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Abstract

We consider an isothermal flow through two pipes. At the junction, the flow is possibly modified
by some devices, such as valves, compressors, and so on, or by the geometry of the junction; coupling
conditions between the traces of the flow must be given. We first provide a general framework to
model this situation by means of constrained Riemann problems, and provide some theoretical
results. A key issue for both the validity of a coupling model and the robustness of numerical
schemes to find solutions is whether the coupling Riemann solver is coherent. This property implies
that applying the coupling Riemann solver to the traces at the junction of a coupling solution results
in finding the same solution locally. We also give theoretical results for coherence. Then, we consider
several couplings; we discuss the uniqueness of the corresponding solvers and, in particular, their
coherence. Surprisingly, some solvers of wide use are proven not to be uniquely defined, and others
are not coherent. We present numerical examples to illustrate this property.

1 Introduction

In this paper we study the mathematical properties of several modelings, in one space dimension, of
gas flows through a coupling connecting two pipes. Couplings may arise in several ways: they can
model the presence of either a compressor or a valve between the pipes, or they can simply model
different characteristics of the pipes. Coupling conditions may regard the continuity of either the
pressure or the dynamical pressure; they may impose an increase or a decrease of the pressure; they
can maximize the flow, and so on. Moreover, the flow may be assumed to take place in a single
direction (one-way flow) or in both directions (two-way flow). There are really many papers dealing
with this subject, both from a mathematical and engineering point of view; we refer to the following
sections for detailed references. We refer to [8] for a survey on flows in networks. Usually, coupling
conditions are provided either on a phenomenological basis or to simulate the behavior of a device at
the junction (a valve, a compressor and so on). We refer to [5,6] for the derivation of entropic coupling
conditions for macroscopic models from kinetic ones in the case of Burgers or a linear wave equation,
respectively, and to [42,43] for a general theory.

About the gas flow along the two pipes, for simplicity we focus on the isothermal case and the
2 × 2 Euler system in one space dimension; it is a strictly hyperbolic system of conservation laws.
This allows us to point out some important mathematical aspects of the modelling of the coupling,
which have been previously discarded, without dealing with heavy computations. More precisely, we
analyze the Riemann solvers that encode a coupling placed at x = 0, briefly called c-Riemann solvers.
In most cases, they differ from the Lax Riemann solver [45]. A common feature among most of them
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is that, at x = 0, they satisfy the Rankine-Hugoniot condition for mass conservation, but not always
that for the conservation of momentum.

This paper addresses three main issues.

� A first issue is whether a coupling condition singles out a unique c-Riemann solver; rather surprisingly,
we shall show that this is not the case in many modelings.

� Once the previous problem has been settled, one can investigate the coherence of the c-Riemann
solver, which means the following, roughly speaking. Consider some Riemann data and find the
corresponding (self-similar) c-solution u1 = u1(x/t); now, consider the two traces u−1

.
= u1(0

−) and
u+1

.
= u1(0

+) of the solution at x = 0, use them as Riemann data and find the corresponding c-
solution u2 = u2(x/t). If u2 coincides with u±1 in ±x > 0, then the solver is coherent. This property,
which is satisfied by the Lax Riemann solver, is fundamental both as a test for the validity of
the model and for the robustness of the numerical schemes that one can use to find a c-solution.
Similarly to the previous issue, we shall prove that coherence does not always hold. Coherence
was investigated for several original models of gas flows through valves in [19–22]; in that case, the
lack of coherence gives rise to the phenomenon of chattering. As far as numerics are concerned,
incoherence leads to instabilities of the numerical schemes, resulting in the appearance of oscillations
in the numerical simulations, see for instance Figures 15c and 15d.

� The third issue concerns supersonic flows. The assumption of subsonic flows is done in most papers
on two bases: in applications, flows are often subsonic (but not always, see [35, 48] and references
therein), and their mathematical treatment is simpler because the number of waves in a c-solution is
less. However, the Lax Riemann solver for the isothermal Euler system can involve supersonic states
even if both initial data are subsonic. So, we do not assume, in general, that flows are subsonic.

We do not propose any new models, but provide both a general framework to tackle the previous
issues and a detailed analysis of several coupling models. As we mentioned above, we restrict ourselves
to the isothermal Euler system for the gas flow; nevertheless, we study in that framework also some
models originally proposed either for isentropic flows, or including viscosity or else friction terms due
to the pipe walls. Indeed, about the two latter terms, their effect can be neglected when one focuses
on the flow behavior at the junction. The long reference list shows our effort to encompass most of
the relevant models occurring in the literature; papers dealing with the Euler 3 × 3 system or other
models have been omitted for brevity.

Here follows an outline of the paper. Section 2 reviews some structural properties of the isothermal
Euler system; we also provide several definitions to be used in the following. In Section 3 we introduce
the c-Riemann solvers and prove a general result on coherence, namely, Theorem 3.8. Sections from 4
onward focus on applications. More precisely, Sections 4 and 5 deal with “free” flows, Section 6
investigates the case of compressors, Section 7 deals with valves, and Section 8 addresses resistors. In
the last Section 9 we first summarize in Table 1 the results about uniqueness and coherence of the
c-Riemann solvers we analyzed; then we draw some general conclusions and give some directions for
future work on this subject.

The main results concern a detailed analysis of the continuity conditions (on pressure, dynamic
pressure or specific enthalpy) in Section 4 for general two-way flows. Section 5 specializes this analysis
to the case of one-way flows, allowing however possibly different pressure laws in the pipes. If flows are
assumed to be subsonic or sonic, then Proposition 5.1 shows the coherence of the corresponding solver;
on the contrary, if we require the continuity of the pressure and the maximization of the flow at x = 0,
then Proposition 5.3 proves that the related solver is not coherent if the pressure laws differ. About
compressors, Propositions 6.3 and 6.5 prove the coherence of two different solvers. About valves, we
first comments on the (several) related results proved in [19–22]; then we show that other modelings
proposed in the literature either do not lead to a unique solver or, when this happens, the solver is
incoherent.

2 Euler equations: the flow along a tube

In this section we introduce the isothermal Euler equation and recall the properties of the Lax curves.
The figures concerning Lax and related curves are obtained by a numerical software; so they are
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“exact”. They are shown in the case a = 1, unless otherwise specified.

2.1 The system

The gas flow along a pipe is governed by the isothermal Euler equations{
ρt + qx = 0,
qt + Px = 0,

(2.1)

where ρ = ρ(t, x) is the density, q = q(t, x) the momentum at time t ⩾ 0 and position x ∈ R, and

P (ρ, q)
.
=

q2

ρ
+ p(ρ) (2.2)

the flow of the momentum or dynamic pressure. Above, we denoted by

p(ρ) = a2ρ (2.3)

the pressure and the constant a > 0 is the sound speed. We also define the velocity

v(ρ, q)
.
= q/ρ.

A state u
.
= (ρ, q) is subsonic if |v(u)| < a, sonic if |v(u)| = a and supersonic if |v(u)| > a. We recall

that |v(u)|/a is the Mach number. The graphs of the functions s±(ρ)
.
= ±a ρ in the (ρ, q)-plane are the

sonic curves. The eigenvalues of the Jacobian matrix of the flux f(ρ, q)
.
=
(
q, P (ρ, q)

)T
of (2.1) are

λ1(u)
.
= v(u)−a and λ2(u)

.
= v(u)+a. System (2.1) is strictly hyperbolic in Ω

.
=
{
(ρ, q) ∈ R2 : ρ > 0

}
because λ1(u) < λ2(u) for u ∈ Ω. Both characteristic fields are genuinely nonlinear.

2.2 The Lax curves

For fixed uo
.
= (ρo, qo) ∈ Ω and i ∈ {1, 2}, we define the functions FLuo

i ,BLuo
i : (0,∞) → R as

FLuo
1 (ρ)

.
=

{
Ruo

1 (ρ) if ρ ∈ (0, ρo],

Suo
1 (ρ) if ρ ∈ (ρo,∞),

FLuo
2 (ρ)

.
=

{
Suo
2 (ρ) if ρ ∈ (0, ρo),

Ruo
2 (ρ) if ρ ∈ [ρo,∞),

BLuo
1 (ρ)

.
=

{
Suo
1 (ρ) if ρ ∈ (0, ρo),

Ruo
1 (ρ) if ρ ∈ [ρo,∞),

BLuo
2 (ρ)

.
=

{
Ruo

2 (ρ) if ρ ∈ (0, ρo],

Suo
2 (ρ) if ρ ∈ (ρo,∞),

with

Ruo
i (ρ)

.
=

(
qo
ρo

+ (−1)ia ln

(
ρ

ρo

))
ρ, Suo

i (ρ)
.
=

 qo
ρo

+ (−1)ia

(√
ρ

ρo
−
√

ρo
ρ

)ρ.

The graphs of the functions FLuo
i and BLuo

i are the forward FLuo
i and backward BLuo

i Lax curves
of the i-th family through uo, see Figure 1. Analogously, the shock Suo

i and rarefaction Ruo
i curves

through uo are the graphs of the functions Suo
i and Ruo

i . The i-shock speed between (ρo, qo) and (ρ, q)
is suo

i (ρ)
.
= v(ρo, qo) + (−1)i a

√
ρ/ρo.

