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Regularization by denoising: Bayesian model and
Langevin-within-split Gibbs sampling
Elhadji C. Faye, Mame Diarra Fall and Nicolas Dobigeon, Senior Member, IEEE

Abstract—This paper introduces a Bayesian framework for
image inversion by deriving a probabilistic counterpart to
the regularization-by-denoising (RED) paradigm. It additionally
implements a Monte Carlo algorithm specifically tailored for
sampling from the resulting posterior distribution, based on an
asymptotically exact data augmentation (AXDA). The proposed
algorithm is an approximate instance of split Gibbs sampling
(SGS) which embeds one Langevin Monte Carlo step. The
proposed method is applied to common imaging tasks such as
deblurring, inpainting and super-resolution, demonstrating its
efficacy through extensive numerical experiments. These contribu-
tions advance Bayesian inference in imaging by leveraging data-
driven regularization strategies within a probabilistic framework.

I. INTRODUCTION

This paper is interested in conducting Bayesian inference
about an image x ∈ Rn given the measurements y ∈ Rm

related to x through a statistical model specified by the
likelihood function

p(y|x) ∝ exp [−f(x,y)] . (1)

In (1), the potential function f(x,y) is a fidelity term, i.e.,
accounting for the consistency of x with respect to (w.r.t.) the
measured data y. In what follows, this potential function will
be assumed to be convex and Lf -smooth, i.e., continuously
differentiable and its gradient is Lipschitz continuous with
Lipschitz constant Lf . This problem is in line with the
most frequently encountered imaging inverse problems such
as denoising, deblurring, and inpainting relying on a linear
forward model and a Gaussian perturbation. For such tasks,
the potential function writes f(x,y) = 1

2σ2 ∥Ax− y∥22 where
A ∈ Rm×n is the degradation matrix. Estimating x from y is
generally an ill-posed or, at least, ill-conditioned problem. The
Bayesian paradigm consists in assigning a prior distribution to
x, which summarizes the prior knowledge about x and acts as
a regularization. This prior distribution writes

p(x) ∝ exp [−βg(x)] (2)

where g : Rn → R stands for the regularization term and the
parameter β > 0 controls the amount of regularization enforced
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by the prior distribution. The posterior distribution p(x|y) is
derived from the likelihood p(y|x) and the prior distribution
p(x) using the Bayes’ rule

p(x|y) ∝ exp [−f(x,y)− βg(x)] . (3)

This posterior distribution provides a comprehensive description
of the solutions and allows various Bayesian estimators and
uncertainty measures to be derived. In particular, computing the
maximum a posteriori (MAP) estimator boils down to solving
the minimization problem

min
x

f(x,y) + βg(x). (4)

Numerous works from the literature have focused on the
difficult task of designing a relevant prior distribution p(x)
or, equivalently, a relevant potential function g(x). These
regularizations usually promote specific expected or desired
properties about x. More specifically, conventional optimization
methods solving (4) are generally based on explicit model-
based regularizations, such as total variation (TV) promoting
piecewise constant behavior [1], Sobolev promoting smooth
content [2] or sparsity-promoting regularizations based on the
use of ℓp-norm with p ≤ 1 [3], [4]. However, designing an
appropriate model-based regularization remains an empirical
and subjective choice. Moreover, their ability of characterizing
complex image structures is generally limited or comes at the
price of a significant increase of the resulting algorithmic
burden. More recently, a different route has been taken
by devising smart strategies avoiding the ad hoc design of
explicit model-based regularizations. The seminal work by
Venkatakrishnan et al. has introduced the concept of plug-and-
play (PnP) as an implicit prior [5]. This framework naturally
emerges whenever the algorithmic scheme designed to solve
(4) embeds the proximal operator associated with g(·). Possible
schemes include the alternating direction method of multipliers
(ADMM) [4], half quadratic splitting (HQS) [6] or Douglas-
Rachford splitting [7]. Interestingly, this proximal mapping
can be interpreted as a denoising task under the assumption
of an additive white Gaussian noise. PnP approaches replace
this proximal step by a more general denoiser D : Rn → Rn,
including non-local means (NLM) [8], block-matching and 3D
filtering (BM3D) [9] or any more recently proposed learning-
based denoisers such as DnCNN [10] or DRUNet [11]. Thanks
to its effectiveness and its simplicity, this framework has gained
in popularity for a wide range of applications in the context
of imaging problems [11]–[14]. In the same vein as PnP,
the regularization-by-denoising (RED) framework defines an
explicit image-adaptive Laplacian-based prior which only relies
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on the ability of performing a denoising task [15]. Empirically,
RED has shown to outperform PnP-based approaches and has
motivated several subsequent research works [14], [16], [17].

All the variational approaches discussed above treat x
in a deterministic way and generally produce only point
estimates approximating the solution of the minimization
problem (4). As an alternative, the Bayesian framework models
the image x as a random variable and generally seeks a
comprehensive description of the posterior distribution p(x|y).
As such, Bayesian methods are able to go beyond a sole point
estimation, by enhancing it with a quantification of uncertainty
in a probabilistic manner in terms of variance and credibility
intervals. This ability to quantify uncertainty is particularly
useful for decision-making and reliability assessment [18], [19].
Exploring the posterior distribution is generally carried out by
generating samples asymptotically distributed according to this
target distribution using Markov chain Monte Carlo (MCMC)
methods. Most of the works dedicated to the development of
MCMC algorithms for inverse problems in imaging relies
on conventional model-based prior distributions. As their
deterministic counterparts, they encode expected characteristics
of the image prescribed beforehand and chosen based on quite
empirical arguments. Very few recent works have attempted
to depart from this paradigm by incorporating data- or task-
driven regularizations as prior distributions. For instance,
available training samples can be used to learn a mapping
from an instrumental latent distribution towards the image prior.
Benefiting from advances in the machine learning literature,
this mapping can be chosen as a deep generative model,
such as a variational autoencoder [20] or a normalizing flow
[21]. Devising a PnP prior in the context of Monte Carlo
sampling has been investigated in [22], resulting in the so-called
PnP unadjusted Langevin algorithm (PnP-ULA). Its rationale
follows the same motivation as its deterministic counterpart,
namely avoiding the explicit definition of the prior distribution
by the ability of performing a denoising task. Surprisingly,
although that the RED approach has shown to outperform PnP
when embedded into a variational framework, up to authors’
knowledge, there is no equivalent for the RED paradigm, i.e.,
RED has never been formulated into a Bayesian framework
and embedded into a Monte Carlo algorithm.

The objective of this paper is to fill this gap. More precisely,
the main contributions reported hereafter can be summarized as
follows. First, Section II introduces a probabilistic counterpart
of RED by defining a new distribution that can be subsequently
chosen as a prior distribution in a Bayesian inversion task.
Then, Section III introduces a new Monte Carlo algorithm
that is shown to be particularly well suited to sample from the
resulting posterior distribution. It follows an asymptotically
exact data augmentation (AXDA) scheme [23], resulting in a
nonstandard instance of the split Gibbs sampler (SGS) [24].
This sampling scheme is thus accompanied by a thorough
theoretical analysis to ensure and quantify its convergence.
The rationale of the proposed approach is also put into
perspective w.r.t. recently proposed Monte Carlo algorithms,
in particular PnP-ULA, drawing some connections between
AXDA and RED leveraging the Tweedie’s formula [25].
Then, the proposed algorithm is instantiated to solve three

ubiquitous inversion tasks, namely deblurring, inpainting
and super-resolution. Extensive numerical experiments are
conducted in Section IV to compare the performance of the
proposed algorithm to state-of-the-art variational and Monte
Carlo methods.

Notations and conventions. The Euclidean norm on Rn is
denoted by ∥ · ∥. We denote by N (µ,Q−1) the Gaussian
distribution with mean vector µ and precision matrix
Q. The (n × n)-identity matrix is denoted In. For any
matrix S ∈ Mn (R), if we denote 0 the zero matrix, the
notation 0 ≼ S means that S is semi-definitive positive. The
Wasserstein distance of order 2 between two probability
measures τ and τ ′ on Rn with finite 2-moments is defined by
W2(τ, τ

′) = (infζ∈T (τ,τ ′)

∫
Rn×Rn ∥ V − V ′ ∥2 dζ(V, V ′))1/2,

where T (τ, τ ′) is the set of transport plans of τ and τ ′.

II. BAYESIAN FORMULATION OF RED INVERSION

This section starts by recalling some background about
RED. Then it proposes a probabilistic counterpart of the
regularization, that can be subsequently used as a prior within
a Bayesian framework.

A. Regularization by denoising (RED)

The RED engine defines g(·) as the explicit image-adaptive
Laplacian-based potential [15]

gred(x) =
1

2
x⊤ (x− Dν(x)) (5)

where Dν : Rn → Rn is a denoiser with ν controlling the
denoising strength, designed for the removal of additive white
Gaussian noise. Although it offers a significant flexibility in
the choice of the denoisers that can be used, RED requires
Dν(·) to obey the following assumptions, referred to as the
RED conditions.
(C1) Local homogeneity: ∀x ∈ Rn,

Dν ((1 + ϵ)x) = (1 + ϵ)Dν(x) (6)

for any sufficiently small ϵ > 0.
(C2) Differentiability: the denoiser Dν(·) is differentiable with

Jacobian denoted ∇Dν(·).
(C3) Jacobian symmetry [16]: ∀x ∈ Rn, ∇Dν(x)

⊤ =
∇Dν(x).

(C4) Strong passivity: the Jacobian spectral radius satisfies
η (∇Dν(x)) ≤ 1.

