∥ ≤ ∥x∥. (8)

Interestingly, two additional keys and highly beneficial proper-
ties follow: i) the RED potential gred(·) is a convex functional
and ii) the gradient of gred(·) is expressed as the denoising
residual

∇gred(x) = R(x) = x− Dν(x) (9)

which avoids differentiating the denoising operation itself.
Thus, one of the most appealing opportunity offered by
RED is its ability to embed powerful denoisers, such as
those based on deep neural networks, without requiring to
differentiate them. It is worth noting that if the denoising
function Dν(·) does not meet the condition (C3), then there
is no regularizer g(·) whose gradient can be written as the
residual R(·) [16]. Unfortunately many popular denoisers, such
as trainable nonlinear reaction-diffusion (TNRD), NLM, BM3D,
and DnCNN, are characterized by non-symmetric Jacobian. Yet,
RED-based restoration algorithms are shown to empirically
converge and to reach excellent performance when solving
various inverse problems even when those conditions are
partially satisfied [15], [20].

B. Probabilistic counterpart of RED

To formulate the RED-based inversion within a statistical
framework, one requirement consists in introducing a prior
distribution defined from the RED potential gred(·) given by
(5). More precisely, one defines

pred(x) ∝ exp

[
−β

2
x⊤ (x− Dν(x))

]
. (10)

The functional pred(·) does not necessarily define a probability
density function (pdf). For pred(·) to be a valid pdf, i.e.∫
Rn pred(x)dx < ∞, certain conditions must be satisfied.

Assumption 1. The matrix Λ(x) = In −∇Dν(x), ∀x ∈ Rn,
has at least one non-zero eigenvalue.

This technical assumption is not restrictive and it is easy to
show that it would be violated only in trivial cases. Indeed,
let x̄ ∈ Rn denote an image such that all the eigenvalues of
Λ(x̄) are zero. Then the matrix ∇Dν(x̄) is symmetric (see
RED condition (C3)), with real coefficients and all eigenvalues
equal to 1. The spectral theorem yields ∇Dν(x̄) = In. From
the local homogeneity (C1) and its corollary (7), one has
Dν(x̄) = x̄, i.e., x̄ is already a noise-free image which does
not need to be further denoised.

The next result states that mild assumptions are sufficient to
guarantee that the function (10) defines a proper distribution.
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Proposition 1. If Assumption 1 and Conditions (C3)–(C4)
hold, then ∫

Rn

pred(x)dx < +∞ (11)

and pred(·) in (10) defines a proper pdf.

Proof. See Appendix A.

C. RED posterior distribution
Combining the RED prior pred(x) defined by (10) and the

likelihood function p(y|x) defined by (1), the RED posterior
distribution π of interest writes

π(x) ≜ p(x|y)

∝ exp

[
−f(x,y)− β

2
x⊤ (x− Dν(x))

]
.

(12)

As stated earlier, deriving the MAP estimator associated with
the RED posterior (12) consists in solving the optimization
problem (4). In the seminal paper [15], this problem is tackled
thanks to first-order optimization methods such as steepest
decent (SD), fixed-point (FP) iteration and ADMM. More
recently, it has been reformulated as a convex optimization
problem using a projection onto the fixed point set of demi-
contractive denoisers [20]. Instead, the work conducted in this
manuscript proposes to follow a different route by proposing
to sample from this posterior distribution. While these samples
offer a comprehensive description of the RED posterior, they
can be subsequently used to derive Bayesian estimators or
credibility intervals. Because of the non-standard form of the
RED posterior, sampling according to (12) requires to develop
a dedicated algorithm introduced in the following section.

III. PROPOSED ALGORITHM

A. Langevin-within-split Gibbs sampler
Generating samples efficiently from the posterior distribution

with pdf π(x) defined by (12) is not straightforward, in
particular due to the use of the denoiser Dν(·). When π(·) is
proper and smooth with x 7→ ∇log π(x) Lipschitz continuous,
one solution would consist in resorting to the ULA [37].
This strategy will be shown to be intimately related to PnP-
ULA in Section III-D. However, it may suffer from several
shortcomings, such as poor mixing properties and higher
resulting computational times (see experimental results in
Section IV-D). Conversely, the work in this manuscript derives
a dedicated Monte Carlo algorithm to sample from a posterior
distribution written as (3). This algorithm will be shown to
be particularly well suited to sample from the RED posterior
(12), i.e., when g(·) = gred(·).

The proposed sampling scheme first leverages an asymp-
totically exact data augmentation (AXDA) as introduced in
[30]. Inspired by optimization-flavored counterparts, AXDA
employs a variable splitting technique to simplify and speed
up the sampling according to possibly complex distributions.
More precisely, it introduces an auxiliary variable z ∈ Rn and
considers the augmented distribution

πρ(x, z) = p(x, z|y; ρ2) (13)

∝ exp

[
−f(x,y)− βg(z)− 1

2ρ2
||x− z||2

]

where ρ is a positive parameter that controls the dissimilarity
between x and z. This data augmentation (13) is approximate
in the sense that the marginal distribution

πρ(x) =

∫
Rn

πρ(x, z)dz (14)

∝
∫
Rn

exp

[
−f(x,y)− βg(z)− 1

2ρ2
||x− z||2

]
dz

coincides with the target distribution π(x) only in the limiting
case ρ → 0. The conditional distributions1 associated to the
augmented posterior πρ(x, z) are given by

p(x|y, z) ∝ exp

[
−f(x,y)− 1

2ρ2
||x− z||2

]
(15)

p(z|x) ∝ exp

[
−βg(z)− 1

2ρ2
||x− z||2

]
. (16)

The so-called split Gibbs sampler (SGS) alternatively samples
according to these two conditional distributions to generate
samples asymptotically distributed according to (13) [31], [38].
Interestingly, this splitting allows the two terms f(·,y) and
g(·) defining the full potential to be dissociated and involved
into two distinct conditional distributions. SGS shares strong
similarities with ADMM and HQS methods and is expected to
lead to simpler, scalable and more efficient sampling schemes.

Specifically, sampling according to the conditional posterior
(15) can be interpreted as solving the initial estimation problem
defined by the likelihood function (1) with now a Gaussian
distribution with mean z and diagonal covariance matrix ρ2In
assigned as a prior. As stated earlier, a large family of imaging
inverse problems, such as deblurring, inpainting and super-
resolution is characterized by the quadratic potential function
f(x,y) = 1

2σ2 ∥Ax− y∥22 also considered in this work. This
leads to the Gaussian conditional distribution

p(x|y, z) = N (x;µ(z),Q−1) (17)

where the precision matrix Q and the mean vector µ(·) are
given by 

Q =
1

σ2
A⊤A+

1

ρ2
I

µ(z) = Q−1

(
1

σ2
A⊤y +

1

ρ2
z

)
.

(18)

In this case, sampling according to this conditional distribution
can be efficiently achieved using dedicated algorithms that
depend on the structure of the precision matrix Q. Interested
readers are invited to consult [39] for a recent overview of these
methods. It is worth noting that when the potential function
f(·,y) is not quadratic, the proposed framework can embed
proximal Monte Carlo algorithms to sample from (15), as in
[40], [41].