In the following lemma we collect the main properties of the above functions, see [19, Proposition 2.4].

Lemma 2.1. Let uo
.
= (ρo, qo), u

o .
= (ρo, qo) ∈ Ω be two distinct states and i ∈ {1, 2}. Then we have:

(a) R(ρo,−qo)
1 ≡ −R(ρo,qo)

2 and S(ρo,−qo)
1 ≡ −S(ρo,qo)

2 .

(b) Ruo
i , Suo

i , FLuo
i and BLuo

i are C222 functions in (0,∞); moreover

Ruo
i (0+) = Suo

i (0+) = 0,
dRuo

i

dρ
(0+) =

dSuo
i

dρ
(0+) = (−1)i+1 · ∞,

Ruo
i (∞) = Suo

i (∞) = (−1)i · ∞,
dRuo

i

dρ
(ρo) =

dSuo
i

dρ
(ρo) = λi(uo).
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ρ

q FLuo
1 ∪ FLuo

2

Ruo
1

Ruo
2

Suo
2

Suo
1

uo

ρ

q BLuo
1 ∪ BLuo

2

Suo
1

Suo
2

Ruo
2

Ruo
1

uo

Figure 1: Forward and backward Lax curves through uo. The solid lines refer to
rarefaction curves Ruo

i , the dashed lines to shock curves Suo
i , i ∈ {1, 2}, and the dotted

lines to the sonic curves.

(c) Ruo
1 , Suo

1 , FLuo
1 , BLuo

1 are strictly concave, while Ruo
2 , Suo

2 , FLuo
2 , BLuo

2 are strictly convex.

(d) Suo
2 (ρ) = FLuo

2 (ρ) < Ruo
2 (ρ) = BLuo

2 (ρ) < Ruo
1 (ρ) = FLuo

1 (ρ) < Suo
1 (ρ) = BLuo

1 (ρ) in (0, ρo) and
Suo
1 (ρ) = FLuo

1 (ρ) < Ruo
1 (ρ) = BLuo

1 (ρ) < Ruo
2 (ρ) = FLuo

2 (ρ) < Suo
2 (ρ) = BLuo

2 (ρ) in (ρo,∞).

(e) uo ∈ Ruo
i ∩ Suo

i ∩ FLuo
i ∩ BLuo

i .

(f) Ruo
i ∩ Ruo

i ̸= ∅ if and only if Ruo
i = Ruo

i , while if uo ∈ Suo
i then Suo

i ∩ Su
o

i = {uo, uo}.

The following lemma shows that along a Lax curve of the first (respectively, second) family the
velocity v is a decreasing (respectively, increasing) function of the density ρ, see [21, Lemma 2.4].

Lemma 2.2. Consider two states u1 ̸= u2 in Ω, and either u1, u2 ∈ FLuo
i or u1, u2 ∈ BLuo

i for
i ∈ {1, 2}. Then

(−1)i
(
ρ1 − ρ2

)(
v(u1)− v(u2)

)
> 0.

We now introduce some notation; we refer to Figure 2.

Definition 2.3. For uℓ, ur ∈ Ω we define:

� u(uℓ)
.
= (ρ(uℓ), q(uℓ)) is the element of FLuℓ

1 with the maximum q-coordinate;

� u(ur)
.
= (ρ(ur), q(ur)) is the element of BLur

2 with the minimum q-coordinate;

� ũ(uℓ, ur)
.
= (ρ̃(uℓ), q̃(uℓ)) is the (unique) element of FLuℓ

1 ∩ BLur
2 ;

� for qo ⩽ q(uℓ), let û(qo, uℓ)
.
= (ρ̂(qo, uℓ), qo) be the intersection of FLuℓ

1 and q = qo with the largest
ρ-coordinate;

� for qo ⩾ q(ur), let ǔ(qo, ur)
.
= (ρ̌(qo, ur), qo) be the intersection of BLur

2 and q = qo with the largest
ρ-coordinate;

� let ua(uℓ)
.
= (ρa(uℓ), qa(uℓ)) be the (unique) intersection of FLuℓ

1 with the sonic line q = −a ρ in Ω;

� let ua(ur)
.
= (ρa(ur), q

a(ur)) be the (unique) intersection of BLur
2 with the sonic line q = a ρ in Ω.

ρ

q

qo

BLur
2

FLuℓ
1

û(qo, uℓ)

ũ(uℓ, ur)
ǔ(qo, ur)

ur

u(uℓ)
uℓ

u(ur)

ρ

q

FLuℓ
1

uℓ

ua(uℓ)

q = −aρ

ρ

q BLur
2

ur

ua(ur)

q =
aρ

Figure 2: Notation in Definition 2.3. Rarefaction, shock and sonic curves are depicted
as in Figure 1.

Observe that ρ̂(qo, uℓ) ⩾ ρ(uℓ), ρ̌(qo, ur) ⩾ ρ(ur) and q̂(qo, uℓ) = qo = q̌(qo, ur) if û(qo, uℓ) and
ǔ(qo, ur) are well defined, see Figure 2. Moreover, by (b) and (c) in Lemma 2.1, we have ρ(uℓ), ρ(ur) >
0 as well as q(uℓ) > 0 > q(ur).
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In the following proposition we show that if the maximum of ρ 7→ FLuℓ
1 (ρ) is attained on the

left of ρℓ, then it is a sonic state, otherwise it is a supersonic state. Analogously, if the minimum of
ρ 7→ BLur

2 (ρ) is attained on the left of ρr, then it is a sonic state, otherwise it is a supersonic state.

Proposition 2.4.

(a) If ρ(uℓ) ⩽ ρℓ, then v(u(uℓ)) = a.

(b) If ρ(uℓ) > ρℓ, then v(u(uℓ)) > a.

(c) If ρ(ur) ⩽ ρr, then v(u(ur)) = −a.

(d) If ρ(ur) > ρr, then v(u(ur)) < −a.

We defer to [21, § 7.1] for the proof. For later use, we also provide the following result.

Proposition 2.5. If v(uℓ) > a then 0 < v(û(qℓ, uℓ)) < a. Analogously, if v(ur) < −a then −a <
v(ǔ(qr, ur)) < 0.

Proof. We only prove the former statement. For simplicity, we denote û = û(qℓ, uℓ). Clearly qℓ > 0
implies v(û) > 0. By hypothesis we have v(uℓ) > a; hence, by (b) and (c) in Lemma 2.1 and the
definition of u in Definition 2.3, we deduce ρℓ < ρ(uℓ) < ρ̂ and, consequently, û ∈ Suℓ

1 . Moreover, by
definition we have q̂ = qℓ, and hence

qℓ
ρ̂

= v(û) =
1

ρ̂
Suℓ
1 (ρ̂) =

qℓ
ρℓ

− a

√ ρ̂

ρℓ
−

√
ρℓ
ρ̂

.

The above condition is equivalent to qℓ
(
1/ρℓ − 1/ρ̂

)
= a (ρ̂− ρℓ)/(

√
ρℓ ρ̂) which, in turn, is equivalent

to qℓ = a
√
ρℓ ρ̂, and therefore v(û) = qℓ/ρ̂ = a

√
ρℓ/ρ̂ < a.

2.3 The Riemann problem

For any pair of constant states uℓ, ur ∈ Ω, the Riemann problem for system (2.1) is the initial-value
problem with initial condition

u(0, x) =

{
uℓ if x < 0,

ur if x ⩾ 0.
(2.4)

Definition 2.6. A function u = (ρ, q) ∈ C000([0,∞);BV(R; Ω)) is a weak solution of Riemann problem
(2.1), (2.4) in [0,∞)× R if for any test function φ ∈ C∞

c ([0,∞)× R;R) we have∫ ∞

0

∫
R

[
ρφt + qφx

]
dx dt+ ρℓ

∫ 0

−∞
φ(0, x) dx+ ρr

∫ ∞

0
φ(0, x) dx = 0,∫ ∞

0

∫
R

[
q φt + P (ρ, q)φx

]
dx dt+ qℓ

∫ 0

−∞
φ(0, x) dx+ qr

∫ ∞

0
φ(0, x) dx = 0.

Any smooth discontinuity curve x = γ(t) of a piecewise regular weak solution u = (ρ, q) of (2.1)
satisfies the Rankine-Hugoniot conditions

(ρ+ − ρ−) γ̇ = q+ − q−, (2.5)

(q+ − q−) γ̇ = P (ρ+, q+)− P (ρ−, q−), (2.6)

where u±(t)
.
= u(t, γ(t)±) are the traces of u along the discontinuity. Condition (2.5) ensures the

conservation of the mass, while (2.6) encodes the conservation of momentum.
Define D

.
= Ω × Ω. We denote the standard Riemann solver of (2.1) by RSp : D → BV(R; Ω),

see [45], and denote

up
.
= (ρp, qp)

.
= RSp[uℓ, ur], u±p

.
= (ρ±p , q

±
p )

.
= up(0

±). (2.7)

The function (t, x) 7→ up(x/t) is a weak solution of the Riemann problem (2.1), (2.4) in [0,∞) ×
R. Furthermore, ξ 7→ up(ξ) is chosen to be right continuous. Recall that if uℓ ̸= ũ(uℓ, ur) ̸=
ur, then RSp[uℓ, ur] is given by the juxtaposition of the 1-wave RSp[uℓ, ũ(uℓ, ur)] and the 2-wave

5



RSp[ũ(uℓ, ur), ur], where ũ(uℓ, ur) ∈ FLuℓ
1 ∩ BLur

2 is given in Definition 2.3. We also recall that RSp

is consistent [19, Proposition 2.5]; this means that, for any (uℓ, ur) ∈ D and for any ξ0 ∈ R we have(
uℓ, up(ξ0)

)
,
(
up(ξ0), ur

)
∈ D, as well as both

RSp[uℓ, up(ξ0)](ξ) =

{
up(ξ) if ξ < ξ0,

up(ξ0) if ξ ⩾ ξ0,

RSp[up(ξ0), ur](ξ) =

{
up(ξ0) if ξ < ξ0,

up(ξ) if ξ ⩾ ξ0,

and up(ξ) =

{
RSp[uℓ, up(ξ0)] if ξ < ξ0,

RSp[up(ξ0), ur] if ξ ⩾ ξ0.