The major implication of local homogeneity (C1) is that the
directional derivative of Dν(·) along x can be computed by
applying the denoiser itself, i.e.,

∇Dν(x)x = Dν(x). (7)

The Jacobian symmetry (C3) and the strong passivity (C4)
ensure that applying the denoiser does not increase the norm
of the input:

∥Dν(x)∥ = ∥∇Dν(x)x∥ ≤ η (∇Dν(x)) · ∥x∥ ≤ ∥x∥. (8)

Interestingly, two additional keys and highly beneficial proper-
ties follow: i) the RED potential gred(·) is a convex functional
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and ii) the gradient of gred(·) is expressed as the denoising
residual

∇gred(x) = R(x) = x− Dν(x) (9)

which avoids differentiating the denoising operation itself.
Thus, one of the most appealing opportunity offered by
RED is its ability to embed powerful denoisers, such as
those based on deep neural networks, without requiring to
differentiate them. It is worth noting that if the denoising
function Dν(·) does not meet the condition (C3), then there
is no regularizer g(·) whose gradient can be written as the
residual R(·) [16]. Unfortunately many popular denoisers, such
as trainable nonlinear reaction-diffusion (TNRD), NLM, BM3D,
and DnCNN, are characterized by non-symmetric Jacobian. Yet,
RED-based restoration algorithms are shown to empirically
converge and to reach excellent performance when solving
various inverse problems even when those conditions are
partially satisfied [15], [17].

B. Probabilistic counterpart of RED
To formulate the RED-based inversion within a statistical

framework, one requirement consists in introducing a prior
distribution defined from the RED potential gred(·) given by
(5). More precisely, one defines

pred(x) ∝ exp

[
−β

2
x⊤ (x− Dν(x))

]
. (10)

The functional pred(·) does not necessarily define a probability
density function (pdf). For pred(·) to be a valid pdf, i.e.∫
Rn pred(x)dx < ∞, certain conditions must be satisfied.

Assumption 1. The matrix Λ(x) = In −∇Dν(x), ∀x ∈ Rn,
has at least one non-zero eigenvalue.

This technical assumption is not restrictive and it is easy to
show that it would be violated only in trivial cases. Indeed,
let x̄ ∈ Rn denote an image such that all the eigenvalues of
Λ(x̄) are zero. Then the matrix ∇Dν(x̄) is symmetric (see
RED condition (C3)), with real coefficients and all eigenvalues
equal to 1. The spectral theorem yields ∇Dν(x̄) = In. From
the local homogeneity (C1) and its corollary (7), one has
Dν(x̄) = x̄, i.e., x̄ is already a noise-free image which does
not need to be further denoised.

The next result states that mild assumptions are sufficient to
guarantee that the function (10) defines a proper distribution.

Proposition 1. If Assumption 1 and Conditions (C3)–(C4)
hold, then ∫

Rn

pred(x)dx < +∞ (11)

and pred(·) in (10) defines a proper pdf.

Proof. See Appendix A.

C. RED posterior distribution
Combining the RED prior pred(x) defined by (10) and the

likelihood function p(y|x) defined by (1), the RED posterior
distribution π of interest writes

π(x) ≜ p(x|y)

∝ exp

[
−f(x,y)− β

2
x⊤ (x− Dν(x))

]
.

(12)

As stated earlier, deriving the MAP estimator associated with
the RED posterior (12) consists in solving the optimization
problem (4). In the seminal paper [15], this problem is tackled
thanks to first-order optimization methods such as steepest
decent (SD), fixed-point (FP) iteration and ADMM. More
recently, it has been reformulated as a convex optimization
problem using a projection onto the fixed point set of demi-
contractive denoisers [17]. Instead, the work conducted in this
manuscript proposes to follow a different route by proposing
to sample from this posterior distribution. While these samples
offer a comprehensive description of the RED posterior, they
can be subsequently used to derive Bayesian estimators or
credibility intervals. Because of the non-standard form of the
RED posterior, sampling according to (12) requires to develop
a dedicated algorithm introduced in the following section.

III. PROPOSED ALGORITHM

A. Langevin-within-split Gibbs sampler

Generating samples efficiently from the posterior distribution
with pdf π(x) defined by (12) is not straightforward, in
particular due to the use of the denoiser Dν(·). When π(·) is
proper and smooth with x 7→ ∇log π(x) Lipschitz continuous,
one solution would consist in resorting to the ULA [26].
This strategy will be shown to be intimately related to PnP-
ULA in Section III-D. However, it may suffer from several
shortcomings, such as poor mixing properties and higher
resulting computational times (see experimental results in
Section IV-D). Conversely, the work in this manuscript derives
a dedicated Monte Carlo algorithm to sample from a posterior
distribution written as (3). This algorithm will be shown to
be particularly well suited to sample from the RED posterior
(12), i.e., when g(·) = gred(·).

The proposed sampling scheme first leverages an asymp-
totically exact data augmentation (AXDA) as introduced in
[23]. Inspired by optimization-flavored counterparts, AXDA
employs a variable splitting technique to simplify and speed
up the sampling according to possibly complex distributions.
More precisely, it introduces an auxiliary variable z ∈ Rn and
considers the augmented distribution

πρ(x, z) = p(x, z|y; ρ2) (13)

∝ exp

[
−f(x,y)− βg(z)− 1

2ρ2
||x− z||2

]
where ρ is a positive parameter that controls the dissimilarity
between x and z. This data augmentation (13) is approximate
in the sense that the marginal distribution

πρ(x) =

∫
Rn

πρ(x, z)dz (14)

∝
∫
Rn

exp

[
−f(x,y)− βg(z)− 1

2ρ2
||x− z||2

]
dz

coincides with the target distribution π(x) only in the limiting
case ρ → 0. The conditional distributions1 associated to the

1The conditional distributions associated to πρ(x, z) are p(x|y, z; ρ2) and
p(z|x; ρ2). To lighten the notations, the coupling parameter ρ2 will be omitted
in what follows, i.e., one employs p(x|y, z) and p(z|x).
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augmented posterior πρ(x, z) are given by

p(x|y, z) ∝ exp

[
−f(x,y)− 1

2ρ2
||x− z||2

]
(15)

p(z|x) ∝ exp

[
−βg(z)− 1

2ρ2
||x− z||2

]
. (16)

The so-called split Gibbs sampler (SGS) alternatively samples
according to these two conditional distributions to generate
samples asymptotically distributed according to (13) [24], [27].
Interestingly, this splitting allows the two terms f(·,y) and
g(·) defining the full potential to be dissociated and involved
into two distinct conditional distributions. SGS shares strong
similarities with ADMM and HQS methods and is expected to
lead to simpler, scalable and more efficient sampling schemes.

Specifically, sampling according to the conditional posterior
(15) can be interpreted as solving the initial estimation problem
defined by the likelihood function (1) with now a Gaussian
distribution with mean z and diagonal covariance matrix ρ2In
assigned as a prior. As stated earlier, a large family of imaging
inverse problems, such as deblurring, inpainting and super-
resolution is characterized by the quadratic potential function
f(x,y) = 1

2σ2 ∥Ax− y∥22 also considered in this work. This
leads to the Gaussian conditional distribution

p(x|y, z) = N (x;µ(z),Q−1) (17)

where the precision matrix Q and the mean vector µ(·) are
given by 

Q =
1

σ2
A⊤A+

1

ρ2
I

µ(z) = Q−1

(
1

σ2
A⊤y +

1

ρ2
z

)
.

(18)

In this case, sampling according to this conditional distribution
can be efficiently achieved using dedicated algorithms that
depend on the structure of the precision matrix Q. Interested
readers are invited to consult [28] for a recent overview of these
methods. It is worth noting that when the potential function
f(·,y) is not quadratic, the proposed framework can embed
proximal Monte Carlo algorithms to sample from (15), as in
[29], [30].

In the specific case considered in this work where g(·) =
gred(·), the conditional distribution (16) can be interpreted as
the posterior distribution associated to a Bayesian denoising
problem equipped with a RED prior. Its objective boils down to
inferring an object z from the observations x contaminated by
an additive white Gaussian noise with a covariance matrix ρ2In.
Sampling according to this conditional is not straightforward,
in particular due to the regularization potential gred(·) whose
definition involves the denoiser Dν(·). This work proposes
to take advantage of the property (9) by sampling from (16)
following a Langevin Monte Carlo (LMC) step, i.e.,

z(t+1) = z(t) + γ∇log p
(
z(t) | x

)
+
√
2γε(t) (19)

where γ > 0 is a fixed step-size and
{
ε(t)

}
t∈N is a sequence of

independent and identically distributed n-dimensional standard
Gaussian random variables. Given the particular form of the

conditional distribution (16) and the property (9), this recursion
writes explicitly as

z(t+1) =

(
1− γβ +

1

ρ2

)
z(t)

− 1

ρ2
x(t) + γβDν

(
z(t)

)
+

√
2γε(t). (20)

The proposed so-called Langevin-within-SGS (LwSGS)
instantiated to sample according to the RED posterior (12)
is summarized in Algo 1.