In the specific case considered in this work where g(·) =
gred(·), the conditional distribution (16) can be interpreted as
the posterior distribution associated to a Bayesian denoising
problem equipped with a RED prior. Its objective boils down to
inferring an object z from the observations x contaminated by

1The conditional distributions associated to πρ(x, z) are p(x|y, z; ρ2) and
p(z|x; ρ2). To lighten the notations, the coupling parameter ρ2 will be omitted
in what follows, i.e., one employs p(x|y, z) and p(z|x).
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an additive white Gaussian noise with a covariance matrix ρ2In.
Sampling according to this conditional is not straightforward,
in particular due to the regularization potential gred(·) whose
definition involves the denoiser Dν(·). This work proposes
to take advantage of the property (9) by sampling from (16)
following a Langevin Monte Carlo (LMC) step, i.e.,

z(t+1) = z(t) + γ∇log p
(
z(t) | x

)
+
√
2γε(t) (19)

where γ > 0 is a fixed step-size and
{
ε(t)

}
t∈N is a sequence of

independent and identically distributed n-dimensional standard
Gaussian random variables. Given the particular form of the
conditional distribution (16) and the property (9), this recursion
writes explicitly as

z(t+1) =

(
1− γβ − γ

ρ2

)
z(t)

+
γ

ρ2
x(t) + γβDν

(
z(t)

)
+
√
2γε(t). (20)

The proposed so-called Langevin-within-SGS (LwSGS)
instantiated to sample according to the RED posterior (12)
is summarized in Algo 1.

Algorithm 1 LwSGS to sample from the RED posterior
Input: denoiser Dν(·), regularization parameter β, coupling

parameter ρ2, step-size γ, number of burn-in iterations
Nbi, total number of iterations NMC

Initialization: x(0), z(0)

1: for t = 0 to NMC − 1 do
% Sampling the splitting variable according to (20)

2: ε(t) ∼ N (0, I)

3: z(t+1) =
(
1− γβ − γ

ρ2

)
z(t) + γ

ρ2x
(t) + γβDν

(
z(t)

)
+

√
2γε(t)

% Sampling the variable of interest according to (15)
4: x(t+1) ∼ N

(
µ(z(t+1)),Q−1

)
5: end for

Output: collection of samples {x(t), z(t)}NMC

t=Nbi+1

Because of the discretization followed by the LMC step
(19), the samples produced by (20) are biased and are not
exactly distributed according to (16). To mitigate this bias
and ensure that LMC exactly targets (16), one well-admitted
strategy consists in including a Metropolis-Hasting (MH) step,
resulting in the Metropolis adjusted Langevin algorithm [42].
Then, combined with the sampling according to (15), the
overall resulting sampling algorithm would become a canonical
instance of Metropolis-within-Gibbs algorithm whose samples
would be ensured to be distributed according to the augmented
posterior distribution (13). However, performing this MH step
within each iteration of the SGS requires to compute multiple
corresponding MH ratios and to accept or reject the proposed
samples, which may significantly increase the computational
burden of the SGS. In this work, one proposes to bypass this
MH correction, yet at the price of an approximation which is
controlled. Indeed, the bias induced by the use of a LMC step
within a SGS iteration will be investigated in the theoretical
analysis conducted in Section III-C.

B. Related Monte Carlo algorithms

The proposed LwSGS algorithm shares some similarities
with some recently developed Monte Carlo algorithms, mainly
motivated by the will of i) avoiding the explicit definition of
prior models or ii) fastening inference possibly by distributed
computations over several nodes. Interestingly these two
motivations are the same as the ones explaining the success
of splitting-based optimization algorithms (e.g., HQS and
ADMM). On one hand, adopting the AXDA strategy underlying
(13), the conditional distribution (16) of the auxiliary variable
can be interpreted as the posterior distribution associated with
a Bayesian denoising problem. Akin to the PnP paradigm, this
simple observation suggests replacing the exact sampling from
(16) by the use of an off-the-shelf stochastic denoiser, e.g.,
chosen as a diffusion-based or score-based model. This is the
strategy followed in several recent works [32]–[34], with the
noticeable advantage of avoiding an explicit prior model as in
the proposed RED-LwSGS approach. Whereas the PnP-SGS
introduced in [32] is not accompanied by a theoretical analysis,
e.g., to ensure the existence of a stationary distribution, the so-
called PnP diffusion model and diffusion PnP method designed
in [33] and [34], respectively, are granted with such theoretical
insights.

On another hand, mainly motivated by numerical efficiency
considerations, the authors in [43] have adopted the splitting
strategy offered by AXDA to derive a distributed SGS (DSGS)
when the posterior distribution comprises multiple composite
terms. Again, as with LwSGS, the core idea of DSGS can be
sketched as replacing the exact sampling of one conditional
distribution of the augmented posterior distribution by a more
efficient surrogate sampling technique. Given the particular
form of the posterior distributions considered in [43], a suitable
choice of this surrogate is shown to be one step of a proximal
stochastic gradient Langevin algorithm (PSGLA) [44]. When
this sampling is not corrected by a MH step, this leads
to an inexact instance of SGS coined as PSGLA-within-
SGS. The synchronous distributed version of PSGLA-within-
SGS accounts for the hypergraph structure of the involved
composite terms to efficiently distribute the variables over
multiple workers under controlled communication costs. In the
same vein, another synchronous distributed MCMC algorithm
referred to as DG-LMC has been introduced in [45] to conduct
Bayesian inference when the target log-posterior also writes as
a sum of multiple composite terms. Also leveraging AXDA, it
adopts a splitting scheme different from LwSGS and PSGLA-
within-SGS. Yet, it can be interpreted as an inexact SGS for
which multiple conditional distributions are approximately
sampled thanks to LMC steps. While the existence of a
stationary distribution targeted by PSGLA-within-SGS and
its convergence have not been demonstrated in [43], such a
thorough theoretical analysis has been conducted for DG-LMC
in [45]. Even if these results are a precious asset to conduct a
similar analysis of LwSGS, they should be carefully adapted
to fit the splitting scheme adopted by LwSGS.
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C. Theoretical analysis

This section provides theoretical insights regarding the
proposed LwSGS algorithm. For sake of generality and
unless otherwise stated, this analysis is conducted for any
regularization potential g(·) satisfying standard assumptions
detailed below and frequently encountered in the optimization
and Monte Carlo sampling literature. Although it may be
difficult to assess the validity of these assumptions in practice
(in particular when using learning-based regularizations), their
statement enables a rigorous and comprehensive theoretical
study of the proposed sampling algorithm. Moreover, along this
section, these assumptions will be also discussed and examined
under the prism of the RED paradigm, i.e., with g(·) = gred(·)
and when the proposed LwSGS aims at targeting the RED
posterior distribution (12).

As stated above, because of the absence of MH correction
after the LMC step, Algo. 1 does not fall into the class of
Metropolis-within-Gibbs samplers. Thus, the primer objective
of this analysis is to demonstrate that the samples produced by
Algo. 1 are asymptotically distributed according to a unique
invariant distribution2 πρ,γ following an ergodic transition
kernel denoted Pρ,γ . Thanks to an appropriate synchronous
coupling, the convergence analysis of LwSGS reduces to that of
the Markov chain produced by the sampling (20) according to
the conditional distribution p(z|x). The proofs of the main
results stated in what follows, namely Propositions 2 and
3, are reported in the supplementary materials [46]. One
first introduces and discusses two assumptions regarding the
regularization potential g(·).