2.3.1 Properties of the speed of the waves

We now search for conditions in order that up has a 2-wave with non-positive speed, as well as
conditions in order that up has a 1-wave with non-negative speed; this issue plays an important role
in the following. We refer to Figure 3.

ρ

q BLur
2

ũ1

ũ2ur

x

t

ur

ũ1

x

t

ur

ũ2

Figure 3: 2-waves RSp[ũ, ur] with negative speed. Above, ũi, i ∈ {1, 2}, are two
possible choices for ũ(uℓ, ur); here ũ1 corresponds to a 2-rarefaction and ũ2 to a 2-
shock.

Proposition 2.7. We have the following.
(a) RSp[uℓ, ur] has a 2-wave with non-positive speed and RSp[uℓ, ur](0

−) = ur if and only if

ρr ⩽ ρ(ur),
(
ρ̃(uℓ, ur)− ρr

)(
q̃(uℓ, ur)− qr

)
< 0. (2.8)

In particular, (2.8) implies v(ur) ⩽ −a, qr < 0 and q̃(uℓ, ur) < 0.
(b) RSp[uℓ, ur] has a 1-wave with non-negative speed and RSp[uℓ, ur](0

+) = uℓ if and only if

ρℓ ⩽ ρ(uℓ),
(
ρ̃(uℓ, ur)− ρℓ

)(
q̃(uℓ, ur)− qℓ

)
> 0. (2.9)

In particular, (2.9) implies v(uℓ) ⩾ a, qℓ > 0 and q̃(uℓ, ur) > 0.

Proof. We only show the first statement; the proof of the second one is analogous.
The Riemann solverRSp[uℓ, ur] has at most two waves by its very definition. If this is the case, then

the first is the 1-wave RSp[uℓ, ũ] and the second is the 2-wave RSp[ũ, ur], where ũ
.
= (ρ̃, q̃)

.
= ũ(uℓ, ur).

The 2-wave has non-positive speed and RSp[uℓ, ur](0
−) = ur if and only if either it is a 2-shock

with ρr < min{ρ̃, ρ(ur)} and q̃ < qr < 0, or it is a 2-rarefaction with ρ̃ < ρr ⩽ ρ(ur) and qr < q̃ < 0,
see Figure 3. It is now clear that one of the two cases occurs if and only if (2.8) is satisfied.

We prove the last statement. If ρr = ρ(ur), then ur = u(ur) and v(ur) = −a by (c) in
Proposition 2.4. If ρr < ρ(ur), then v(ur) < −a by (d) in Proposition 2.4 and Lemma 2.2 with
i = 2.

We now generalize the results of Proposition 2.7. More precisely, in Proposition 2.8 we fix uℓ
and describe the states ur such that (2.10) holds true; in Proposition 2.9 we fix ur and describe the
states uℓ such that (2.11) holds true. Notice that (2.8) implies (2.10), while (2.9) implies (2.11).
Furthermore, formula (2.10) implies RSp[uℓ, ur](0) = ur by construction of RSp; hence, we have
RSp[uℓ, ur](ξ) = ur for any ξ ⩾ 0, since RSp is consistent, and therefore RSp[uℓ, ur] has neither
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waves with positive speed nor a stationary shock. Analogously, (2.11) implies that RSp[uℓ, ur] has
neither waves with negative speed nor a stationary shock. Given the symmetry inherent in the problem,
we prove only Proposition 2.9.

Proposition 2.8. Fix uℓ ∈ Ω and consider ua = ua(uℓ). A state ur ∈ Ω is such that

RSp[uℓ, ur](0
−) = ur (2.10)

if and only if one of the following conditions holds true:

(I) ur ∈ FLuℓ
1 and either v(uℓ) > a and ρr ∈ {ρℓ} ∪ (ρ̂(qℓ, uℓ),∞), or v(uℓ) ⩽ a and ρr ⩾ ρ(uℓ);

(II) qr ⩽ FLua
2 (ρr) and v(ur) ⩽ −a,

(III) 0 > qr > q̃(uℓ, ur) > qa and ρr < ρ(ur).

In particular, in case (I) RSp[uℓ, ur] consists of a one wave (a 1-wave) at most; when (II) or (III)
are satisfied but not (I), then RSp[uℓ, ur] consists of two waves (a 1-wave and a 2-wave) at most.
Moreover, if ur is subsonic, i.e., |v(ur)| < a, then it satisfies (I) and ρr < ρa.

Proposition 2.9. Fix ur ∈ Ω and consider ua = ua(ur). A state uℓ ∈ Ω is such that

RSp[uℓ, ur](0
+) = uℓ (2.11)

if and only if one of the following conditions holds true:

(I) uℓ ∈ BLur
2 and either v(ur) < −a and ρℓ ∈ {ρr}∪(ρ̌(qr, ur),∞), or v(ur) ⩾ −a and ρℓ ⩾ ρ(ur),

(II) qℓ ⩾ BLua

1 (ρℓ) and v(uℓ) ⩾ a,

(III) 0 < qℓ < q̃(uℓ, ur) < qa and ρℓ < ρ(uℓ).

In particular, in case (I) RSp[uℓ, ur] consists of a one wave (a 2-wave) at most; when (II) or (III)
are satisfied but not (I), then RSp[uℓ, ur] consists of two waves (a 1-wave and a 2-wave) at most.
Moreover, if uℓ is subsonic, i.e., |v(uℓ)| < a, then it satisfies (I) and ρℓ < ρa.

Proof of Proposition 2.9. Assume that uℓ satisfies (I). We distinguish the following cases. If uℓ = ur,
then RSp[uℓ, ur] ≡ uℓ. If uℓ ∈ BLur

2 , v(ur) < −a and ρℓ ∈ (ρ̌(qr, ur),∞), then RSp[uℓ, ur] has only
a 2-shock with strictly positive speed. If uℓ ∈ BLur

2 , v(ur) ⩾ −a and ρℓ ∈ [ρ(ur),∞) \ {ur}, then
RSp[uℓ, ur] has only a 2-shock with strictly positive speed if ρℓ > ρr and a 2-rarefaction with positive
speed if ρℓ < ρr. In any of these cases (2.11) follows.

Assume that uℓ satisfies (II) but not (I). If uℓ lies on the left of BLur
2 , then RSp[uℓ, ur] has a

1-shock with strictly positive speed and, if ũ(uℓ, ur) ̸= ur, it also has a 2-wave with strictly positive
speed. If uℓ lies on the right of BLur

2 , then RSp[uℓ, ur] has a 1-rarefaction with positive speed and, if
ũ(uℓ, ur) ̸= ur, it also has a 2-wave with strictly positive speed. In both cases (2.11) follows.

Assume that uℓ satisfies (III). In this case RSp[uℓ, ur] has a 1-shock with strictly positive speed
and, if ũ(uℓ, ur) ̸= ur, it also has a 2-wave with strictly positive speed; again (2.11) follows.

Conversely, it is then easy to prove that (I)-(III) describe the only possible cases to have (2.11).
We now prove the last statement. If uℓ is subsonic, then by (b) in Proposition 2.7 and the fact

that RSp[uℓ, ur] has only waves with non-negative speed it follows that RSp[uℓ, ur] has no 1-waves,
and then uℓ ∈ BLur

2 . Moreover ρℓ ⩾ ρ̌(0, ur) because qℓ ⩾ 0, and ρℓ < ρa because uℓ is subsonic.

For any uℓ, ur ∈ Ω, we denote, see Figures 4 and 5,

Γ−(uℓ)
.
=
{
ur ∈ Ω : ur satisfies one of conditions (I)-(III) in Proposition 2.8

}
, (2.12)

Γ+(ur)
.
=
{
uℓ ∈ Ω : uℓ satisfies one of conditions (I)-(III) in Proposition 2.9

}
. (2.13)

Notice that the isentropic counterpart of Figure 5 is represented in [29, Figure 10], of Figure 4 in [26,
Figure 2.7] and when qℓ = 0 in [43, Figure 3]. This shows that our approach (at least for the
isothermal case) is sufficiently general to encompass several different cases. We denote by B−(uℓ) the
upper boundary of the set identified by (III) in Proposition 2.8; analogously, we denote by B+(ur)
the lower boundary of the set characterized by (III) in Proposition 2.9.
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ρ

q

FLuℓ
1

FLua
2

ua

B−(uℓ)

uℓ û(qℓ, uℓ)

q = −aρ
(III)

(II)
(II)

(I)

(I)

ρ

q

FLuℓ
1

FLua
2

ua

B−(uℓ)

uℓ
u(uℓ)

q = −aρ
(III)

(II)(II)

(I)

(I)

Figure 4: The set Γ−(uℓ) (shaded regions, solid lines and the full points, but not the
dashed lines) in (2.12). On the left the case v(uℓ) > a, on the right the case v(uℓ) < a.