Algorithm 1 LwSGS to sample from the RED posterior
Input: denoiser Dν(·), regularization parameter β, coupling

parameter ρ2, step-size γ, number of burn-in iterations
Nbi, total number of iterations NMC

Initialization: x(0), z(0)

1: for t = 0 to NMC − 1 do
% Sampling the splitting variable according to (20)

2: ε(t) ∼ N (0, I)

3: z(t+1) =
(
1− γβ + 1

ρ2

)
z(t) − 1

ρ2x
(t) + γβDν

(
z(t)

)
+

√
2γε(t)

% Sampling the variable of interest according to (15)
4: x(t+1) ∼ N

(
µ(z(t+1)),Q−1

)
5: end for

Output: collection of samples {x(t), z(t)}NMC

t=Nbi+1

Because of the discretization followed by the LMC step
(19), the samples produced by (20) are biased and are not
exactly distributed according to (16). To mitigate this bias
and ensure that LMC exactly targets (16), one well-admitted
strategy consists in including a Metropolis-Hasting (MH) step,
resulting in the Metropolis adjusted Langevin algorithm [31].
Then, combined with the sampling according to (15), the
overall resulting sampling algorithm would become a canonical
instance of Metropolis-within-Gibbs algorithm whose samples
would be ensured to be distributed according to the augmented
posterior distribution (13). However, performing this MH step
within each iteration of the SGS requires to compute multiple
corresponding MH ratios and to accept or reject the proposed
samples, which may significantly increase the computational
burden of the SGS. In this work, one proposes to bypass this
MH correction, yet at the price of an approximation which is
controlled. Indeed, the bias induced by the use of a LMC step
within a SGS iteration will be investigated in the theoretical
analysis conducted in Section III-C.

B. Related Monte Carlo algorithms

The proposed LwSGS algorithm shares some similarities
with some recently developed Monte Carlo algorithms, mainly
motivated by the will of conducting distributed Bayesian
inference over several computer nodes. In [32], the authors
adopt a splitting strategy offered by AXDA to derive a dis-
tributed SGS (DSGS) when the posterior distribution comprises
multiple composite terms. As with LwSGS, the core idea of
DSGS can be sketched as replacing the exact sampling of one
conditional distribution of the augmented posterior distribution
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by a more efficient surrogate sampling technique. Given the
particular form of the posterior distributions considered in [32],
a suitable choice of this surrogate is shown to be one step of
a proximal stochastic gradient Langevin algorithm (PSGLA)
[33]. When this sampling is not corrected by a MH step, this
leads to an inexact instance of SGS coined as PSGLA-within-
SGS. The synchronous distributed version of PSGLA-within-
SGS accounts for the hypergraph structure of the involved
composite terms to efficiently distribute the variables over
multiple workers under controlled communication costs. In the
same vein, another synchronous distributed MCMC algorithm
referred to as DG-LMC has been introduced in [34] to conduct
Bayesian inference when the target log-posterior also writes as
a sum of multiple composite terms. Also leveraging AXDA, it
adopts a splitting scheme different from LwSGS and PSGLA-
within-SGS. Yet, it can be interpreted as an inexact SGS for
which multiple conditional distributions are approximately
sampled thanks to LMC steps. While the existence of a
stationary distribution targeted by PSGLA-within-SGS and
its convergence have not been demonstrated in [32], such a
thorough theoretical analysis has been conducted for DG-LMC
in [34]. Even if these results are a precious asset to conduct a
similar analysis of LwSGS, they should be carefully adapted
to fit the splitting scheme adopted by LwSGS.

C. Theoretical analysis

This section provides theoretical insights regarding the
proposed LwSGS algorithm. For sake of generality and
unless otherwise stated, this analysis is conducted for any
regularization potential g(·) satisfying assumptions introduced
below. However, these assumptions will be also discussed and
examined under the prism of the RED paradigm, i.e., with
g(·) = gred(·) and when the proposed LwSGS aims at targeting
the RED posterior distribution (12).

As stated above, because of the absence of MH correction
after the LMC step, Algo. 1 does not fall into the class of
Metropolis-within-Gibbs samplers. Thus, the primer objective
of this analysis is to demonstrate that the samples produced by
Algo. 1 are asymptotically distributed according to a unique
invariant distribution2 πρ,γ following an ergodic transition
kernel denoted Pρ,γ . Thanks to an appropriate synchronous
coupling, the convergence analysis of LwSGS reduces to that
of the Markov chain produced by the sampling (20) according
to the conditional distribution p(z|x). One first introduces and
discusses two assumptions regarding the regularization potential
g(·).

Assumption 2 (Twice differentiability). The potential function
g(·) is twice continuously differentiable and there exists Mg >
0 such that ∀z ∈ Rn, ∥∇2g(z)∥ ≤ Mg .

As stated in Section II-A, under the RED conditions (C1)
and (C3), the gradient of the RED potential is given by (9).
This implies that the regularization potential gred(·) is twice
continuously differentiable with Hessian matrix ∇2gred(z) =
In−∇Dν(z). Moreover, thanks to the Jacobian symmetry (C3)

2With a slight abuse of notation, one uses the same notations for a probability
distribution and its associated pdf.

and strong passivity (C4) conditions, one has for all z ∈ Rn,
∥∇2gred(z)∥ ≤ 2. In other words, Assumption 2 always holds
for RED.

Assumption 3 (Strong convexity). The potential function g(·)
is mg-strongly convex, i.e., there exists mg > 0 such that
mgIn ⪯ ∇2g.

In the RED framework, a sufficient condition for the strong
convexity of the potential gred(·) is to ensure that the denoiser
Dν(·) is contractive, i.e., ∀(z1, z2) ∈ Rn × Rn, ∥Dν(z1) −
Dν(z2)∥2 ≤ ϵ∥z1 − z2∥2 for some Lipschitz constant ϵ < 1.
Under this condition, gred(·) can be shown to be mg-strongly
convex with mg = 1 − ϵ > 0. Unfortunately, most existing
denoisers do not follow this contraction property [14]. To
ensure the strong convexity of the potential gred(·) when using
a deep network-based denoiser, one solution would consist in
explicitly including a regularization term into the training loss
which constrains the Lipschitz constant [13], [35]. Finally, it is
worth noting that when Assumption 3 is satisfied, Assumption 1
is also satisfied, which implies that pred(·) is well-defined.

Under these assumptions, the convergence of the proposed
LwSGS algorithm is stated in the following proposition.

Proposition 2. Let γ ∈ R∗
+ such that γ ≤ (βMg + 1/ρ2)−1.

Then, under Assumptions 2 and 3, the kernel Pρ,γ admits a
unique stationary distribution πρ,γ . Moreover, for any v =
(x, z)⊤ ∈ Rn × Rn and any t ∈ N∗, we have

W 2
2 (δvP

t
ρ,γ , πρ,γ) ≤ C1

(
1− γβmg

)2(t−1)
W 2

2 (δv, πρ,γ),

where C1 = 1 + 1
ρ2 ∥Q−1∥2.

Proof. See Appendix B.

The rate of convergence of the proposed sampler is given
by 1 − γβmg. The asymptotic convergence of the samples
produced by the kernel Pρ,γ towards the distribution πρ,γ is
only possible if the LMC discretization step γ is sufficiently
small. The formula above establishes convergence for any
step-size γ ≤ (βMg + 1/ρ2)−1. From Assumptions 2 and
3, −log p(z|x) is βmg-strongly convex and (βMg + 1/ρ2)-
smooth, i.e., βmgIn ⪯ −∇2log p(z|x) ⪯ (βMg + 1/ρ2)In.
From [34] and [26], a sufficient condition on the step size
γ to ensure contraction w.r.t. the Wasserstein distance is
γ ≤ 2/(βmg + βMg + 1/ρ2). Thus the coupling parameter ρ
implicitly determines the convergence rate. The smaller ρ, the
smaller γ and the slower the convergence is.

Once the asymptotic convergence of the samples produced
by Algo. 1 has been ensured, the second stage of the theoretical
analysis consists in analyzing the bias between the stationary
distribution πρ,γ and the targeted augmented distribution πρ.
This bias, which results from the use of the LMC step in
Algo. 1 to target the conditional distribution p(z|x) defined by
(16), is quantified in the following proposition.

Proposition 3. Let γ ∈ R∗
+ such that γ ≤ 2(βmg + βMg +

1/ρ2)−1. Then, under Assumptions 2 and 2, we have

W 2
2 (πρ, πρ,γ) ≤ nγC2M̃

2
(
1 +

γ2M̃2

12
+

γM̃2

2m̃

)
,
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where m̃ = βmg + 1/ρ2, M̃ = βMg + 1/ρ2 and C2 =
2

βmg
(1 + 1

ρ2 ∥Q−1∥2).

Proof. See Appendix C.

The bias is upper-bounded by a term driven by the step
size. More precisely, as γ decreases towards zero, the squared
Wasserstein distance W 2

2 (πρ, πρ,γ) is upper-bounded by O(nγ).
Thus, for a sufficiently small step size γ, LwSGS produces a
Markov chain with a stationary distribution πρ,γ that can be
arbitrary close to πρ. This result is in agreement with those
stated in [34, Proposition 4] and [26, Corollary 7].

D. Revisiting PnP-ULA and AXDA from the RED paradigm

This section draws connections between AXDA, the pro-
posed algorithm and PnP-ULA [22]. As a reminder, in a
nutshell, PnP-ULA targets a posterior distribution of the form

pϵ(x|y) ∝ exp [−f(x,y)] pϵ(x) (21)

with ϵ > 0 where

pϵ(x) ∝
∫
Rn

p(z) exp

[
− 1

2ϵ
∥x− z∥2

]
dz (22)

defines the regularized counterpart of the prior distribution p(x).
Interestingly, when the prior writes p(x) ∝ exp [−βg(x)] and
ρ2 = ϵ, the posterior distribution pϵ(x|y) targeted by PnP-ULA
(21) perfectly matches the marginal distribution πρ(x) in (14)
resulting from an AXDA strategy and targeted by a SGS.

Besides, from an algorithmic point of view, ULA recursions
applied to (21) conventionally write

x(t+1) = x(t) − γ∇f(x(t),y) + γ∇log pϵ(x
(t)) +

√
2γε(t).