Assumption 2 (Twice differentiability). The potential function
g(·) is twice continuously differentiable and there exists Mg >
0 such that ∀z ∈ Rn, ∥∇2g(z)∥ ≤ Mg .

As stated in Section II-A, under the RED conditions (C1)
and (C3), the gradient of the RED potential is given by (9).
This implies that the regularization potential gred(·) is twice
continuously differentiable with Hessian matrix ∇2gred(z) =
In−∇Dν(z). Moreover, thanks to the Jacobian symmetry (C3)
and strong passivity (C4) conditions, one has for all z ∈ Rn,
∥∇2gred(z)∥ ≤ 2. In other words, Assumption 2 always holds
for RED.

Assumption 3 (Strong convexity). The potential function g(·)
is mg-strongly convex, i.e., there exists mg > 0 such that
mgIn ⪯ ∇2g.

In the RED framework, a sufficient condition for the strong
convexity of the potential gred(·) is to ensure that the denoiser
Dν(·) is contractive, i.e., ∀(z1, z2) ∈ Rn × Rn, ∥Dν(z1) −
Dν(z2)∥2 ≤ ϵ∥z1 − z2∥2 for some Lipschitz constant ϵ < 1.
Under this condition, gred(·) can be shown to be mg-strongly
convex with mg = 1 − ϵ > 0. Unfortunately, most existing
denoisers do not follow this contraction property [14]. To
ensure the strong convexity of the potential gred(·) when using
a deep network-based denoiser, one solution would consist
in explicitly including a regularization term into the training

2With a slight abuse of notation, one uses the same notations for a probability
distribution and its associated pdf.

loss which constrains the Lipschitz constant [13], [18], [47].
Finally, it is worth noting that when Assumption 3 is satisfied,
Assumption 1 is also satisfied, which implies that pred(·) is
well-defined.

Under these assumptions, the convergence of the proposed
LwSGS algorithm is stated in the following proposition.

Proposition 2. Let γ ∈ R∗
+ such that γ ≤ (βMg + 1/ρ2)−1.

Then, under Assumptions 2 and 3, the kernel Pρ,γ admits a
unique stationary distribution πρ,γ . Moreover, for any v =
(x, z)⊤ ∈ Rn × Rn and any t ∈ N∗, we have

W 2
2 (δvP

t
ρ,γ , πρ,γ) ≤ C1

(
1− γβmg

)2(t−1)
W 2

2 (δv, πρ,γ),

where C1 = 1 + 1
ρ2 ∥Q−1∥2.

Proof. See [46, Section 1].

From this proposition, it appears that the rate of geometric
ergodicity in Wasserstein distance is given by r = 1− γβmg .
This rate quantifies the speed of convergence of the Markov
chain produced by the kernel Pρ,γ towards its stationary
distribution πρ,γ . It depends on two parameters of the model,
namely the regularization parameter β and the strong convexity
parameter mg. Noticeably, it also depends on an algorithmic
parameter whose tuning can be left to the end-user, namely
the LMC discretization step size γ: the larger γ, the faster
the convergence. However, the asymptotic convergence of the
samples produced by the kernel Pρ,γ towards the distribution
πρ,γ is only possible if this step size γ is sufficiently small.
Indeed, this proposition establishes convergence for any step
size γ ≤ (βMg + 1/ρ2)−1. From Assumptions 2 and 3,
−log p(z|x) is βmg-strongly convex and (βMg + 1/ρ2)-
smooth, i.e., βmgIn ⪯ −∇2log p(z|x) ⪯ (βMg + 1/ρ2)In.
From [45] and [37], a sufficient condition on the step size
γ to ensure contraction w.r.t. the Wasserstein distance is
γ ≤ 2/(βmg + βMg + 1/ρ2). Thus the step size γ plays
a critical role in determining the stability and the convergence
speed of the algorithm. A larger step size may lead to a faster
convergence but with possible instability if it exceeds the
threshold (βMg + 1/ρ2)−1. On the other hand, a smaller γ
ensures stability but it slows down the convergence. Besides,
the upper bound given in this proposition depends on the
coupling parameter ρ and the smoothing parameter Mg . Thus
these two model parameters implicitly impact the convergence
rate. Specifically, a smaller ρ and a larger Mg tighten the
upper bound on the step size, leading to slower convergence.
Conversely, a larger ρ and a smaller Mg allow for larger step
sizes γ, which can accelerate convergence.

Once the asymptotic convergence of the samples produced
by Algo. 1 has been ensured, the second stage of the theoretical
analysis consists in analyzing the bias between the stationary
distribution πρ,γ and the targeted augmented distribution πρ.
This bias, which results from the use of the LMC step in
Algo. 1 to target the conditional distribution p(z|x) defined by
(16), is quantified in the following proposition.
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Proposition 3. Let γ ∈ R∗
+ such that γ ≤ 2(βmg + βMg +

1/ρ2)−1. Then, under Assumptions 2 and 3, we have

W 2
2 (πρ, πρ,γ) ≤ nγC2M̃

2
(
1 +

γ2M̃2

12
+

γM̃2

2m̃

)
,

where m̃ = βmg + 1/ρ2, M̃ = βMg + 1/ρ2 and C2 =
2

βmg
(1 + 1

ρ2 ∥Q−1∥2).

Proof. See [46, Section 2].

This bias is upper-bounded by a term driven by the step
size. More precisely, as γ decreases towards zero, the squared
Wasserstein distance W 2

2 (πρ, πρ,γ) is upper-bounded by O(nγ).
This result is in agreement with those stated in [45, Proposition
4] and [37, Corollary 7]. Besides, it is worth recalling that
adopting AXDA leads to sampling from an approximate
posterior distribution πρ defined by (14) while the “ideal” target
distribution is π in (12). Thus the price to pay for benefiting
from the advantages brought by AXDA (see Section III-B)
lies in another bias that could be measured as W 2

2 (πρ, π). The
quality of this approximation is obviously governed by the
coupling parameter ρ. Previous studies have deeply investigated
its impact and have shown that this bias is of order O(ρ) for
sufficiently small values of ρ [30], [45]. Since it also impacts
the convergence speed of LwSGS (see Proposition 2 and the
related discussion), this coupling parameter follows a certain
trade-off between efficiency and accuracy.

D. Revisiting PnP-ULA and AXDA from the RED paradigm

This section draws connections between AXDA, the pro-
posed algorithm and PnP-ULA [29]. As a reminder, in a
nutshell, PnP-ULA targets a posterior distribution of the form

pϵ(x|y) ∝ exp [−f(x,y)] pϵ(x) (21)

with ϵ > 0 where

pϵ(x) ∝
∫
Rn

p(z) exp

[
− 1

2ϵ
∥x− z∥2

]
dz (22)

defines the regularized counterpart of the prior distribution p(x).
Interestingly, when the prior writes p(x) ∝ exp [−βg(x)] and
ρ2 = ϵ, the posterior distribution pϵ(x|y) targeted by PnP-ULA
(21) perfectly matches the marginal distribution πρ(x) in (14)
resulting from an AXDA strategy and targeted by a SGS.