ρ

q BLur
2

BLu
a

1
ua

B+(ur)

ur ǔ(qr, ur)

q =
aρ

(II
I)

(I
I)

(II)

(I
)

(I
)

ρ

q BLur
2

BLu
a

1
ua

B+(ur)

ur

u(ur)

q =
aρ

(II
I)

(II)(II)

(I
)

(I
)

Figure 5: The set Γ+(ur) (shaded regions, solid lines and the full points, but not
the dashed lines) in (2.13). On the left the case v(ur) < −a, on the right the case
v(ur) > −a.

2.3.2 Properties of the speed of the waves in the one-way case

In Corollaries 2.10 and 2.11 we study some properties of up analogous to those considered in Propositions 2.8
and 2.9, respectively, but in the case of a one-way flow, i.e., qp ⩾ 0.

Corollary 2.10. Fix uℓ ∈ Ω with qℓ ⩾ 0. A state ur ∈ Ω is such that

(i) RSp[uℓ, ur](0
−) = ur,

(ii) v
(
RSp[uℓ, ur]

)
⩾ 0,

if and only if ur ∈ FLuℓ
1 and one of the following conditions holds true:

(I) uℓ is supersonic and either ur = uℓ or ρr ∈ (ρ̂(qℓ, uℓ), ρ̂(0, uℓ)],

(II) uℓ is non-supersonic and ρr ∈ [ρ(uℓ), ρ̂(0, uℓ)].

In particular, in all the above cases, RSp[uℓ, ur] consists of a one wave (a 1-wave) at most.
Moreover, if ur is supersonic, i.e., v(ur) > a, then also uℓ is supersonic and ur = uℓ, see the picture
on the left in Figure 6.

Proof. By Proposition 2.7, items (i) and (ii) imply that RSp[uℓ, ur] doesn’t have a 2-wave and then
ur ∈ FLuℓ

1 . It is now clear by (i) that either (I) or (II) holds true, see Figure 6. More precisely, in
case (I) RSp[uℓ, ur] is either constant or a 1-shock, while in case (II) RSp[uℓ, ur] is a 1-rarefaction if
ρr ∈ [ρ(uℓ), ρℓ), a constant if ρr = ρℓ and a 1-shock if ρr ∈ (ρℓ, ρ̂(0, uℓ)]. The converse implication is
obvious. The last statement easily follows from Proposition 2.5 and the above considerations.

For uℓ ∈ Ω with qℓ ⩾ 0, we denote

Γ−
o (uℓ)

.
=
{
ur ∈ FLuℓ

1 : ur satisfies (I) or (II) in Corollary 2.10
}
, (2.14)

where “o” stands for one-way.
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ρ

q

FLuℓ
1

uℓ û(qℓ, uℓ)

q = aρ

ρ̂(0, uℓ)

ρ

q

FLuℓ
1

u(uℓ)

uℓ

q = aρ

ρ̂(0, uℓ)

Figure 6: The set Γ−
o (uℓ) (solid lines and the full points) in (2.14). On the left, case (I)

in Corollary 2.10; on the right, case (II) in Corollary 2.10. The state û(qℓ, uℓ) on the
left does not belong to the solid line.

Corollary 2.11. Fix ur ∈ Ω with qr ⩾ 0 and consider ua = ua(ur). A state uℓ ∈ Ω is such that

(i) RSp[uℓ, ur](0
+) = uℓ,

(ii) v
(
RSp[uℓ, ur]

)
⩾ 0,

if and only if one of the following conditions holds true:

(I) uℓ ∈ BLur
2 and qℓ ⩾ 0,

(II) qℓ ⩾ BLua

1 (ρℓ) and v(uℓ) ⩾ a,

(III) 0 < qℓ < q̃(uℓ, ur) < qa and ρℓ < ρ(uℓ).

In particular, in case (I) RSp[uℓ, ur] consists of a one wave (a 2-wave) at most; when (II) or (III)
are satisfied but not (I), then RSp[uℓ, ur] consists of two waves (a 1-wave and a 2-wave) at most.
Moreover, if uℓ is subsonic, i.e., v(uℓ) < a, then it satisfies (I) and ρℓ ∈ [ρ̌(0, ur), ρ

a).

Proof. We first note that to have (i), (ii) we need qℓ ⩾ 0. If uℓ satisfies (I) and uℓ ̸= ur, then
RSp[uℓ, ur] has only a 2-wave with strictly positive speed; otherwise uℓ = ur and we haveRSp[uℓ, ur] ≡
ur. In both cases (i) and (ii) follow. If uℓ satisfies (II) but not (I), then RSp[uℓ, ur] has a 1-wave with
strictly positive speed from uℓ to ũ(uℓ, ur) and, if ũ(uℓ, ur) ̸= ur, it also has a 2-wave with strictly
positive speed; again (i) and (ii) follow. If uℓ satisfies (III), then RSp[uℓ, ur] has a 1-shock with
strictly positive speed from uℓ to ũ(uℓ, ur) and, if ũ(uℓ, ur) ̸= ur, also a 2-wave with strictly positive
speed; again (i) and (ii) follow.

Assume (i) and (ii). By the construction of RSp, (i) implies that RSp[uℓ, ur](0) = uℓ and hence,
since RSp is consistent, RSp[uℓ, ur](ξ) = uℓ for any ξ ⩽ 0, hence (ii) implies that qℓ ⩾ 0. It is then
easy to prove that (I)-(III) describe the only possible cases to have (i) and (ii).

We now prove the last statement. If uℓ is subsonic, then by (b) in Proposition 2.7 and the fact
that RSp[uℓ, ur] has only waves with non-negative speed it follows that RSp[uℓ, ur] has no 1-waves,
and then uℓ ∈ BLur

2 . Moreover ρℓ ⩾ ρ̌(0, ur) because qℓ ⩾ 0, and ρℓ < ρa because uℓ is subsonic.

In analogy to (2.14), for ur ∈ Ω with qr ⩾ 0, we denote

Γ+
o (ur)

.
=
{
uℓ ∈ Ω : uℓ satisfies one of conditions (I)-(III) in Corollary 2.11

}
. (2.15)

Denote the lower boundary of the set identified by (III) in Corollary 2.11 with B+(ur).

2.3.3 Demand and supply functions

The demand and supply functions Q,Q : Ω → R are defined as follows:

Q(ρ, q)
.
=

{
q if ρ < ρ(ρ, q),

q(ρ, q) if ρ ⩾ ρ(ρ, q),
Q(ρ, q)

.
=

{
q if ρ < ρ(ρ, q),

q(ρ, q) if ρ ⩾ ρ(ρ, q).
(2.16)
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Figure 7: The set Γ+
o (ur) (shaded regions, solid lines and the full points, but not the

dashed lines) in (2.15).

They were introduced in [23] for the flow in Godunov’s scheme. These functions are referred to as the
sending capacity and receiving capacity, respectively, in the framework of traffic modeling, see [10].
The functions Q and Q have the following properties, which follow from Lemma 2.1.

Lemma 2.12. We have Q,Q ∈ C111(Ω) and, for any u ∈ Ω,

q(u) ⩽ Q(u) < 0 < Q(u) ⩽ q(u). (2.17)

We now provide a motivation for the introduction of Q(uℓ) and Q(uℓ).

Proposition 2.13. Q(uℓ) is the maximum flow attainable by RSp[uℓ, ur](0) for any ur ∈ Ω; Q(ur)
is the minimum flow attainable by RSp[uℓ, ur](0) for any uℓ ∈ Ω.

Proof. We only prove the first statement. Note that by (2.5) we have q−p = q+p . It is not restrictive to
assume that RSp[uℓ, ur] has only waves with non-positive speeds and RSp[uℓ, ur](0

−) = ur.

� Assume that ρℓ < ρ(uℓ); in this case we have qℓ > 0 and Q(uℓ) = qℓ. We claim that qr ⩽ qℓ. In fact:

– if RSp[uℓ, ur] has a 2-wave, then by (a) in Proposition 2.7 we have qr < 0 and therefore qr < 0 <
qℓ;

– if RSp[uℓ, ur] has only a 1-wave, then it must be a 1-shock with qℓ > qr;

– if RSp[uℓ, ur] is constant, then qr = qℓ.

� Assume that ρℓ ⩾ ρ(uℓ); in this case Q(uℓ) = q(uℓ) ⩾ 0. We claim that qr ⩽ q(uℓ). In fact:

– if RSp[uℓ, ur] has a 2-wave, then by (a) in Proposition 2.7 we have that qr < 0 and so qr < 0 ⩽
q(uℓ);

– if RSp[uℓ, ur] has only a 1-wave, then either it is a 1-shock with ρℓ < ρr and qr < qℓ ⩽ q(uℓ), or
it is a 1-rarefaction with ρ(uℓ) ⩽ ρr < ρℓ and qℓ < qr ⩽ q(uℓ);

– if RSp[uℓ, ur] is constant, then qr = qℓ ⩽ q(uℓ).