Thanks to the Tweedie’s identity [25], the score function can
be replaced by the denoising residual, i.e., ϵ∇log pϵ(x) =
D∗

ϵ (x)− x where D∗
ϵ (·) is an MMSE denoiser. This leads to

the (simplified) PnP-ULA scheme

(PnP-ULA) : x(t+1) = x(t) − γ∇f(x(t),y) (23)

+
γ

ϵ

(
D∗

ϵ (x
(t))− x(t)

)
+
√
2γε(t).

This simplified scheme departs from the canonical PnP-ULA
scheme studied in [22] by only omitting an additional term
γ
λ

[
ΠS(x

(t))− x(t)
]

where ΠS(·) denotes the projection onto
the convex and compact set S. This term has been included
into the PnP-ULA scheme for technical reasons to derive
convergence results. Its impact will be empirically shown to
be marginal in practice (see Section IV-F). Conversely, using
(9), ULA recursions applied to the RED posterior (12) writes

(RED-ULA) : x(t+1) = x(t) − γ∇f(x(t),y) (24)

+ γβ
(
Dν(x

(t))− x(t)
)
+

√
2γε(t).

It clearly appears that the RED-ULA scheme defined by the
previous recursion (24) coincides with PnP-ULA (23) when
β = 1

ϵ and the denoiser embedded into RED is chosen as the
MMSE denoiser, i.e., Dν(·) = D∗

ϵ (·). Since in practice the use
of an MMSE denoiser is infeasible, PnP-ULA is implemented
with an off-the-shelf denoiser. Thus, RED-ULA is no more
than the practical implementation of PnP-ULA.

Moreover, an important corollary deals with the respective
prior distributions defining the posteriors targeted by the three
considered algorithms, namely PnP-ULA, RED-ULA and RED-
SGS3. Indeed, on one hand, PnP-ULA and RED-ULA target
the same posterior distribution (21) (provided the use of an
MMSE denoiser). On another hand, PnP-ULA and RED-SGS
also target the same posterior distribution (12). It yields that
the regularized prior implicitly induced by AXDA coincides
with the RED prior based on an MMSE denoiser, i.e., pϵ(x) =
p∗red(x) and, in particular,

−log pϵ(x) =
1

2ϵ
x⊤[x− D∗

ϵ (x)]. (25)

Note that differentiating this identity obviously leads again to
the celebrated Tweedie’s identity.

IV. EXPERIMENTS

A. Experimental setup

Experiments have been conducted based on two popular
image data sets, namely the Flickr Faces High Quality (FFHQ)
data set [36] and the ImageNet data set [37]. All images are
RGB images of size 256 × 256 pixels (n = 2562) and have
been normalized to the range [0, 1]. The performance of the
proposed RED-LwSGS algorithm is assessed w.r.t. to three
inversion tasks

• deblurring: the operator A is assumed to be a n × n
circulant convolution matrix associated with a spatially
invariant blurring kernel. It is chosen as a Gaussian kernel
of size 25× 25 with standard deviation 1.6.

• inpainting: the operator A stands for a binary mask with
m ≪ n. It is designed such that 80% of the total pixels
are randomly masked accross the three color channels.

• super-resolution: the operator A is decomposed as A =
SB where the n× n matrix B stands for a spatially
invariant Gaussian blur of size 7 × 7 with standard
deviation 1.6 and the operator S is a m× n binary matrix
which performs a regular subsampling of factor d = 4 in
each dimension (i.e., m = nd2). It is worth noting that
for this task, the AXDA model needs to be adapted to
account for the specific structure of the matrix A (more
details are given in Appendix D).

For all tasks, the degraded images have been corrupted by
an additive Gaussian noise to reach a signal-to-noise ratio of
SNR =30dB.

B. Compared methods

The proposed RED-LwSGS algorithm has been implemented
using the pre-trained deep network DRUNet [11] as the denoiser
Dν(·). It has been taken directly from the corresponding
repository and has been used without further fine-tuning
for the considered inversion tasks, see Appendix E-A for
complementary information. The test images have never been
seen by the model while training to avoid any bias due to

3The algorithmic scheme denoted RED-SGS is defined as a canonical Gibbs
sampler with targets the augmented distribution (13). It can be interpreted as
the RED-LwSGS for which the sampling according to (16) would be exact.
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potentially overfitted pre-trained models. The proposed method
has been compared to several state-of-the-art inversion methods:

• RED-ADMM [15]: ADMM with RED regularization
based on the same DRUNet denoiser;

• RED-HQS: HQS algorithm with RED regularization based
on the same DRUNet denoiser;

• PnP-ADMM [5]: ADMM with a PnP regularization based
on the same DRUNet denoiser;

• PnP-ULA [22]: ULA with a PnP regularization based on
the same DRUNet denoiser;

• TV-SP [24]: SGS with a TV regularization;
• TV-MYULA [38]: Moreau-Yosida ULA with TV regular-

ization;
• DiffPIR [39]: denoising diffusion model for PnP image

restoration.
It is worth noting that RED-ADMM, RED-HQ and PnP-
ADMM are optimization-based methods which provide only
point estimates of the restored images. Conversely, PnP-ULA,
TV-SP and TV-MYULA are Monte Carlo methods that are able
to enrich point estimates with credibility intervals. For these
sampling methods, the results reported below correspond to
the MMSE estimates approximated by averaging the generated
samples after the burn-in period. Complementary information
regarding the algorithm implementations are reported in Ap-
pendices E-B and E-C.

C. Figures-of-merit

Beyond performing visual inspection, the methods are
compared with respect to several quantitative figures-of-merit.
Peak signal noise ratio (PSNR) (dB) and structural similarity
index (SSIM) are considered as image quality metrics (the
higher the score, the better the reconstruction). They are
complemented with a perceptual metric, namely the learned
perceptual image patch similarity (LPIPS), for which the lower
the score, the better the reconstruction. Moreover, to assess
the effectiveness of the sampling algorithms studied, they are
also compared in term of integrated autocorrelation time (IAT),
which is also an indicator for good or bad mixing (the lower,
the better) [40]. Finally, all methods are compared in terms
of computational times when the algorithms are implemented
on a server equipped with 48 CPU cores Intel 2.8Ghz, 384Go
RAM, Nvidia A100 GPU.

D. Experimental results

The results obtained by the compared algorithms when
performing the three considered tasks are reported in Tables I
and II for the two datasets FFHQ and ImageNet, respectively.
These results show that the proposed RED-LwSGS method
achieves very competitive performance for all three tasks. In the
case of inpainting, the forward operator masking 80% pixels
is non-invertible and the problem is expected to require further
prior regularization than the two other tasks. For this task,
algorithms relying on data-driven regularizations, such as RED-
LwSGS and PnP-ULA, appear to include more informative
priors when compared to TV-MYULA and TV-SP which rely
on the same model-based regularization. For super-resolution,

which is a more challenging problem than deblurring and
inpainting, RED-LwSGS performs similarly to DiffPIR, RED-
ADMM and RED-HQS when other MCMC algorithms fail.

Figures 1 and 2 visually assess the performance by depicting
the results obtained on test images drawn from the FFHQ and
ImageNet datasets. For all the considered tasks, the proposed
RED-LwSGS method produces high-quality, realistic images
that closely match ground-truth details. As mentioned above,
RED-LwSGS generates samples asymptotically distributed
according to the posterior distribution. These samples can
be used to quantify estimation uncertainty. The rightmost
panels in Fig. 1 and 2 illustrate this advantage by depicting
the estimated pixelwise standard deviations obtained by the
proposed algorithms. It is worth noting that this added value
cannot be provided by optimization-based methods such as
DiffPIR, RED-ADMM, RED-HQS and PnP-ADMM, which
only offer point estimates. Noticeably, pixels located in
homogeneous regions are characterized by lower uncertainty,
while pixels in textured regions, edges, or complex structures
appear to be estimated with more difficulty.

Tables I and II also reported the computational times required
by the compared algorithms when tackling each restoration
tasks. Among the class of sampling methods, RED-LwSGS
stands out for its smallest computational times. Moreover, as
for the other sampling-based methods, RED-LwSGS remains
within a factor of 50 compared to the optimization-based
methods, namely DiffPIR, RED-ADMM, RED-HQS, and
PnP-ADMM. The price to pay for offering an uncertainty
quantification on top of point estimation seems reasonable.

Finally, the convergence properties of the compared sampling-
based algorithms have been assessed by monitoring the
autocorrelation function (ACF) of the median components of
the chains generated by those algorithms. By denoting x(t) =[
x
(t)
1 , . . . , x

(t)
n

]⊤
, the median component has been defined

as the produced pixelwise Monte Carlo chain
{
x
(t)
i

}NMC

t=Nbi+1
with the median variance. Faster decreasing ACF means that
the samples are less correlated and generally implies faster
convergence of the Markov chain. Fig. 3 depicts these ACFs
for the three restoration tasks conducted on one image from the
FFHQ data set. For the deblurring task, it is not clear which
of the compared methods is the more efficient, i.e., with the
fastest ACF decay. Conversely, for the inpainting and super-
resolution tasks, the ACF of RED-LwSGS decreases faster than
the ACFs obtained with the two other Monte Carlo algorithms.
This finding is confirmed by the IAT measures reported in
Tables I and II.

E. Does DRUNet meet the RED conditions?

The explicit formula (9) of the RED gradient requires the
RED conditions (C1)–(C4) to be satisfied, i.e., the denoiser
Dν(·) should be differentiable, locally homogeneous, with
symmetric Jacobian and strongly passive. It is legitimate to
assess whether these conditions are verified for the deep
denoiser considered in the experiments, namely DRUNet. First,
the canonical implementation of DRUNet makes Dν(·) not
continuously differentiable w.r.t. the input due to the use of
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Ground Truth Observation RED-ADMM PnP-ULA RED-LwSGS RED-LwSGS (std)

Fig. 1. FFHQ data set: images recovered by the compared methods for deblurring (top), inpainting (middle) and super-resolution (bottom).