Besides, from an algorithmic point of view, ULA recursions
applied to (21) conventionally write

x(t+1) = x(t) − γ∇f(x(t),y) + γ∇log pϵ(x
(t)) +

√
2γε(t).

Thanks to the Tweedie’s identity [36], the score function can
be replaced by the denoising residual, i.e., ϵ∇log pϵ(x) =
D∗

ϵ (x) − x where D∗
ϵ (·) is a minimum mean square error

(MMSE) denoiser. This leads to the (simplified) PnP-ULA
scheme

(PnP-ULA) : x(t+1) = x(t) − γ∇f(x(t),y) (23)

+
γ

ϵ

(
D∗

ϵ (x
(t))− x(t)

)
+
√
2γε(t).

This simplified scheme departs from the canonical PnP-ULA
scheme studied in [29] by only omitting an additional term
γ
λ

[
ΠS(x

(t))− x(t)
]

where ΠS(·) denotes the projection onto

the convex and compact set S. This term has been included
into the PnP-ULA scheme for technical reasons to derive
convergence results. Its impact will be empirically shown to
be marginal in practice (see Section IV-F). Conversely, using
(9), ULA recursions applied to the RED posterior (12) writes

(RED-ULA) : x(t+1) = x(t) − γ∇f(x(t),y) (24)

+ γβ
(
Dν(x

(t))− x(t)
)
+
√
2γε(t).

It clearly appears that the RED-ULA scheme defined by the
previous recursion (24) coincides with PnP-ULA (23) when
β = 1

ϵ and the denoiser embedded into RED is chosen as the
MMSE denoiser, i.e., Dν(·) = D∗

ϵ (·). Since in practice the use
of an MMSE denoiser is infeasible, PnP-ULA is implemented
with an off-the-shelf denoiser. Thus, RED-ULA is no more
than the practical implementation of PnP-ULA.

Moreover, an important corollary deals with the respective
prior distributions defining the posteriors targeted by the three
considered algorithms, namely PnP-ULA, RED-ULA and RED-
SGS3. Indeed, on one hand, PnP-ULA and RED-ULA target
the same posterior distribution (21) (provided the use of an
MMSE denoiser). On another hand, PnP-ULA and RED-SGS
also target the same posterior distribution (12). It yields that
the regularized prior implicitly induced by AXDA coincides
with the RED prior based on an MMSE denoiser, i.e., pϵ(x) =
p∗red(x) and, in particular,

−log pϵ(x) =
1

2ϵ
x⊤[x− D∗

ϵ (x)]. (25)

Note that differentiating this identity obviously leads again to
the celebrated Tweedie’s identity.

IV. EXPERIMENTS

A. Experimental setup

Experiments have been conducted based on two popular
image data sets. namely the Flickr Faces High Quality (FFHQ)
256 × 256 data set [48] and the ImageNet 512 × 512 data
set [49]. Note that using the ImageNet 512 × 512 data set
aims at assessing the scability of the proposed method when
facing large-scale imaging problems. All images have been
normalized to the range [0, 1]. The performance of the proposed
RED-LwSGS algorithm is assessed w.r.t. to three inversion
tasks

• deblurring: the operator A is assumed to be a n × n
circulant convolution matrix associated with a spatially
invariant blurring kernel. It is chosen as a Gaussian kernel
of size 25× 25 with standard deviation 1.6.

• inpainting: the operator A stands for a binary mask with
m ≪ n. It is designed such that 80% of the total pixels
are randomly masked accross the three color channels.

• super-resolution: the operator A is decomposed as A =
SB where the n× n matrix B stands for a spatially
invariant Gaussian blur of size 7 × 7 with standard
deviation 1.6 and the operator S is a m× n binary matrix
which performs a regular subsampling of factor d = 4 in

3The algorithmic scheme denoted RED-SGS is defined as a canonical Gibbs
sampler with targets the augmented distribution (13). It can be interpreted as
the RED-LwSGS for which the sampling according to (16) would be exact.
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each dimension (i.e., m = nd2). It is worth noting that
for this task, the AXDA model needs to be adapted to
account for the specific structure of the matrix A (more
details are given in Appendix B).

For all tasks, the degraded images have been corrupted by
an additive Gaussian noise to reach a signal-to-noise ratio of
SNR =30dB for the FFHQ 256×256 data set and SNR =5dB
for the ImageNet 512× 512 data set, consisting in a severely
less favorable experimental scenario.

B. Compared methods

The proposed method has been compared to several state-
of-the-art inversion methods:

• RED-ADMM [15]: ADMM with RED,
• RED-HQS: HQS algorithm with RED,
• PnP-ADMM [5]: ADMM with a PnP regularization,
• PnP-ULA [29]: ULA with a PnP regularization,
• TV-SP [31]: SGS with a TV regularization,
• TV-MYULA [50]: Moreau-Yosida ULA with a TV regu-

larization,
• DiffPIR [51]: HQS with a diffusion-based PnP regulariza-

tion,
• DPS [52]: diffusion posterior sampling,
• DPIR [11]: HQS algorithm with a PnP regularization.

All the RED- and PnP-based algorithms as well as DPIR have
been implemented using the pre-trained deep network DRUNet
[11] as the denoiser Dν(·). It has been taken directly from the
corresponding repository and has been used without further
fine-tuning for the considered inversion tasks. It is worth noting
that this model was initially trained on different data sets from
the FFHQ and ImageNet data sets used in the experiments.
Conversely, DPS and DiffPIR have been implemented using the
pre-trained UNet diffusion-based models that were specifically
trained on the FFHQ and ImageNet data sets in [53] and
[54], respectively. Thus marginal performance gains may be
expected for the last two methods since the training and data
sets coincide. Yet, in all experiments, the test images have
never been seen by the model while training, which prevents
any bias due to potentially overfitted pre-trained models. See
Appendix C-A for complementary information.

Besides, optimization-based methods such as the ADMM
and HQS-based algorithms provide only point estimates of
the restored images. Conversely, sampling-based methods such
as PnP-ULA, TV-SP, TV-MYULA and the proposed Lw-SGS
algorithm are Monte Carlo methods that are able to enrich
point estimates with credibility intervals. For these sampling
methods, the results reported below correspond to the MMSE
estimates approximated by averaging the generated samples
after the burn-in period. Complementary information regarding
the algorithm implementations are reported in Appendices C-B
and C-C.

C. Figures-of-merit

Beyond performing visual inspection, the methods are com-
pared with respect to several quantitative figures-of-merit. Peak
signal noise ratio (PSNR) (dB) and structural similarity index

(SSIM) are considered as image quality metrics (the higher the
score, the better the reconstruction). They are complemented
with the learned perceptual image patch similarity (LPIPS) and
the Fréchet inception distance (FID) for which the lower the
score, the better the reconstructed image. Moreover, to assess
the effectiveness of the studied sampling algorithms, they are
also compared in term of integrated autocorrelation time (IAT),
which is an indicator for good or bad mixing (the lower, the
better) [55]. Finally, all methods are compared in terms of
computational times when the algorithms are implemented on
a server equipped with 48 CPU cores Intel 2.8Ghz, 384Go
RAM, Nvidia A100 GPU.