This concludes the proof of the first statement.

Remark 2.14.
(i) By (2.16) and (2.17) we deduce Q(uℓ) ⩾ qℓ, 0 < Q(uℓ) ⩽ q̄(uℓ), Q(ur) ⩽ qr and 0 > Q(ur) ⩾

q(ur). So, if qo ∈ [Q(ur), Q(uℓ)], then û(qo, uℓ) and ǔ(qo, ur) are well defined.
(ii) The states û = û(qo, uℓ) and ǔ = ǔ(qo, ur) are well defined if qo ∈ [q(ur), q̄(uℓ)]. Observe that

[Q(ur), Q(uℓ)] ⊆ [q(ur), q̄(uℓ)] by (2.17). Moreover, the stricter condition qo ∈ [q(ur), Q(uℓ)]
ensures that ξ 7→ RSp[uℓ, û](ξ) ∈ FLuℓ

1 is formed at most by a single 1-wave with non-positive
speed. Analogously, condition qo ∈ [Q(ur), q̄(uℓ)] ensures that ξ 7→ RSp[ǔ, ur](ξ) ∈ FLǔ2 consists
at most of a single 2-wave with non-negative speed.
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3 Self-similar c-Riemann solvers

In this section we introduce the modeling of a gas flow through a coupling.

3.1 General definition and main properties

The following definition introduces the notion of coupling Riemann solver, where the coupling takes
place at x = 0. A key feature of the solver is that the traces q(0±, t) of the momentum are equal for
every t ⩾ 0; this common value, which depends on the initial data uℓ and ur of the Riemann problem,
is denoted by q0c , and ranges in [Q(ur), Q(uℓ)] because of Proposition 2.13. Also the traces ρ(0±, t) at
0 of the density, denoted below by ρ±c , depend on uℓ, ur.

Definition 3.1. Let Dc ⊆ D be non-empty. A function

C : Dc → D
(uℓ, ur) 7→

(
u−c (uℓ, ur), u

+
c (uℓ, ur)

)
is a coupling function if there exist ρ−c , ρ

+
c : Dc → (0,∞) and q0c : Dc → R such that u−c = (ρ−c , q

0
c ),

u+c = (ρ+c , q
0
c ) and for any (uℓ, ur) ∈ Dc we have

u−c (uℓ, ur) ∈ Γ−(uℓ), u+c (uℓ, ur) ∈ Γ+(ur). (3.1)

The corresponding c-Riemann solver RSc : Dc → BV(R; Ω) is defined as

RSc[uℓ, ur](ξ)
.
=

RSp

[
uℓ, u

−
c

]
(ξ) if ξ < 0,

RSp

[
u+c , ur

]
(ξ) if ξ ⩾ 0,

(u−c , u
+
c ) = C(uℓ, ur). (3.2)

In analogy with (2.7), we denote

uc
.
= (ρc, qc)

.
= RSc[uℓ, ur], u±c

.
= (ρ±c , q

0
c )

.
= uc(0

±).

Remark 3.2. We now comment on Definition 3.1 and introduce some notation.
(i) The map (t, x) 7→ RSc[uℓ, ur](x/t) is an entropy solution to (2.1) in x < 0 and x > 0 and

satisfies the first Rankine-Hugoniot condition (2.5) at x = 0, see [45].
Condition (2.5) is always satisfied by uc: if uc has a stationary discontinuity at x = 0, then
γ̇ = 0 but u−c and u+c have the same flux q0c , and so (2.5) holds. On the contrary, uc may not
satisfy the second Rankine-Hugoniot condition (2.6) at x = 0, hence conservation of momentum
may be lost at x = 0. Then, uc may fail to be a weak solution of (2.1) in the whole of R.

(ii) A c-Riemann solver RSc is uniquely characterized by the function C, which associates to the
initial values (2.4) the traces u±c of the solution uc at ξ = 0±. For brevity we omitted the
dependence of RSc on C.
In the literature, C is usually given implicitly by imposing some conditions on the traces u−c
and u+c . This leads to two issues: to search for which Riemann initial data (uℓ, ur) the traces
u−c and u+c exist and, in such a case, if such traces are uniquely determined. At last, condition
(3.1) is typically omitted.

(iii) By the definitions (2.12), (2.13) of Γ−(uℓ) and Γ+(ur), condition (3.1) implies that for any
(uℓ, ur) ∈ Dc the following conditions are satisfied by u−c = u−c (uℓ, ur) and u+c = u+c (uℓ, ur):

a) RSp

[
uℓ, u

−
c

]
has only waves with non-positive speed and RSp

[
uℓ, u

−
c

]
(0−) = u−c ;

b) RSp

[
u+c , ur

]
has only waves with non-negative speed and RSp

[
u+c , ur

]
(0+) = u+c .

(iv) The standard Riemann solver RSp is the c-Riemann solver corresponding to C(uℓ, ur)
.
=

(RSp[uℓ, ur](0
−),RSp[uℓ, ur](0

+)) defined in Dc
.
= D. Moreover, RSp[uℓ, u

−
c ](ξ) = u−c for every

ξ ⩾ 0 by (iii)a) and RSp[u
+
c , ur](ξ) = u+c for every ξ ⩽ 0 by (iii)b). In particular, both

RSp[uℓ, u
−
c ] and RSp[u

+
c , ur] are continuous at ξ = 0.

(v) If the flow is one-way, then Dc ⊆ {(uℓ, ur) ∈ D : qℓ, qr ⩾ 0} and (3.1) is substituted with

u−c (uℓ, ur) ∈ Γ−
o (uℓ), u+c (uℓ, ur) ∈ Γ+

o (ur). (3.3)
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The domain Dc of RSc can be strictly included in D. From a physical point of view, Dc represents
the Riemann data belonging to the operating range of the coupling. The coupling may be either
inactive or active according to the initial data. In the former case, the bare system (2.1) is sufficient
to describe the flow in the whole of R: no additional condition is imposed, the flow takes place
exactly as if the coupling is missing, and the solution is provided by the standard Riemann solver
RSp, that is RSc[uℓ, ur] ≡ RSp[uℓ, ur]. In the latter case, the coupling may be thought to act as
an exterior force on the flow (think for instance at the case of a valve or a compressor) and then the
conservation of momentum may be lost. Since the conservation of the mass still occurs, then only the
first Rankine-Hugoniot condition (2.5) is imposed at x = 0.

We denote by A ⊆ Dc the set of Riemann data for which the coupling is active. The set Dc \ A
is the set of Riemann data for which the coupling is inactive. Note that there may exist initial data
(uℓ, ur) ∈ A such that uc ≡ up; this leads to define

AN
.
=
{
(uℓ, ur) ∈ A : uc ≡ up

}
, AI

.
= A \ AN.

The sets AN and AI are constituted by the Riemann data that make the coupling active and either do
not influence or influence the flow, respectively. Obviously {(uℓ, ur) ∈ Dc : uc ≡ up} = Dc \ AI.

By Lemma 2.12 we have 0 ∈ [Q(uℓ), Q(ur)] for every (uℓ, ur) ∈ D. We say that for (uℓ, ur) ∈ A the
coupling is closed if q0c = 0 and open if q0c ̸= 0. Notice that q0c = 0 implies neither that the coupling is
closed nor that it is active: for instance, if the coupling is inactive and q̃(uℓ, ur) = 0 then q0c = 0.

In the following proposition we give two sufficient conditions on (uℓ, ur) to have uc ≡ up.

Proposition 3.3. Fix (uℓ, ur) ∈ Dc. If either u−c = u+c or u−c = u−p and u+c = u+p , then uc ≡ up.

Proof. We prove that if u−c = u+c , then uc ≡ up. Let um be the common value of u−c and u+c . We have
RSp[uℓ, um](0) = um = RSp[um, ur](0) by (iv) in Remark 3.2. Since RSp is consistent, it satisfies
item II. in [14, page 713], hence

up(ξ) =

{
RSp[uℓ, um](ξ) if ξ < 0,

RSp[um, ur](ξ) if ξ ⩾ 0,

which coincides with uc by (3.2).
We now prove that if u−c = u−p and u+c = u+p , then uc ≡ up. By the first claim it is sufficient to

consider the case u−p ̸= u+p . Then, the proof shall follow from

up(ξ) =

{
RSp[uℓ, u

−
p ](ξ) if ξ < 0,

RSp[u
+
p , ur](ξ) if ξ ⩾ 0,

which coincides with uc by (3.2). We prove the above equality. By the symmetry of the problem, it
is not restrictive to assume that up has a 1-shock at ξ = 0. Then uℓ = u−p and therefore up(ξ) =
RSp[uℓ, u

−
p ](ξ) = uℓ for all ξ < 0. If ur = u+p , then up(ξ) = RSp[u

+
p , ur](ξ) = ur for all ξ > 0.

Assume that ur ̸= u+p . In this case up has in ξ > 0 a 2-wave between u+p and ur. Therefore, we have
up(ξ) = RSp[u

+
p , ur](ξ) for all ξ > 0. This concludes the proof.