Ground Truth Observation RED-ADMM PnP-ULA RED-LwSGS RED-LwSGS (std)

Fig. 2. ImageNet data set: images recovered by the compared methods for deblurring (top), inpainting (middle) and super-resolution (bottom).
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TABLE I
FFHQ DATA SET: AVERAGE PERFORMANCE OVER A TEST SET OF 100 IMAGES AND CORRESPONDING STANDARD DEVIATIONS. BOLD: BEST SCORE,

UNDERLINE: SECOND SCORE.

Observation RED-LwSGS PnP-ULA TV-MYULA TV-SP RED-ADMM RED-HQS PnP-ADMM DiffPIR

D
eb

lu
rr

in
g PSNR(dB) ↑ 29.8550 40.13±1.931 38.06±1.986 38.03±2.028 39.89±1.320 41.28±2.459 40.80±2.560 34.03±7.601 37.15±2.066

SSIM ↑ 0.8994 0.982±0.003 0.975±0.006 0.981±0.006 0.970±0.004 0.985±0.004 0.984±0.005 0.869±0.154 0.957±0.010
LPIPS ↓ 0.0487 0.003±0.002 0.005±0.004 0.005±0.004 0.002±0.001 0.002±0.002 0.002±0.002 0.033±0.080 0.007±0.001

IAT ↓ - 75.17±12.42 75.21±12.43 75.22±12.42 75.14±12.42
Time(s) ↓ - 44±5 52±7 64±5 40±5 2±0 2±0 2±0 1±0

In
pa

in
tin

g PSNR(dB) ↑ 7.2069 30.73±2.932 31.46±2.650 27.71±1.881 27.27±1.781 31.63±2.672 31.36±2.293 31.32±3.142 31.26±2.25
SSIM ↑ 0.0678 0.908±0.028 0.906±0.026 0.830±0.040 0.815±0.041 0.911±0.024 0.901±0.025 0.915±0.042 0.890±0.025
LPIPS ↓ 0.5831 0.023±0.017 0.020±0.013 0.056±0.026 0.061±0.027 0.019±0.013 0.021±0.014 0.019±0.015 0.021±0.005

IAT ↓ - 75.24±12.48 75.51±12.55 76.97±13.51 113.86±12.17 - - - -
Time(s) ↓ - 74±1 79±1 150±7 71±1 3±0 2±0 2±0 2±0

Su
pe

r-
re

s. PSNR(dB) ↑ - 30.43±2.161 29.01±2.013 28.99±2.017 28.94±2.019 30.49±2.222 30.54±2.206 30.13±2.184 30.99±2.212
SSIM ↑ - 0.872±0.036 0.847±0.037 0.847±0.037 0.846±0.037 0.875±0.036 0.876±0.036 0.867±0.037 0.868±0.034
LPIPS ↓ - 0.035±0.021 0.050±0.024 0.049±0.024 0.051±0.024 0.034±0.020 0.034±0.020 0.035±0.021 0.011±0.008

IAT ↓ - 75.75±12.62 75.88±12.64 75.85±12.64 75.86±12.63 - - - -
Time(s) ↓ - 115±25 128±40 133±26 112±23 3±1 3±1 3±1 2±0

TABLE II
IMAGENET DATA SET: AVERAGE PERFORMANCE OVER A TEST SET OF 100 IMAGES AND CORRESPONDING STANDARD DEVIATIONS. BOLD: BEST SCORE,

UNDERLINE: SECOND SCORE.

Observation RED-LwSGS PnP-ULA TV-MYULA TV-SP RED-ADMM RED-HQS PnP-ADMM DiffPIR

D
eb

lu
rr

in
g PSNR(dB) ↑ 26.6362 34.85±3.961 32.39±4.063 31.89±4.075 34.58±4.026 35.41±4.024 34.48±3.062 31.63±7.783 31.89±4.139

SSIM ↑ 0.7676 0.955±0.024 0.925±0.046 0.921±0.051 0.954±0.026 0.956±0.024 0.914±0.064 0.867±0.171 0.896±0.065
LPIPS ↓ 0.1312 0.018±0.019 0.036±0.037 0.041±0.040 0.020±0.021 0.016±0.019 0.012±0.011 0.059±0.108 0.044±0.016

IAT ↓ - 66.29±19.98 66.76±19.89 66.89±19.89 66.34±19.98 - - - -
Time(s) ↓ - 44±3 50±2 69±32 43±1 2±1 2±1 2±1 1±0

In
pa

in
tin

g PSNR(dB) ↑ 7.3659 25.74±4.461 26.45±4.208 24.82±3.431 24.57±3.301 26.52±4.390 26.29±4.377 26.27±4.387 26.87±3.97
SSIM ↑ 0.0632 0.774±0.136 0.777±0.125 0.697±0.129 0.684±0.128 0.787±0.119 0.779±0.120 0.769±0.132 0.765±0.123
LPIPS ↓ 0.5824 0.097±0.082 0.088±0.078 0.136±0.084 0.144±0.084 0.085±0.074 0.090±0.081 0.089±0.079 0.035±0.034

IAT ↓ - 66.53±19.79 67.99±19.52 113.60±18.53 107.55±18.57 - - - -
Time(s) ↓ - 75±2 80±3 163±14 73±1 3±0 3±0 3±0 8±0

Su
pe

r-
re

s. PSNR(dB) ↑ - 26.24±3.933 25.42±3.461 25.35±3.445 25.39±3.445 26.22±3.936 26.21±3.926 25.84±3.899 26.31±3.791
SSIM ↑ - 0.722±0.148 0.693±0.142 0.687±0.146 0.693±0.141 0.721±0.148 0.721±0.148 0.707±0.150 0.712±0.142
LPIPS ↓ - 0.120±0.089 0.142±0.090 0.148±0.092 0.142±0.089 0.120±0.090 0.120±0.089 0.123±0.090 0.106±0.051

IAT ↓ - 93.36±27.81 98.38±29.16 102.11±28.45 97.25±28.12 - - - -
Time(s) ↓ - 112±22 119±30 129±15 109±13 3±0 3±0 3±0 3±0
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Fig. 3. FFHQ data set: (absolute) autocorrelation function (ACF) of the samples generated by the compared algorithms for deblurring (left), inpainting (middle)
and super-resolution (right).
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TABLE III
NUMERICAL EXPERIMENTS TO ASSESS THE RED CONDITIONS.

FFHQ ImageNet

Homogeneity
NMSELH,1 1.78× 10−8 6.23× 10−8

NMSELH,2 1.75× 10−2 6.21× 10−2

Jacobian symmetry NMSEJS 5.81× 10−2 7.56× 10−2

Strong passivity MSR 1.44 1.76

ReLU activation functions. However, to ensure (C2), the overall
architecture can be made continuously differentiable by replac-
ing them with SoftPlus activation functions, which are C∞, as
suggested in [14]. Besides, the three other RED conditions are
empirically assessed through numerical experiments. The local
homogeneity condition (C1) of the denoiser is evaluated by
computing the two following normalized mean square errors
[16]

NMSELH,1 = E

[
||Dν

(
(1 + ϵ)x

)
− (1 + ϵ)Dν(x)||2

||(1 + ϵ)Dν(x)||2

]

and

NMSELH,2 = E
[
||∇Dν(x)x− Dν(x)||2

||Dν(x)||2

]
which are motivated by the definition (6) and the property (7),
respectively. These metrics should be close to zero to ensure
local homogeneity. Further, following (C3), the denoiser should
have a symmetric Jacobian. This characteristic is empirically
evaluated by computing

NMSEJS = E
[
||∇Dν(x)−∇D⊤

ν (x)||2

||∇Dν(x)||2

]
which should be close to zero for a symmetric Jacobian [16].
Finally, to assess the strong passivity condition (C4), one
considers the mean spectral radius

MSR = E [η (∇Dν(x))]

which can be computed by the power iteration and should
be smaller than 1. When computing these metrics, the (i, j)-
element of the gradient of Dν(·) has been approximated as

[∇Dν(x)]i,j ≈
[Dν(x+ ϵej)]i − [Dν(x− ϵej)]i

2ϵ

where ej denotes the jth canonical basis vector, i.e., the
jth column of In, and ϵ > 0 is small enough. These
metrics are reported in Table III when the four considered
scores have been computed over 100 patches of size 32× 32
extracted from images of the two data sets, namely FFHQ
and ImageNet. They show that the DRUNet denoiser seems
to satisfy the local homogeneity and symmetric Jacobian
conditions. However, DRUNet has a spectral radius greater than
1. Yet, to ensure a strongly passive deep neural network-based
denoiser, various strategies could be been envisioned, such as
spectral normalization [13].

TABLE IV
NUMERICAL COMPARAISONS OF RED-ULA AND PNP-ULA.

PSNR SSIM LPIPS IAT % Proj.