D. Experimental results

The results obtained by the compared algorithms when
performing the three considered tasks are reported in Tables I
and II for the two datasets FFHQ and ImageNet, respectively.
These results show that the proposed RED-LwSGS method
achieves very competitive performance for all three tasks. In the
case of inpainting, the forward operator masking 80% pixels
is non-invertible and the problem is expected to require further
prior regularization than the two other tasks. For this task,
algorithms relying on data-driven regularizations, such as RED-
LwSGS and PnP-ULA, appear to include more informative
priors when compared to TV-MYULA and TV-SP which rely
on the same model-based regularization. For super-resolution,
which is a more challenging problem than deblurring and
inpainting, RED-LwSGS demonstrates similar performance to
DiffPIR, RED-ADMM, RED-HQS and DPIR on the FFHQ
256× 256 data set, and comparable performance to PnP-ULA
on the ImageNet 512× 512 data set.

Figures 1 and 2 visually assess the performance by depicting
the results obtained on test images drawn from the FFHQ
and ImageNet datasets. For all the considered tasks, the
proposed RED-LwSGS method produces high-quality, realistic
images that closely match ground-truth details. As mentioned
above, RED-LwSGS as any other sampling method generates
samples asymptotically distributed according to the posterior
distribution. These samples can be used to quantify estimation
uncertainty. The two rightmost panels in Fig. 1 and 2 illustrate
this advantage by depicting the estimated pixelwise standard
deviations obtained by the proposed algorithm and PnP-ULA.
It is worth noting that this added value cannot be provided by
optimization-based methods such as RED-ADMM, RED-HQS,
PnP-ADMM, DiffPIR, DPS and DPIR which only offer point
estimates. Noticeably, pixels located in homogeneous regions
are characterized by lower uncertainty, while pixels in textured
regions, edges, or complex structures appear to be estimated
with more difficulty.

Tables I and II also reported the computational times required
by the compared algorithms when tackling each restoration task.
Among the class of sampling methods, RED-LwSGS stands
out for its smallest computational times. Moreover, as for the
other sampling-based methods, RED-LwSGS remains within
a factor of 50 compared to the optimization-based methods,
namely RED-ADMM, RED-HQS, PnP-ADMM, DiffPIR and
DPIR. Sampling methods are known to be generally more
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TABLE I
FFHQ 256× 256 DATA SET (SNR = 30dB): AVERAGE PERFORMANCE OVER A TEST SET OF 100 IMAGES AND CORRESPONDING STANDARD DEVIATIONS.

BOLD: BEST SCORE, UNDERLINE: SECOND SCORE.

Obs. RED-LwSGS PnP-ULA TV-MYULA TV-SP RED-ADMM RED-HQS PnP-ADMM DiffPIR DPS DPIR

D
eb

lu
rr

in
g PSNR(dB) ↑ 29.86 40.13±1.931 38.06±1.986 38.03±2.028 39.89±1.320 41.28±2.459 40.80±2.560 34.03±7.601 37.15±2.066 35.35±2.688 38.42±2.536

SSIM ↑ 0.899 0.982±0.003 0.975±0.006 0.981±0.006 0.970±0.004 0.985±0.004 0.984±0.005 0.869±0.154 0.957±0.010 0.949±0.018 0.972±0.012
LPIPS (×10−2) ↓ 4.87 0.260±0.174 0.490±0.362 0.530±0.382 0.210±0.111 0.180±0.150 0.220±0.195 3.320±8.037 0.741±2.491 6.405±1.825 0.811±1.402

FID ↓ 95.89 8.181±7.316 13.78±10.03 17.39±10.67 5.900±4.422 4.348±6.106 7.148±7.975 18.54±10.81 6.055±3.127 11.76±5.162 3.392±5.014
IAT ↓ - 75.17±12.42 75.21±12.43 75.22±12.42 75.14±12.42 - - - - - -

Time(s) ↓ - 44±5 52±7 64±5 40±5 2±0 2±0 2±0 1±0 30±2 4±1

In
pa

in
tin

g

PSNR(dB) ↑ 7.21 30.73±2.932 31.46±2.650 27.71±1.881 27.27±1.781 31.63±2.672 31.36±2.293 31.32±3.142 31.26±2.25 31.26±2.26 31.50±2.59
SSIM ↑ 0.068 0.908±0.028 0.906±0.026 0.830±0.040 0.815±0.041 0.911±0.024 0.901±0.025 0.915±0.042 0.890±0.025 0.890±0.025 0.904±0.027

LPIPS (×10−2) ↓ 58.31 2.358±1.722 2.049±1.317 5.673±2.628 6.128±2.745 1.954±1.329 2.119±1.428 1.954±1.538 2.108±0.539 2.312±2.258 2.145±2.737
FID ↓ 554.33 78.09±30.36 90.33±39.73 181.33±57.57 183.15±59.26 79.65±31.54 85.40±32.3 90.33±39.73 52.79±23.03 51.38±20.46 119.55±47.74
IAT ↓ - 75.24±12.48 75.51±12.55 76.97±13.51 113.86±12.17 - - - - - -

Time(s) ↓ - 74±1 79±1 150±7 71±1 3±0 2±0 2±0 2±0 43±1 7±2

Su
pe

r-
re

s.

PSNR(dB) ↑ - 30.43±2.161 29.01±2.013 28.99±2.017 28.94±2.019 30.49±2.222 30.54±2.206 30.13±2.184 30.99±2.212 28.94±1.798 30.21±2.279
SSIM ↑ - 0.872±0.036 0.847±0.037 0.847±0.037 0.846±0.037 0.875±0.036 0.876±0.036 0.867±0.037 0.868±0.034 0.833±0.054 0.869±0.038

LPIPS (×10−2) ↓ - 3.519±2.139 5.025±2.359 4.925±2.435 5.125±2.435 3.418±2.038 3.418±2.037 3.510±2.140 1.112±0.821 5.842±4.591 2.720±3.910
FID ↓ - 100.09±34.62 202.15±48.02 202.29±48.30 199.16±47.63 95.48±33.51 95.10±33.33 110.04±36.31 65.16±30.15 18.32±42.57 105.47±36.21
IAT ↓ - 75.75±12.62 75.88±12.64 75.85±12.64 75.86±12.63 - - - - - -

Time(s) ↓ - 115±25 128±40 133±26 112±23 3±1 3±1 3±1 2±0 50±4 3±1

TABLE II
IMAGENET 512× 512 DATA SET (SNR = 5dB): AVERAGE PERFORMANCE OVER A TEST SET OF 100 IMAGES AND CORRESPONDING STANDARD

DEVIATIONS. BOLD: BEST SCORE, UNDERLINE: SECOND SCORE.