Proposition 3.3 can be rephrased as{
(uℓ, ur) ∈ A : u−c = u+c

}
∪
{
(uℓ, ur) ∈ A : u−c = u−p and u+c = u+p

}
⊆ AN.

In Proposition 4.5 we show that also the coupling condition (4.7) implies uc ≡ up; in that case the
assumptions of Proposition 3.3 are not satisfied.

3.2 Waves of c-Riemann solvers

The following proposition states that RSc[uℓ, ur] admits at most four waves; we refer to Subsection 5.2
for an explicit example. More precisely, two Lax waves in x > 0 appear if q0c > 0, and in x < 0 if
q0c < 0. By the way, this is the reason why RSc[uℓ, ur] cannot be formed by five waves. We defer to
Figure 11 for a numerical example of a solution with four waves.
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Proposition 3.4. The function ξ 7→ uc(ξ)
.
= RSc[uℓ, ur](ξ) can involve up to four waves (including

the stationary discontinuity at ξ = 0). Furthermore:

q0c ∈
[
Q(ur), Q(uℓ)

]
, (3.4)∥∥∥u−c − û(q0c , uℓ)

∥∥∥ · ∥∥∥u+c − ǔ(q0c , ur)
∥∥∥ = 0. (3.5)

Moreover:

i) uc has two waves in ξ < 0 if and only if ρ−c ⩽ ρ(u−c ) and
(
ρ̃(uℓ, u

−
c )− ρ−c

)(
q̃(uℓ, u

−
c )− q0c

)
< 0;

this implies

u−c ̸= û(q0c , uℓ), v(u−c ) ⩽ −a, q0c < 0, q̃(uℓ, u
−
c ) < 0.

ii) uc has two waves in ξ > 0 if and only if ρ+c ⩽ ρ(u+c ) and
(
ρ̃(u+c , ur)− ρ+c

)(
q̃(u+c , ur)− q0c

)
> 0;

this implies

u+c ̸= ǔ(q0c , ur), v(u+c ) ⩾ a, q0c > 0, q̃(u+c , ur) > 0.

Proof. We divide the proof in some steps.

� First, we show for which initial data (uℓ, ur) the solution uc has four waves, and prove that uc
cannot have more than four waves.

a) By definition, RSp[uℓ, u
−
c ] has at most two waves: the first is the 1-wave RSp[uℓ, ũ(uℓ, u

−
c )]

and the second is the 2-wave RSp[ũ(uℓ, u
−
c ), u

−
c ]. If both waves have non-positive speed and

RSp[ũ(uℓ, u
−
c ), u

−
c ](0

−) = u−c , then q0c < 0 by (a) in Proposition 2.7.

b) Analogously, if RSp[u
+
c , ur] has two waves with non-negative speed and RSp[u

+
c , ur](0

+) = u+c ,
then q0c > 0 by (b) in Proposition 2.7.

Now, to conclude the proof of the first statement it is sufficient to observe that the above cases a)
and b) cannot happen at the same time.

� To prove (3.4) it is sufficient to recall that q0c ∈ [Q(ur), Q(uℓ)] by Proposition 2.13.

� We now prove (3.5). If u−c = û(q0c , uℓ), then (3.5) is satisfied. Assume that u−c ̸= û(q0c , uℓ). In this
case RSp[uℓ, u

−
c ] has a possibly null 1-wave (uℓ, ũ(uℓ, u

−
c )) and a 2-wave (ũ(uℓ, u

−
c ), u

−
c ) with q0c < 0,

see the proof of Proposition 2.7. This implies that u+c = ǔ(q0c , ur) and (3.5) is satisfied.

� We now prove i). Clearly, uc has two waves in ξ < 0 if and only if RSp[uℓ, u
−
c ] involves a 2-wave with

negative speed, and therefore u−c ̸= û(q0c , uℓ). By (3.1)1 we have RSp

[
uℓ, u

−
c

]
(0−) = u−c . Hence, to

complete the proof it is sufficient to apply item (a) in Proposition 2.7.

� At last, the proof of ii) is analogous to that of i) and is therefore omitted.

By (3.5) we have that if u−c ̸= û(q0c , uℓ) then u+c = ǔ(q0c , ur). The former condition implies that u−c
does not belong to FLuℓ

1 , hence RSp[uℓ, u
−
c ] has two waves (a 1-wave and a 2-wave) at most, while the

latter implies that u+c belongs to BLur
2 , hence RSp[u

+
c , ur] has one wave (a 2-wave) at most. Analogous

considerations hold in the case u+c ̸= ǔ(q0c , ur).
In the following corollaries we provide sufficient conditions to have uc with at most three waves. We

shall exploit Corollary 3.6 when dealing with compressors in Section 6.2; this motivates the hypothesis
(3.6).

Corollary 3.5. If the flow is subsonic at x = 0, i.e., |v(u±c )| < a, then the function ξ 7→ uc(ξ)
.
=

RSc[uℓ, ur](ξ) can involve up to three waves (including the stationary discontinuity at ξ = 0); in this
case uc consists of a 1-wave in ξ < 0 and a 2-wave in ξ > 0.

Proof. It simply follows from Proposition 3.4.
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Corollary 3.6. Fix (uℓ, ur) in Dc. If the flow is one-way, say qc ⩾ 0 in R, and

ρ−c < ρ+c , (3.6)

then uc has at most three waves (including the stationary discontinuity at ξ = 0). Moreover, one of
the following mutually exclusive conditions is satisfied:

(1) uℓ is supersonic, u−c = uℓ and u+c ∈ Γ+
o (ur);

(2) u−c ∈ Γ−
o (uℓ) is non-supersonic and u+c ∈ BLur

2 .

In case (1) we have uc is constant in ξ < 0 and has at most two waves in ξ > 0. In case (2) we have
that uc has at most one wave for each side ξ < 0 and ξ > 0.

In both cases, uc has always a stationary discontinuity at ξ = 0, at most one wave in ξ < 0 (a
1-wave) and at most three waves in R. In particular, u−c is supersonic if and only if uℓ = u−c and uℓ
is supersonic, i.e., in case (1).

Proof. Assume by contradiction that RSc[uℓ, ur] has four waves. By hypothesis q0c ⩾ 0, hence
RSp[uℓ, u

−
c ] has precisely a 1-wave by Proposition 3.4, item i). In particular, this implies that uℓ ̸= u−c

and that RSp[u
+
c , ur] has exactly two waves. By Proposition 3.4, item ii), we have that u+c is non-

subsonic, i.e., v(u+c ) ⩾ a. This implies that u−c is supersonic because v(u+c )/v(u
−
c ) = ρ−c /ρ

+
c < 1 by

(3.6). By the last statement in Corollary 2.10 with u−c in place of ur, this implies that uℓ = u−c , which
gives a contradiction. This proves the first claim of the corollary.

Now, we prove that either (1) or (2) holds. We distinguish the following cases.

� Assume uℓ is supersonic. We have two possible situations.

– If u−c = uℓ, then u+c ∈ Γ+
o (ur) by (2.15) and Corollary 2.11 with u+c in place of uℓ. This implies (1).

In this case, we have no waves in ξ < 0, a stationary discontinuity at ξ = 0 and at most two
waves in ξ > 0.

– If u−c ̸= uℓ, then ρ−c ∈ (ρ̂(qℓ, uℓ), ρ̂(0, uℓ)] by (I) in Corollary 2.10 with u−c in place of ur. By
Proposition 2.5, this implies that u−c is subsonic. Moreover, by (3.6) also u+c is subsonic; then,
u+c ∈ BLur

2 with ρ+c ∈ [ρ̌(0, ur), ρ
a(ur)) by the last statement in Corollary 2.11 with u+c in place

of uℓ. This implies (2). In this case, we have a 1-shock in ξ < 0, a stationary discontinuity at
ξ = 0 and at most one wave in ξ > 0 (a 2-wave).

� Assume uℓ is non-supersonic. In this case also u−c ∈ Γ−
o (uℓ) is non-supersonic by the last statement

in Corollary 2.10, see Figure 6 on the right; hence u+c is subsonic by (3.6) and therefore u+c ∈ BLur
2

with ρ+c ∈ [ρ̌(0, ur), ρ
a(ur)) by the last statement in Corollary 2.11 with u+c in place of uℓ. This

implies (2). In this case, we have a 1-wave in ξ < 0, a stationary discontinuity at ξ = 0 and at most
one wave in ξ > 0 (a 2-wave).

The last statement directly follows from the previous analysis. This concludes the proof.

3.3 Coherence of a c-Riemann solver

We can now give the definition of a coherent coupling Riemann solver.

Definition 3.7. A c-Riemann solver RSc : Dc → BV(R; Ω) is coherent at (uℓ, ur) ∈ Dc if the traces
u±c

.
= RSc[uℓ, ur](0

±) satisfy

(u−c , u
+
c ) ∈ Dc and C(u−c , u

+
c ) = (u−c , u

+
c ).

The coherence domain CH of RSc is the set of all pairs (uℓ, ur) ∈ Dc where RSc is coherent. The set
CH∁ .

= Dc \ CH is the incoherence domain.

A c-Riemann solver RSc is coherent at an initial datum (uℓ, ur) ∈ Dc if the ordered pair of the
traces of the corresponding solution (u−c , u

+
c )

.
=
(
RSc[uℓ, ur](0

−),RSc[uℓ, ur](0
+)
)
belongs to Dc and
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is a fixed point of C; in this case

RSc[u
−
c , u

+
c ](ξ) =

{
u−c if ξ < 0,

u+c if ξ ⩾ 0.