RED-ULA 38.03 0.9809 0.0053 75.22 -

PnP-ULA
S = [0, 1] 38.46 0.9813 0.0048 75.21 96.71

S = [−1, 2] 38.03 0.9809 0.0053 75.22 0

F. RED-ULA vs. PnP-ULA

Section III-D has drawn some connections between PnP-
ULA and RED-ULA. In particular, it has shown that in practice
the two algorithms basically reduce to the same algorithmic
scheme, except that PnP-ULA embeds an additional projection
step onto an arbitrary pre-defined set S. This projection aims at
ensuring that the drift satisfies an asymptotic growth condition.
To experimentally validate this equivalence, Table IV reports
the performance of PnP-ULA and RED-ULA when tackling
the deblurring task. These performances have been computed
over 100 images of the FFHQ dataset. Two configurations for
the set S are considered, S = [0, 1] and S = [−1, 2]. The rates
of activation of the constraint, i.e., the proportion of samples
generated by PnP-ULA that do not satisfy the drift condition
and should be projected onto the set S, are also reported in
terms of percentage. These results show that, when S = [−1, 2],
the projection embedded in PnP-ULA is never activated and
the performance is the same as the one obtained by RED-
ULA, which confirms that the two algorithms are identical.
When S = [0, 1], this projection is applied to almost all the
samples generated by PnP-ULA, without significantly affecting
the performance.

V. CONCLUSION

This work built a Bayesian counterpart of the regularization-
by-denoising (RED) engine, offering a data-driven framework
to define prior distributions in Bayesian inversion tasks. It
defined a new probability distribution from the RED potential,
which was subsequently embedded into a Bayesian model as a
prior distribution. Since the resulting RED posterior distribution
was not standard, a dedicated Monte Carlo algorithm was
designed. By leveraging an asymptotically exact data augmen-
tation (AXDA), this algorithm was a particular instance of
the split Gibbs sampler which had the great advantage of
decoupling the data-fitting term and the RED potential. One
stage of SGS was performed following a Langevin Monte
Carlo step, which leads to the so-called Langevin-within-split
Gibbs sampling. A thorough theoretical analysis was conducted
to assess the convergence guarantees of the algorithm. Some
tight connections were drawn between AXDA and RED to
show that the implicit prior resulting from an AXDA scheme
coincides with the RED prior defined by a MMSE denoiser.
Extensive numerical experiments showed that the proposed
approach competes favorably with state-of-the-art variational
and Monte Carlo methods when tackling conventional inversion
tasks, namely deblurring, inpainting and super-resolution. The
proposed approach was shown to provide a comprehensive
characterization of the solutions which could be accompanied
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by an uncertainty quantification. By bridging the gap between
the RED paradigm and Bayesian inference, this work opened
new avenues for incorporating data-driven regularizations into
Monte Carlo algorithms.

APPENDIX A
PROOF OF PROPOSITION 1

Under the RED conditions, the RED prior (10) can be
rewritten according to the pseudo-quadratic form

pred(x) ∝ exp
[
−β

2x
⊤Λ(x)x

]
with Λ(x) = In −∇Dν(x). From Assumption 1, there exists
λmin > 0 such that λminIn ⪯ Λ(x), ∀x ∈ Rn. This implies
that λminx

⊤x ≤ x⊤Λ(x)x and∫
Rn

pred(x)dx ≤
∫
Rn

exp
[
−β

2λmin∥x∥2
]
dx < ∞.

APPENDIX B
PROOF OF PROPOSITION 2

The proposed algorithm LwSGS does not fall into the class
of Metropolis-within-Gibbs samplers. Hence, the first step of
the analysis consists in demonstrating that the Markov kernel
Pρ,γ associated with the homogeneous Markov chain produced
by LwSGS possesses a unique invariant distribution and is
geometrically ergodic. This is achieved through an appropriate
synchronous coupling, reducing the convergence analysis of
(V(t))t∈N = (X(t),Z(t))t∈N to that of the marginal process
(Z(t))t∈N.

The Markov chain (V(t))t∈N is associated with the Markov
kernel defined, for any v = (x, z) ∈ Rn×Rn and A ∈ B(Rn),
B ∈ B(Rn), by

Pρ,γ(v,A× B) =

∫
B

Qρ,γ(z,dz̃|x)
∫
A

p(dx|y, z̃), (26)

where p(·|y, z̃) ∝ exp
[
−f(·,y)− 1

2ρ2 || · −z̃||2
]

and
Qρ,γ(z,B|x) is the conditional Markov transition kernel given
by

Qρ,γ(z,B|x) =
∫
B

exp

[
− 1

4γ

∥∥∥z̃− bρ,γ(x, z)
∥∥∥2] dz̃

(4πγ)n/2

with bρ,γ(x, z) =
(
1− γ

ρ2

)
z− γ

ρ2x+ γ∇g(z).

Consider two independent sequences (ξ(t))t≥1 and (η(t))t≥1

of independent and identically distributed (i.i.d.) n-dimensional
standard Gaussian random variables. Let introduce the stochas-
tic processes (V(t), Ṽ(t))t≥0 starting from (v(0), ṽ(0)) =
((x, z)⊤, (x̃, z̃)⊤) and recursively defined as (t ≥ 0)

V(t+1) =
(
X(t+1),Z(t+1)

)⊤
(27)

Ṽ(t+1) =
(
X̃(t+1), Z̃(t+1)

)⊤
(28)

with

Z(t+1) = (1− γ

ρ2
)Z(t) +

γ

ρ2
X(t) − γβ∇g(Z(t)) +

√
2γη(t+1)

Z̃(t+1) = (1− γ

ρ2
)Z̃(t) +

γ

ρ2
X̃(t) − γβ∇g(Z̃(t)) +

√
2γη(t+1)

(29)

and

X(t+1) = µ(Z(t+1)) +Q− 1
2 ξ(t+1),

X̃(t+1) = µ(Z̃(t+1)) +Q− 1
2 ξ(t+1),

(30)

where µ(·) and Q are defined in (18). Note that V(t) and Ṽ(t)

are distributed according to δvP
t
ρ,γ and δṽP

t
ρ,γ , respectively.

Hence, by definition of the Wasserstein distance of order 2, it
follows that

W2(δvP
t
ρ,γ , δṽP

t
ρ,γ) ≤ E

[
∥V(t) − Ṽ(t)∥2

]1/2

. (31)

In this section, our attention is directed towards establishing
an upper limit for the squared norm ∥V(t) − Ṽ(t)∥2. This
upper bound yields a specific limit on the Wasserstein distance,
utilizing the preceding inequality. We begin by constraining
(31) through the utilization of the subsequent technical lemma.

Lemma 1. Let γ ∈ R∗
+. If Assumptions 2-3 hold then, for any

v = (x, z)⊤ and ṽ = (x̃, z̃)⊤, for any t ≥ 1,

W2(δvP
t
ρ,γ , δṽP

t
ρ,γ) ≤ κt−1

γ C
1/2
1

[
κγ∥z− z̃∥+ γ

ρ2
∥x− x̃∥

]
where κγ = max

{
|1− γβmg|, |1− γ(βMg + 1/ρ2)|

}
and

C1 = 1 + 1
ρ2 ∥Q−1∥2 .

Proof. Consider (V(t), Ṽ(t))t∈N defined in (27). Let t ≥ 0. By
(30), we have X(t+1) − X̃(t+1) = 1

ρ2Q
−1(Z(t+1) − Z̃(t+1))

which implies

∥V(t+1) − Ṽ(t+1)∥2 (32)

≤
(
1 +

1

ρ2
∥Q−1∥2

)
∥Z(t+1) − Z̃(t+1)∥2.

By (31) and 32, we need to bound ∥Z(t) − Z̃(t)∥2. By (29),
we have

Z(t+1)− Z̃(t+1) = (1− γ

ρ2
)(Z(t)− Z̃(t))+

γ

ρ2
(X(t)−X̃(t))

− γβ
(
∇g(Z(t))−∇g(Z̃(t))

)
.

Since g(·) is twice differentiable, we have

∇g(Z(t))−∇g(Z̃(t)) =

∫ 1

0

∇2g(Z̃(t) + t(Z(t) − Z̃(t))) dt

× (Z(t) − Z̃(t)).

Using X(t) − X̃(t) = 1
ρ2Q

−1(Z(t) − Z̃(t)), it follows that

Z(t+1) − Z̃(t+1) =

([
1− γ

ρ2

]
In +

1

ρ4
Q−1

)
(Z(t) − Z̃(t))

− γβ

∫ 1

0

∇2g(Z̃(t) + t(Z(t) − Z̃(t))) dt · (Z(t) − Z̃(t)).

Let us define Ã⊤ =
[
1
σA

⊤ 1
ρIn

]
. The precision matrix Q

can then be rewritten as Q = Ã⊤Ã. We define the orthogonal
projector

P = ÃQ−1Ã⊤. (33)
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By denoting J = [0n
1
ρIn]

⊤, we have J⊤PJ = 1
ρ4Q

−1.
Considering

D(t)
g =

γ

ρ2
In + γβ

∫ 1

0

∇2g
(
Z̃(t) + s(Z(t) − Z̃(t))

)
ds

and the projection matrix P defined in (33), the difference
Z(t+1) − Z̃(t+1) can be rewritten as

Z(t+1) − Z̃(t+1) =
(
In −D(t)

g + γJ⊤PJ
)
(Z(t) − Z̃(t)).

Under Assumptions 2-3 and exploiting the fact that P is an
orthogonal projector, thus P ≼ I, we have[
1−γ(βMg+

1

ρ2
)
]
In ≼ In−D(t)

g +γJ⊤PJ ≼
[
1−γβmg

]
In.

Therefore, we get ∥Z(t+1) − Z̃(t+1)∥ ≤ κγ∥Z(t) − Z̃(t)∥. An
immediate induction shows that, for all t ≥ 1,

∥Z(t) − Z̃(t)∥ ≤ κt−1
γ ∥Z1 − Z̃1∥. (34)

In addition, we have Z1−Z̃1 = (In−D
(0)
g )(z−z̃)+ γ

ρ2 (x−x̃).
The triangle inequality gives

∥Z1 − Z̃1∥ ≤ ∥In − γ

ρ2
In −D(0)

g ∥∥z− z̃∥+ γ

ρ2
∥x− x̃∥

≤ κγ∥z− z̃∥+ γ

ρ2
∥x− x̃∥.