Obs. RED-LwSGS PnP-ULA TV-MYULA TV-SP RED-ADMM RED-HQS PnP-ADMM DiffPIR DPIR DPS

D
eb

lu
rr

in
g PSNR(dB) ↑ 27.32 30.69±2.752 29.04±3.714 30.14±3.602 29.61±3.947 30.71±3.753 28.90±3.593 30.86±4.917 29.99±9.100 31.35±3.831 30.16±3.627

SSIM ↑ 0.709 0.834±0.085 0.754±0.168 0.842±0.059 0.753±0.109 0.804±0.099 0.714±0.143 0.853±0.089 0.771±0.266 0.839±0.076 0.826±0.062
LPIPS (×10−2) ↓ 27.96 19.23±6.658 23.11±11.60 19.63±5.324 23.46±8.509 20.81±8.103 26.60±10.59 20.00±6.670 21.16±22.914 20.08±7.147 20.65±7.292

FID ↓ 66.51 30.10±3.318 40.51±6.490 27.98±7.161 29.06±6.036 21.34±3.611 31.20±5.088 30.76±6.273 46.55±6.774 21.77±2.959 31.82±4.823
IAT ↓ - 272.59±13.43 275.93±32.85 275.74±12.04 271.75±12.32 - - - - - -

Time(s) ↓ - 254±69 258±74 256±132 127±57 4±0 4±0 4±0 26±0 5±1 72±19

In
pa

in
tin

g

PSNR(dB) ↑ 6.81 27.63±5.389 28.05±4.772 23.15±3.606 25.84±4.009 28.63±5.085 27.85±4.719 26.93±6.304 28.26±4.466 28.44±5.020 27.83±4.019
SSIM ↑ 0.063 0.805±0.110 0.812±0.098 0.630+0.143 0.726±0.105 0.838±0.103 0.815±0.100 0.834±0.116 0.794±0.110 0.825±0.108 0.802±0.202

LPIPS (×10−2) ↓ 77.37 24.38±9.151 26.17±8.323 45.19±7.309 35.58±6.022 22.86±8.908 25.41±7.824 19.66±9.759 23.44±7.290 27.26±9.654 25.01±9.891
FID ↓ 440.79 42.73±38.74 67.36±53.50 168.38±107.26 91.52±64.72 55.42±45.64 65.27±50.40 34.17±46.09 41.05±31.98 70.95±58.91 45.98±54.93
IAT ↓ - 254.54±314.46 265.04±313.45 311.61±329.12 290.86±317.32 - - - - - -

Time(s) ↓ - 200±5 199±1 585±248 82±3 20±0 20±0 20±0 27±0 20±0 75±11

Su
pe

r-
re

s.

PSNR(dB) ↑ - 26.10±4.089 26.43±4.575 25.82±4.071 26.05±4.262 25.63±4.117 25.62±4.112 23.52±5.218 25.14±4.323 25.24±4.419 25.35±4.028
SSIM ↑ - 0.706±0.123 0.715±0.137 0.667±0.122 0.694±0.132 0.645±0.126 0.644±0.126 0.658±0.158 0.608±0.164 0.633±0.135 0.667±0.193

LPIPS (×10−2) ↓ - 35.71±6.865 32.93±8.840 39.80±7.153 35.79±7.258 37.93±6.959 38.08±6.942 40.81±10.45 39.34±9.944 40.16±7.702 40.02±7.983
FID ↓ - 103.10±70.80 120.97±102.60 92.02±63.86 93.54±67.67 109.80±73.90 110.21±74.16 196.86±132.19 119.67±93.82 127.04±86.78 109.23±80.37
IAT ↓ - 277.89±312.83 276.07±315.65 277.29±313.02 280.70±315.22 - - - - - -

Time(s) ↓ - 301±64 352±54 334±135 187±60 7±0 7±0 7±0 8±2 7±0 60±2

computationally intensive than optimization-based methods.
This is due not only to the cost per iteration but also to
the larger number of iterations required to obtain reliable
estimates. However, contrary to optimization methods, which
typically only retain the final iterate, every sample generated
by a sampling algorithm beyond its burn-in phase contributes
valuable information. Specifically, the set of samples provides
a full characterization of the posterior distribution, enabling
both point estimates and confidence measures. This additional
computational burden is the cost of obtaining uncertainty
quantifications, which are crucial for certain applications. In
particular, one computationally demanding step in the proposed
LwSGS algorithm is the sampling of the splitting variable
according to (20), which requires invoking the denoiser D(·).
In this work, the denoiser used is DRUNet, a deep neural
network. To reduce this computational burden, a simpler,
less computationally intensive denoiser could be employed,
which would make the algorithm more efficient without
sacrificing too much in terms of performance. Yet, from these
experimental results, the price to pay for offering an uncertainty

quantification on top of point estimation seems reasonable.

Finally, the convergence properties of the compared sampling-
based algorithms have been assessed by monitoring the
autocorrelation function (ACF) of the median components of
the chains generated by those algorithms. By denoting x(t) =[
x
(t)
1 , . . . , x

(t)
n

]⊤
, the median component has been defined

as the produced pixelwise Monte Carlo chain
{
x
(t)
i

}NMC

t=Nbi+1
with the median variance. Faster decreasing ACF means that
the samples are less correlated and generally implies faster
convergence of the Markov chain. Fig. 3 depicts these ACFs
for the three restoration tasks conducted on one image from the
FFHQ data set. For the deblurring task, it is not clear which
of the compared methods is the more efficient, i.e., with the
fastest ACF decay. Conversely, for the inpainting and super-
resolution tasks, the ACF of RED-LwSGS decreases faster than
the ACFs obtained with the two other Monte Carlo algorithms.
This finding is confirmed by the IAT measures reported in
Tables I and II.
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Ground Truth Observation DiffPIR PnP-ULA RED-LwSGS PnP-ULA (std) RED-LwSGS (std)

Fig. 1. FFHQ 256× 256 data set (SNR = 30dB): images recovered by the compared methods for deblurring (top), inpainting (middle) and super-resolution
(bottom).

Ground Truth Observation DiffPIR PnP-ULA RED-LwSGS PnP-ULA (std) RED-LwSGS (std)
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Fig. 2. ImageNet 512× 512 data set (SNR = 5dB): images recovered by the compared methods for deblurring (top), inpainting (middle) and super-resolution
(bottom).

E. Does DRUNet meet the RED conditions?

The explicit formula (9) of the RED gradient requires the
RED conditions (C1)–(C4) to be satisfied, i.e., the denoiser
Dν(·) should be differentiable, locally homogeneous, with
symmetric Jacobian and strongly passive. It is legitimate to
assess whether these conditions are verified for the deep
denoiser considered in the experiments, namely DRUNet. First,
the canonical implementation of DRUNet makes Dν(·) not
continuously differentiable w.r.t. the input due to the use of
ReLU activation functions. However, to ensure (C2), the overall
architecture can be made continuously differentiable by replac-
ing them with SoftPlus activation functions, which are C∞, as

suggested in [14]. Besides, the three other RED conditions are
empirically assessed through numerical experiments. The local
homogeneity condition (C1) of the denoiser is evaluated by
computing the two following normalized mean square errors
[16]

NMSELH,1 = E

[
||Dν

(
(1 + ϵ)x

)
− (1 + ϵ)Dν(x)||2

||(1 + ϵ)Dν(x)||2

]

and

NMSELH,2 = E
[
||∇Dν(x)x− Dν(x)||2

||Dν(x)||2

]
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Fig. 3. FFHQ 256 × 256 data set: (absolute) autocorrelation function (ACF) of the samples generated by the compared algorithms for deblurring (left),
inpainting (middle) and super-resolution (right).