Hence, coherence may be thought as a stability property. On the contrary, for instance if the coupling
represents a valve, the incoherence of a c-Riemann solver is understood as modeling the chattering
and may yield analytical and numerical instabilities. We recall that an analogous condition (called
however consistency) has been introduced in [30] at the junctions of a road network.

The Riemann solver RSp is coherent in D, see [19, Proposition 2.5]. On the contrary, coherence in
Dc may fail for RSc because of the presence of the coupling, as we will see in Sections 5.2, 7 and 8. In
the following theorem we give sufficient condition for the coherence of a c-Riemann solver. We recall
the definitions (2.12), (2.13) of Γ± and (2.14), (2.15) of Γ±

o .

Theorem 3.8. The c-Riemann solver RSc, associated to the coupling function C, is coherent in Dc

if there exists π : Ω → Ω that satisfies the following conditions for any (uℓ, ur) ∈ Dc:

(1) C(uℓ, ur) ∈ Dc;

(2) (u−, u+) ∈ Dc is such that (u−, u+) = C(uℓ, ur) if and only if (u−, u+) ∈ Γ−(uℓ) × Γ+(ur) and
u+ = π(u−);

(3) there exists a unique pair (u−, u+) ∈ Γ−(uℓ)× Γ+(ur) such that u+ = π(u−).

If the flow is one-way, then the same result holds by replacing Γ−(uℓ)×Γ+(ur) with Γ−
o (uℓ)×Γ+

o (ur).

Proof. Fix (uℓ, ur) in Dc and consider (u−c , u
+
c ) = C(uℓ, ur). By (2.12), (2.13) and (2) we have

(u−c , u
+
c ) ∈ Γ−(u−c ) × Γ+(u+c ) and u+c = π(u−c ). By (3), this implies that (u−c , u

+
c ) is the unique pair

in Γ−(u−c )× Γ+(u+c ) such that u+c = π(u−c ), hence by (1) and (2) we have C(u−c , u
+
c ) = (u−c , u

+
c ).

The last statement can be proved analogously. This concludes the proof.

Note that item (1) in Theorem 3.8 implies that C(Dc) ⊆ Dc. By (2) and Definition 3.1, the second
component of π

.
= (π1, π2) coincides with the identity function: π2 ≡ idR. At last item (3) can be

rephrased as follows: the map π : Γ−(uℓ) → Γ+(ur) is injective.

4 Continuity conditions

In the following sections we recall some coupling conditions present in the literature and investigate
their coherence. In this section we deal with conditions requiring the continuity either of the pressure,
or of the dynamical pressure, or else of the specific enthalpy.

4.1 Continuity of the pressure

We begin with the coupling condition
p(ρ+c ) = p(ρ−c ), (4.1)

which expresses the continuity of the pressure at x = 0, see for instance [1, (15b)], [4, (6)], [9, (A.2)], [17,
(4.5)], [27, (8)], [31, (87)], [32, (11)], [33, (2.4)], [35, (2a)], [37, § 2.4], [39, (4.1)], [40, (8b)], [41, (C2)], [44,
(3)], [46, (18)], [47, (34)], [50, (3.1)]. By (2.3), condition (4.1) implies the continuity of the density at
x = 0, which in turn implies u−c = u+c . Therefore, the strong requirement (4.1) hides a smoothness
assumption on the flow at x = 0.

By Proposition 3.3, the resulting c-Riemann solver RSc coincides with RSp in its domain of
definition

Dc
.
= {(uℓ, ur) ∈ D : ρ+p = ρ−p }, (4.2)

which is strictly contained in the domain of definition D of RSp. Moreover, RSc is coherent in Dc

because RSp is coherent in D.
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Remark 4.1. Assumption (4.1) implies the entropy condition η(u)t + ϕ(u)x ⩽ 0 in the distributional
sense, for every pair (η, ϕ), where η is a convex entropy for (2.1) and ϕ is the corresponding entropy
flux, because RSp has this property and RSc ≡ RSp in Dc. In the case of a general pressure law, an
example is the pair (E,F ) with

E(ρ, q)
.
=

q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr, F (ρ, q)

.
=

q

ρ

(
E(ρ, q) + p(ρ)

)
, (4.3)

where E is the energy density (E/ρ is the energy) and F its flow, see [16, page 1458], [17, page 609].

In the following proposition we show that the set Dc defined by (4.2) is not symmetric.

Proposition 4.2. If (u1, u2) ∈ Dc, then (u2, u1) may well not belong to Dc.

Proof. Consider u1, u2 ∈ Ω such that u2 ∈ FLu1
1 , q1 = q2 and ρ2 < ρ1. In this case RSp[u1, u2] is a

1-rarefaction and u−c = u(u1) = u+c . This implies that (u1, u2) ∈ Dc. On the other hand, RSp[u2, u1]
is a 1-shock with u−c = u2 ̸= u+c = u1 and therefore (u2, u1) /∈ Dc. This completes the proof.

4.2 Continuity of the dynamic pressure

The coupling condition
P (ρ+c , q

0
c ) = P (ρ−c , q

0
c ), (4.4)

expresses the continuity of P (uc) at ξ = 0, where P is the dynamic pressure defined in (2.2), see [4, (7)]
and [18, (10)]. Condition (4.4) corresponds to the second Rankine-Hugoniot condition (2.6) at x = 0.
This implies that (t, x) 7→ uc(x/t) is a weak solution in the sense of Definition 2.6, see [15, Proposition 1]
for a detailed proof.

By (2.2) and (2.3), condition (4.4) is satisfied if and only if either ρ−c = ρ+c , i.e., u
−
c = u+c , or

ρ−c ̸= ρ+c and
(q0c )

2 = a2ρ−c ρ
+
c . (4.5)

The bare condition (4.5) implies that either both u−c and u+c are sonic, or one is supersonic and the
other is subsonic. As a consequence, if the flow is subsonic in R, then (4.5) cannot hold, hence (4.4)
implies u−c = u+c and then uc ≡ up by Proposition 3.3.

However, for a general flow, (4.4) does not select a unique c-Riemann solver. For instance, if uℓ
and ur are as in Figure 8, left, then both up and uc, represented in Figure 8 in the center and in the
right, respectively, satisfy the coupling condition (4.4) and take the form (3.2). In Figure 8 we use the
function π : Ω → Ω defined by

π(ρ, q)
.
=

(
v(ρ, q)2

a2
ρ, q

)
. (4.6)

ρ

q

uℓ

ur

ũ
u+c u−c

FLuℓ
1π(FLuℓ

1 )

BLur
2 q = aρ

x

t

uℓ
ur

ũ

x

t

uℓ
ur

u−c u+c

Figure 8: Two solutions satisfying (4.4). Above we denoted ũ = ũ(uℓ, ur) and π is
defined in (4.6). The solution in the center is the standard solution, whereas that on
the right is not entropic.

In order to overcome the non-uniqueness of the c-Riemann solver, some authors have complemented
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condition (4.4) with the coupling inequality

F (ρ+c , q
0
c ) ⩽ F (ρ−c , q

0
c ), for F (ρ, q)

.
= q

(
q2

2ρ2
+ a2 ln(ρ)

)
. (4.7)

Here F is the flow of the energy density, see (4.3)2 with ρ∗ = e, and plays the role of an entropy flow;
see [15, Definition 1], [16, Definition 3.1], [17, Definitions 2.1 and 3.1 and (4.4)] and [50, Definition 1.2
and (3.3)]. Condition (4.7) is motivated by the usual entropy inequalities [7, § 4.4].

Remark 4.3. For a general gas, the flow F of the energy density is defined either in [15, (3)] or both
in [16, page 1458] and [17, page 609], respectively, by

F (ρ, q)
.
=

q

ρ

(
q2

2ρ
+ ρ

∫ ρ

ρ∗

p′(r)

r
dr

)
, F (ρ, q)

.
=

q

ρ

(
q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr + p(ρ)

)
, (4.8)

where ρ∗ > 0 is a suitable constant. By taking ρ∗ = 1 in (4.8)1 and ρ∗ = e in (4.8)2 we obtain (4.7).

Lemma 4.4. The coupling condition (4.4), (4.7) holds true if and only if exactly one of the following
conditions holds true:

(I) u−c = u+c ;

(II) q0c = −a
√
ρ−c ρ

+
c and ρ−c > ρ+c ;

(III) q0c = a
√
ρ−c ρ

+
c and ρ−c < ρ+c .

Proof. Recall that (4.4) is satisfied if and only if either u−c = u+c , or u−c ̸= u+c and (4.5) holds true.
Note that if u−c = u+c , then both (4.7)1 and (I) are satisfied, the former with the equality. Assume
u−c ̸= u+c and (4.5). By (4.5) we have q0c ̸= 0 and from (4.7) we deduce

q0c

ρ+c
ρ−c

− ρ−c
ρ+c

+ 2 ln

(
ρ−c
ρ+c

) ⩾ 0.

Observe that r−1 − r + 2 ln(r) > 0 if and only if r ∈ (0, 1). Hence, either (II) or (III) is satisfied.
Finally, it easy to show that (4.7) is satisfied if either (I)-(III) holds true.