Combining (34) and the previous inequality and using 32, we
get for t ≥ 1,

∥V(t) − Ṽ(t)∥2 ≤ κ2(t−1)
γ

(
1 + ∥ 1

ρ2
Q−1∥2

)
×
(
κγ∥z− z̃∥+ γ

ρ2
∥x− x̃∥

)2

.

The proof is concluded by (31).

On the basis of the preceding lemma, we provide in what
follows the proof of Proposition 2.

Proof. Note that the condition 0 < γ ≤ 2(βmg + βMg +
1/ρ2)−1 ensures that κγ = 1 − γβmg ∈ (0, 1). From
Lemma 1 combined with [41, Lemma 20.3.2, Theorem 20.3.4],
Pρ,δ admits a unique invariant probability distribution πρ,γ .
Moreover, for any v = (x, z)⊤ with x ∈ Rn, z ∈ Rn and
any t ∈ N∗, we have

W 2
2 (δvP

t
ρ,γ , πρ,γ) ≤ κ2(t−1)

γ

(
1 + ∥ 1

ρ2
Q−1∥2

)
×
∫
Rn×Rn

[(
1− γβmg

)
∥z− z̃∥+ γ

ρ2
∥x− x̃∥

]2
dπρ,γ(ṽ).

APPENDIX C
PROOF OF PROPOSITION 3

In this section, we establish an explicit bound on
W 2

2 (πρ,γ , πρ) where πρ is the target augmented distribution.
Consider first for any x ∈ Rn, the stochastic differential
equation (SDE) defined by

dỸx
t = −∇U(Ỹx

t ) dt− 1
ρ2x+

√
2 dBt (35)

where (Bt)t≥0 is a n-dimensional Brownian motion and the
potential Ux(·) is defined as

Ux(·) = βg(·) + 1
2ρ2 ∥ · −x∥2 (36)

and, to lighten the notations, we denote the potential in 35,
U(·) = U0(·). Note that under Assumption 2, this SDE
admits a unique strong solution [42, Chapter IX, Theorem
(2.1)]. Denote the Markov semi-group associated to (35) by
(R̃ρ,t)t≥0 defined for any ỹ0 ∈ Rn, t ≥ 0 and B ∈ B(Rn)
by R̃ρ,t(ỹ0,B|x) = P(Ỹx,ỹ0

t ∈ B), where (Ỹx,ỹ0

t )t≥0

is a solution of (35) with Ỹx,ỹ0

0 = ỹ0. We consider the
Markov kernel defined, for any v = (x, z)⊤ and A ∈ B(Rn),
B ∈ B(Rn), by

P̃ρ,γ(v,A× B) =

∫
B

R̃ρ,γ(z,dz̃|x)
∫
A

p(dx|y, z̃) . (37)

Note that Pρ,γ can be interpreted as a discretized version of
P̃ρ,γ using the Euler-Maruyama scheme. Under Assumption 2,
the Markov kernel P̃ρ,γ defined by (37) admits πρ as an
invariant probability distribution [34, Proposition S21], i.e,
∀t ≥ 0, πρP̃

t
ρ,γ = πρ.

Let (Bt)t≥0 an i.i.d. n-dimensional Brownian motion and
let (ξ(t))t≥0 be a sequence of i.i.d. standard n-dimensional
Gaussian random variables independent of (Bt)t≥0. For t ≥ 0,
we define the synchronous coupling V(t) = (X(t),Z(t)) and
(Ṽ(t) = (X̃(t), Z̃(t)), starting from (X(0),Z(0)) = (x, z),
(X̃(0), Z̃(0)) distributed according to πρ

Z̃(t+1) = Ỹ(t+1)γ , X̃(t+1) = µ(Z̃(t+1)) +Q− 1
2 ξ(t+1),

Z(t+1) = Y(t+1)γ , X(t+1) = µ(Z(t+1)) +Q− 1
2 ξ(t+1),

(38)

with

Ỹ(t+1)γ = Ỹtγ −
∫ (t+1)γ

tγ

∇U(Ỹl) dl (39)

+
γ

ρ2
X̃(t) +

√
2(B(t+1)γ −Btγ)

Y(t+1)γ = Ytγ − γ∇U(Ytγ)

+
γ

ρ2
X(t) +

√
2(B(t+1)γ −Btγ).

The stochastic processes (V(t), Ṽ(t))t≥0 satisfy (32). Note that
V(t) and Ṽ(t) are distributed according to πρP̃

t
ρ,γ = πρ and

δṽP
t
ρ,γ , respectively. Hence, by definition of the Wasserstein

distance of order 2, it follows that

W2(πρ, δṽP
t
ρ,γ) ≤ E

[
∥V(t) − Ṽ(t)∥2

]1/2

. (40)

We start this section by a first estimate on

E
[
∥V(t) − Ṽ(t)∥2

]1/2

. The following result holds regarding

the process (Ỹt)t∈N+
defined in (39).

Lemma 2. If Assumptions 2 and 3 hold, let define M̃ =
βMg + 1/ρ2 and γ ∈ R∗

+ such that γ < 1/M̃ . Then, for any
t ≥ 1,

Z̃(t+1) − Z(t+1) = T
(t)
1 (Z̃(t) − Z(t))−T

(t)
2 , (41)
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where (Z(t), Z̃(t))t∈N is defined in (38), T
(t)
1 and T

(t)
2 are

given by

T
(t)
1 = In + γJ⊤PJ− γ

∫ 1

0

∇2U((1− s)Ytγ + sỸtγ)ds

(42)

T
(t)
2 =

∫ γ

0

[
∇U(Ỹ

(t)
tγ+l)−∇U(Ỹ

(t)
tγ )

]
dl. (43)

Proof. Since U(·) is twice differentiable, we have

∇U(Ỹtγ)−∇U(Ytγ)

=
(∫ 1

0

∇2U((1− s)Ytγ + sỸtγ) ds
)
× (Ỹtγ −Ytγ).

By using 1
ρ2 (X̃

(t) − X(t)) = J⊤PJ(Ỹtγ − Ytγ), it follows
from (39) that

Ỹ(t+1)γ −Y(t+1)γ = (Ỹtγ −Ytγ)

×
(
In − γ

∫ 1

0

∇2U((1− s)Ytγ + sỸtγ)ds+ γJ⊤PJ
)

−
∫ γ

0

[
∇U(Ỹtγ+l)−∇U(Ỹtγ)

]
dl.

where P is defined in (33). By (38), we have

Z̃(t+1) − Z(t+1) = T
(t)
1 (Z̃(t) − Z(t))−T

(t)
2 .

Based on Lemma 2, we have the following relation between
∥Z̃(t+1) − Z(t+1)∥2 and ∥Z̃(t) − Z(t)∥2.

Lemma 3. If Assumption 3 holds, let define M̃ = βMg+1/ρ2

and γ ∈ R∗
+ such that γ < 1/M̃ . Then, for any ϵ > 0 and

t ≥ 1,

∥Z̃(t+1) − Z(t+1)∥2

≤ (1 + 2ϵ)∥T(t)
1 ∥2∥Z̃(t) − Z(t)∥2 + (1 + 1

2ϵ )∥T
(t)
2 ∥2.

where (Z(t), Z̃(t))t∈N is defined in (38).

Proof. The proof of Lemma (3) can be found in [34].

We now have the following result regarding the contracting
term.

Lemma 4. Let define M̃ = βMg + 1/ρ2 and γ ∈ R∗
+ such

that γ < 1/M̃ . If assumptions 2 and 3 hold then, for any
n ≥ 0,

∥T(t)
1 ∥ ≤ 1− γβmg,

where T
(t)
1 is defined in (42).

Proof. By denoting

C(t) = γ

∫ 1

0

∇2U((1− s)Ytγ + sỸtγ) ds

=
γ

ρ2
In + γ

∫ 1

0

∇2g((1− s)Ytγ + sỸtγ) ds

Assumptions 2 and 3 imply
( γ

ρ2
+ γβmg

)
In ≼ C(t) ≼

( γ

ρ2
+

2γβ
)
In. Since P is an orthogonal projection (33), P ≼ I and

0n ≼ γJ⊤PJ ≼
γ

ρ2
In. Subtracting these previous inequalities

and adding In leads to(
1− γM̃

)
In ≼ In −C(t) + γJ⊤PJ ≼

(
1− γβmg

)
In

and

∥T(t)
1 ∥ ≤ max(|1− γβmg|, |1− γM̃ |) = 1− γβmg.

The following lemma provides an upper bound on ∥T(t)
2 ∥2.

Lemma 5. If Assumptions 2 and 3 hold, let define m̃ =
βmg + 1/ρ2, M̃ = βMg + 1/ρ2 and γ ∈ R∗

+ such that
γ < 1/M̃ . Then, for any t ∈ N,

E
[
∥T(t)

2 ∥2
]
≤ nγ2M̃2

[
1 +

γ2M̃2

12
+

γM̃2

2m̃

]
,

where T
(t)
2 is defined in (43).