TABLE III
NUMERICAL EXPERIMENTS TO ASSESS THE RED CONDITIONS.

FFHQ ImageNet

Homogeneity
NMSELH,1 1.78× 10−8 5.34× 10−8

NMSELH,2 1.75× 10−2 5.28× 10−2

Jacobian symmetry NMSEJS 5.81× 10−2 8.39× 10−2

Strong passivity MSR 1.44 1.63

which are motivated by the definition (6) and the property (7),
respectively. These metrics should be close to zero to ensure
local homogeneity. Further, following (C3), the denoiser should
have a symmetric Jacobian. This characteristic is empirically
evaluated by computing

NMSEJS = E
[
||∇Dν(x)−∇D⊤

ν (x)||2

||∇Dν(x)||2

]
which should be close to zero for a symmetric Jacobian [16].
Finally, to assess the strong passivity condition (C4), one
considers the mean spectral radius

MSR = E [η (∇Dν(x))]

which can be computed by the power iteration and should
be smaller than 1. When computing these metrics, the (i, j)-
element of the gradient of Dν(·) has been approximated as

[∇Dν(x)]i,j ≈
[Dν(x+ ϵej)]i − [Dν(x− ϵej)]i

2ϵ

where ej denotes the jth canonical basis vector, i.e., the jth
column of In, and ϵ > 0 is small enough. These metrics are
reported in Table III when the four considered scores have
been computed over 100 patches of size 32×32 extracted from
images of the two data sets, namely FFHQ 256 × 256 and
ImageNet 512 × 512. They show that the DRUNet denoiser
seems to satisfy the local homogeneity and symmetric Jacobian
conditions. However, DRUNet has a spectral radius greater than
1. Yet, to ensure a strongly passive deep neural network-based
denoiser, various strategies could be been envisioned, such as
spectral normalization [13].

F. RED-ULA vs. PnP-ULA

Section III-D has drawn some connections between PnP-
ULA and RED-ULA. In particular, it has shown that in practice

TABLE IV
NUMERICAL COMPARAISONS OF RED-ULA AND PNP-ULA.

PSNR SSIM LPIPS IAT % Proj.

RED-ULA 38.03 0.9809 0.0053 75.22 -

PnP-ULA
S = [0, 1] 38.46 0.9813 0.0048 75.21 96.71

S = [−1, 2] 38.03 0.9809 0.0053 75.22 0

the two algorithms basically reduce to the same algorithmic
scheme, except that PnP-ULA embeds an additional projection
step onto an arbitrary pre-defined set S. This projection aims at
ensuring that the drift satisfies an asymptotic growth condition.
To experimentally validate this equivalence, Table IV reports
the performance of PnP-ULA and RED-ULA when tackling
the deblurring task. These performances have been computed
over 100 images of the FFHQ dataset. Two configurations for
the set S are considered, S = [0, 1] and S = [−1, 2]. The rates
of activation of the constraint, i.e., the proportion of samples
generated by PnP-ULA that do not satisfy the drift condition
and should be projected onto the set S, are also reported in
terms of percentage. These results show that, when S = [−1, 2],
the projection embedded in PnP-ULA is never activated and
the performance is the same as the one obtained by RED-
ULA, which confirms that the two algorithms are identical.
When S = [0, 1], this projection is applied to almost all the
samples generated by PnP-ULA, without significantly affecting
the performance.

V. CONCLUSION

This work built a Bayesian counterpart of the regularization-
by-denoising (RED) engine, offering a data-driven framework
to define prior distributions in Bayesian inversion tasks. It
defined a new probability distribution from the RED potential,
which was subsequently embedded into a Bayesian model as a
prior distribution. Since the resulting RED posterior distribution
was not standard, a dedicated Monte Carlo algorithm was
designed. By leveraging an asymptotically exact data augmen-
tation (AXDA), this algorithm was a particular instance of
the split Gibbs sampler which had the great advantage of
decoupling the data-fitting term and the RED potential. One
stage of SGS was performed following a Langevin Monte
Carlo step, which leads to the so-called Langevin-within-split
Gibbs sampling. A thorough theoretical analysis was conducted
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to assess the convergence guarantees of the algorithm. Some
tight connections were drawn between AXDA and RED to
show that the implicit prior resulting from an AXDA scheme
coincides with the RED prior defined by a MMSE denoiser.
Extensive numerical experiments showed that the proposed
approach competes favorably with state-of-the-art variational
and Monte Carlo methods when tackling conventional inversion
tasks, namely deblurring, inpainting and super-resolution. The
proposed approach was shown to provide a comprehensive
characterization of the solutions which could be accompanied
by an uncertainty quantification. By bridging the gap between
the RED paradigm and Bayesian inference, this work opened
new avenues for incorporating data-driven regularizations into
Monte Carlo algorithms.

Future research could explore the possibility of relaxing
some of the RED conditions while still ensuring the existence
of the resulting posterior distribution. A promising avenue could
be to redefine the prior distribution from the perspective of
“gradient step denoisers” as discussed in [14], [20], [21]. This
approach might lead to less restrictive and more flexible prior
models. Furthermore, another promising direction for future
research is the extension of the proposed framework and its
theoretical analysis to nonlinear inverse problems such as those
recently considered in [33] and [34]. This would significantly
broaden its applicability to more challenging reconstruction
tasks encountered in various application fields such as medical
imaging and astronomy.

APPENDIX A
PROOF OF PROPOSITION 1

Under the RED conditions, the RED prior (10) can be
rewritten according to the pseudo-quadratic form

pred(x) ∝ exp
[
−β

2x
⊤Λ(x)x

]
with Λ(x) = In −∇Dν(x). From Assumption 1, there exists
λmin > 0 such that λminIn ⪯ Λ(x), ∀x ∈ Rn. This implies
that λminx

⊤x ≤ x⊤Λ(x)x and∫
Rn

pred(x)dx ≤
∫
Rn

exp
[
−β

2λmin∥x∥2
]
dx < ∞.

APPENDIX B
AUGMENTED DISTRIBUTION AND RED-LWSGS FOR

SUPER-RESOLUTION

This appendix details the AXDA model and the correspond-
ing sampling algorithm when tackling the super-resolution
task. In this case, the operator A can be written as A = SB
where B ∈ Rn×n is a circulant matrix standing for a
spatially invariant blur and S ∈ Rm×n stands for a regular
downsampling operator. When directly adopting the splitting
trick proposed in Section III-A, sampling according to the
conditional distribution (15) remains difficult because the
precision matrix is neither diagonal (as for the inpainting
task) nor diagonalizable in the Fourier domain (as for the
deblurring task). To overcome this difficulty, one suitable
AXDA consists in introducing two splitting variables, which

allows the operators B and S to be decoupled. This leads to
the augmented posterior distribution

πρ1,ρ2
(x, z1, z2) ∝ exp

[
− 1

2σ2
||Sz1 − y||22 − βgred(z2)

− 1

2ρ21
||Bx− z1||22 −

1

2ρ22
||x− z2||2

]
.