Proof. Let t ∈ N. We have

∥T(t)
2 ∥2 =

∥∥∥∫ γ

0

[
∇U(Ỹtγ+l)−∇U(Ỹtγ)

]
dl
∥∥∥2. (44)

With the previous result and the Jensen inequality,

∥T(t)
2 ∥2 ≤

∫ γ

0

∥∥∥∇U(Ỹtγ+l)−∇U(Ỹtγ)
∥∥∥2 dl. (45)

Let denote G0 = σ(Z(0), Z̃(0),X(0), X̃(0)), for any t ∈
N∗, Gt = σ{(Z(0), Z̃(0),X(0), X̃(0)), (Bk)k≥0, k ≤ t} and
Ft the σ-field generated by Gt−1. Using [26, Lemma 21] ap-
plied to the potential (36) yields∫ γ

0

EFtγ∥∇U(Ỹtγ+l)−∇U(Ỹtγ)∥2 dl

=

∫ γ

0

EFtγ∥∇Ux̃(t)(Ỹtγ+l)−∇Ux̃(t)(Ỹtγ)∥2 dl

≤ γ2M̃2

[
n+

nγ2M̃2

12
+

γM̃2

2
∥Ỹtγ − zt,⋆∥2

]
, (46)

where zt,⋆ = argminz∈Rn Ux̃(t)(z).
By (46) and using [26, Proposition 1], we get∫ γ

0

E∥∇U(Ỹtγ+l)−∇U(Ỹtγ)∥2 dl ≤ nγ2M̃2

× [1 +
γ2M̃2

12
+

γM̃2

2m̃
].

Combining this result with (45) completes the proof.

We can now combine Lemma 5 and Lemma 4 with Lemma 2
to get the following bound.

Lemma 6. If Assumptions 2 and 3 hold, let denote m̃ =
βmg +1/ρ2, M̃ = βMg +1/ρ2, γ ∈ R∗

+ such that γ < 1/M̃
and rγ = γβmg ∈ (0, 1). Then, for t ≥ 1, we have

E
[
∥Z̃(t) − Z(t)∥2

]
≤ (1− rγ + r2γ/2)

2(t−1)E
[
∥Z̃(1) − Z(1)∥2

]
+2(βmg)

−1 × nγM̃2
(
1 +

γM̃2

12
+

γM̃2

2m̃

)
.

Proof. The proof of Lemma (6) can be found in [34].
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Lemma 7. If Assumption 3 holds, let denote m̃ = βmg+1/ρ2,
M̃ = βMg + 1/ρ2, γ ∈ R∗

+ such that γ < 1/M̃ and rγ ∈
(0, 1). Then, for any v ∈ Rn×n and t ≥ 1, the following holds

W 2
2 (δvP

t
ρ,γ , πρ) ≤ (1− rγ + r2γ/2)

2(t−1)(1 +
1

ρ2
∥Q−1∥2)

× E
[
∥Z̃(1) − Z(1)∥2

]
+

2(1 + 1
ρ2 ∥Q−1∥2)
βmg

× nγM̃2[1 +
γ2M̃2

12
+ γM̃2/(2m̃)],

where Pρ,γ is defined in (26) and (Z̃(t),Z(t))t∈N is defined in
(38).

Proof. The proof follows from the combination of (40) with
(32) and Lemma 6.

Now we can give the proof of Proposition 3.

Proof. Note that the condition γ ≤ 2(βmg + βMg + 1/ρ2)−1

ensures that 1− rγ + r2γ/2 ∈ (0, 1). By Proposition 2, δvP t
ρ,γ

converges in W2 to πρ,γ . Therefore, using Lemma 7 and
taking t → ∞, we obtain

W 2
2 (πρ, πρ,γ) ≤

2(1 + 1
ρ2 ∥Q−1∥2)
βmg

× nγM̃2
(
1 +

γ2M̃2

12
+

γM̃2

2m̃

)
.

APPENDIX D
AUGMENTED DISTRIBUTION AND RED-LWSGS FOR

SUPER-RESOLUTION

This appendix details the AXDA model and the correspond-
ing sampling algorithm when tackling the super-resolution
task. In this case, the operator A can be written as A = SB
where B ∈ Rn×n is a circulant matrix standing for a
spatially invariant blur and S ∈ Rm×n stands for a regular
downsampling operator. When directly adopting the splitting
trick proposed in Section III-A, sampling according to the
conditional distribution (15) remains difficult because the
precision matrix is neither diagonal (as for the inpainting
task) nor diagonalizable in the Fourier domain (as for the
deblurring task). To overcome this difficulty, one suitable
AXDA consists in introducing two splitting variables, which
allows the operators B and S to be decoupled. This leads to
the augmented posterior distribution

πρ1,ρ2
(x, z1, z2) ∝ exp

[
− 1

2σ2
||Sz1 − y||22 − βgred(z2)

− 1

2ρ21
||Bx− z1||22 −

1

2ρ22
||x− z2||2

]
.

The associated SGS alternatively samples according to the
three conditional distributions

p(z1|x,y) ∝ exp
[
− 1

2σ2 ∥Sz1 − y∥22 −
1

2ρ2
1
||Bx− z1||22

]
(47)

p(x|z1, z2) ∝ exp
[
− 1

2ρ2
1
∥Bx− z1∥22 −

1
2ρ2

2
∥x− z2∥2

]
(48)

p(z2|x) ∝ exp
[
− 1

2x
⊤ (z2 − Dν(z2))− 1

2ρ2
2
∥x− z2∥2

]
It appears that (47) and (48) define the conditional posteriors
associated with the inpainting and deblurring tasks, respectively.

APPENDIX E
EXPERIMENTAL DETAILS

A. Pretrained denoiser

All experiments have been performed with DRUNet as the
pre-trained denoiser used by the PnP- and RED-based methods.
This denoiser Dν(·) has the ability to handle different noise
levels with a single model thanks to the parameter ν which
controls the strength of the denoising. This parameter has been
estimated following the strategy recommended in [11]. The
parameter ν is uniformly sampled from a large noise level ν(1)

to a small one ν(Nbi) according to a logarithmic scale, which
results in a sequence of ν(1) > ν(2) > · · · > ν(Nbi). Following
[11], ν(1) is fixed to 49 while ν(Nbi) is adjusted w.r.t. the
image noise level σ. For the sampling-based methods, to ensure
the stationary of the kernel, the noise parameter is set to a
fixed value beyond the burn-in period, i.e., ∀t ∈ [Nbi, NMC],
ν(t) = ν(Nbi).

B. Implementation details regarding RED-LwSGS

This appendix provides additional details regarding the
implementation of the proposed LwSGS algorithm. The
regularization parameter and the coupling parameters have
been adjusted to reach the best performance. For experi-
ments on the FFHQ data set, the regularization parame-
ter β is set to 8.0 × 10−2, 1.25 × 10−1 and 1.0 for the
deblurring, inpainting and super-resolution tasks, respec-
tively, while it has been fixed to 4.89 × 10−3, 1.167 ×
10−1 and 4.966 × 10−2 for the experiments conducted on
the ImageNet data set. The other parameters are fixed as
(NMC, Nbi, ρ

2, γ) = (5000, 2000, 6 × 10−8, 0.99
2β+1/ρ2 ) for

deblurring, (NMC, Nbi, ρ
2, γ) = (10000, 4500, 1.5, 0.99

2β+1/ρ2 )

for inpainting and (NMC, Nbi, ρ
2
1, ρ

2
2, γ) = (12500, 3500, 2×

10−1, 1, 0.8
2β+1/ρ2

2
) for super-resolution which requires a double

splitting.

C. Implementation details regarding the compared methods

This appendix provides additional details regarding the imple-
mentation of the compared methods. First, RED-ADMM, RED-
HQS, PnP-ADMM, PnP-ULA and Diff-PIR are implemented
using the same denoiser as the proposed method (see Appendix
E-A). For the sampling-based methods, i.e., PnP-ULA, TV-
MYULA, TV-SP, the total number of iterations have been
set as for the proposed RED-LwSGS (see Appendix E-B).
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For optimization-based algorithms, i.e, RED-ADMM, RED-
HQS and PnP-ADMM, the total number of iterations is set as
follows: 150 for deblurring and 350 for inpainting and super-
resolution. Finally all model and algorithmic parameters have
been adjusted to reach the best performance. More precisely,
for the experiments conducted on the FFHQ data:

• RED-ADMM: the hyperparameters (α, λ, β) have been
set to (2, 2×10−3, 9×10−4) for deblurring, (2, 10−2, 4×
10−2) for inpainting and (2, 8 × 10−3, 10−6) for super-
resolution.

• RED-HQS: similarly to RED-ADMM, the hyperparam-
eters are (α, λ, β) = (2, 10−2, 4 × 10−3) for deblurring,
(α, λ, β) = (2, 2× 10−2, 1.8× 10−2) for inpainting and
(α, λ, β) = (2, 8× 10−3, 10−6) for super-resolution.

• PnP-ADMM: the parameter ρ is set to 10−4 for deblurring,
10−3 for inpainting and 6.5× 10−2 for super-resolution.

• PnP-ULA: the parameters (Nbi, β) have been set to
(2500, 7.3 × 10−4) for deblurring, (5000, 10−4) for in-
painting and (6000, 2.75× 10−4) for super-resolution.

• TV-MYULA: the parameters (Nbi, β) have been set
to (2500, 10−1) for deblurring, (5000, 8 × 10−8) for
inpainting and (8500, 1) for super-resolution.

• DiffPIR: the parameters (λ, ζ) have been set to (2, 3 ×
10−1) for deblurring and (1, 1) for inpainting and super-
resolution.

• TV-SP: the parameters (Nbi, ρ, β) have been set to
(2000, 9×10−4, 1) for deblurring and (4500, 1, 3.5×10−3)
for inpainting while for super-resolution, which requires
a double splitting, the parameters (Nbi, ρ

2
1, ρ

2
2, β) have

been set to (3500, 10−5, 10−5, 3.76).
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