The associated SGS alternatively samples according to the
three conditional distributions

p(z1|x,y) ∝ exp
[
− 1

2σ2 ∥Sz1 − y∥22 −
1

2ρ2
1
||Bx− z1||22

]
(26)

p(x|z1, z2) ∝ exp
[
− 1

2ρ2
1
∥Bx− z1∥22 −

1
2ρ2

2
∥x− z2∥2

]
(27)

p(z2|x) ∝ exp
[
− 1

2z
⊤
2 (z2 − Dν(z2))− 1

2ρ2
2
∥x− z2∥2

]
It appears that (26) and (27) define the conditional posteriors
associated with the inpainting and deblurring tasks, respectively.

APPENDIX C
EXPERIMENTAL DETAILS

A. Pre-trained models

This section provides some detailes regarding the implemen-
tation of the pre-trained models employed in the experiments.
These models play a crucial role in the performance of both
the sampling-based and optimization-based methods used for
solving inverse problems.

Regarding the PnP- and RED-based methods, all experiments
have been performed with DRUNet as the pre-trained denoiser
[11]. This denoiser Dν(·) has the ability to handle different
noise levels with a single model thanks to the parameter
ν which controls the strength of the denoising. During the
experiments, this parameter has been adjusted following the
strategy recommended in [11]. More precisely, a decreasing
sequence ν(1) > ν(2) > · · · > ν(Nbi) has been uniformly
sampled according to a logarithmic scale between a large value
fixed as ν(1) = 49 and a value ν(K) adjusted w.r.t. to the image
noise level. For the optimization-based methods, this sequence
is used as a parameter of the denoiser along the K iterations or
the algorithms. For the sampling-based methods, to ensure the
stationary of the kernel, this parameter is set to a fixed value
beyond the burn-in period, i.e., ∀t > K, ν(t) = ν(K) where
K = Nbi stands for number of the burn-in iterations. In other
words, the ULA and LwSGS sampling methods are ensured to
sample from a well-defined stationary distribution. It is worth
noting that the posterior distribution ideally targeted by the
ULA and LwSGS sampling methods should have been written
as π(x) = p(x | y;β, ν(K)) since it depends on the wo model
parameters β and ν(K). They have been omitted throughout
this article to lighten the notations.

Regarding DiffPIR and DPS, they embed the UNet diffusion-
based pre-trained models of [54] and [53] to conduct experi-
ments on the ImageNet and FFHQ datasets, respectively.

The pre-trained models and their training sets are summa-
rized in Table V for each experiment conducted in this work.
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TABLE V
TRAINING AND TESTING DATA SETS OF THE PRE-TRAINED MODELS.

Test sets Methods Model Training sets

FFHQ

RED-{LwSGS, ADMM, HQS},
DRUNet [11]

DIV2K
Flick2K

BSDPnP-{ULA, ADMM}, DPIR

DiffPIR, DPS UNet [53] FFHQ

ImageNet

RED-{LwSGS, ADMM, HQS},
DRUNet [11]

DIV2K
Flick2K

BSDPnP-{ULA, ADMM}, DPIR

DiffPIR, DPS UNet [54] ImageNet

B. Implementation details regarding RED-LwSGS

This appendix provides additional details regarding the
implementation of the proposed LwSGS algorithm. The
regularization parameter and the coupling parameters have
been adjusted to reach the best performance. For experi-
ments on the FFHQ data set, the regularization parame-
ter β is set to 8.0 × 10−2, 1.25 × 10−1 and 1.0 for the
deblurring, inpainting and super-resolution tasks, respec-
tively, while it has been fixed to 4.89 × 10−3, 1.167 ×
10−1 and 4.966 × 10−2 for the experiments conducted on
the ImageNet data set. The other parameters are fixed as
(NMC, Nbi, ρ

2, γ) = (5000, 2000, 6 × 10−8, 0.99
2β+1/ρ2 ) for

deblurring, (NMC, Nbi, ρ
2, γ) = (10000, 4500, 1.5, 0.99

2β+1/ρ2 )

for inpainting and (NMC, Nbi, ρ
2
1, ρ

2
2, γ) = (12500, 3500, 2×

10−1, 1, 0.8
2β+1/ρ2

2
) for super-resolution which requires a double

splitting.

C. Implementation details regarding the compared methods

This appendix provides additional details regarding the imple-
mentation of the compared methods. First, RED-ADMM, RED-
HQS, PnP-ADMM, PnP-ULA and Diff-PIR are implemented
using the same denoiser as the proposed method (see Appendix
C-A). For the sampling-based methods, i.e., PnP-ULA, TV-
MYULA, TV-SP, the total number of iterations have been set
as for the proposed RED-LwSGS (see Appendix C-B). For
optimization-based algorithms, i.e, RED-ADMM, RED-HQS,
DPIR and PnP-ADMM, the total number of iterations is set as
follows: 150 for deblurring and 350 for inpainting and super-
resolution. Finally all model and algorithmic parameters have
been adjusted to reach the best performance. More precisely,
for the experiments conducted on the FFHQ data:

• PnP-ULA: the parameters (Nbi, β) have been set to
(2500, 7.3 × 10−4) for deblurring, (5000, 10−4) for in-
painting and (6000, 2.75× 10−4) for super-resolution.

• TV-MYULA: the parameters (Nbi, β) have been set
to (2500, 10−1) for deblurring, (5000, 8 × 10−8) for
inpainting and (8500, 1) for super-resolution.

• TV-SP: the parameters (Nbi, ρ, β) have been set to
(2000, 9×10−4, 1) for deblurring and (4500, 1, 3.5×10−3)
for inpainting while for super-resolution, which requires
a double splitting, the parameters (Nbi, ρ

2
1, ρ

2
2, β) have

been set to (3500, 10−5, 10−5, 3.76).
• RED-ADMM: the hyperparameters (α, λ, β) have been

set to (2, 2×10−3, 9×10−4) for deblurring, (2, 10−2, 4×

10−2) for inpainting and (2, 8 × 10−3, 10−6) for super-
resolution.

• RED-HQS: similarly to RED-ADMM, the hyperparam-
eters are (α, λ, β) = (2, 10−2, 4 × 10−3) for deblurring,
(α, λ, β) = (2, 2× 10−2, 1.8× 10−2) for inpainting and
(α, λ, β) = (2, 8× 10−3, 10−6) for super-resolution.

• PnP-ADMM: the parameter ρ is set to 10−4 for deblurring,
10−3 for inpainting and 6.5× 10−2 for super-resolution.

• DiffPIR: the parameters (λ, ζ) have been set to (2, 3 ×
10−1) for deblurring and (1, 1) for inpainting and super-
resolution.

• DPIR: the parameter λ had been set to 1 × 10−3 for
deblurring and inpainting and 0.9 for super-resolution.

• DPS: it has been implemented following the original paper
by using a 1000-step DDPM sampler backbone and the
parameter ζ is set to 1.
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