We now show that the c-Riemann solver corresponding to (4.7) coincides withRSp; as a consequence,
the coupling function C implicitly defined by (4.7) is well defined in D. This result extends to general
flows that proved in [15, Proposition 1] for subsonic flows.

Proposition 4.5. If RSc is the c-Riemann solver associated to (4.4), (4.7), then RSc ≡ RSp.

Proof. Fix (uℓ, ur) ∈ D. As already observed, (t, x) 7→ uc(x/t) is a weak solution of (2.1), (2.4) in
the sense of Definition 2.6. This implies that uc has only waves of the first or second family. As a
consequence uc has at most two waves (a 1-wave followed by a 2-wave).

If u−c = u+c , then by Proposition 3.3 we have uc ≡ up. Assume u−c ̸= u+c , i.e., ρ
−
c ̸= ρ+c . By the

symmetry of the problem, it is not restrictive to assume that uc has a 1-shock at ξ = 0. In this case

q0c > 0 because u+c ∈ FLu
−
c

1 , hence by (III) in Lemma 4.4 we have ρ−c < ρ+c . Now, to conclude the
proof, it is sufficient to observe that up is the unique weak solution which involves only waves of the
first and second family, and such that the discontinuities of the first and second family are respectively
increasing and decreasing in the ρ-coordinate.

Since RSp is coherent, hence the coupling (4.4), (4.7) ensures the coherence of the associated
c-Riemann solver. A remark analogous to Remark 4.1 holds: condition (4.4) and the single “entropy
condition” (4.7) imply the entropy condition η(u)t + ϕ(u)x ⩽ 0 for every (η, ϕ), with η convex.
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4.3 Continuity of the specific enthalpy

The coupling condition

E(u+c ) = E(u−c ), for E(u) .
=

v(u)2

2
+ a2 ln(ρ), (4.9)

expresses the continuity of the Bernoulli invariant according to [51, (4.2)] and of the specific stagnation
enthalpy according to [28, (2.6)].

Proposition 4.6. Condition (4.9) does not select a unique coupling function C in D.

ρ

q

ur

uℓ

u+c
u−cũ

FLuℓ
1

BLur
2

x

t

uℓ ur

ũ

x

t

uℓ
ur

u−c
u+c

Figure 9: Two solutions satisfying the coupling condition (4.9). Above we denote
ũ = ũ(uℓ, ur). The standard solution is in the middle.

Proof. We first observe that (4.9) is equivalent to(
q0c
aρ−c

)2

+ 2 ln(ρ−c ) =

(
q0c
aρ+c

)2

+ 2 ln(ρ+c ),

with q0c = FLuℓ
1 (ρ−c ). For some values of ρ−c , such equation has two different solutions in ρ+c , whose

trivial one is ρ+c = ρ−c . Indeed, if q
0
c ̸= 0 then the map ρ 7→ B(ρ)

.
=
(

q0c
aρ

)2
+ 2 ln(ρ) satisfies

lim
ρ→0+

B(ρ) = ∞, lim
ρ→∞

B(ρ) = ∞, minB = 1 + 2 ln(q0c/a),

and therefore it is sufficient to fix ρ−c > 0, compute q0c and then take ρ+c ̸= ρ−c such that B(ρ+c ) =
B(ρ−c ). This allows to construct two solutions for some values of (uℓ, ur) ∈ D, see for instance
Figure 9.

Remark 4.7. If q0c ̸= 0, then condition (4.9) is equivalent to F (u−c ) = F (u+c ), for F defined in (4.7). In
particular, (4.9) implies (4.7). If q0c > 0 then condition (4.4), (4.7) implies ρ−c ⩽ ρ+c , see (I) and (III)
in Lemma 4.4, while (4.9) does not ensure the inequality ρ−c ⩽ ρ+c , see for instance Figure 9.

Remark 4.8. In [50] it is considered the Euler equations (2.1) for an isentropic gas, i.e., p(ρ) = a2ργ

with γ > 1; at the coupling the authors impose both the usual entropy inequality as well as the
continuity of the specific enthalpy, see [50, (1.12) and (3.9)] or [49, (24)]. In the case of an isothermal
gas, such conditions become (4.7) and (4.9), respectively. We already noticed that (4.9) implies (4.7);
hence, also in this case we have no uniqueness for C in D.

5 One-way flows

This section deals with the couplings introduced in [2]. We consider one-way flows, i.e., q ⩾ 0,
see [2, (12b)]; moreover, the flow in the two pipes x < 0 and x > 0 is ruled by the pressure laws
p1(ρ)

.
= a21 ρ and p2(ρ)

.
= a22 ρ, respectively. This motivates the introduction of the notation q̃a1 for
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the function q̃ defined in Definition 2.3 and corresponding to the sonic velocity a = a1; an analogous
notation is exploited for other quantities.

Two different coupling conditions are proposed. The first imposes that the flow along the outgoing
pipe is not supersonic. The second requires the continuity of the pressure at x = 0, i.e., (4.1),
and, among all the c-Riemann solvers satisfying such condition, it maximizes the flow across x = 0,
see [2, (28)]. Both conditions uniquely selects a c-Riemann solver, but only the former is coherent.
We describe in detail the two c-Riemann solvers in the following subsections.

5.1 Non-supersonic flow along the outgoing pipe

The first c-Riemann solver RSc defined in [2] corresponds to consider

Dc
.
=
{
(uℓ, ur) ∈ D : qℓ ⩾ 0, 0 ⩽ v(ur) ⩽ a2

}
(5.1a)

and, for all (uℓ, ur) ∈ Dc, to take

q0c
.
= min

{
Qa1(uℓ), q

a2(ur)
}
, (5.1b)

u−c
.
=

{
uℓ if q0c = qℓ,
ûa1(q

0
c , uℓ) if q0c ̸= qℓ,

u+c
.
= ǔa2(q

0
c , ur). (5.1c)

About (5.1b), we note that Qa1(uℓ) > 0 by (2.17), for every uℓ ∈ Ω. Moreover, we have qa2(ur) >
0 since it corresponds to the flux of the intersection of BLur

2,a2
with the sonic line q = a2ρ, see

Definition 2.3. As a consequence, q0c is well defined, q0c > 0 and u+c is not supersonic by (5.1c)2.
By (5.1c), the corresponding c-Riemann solver is as follows. It has, at most, one wave in ξ < 0,
namely a 1-wave, because either u−c = uℓ (and then no wave) or by definition of û it has a 1-wave
connecting uℓ with ûa1(q

0
c , uℓ); one wave at ξ = 0 (a stationary discontinuity); and one wave in ξ > 0

(a 2-wave), by definition of ǔ.
It is easy to show that v(RSc[uℓ, ur]) ⩾ 0 in R, i.e., the flow is one-way along both pipes, and

v
(
RSc[uℓ, ur](ξ)

)
⩽ a2 for every ξ > 0, i.e., the flow is not supersonic along the outgoing pipe,

see [2, (26)]. Some examples of solutions are presented in Figure 10.
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ρ
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uℓ

u+c
u−c

FLuℓ
1,a1

BLur
2,a2

q
=
a 1
ρ

q
=
a 2
ρ

ρ

q

ur

u
−

c
=
u ℓ

u+c

FLuℓ
1,a1

BLur
2,a2

q
=
a 1
ρ

q =
a 2
ρ

ρ

q

ur uℓ

u+c

u−c

FLuℓ
1,a1

BLur
2,a2

q
=
a 1
ρ

q =
a 2
ρ

x

t

uℓ

u−c u+c

ur

(a)
x

t

uℓ
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(c)
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t
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u−c

u+c
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Figure 10: Examples of solutions corresponding to the c-Riemann solver in (5.1). Here
a1 = 2 and a2 = 1.

Proposition 5.1. The c-Riemann solver RSc corresponding to (5.1) is coherent.
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Proof. Fix (uℓ, ur) ∈ Dc. We already observed that q0c > 0 and v(u+c ) ⩽ a2, hence (u−c , u
+
c ) ∈ Dc.

To complete the proof it remains to show that C(u−c , u
+
c ) = (u−c , u

+
c ); it is sufficient to prove

min
{
Qa1(u

−
c ), q

a2(u+c )
}
= q0c . (5.2)

� If qa2(ur) ⩽ Qa1(uℓ), see Figure 10, (a) and (b), then u+c is a sonic state; hence by (2.16) we have

qa2(u+c ) = q0c ⩽ Qa1(u
−
c ).

� If qa2(ur) > Qa1(uℓ) and uℓ is not a subsonic state, see Figure 10, (c), then u−c = uℓ is not a subsonic
state and u+c is a subsonic state; hence

qℓ = Qa1(u
−
c ) = q0c < qa2(u+c ).

� If qa2(ur) > Qa1(uℓ) and uℓ is a subsonic state, see Figure 10, (d), then u−c is a sonic state and u+c
is a subsonic state; hence

qℓ < Qa1(u
−
c ) = q0c < qa2(u+c ).

In any of the preceding three cases, formula (5.2) holds true. This concludes the proof.

The previous proposition obviously holds in the case of a single pressure law, i.e., a1 = a2.

5.2 Continuity of the pressure

A second c-Riemann solver is proposed in [2], which is extended to the case of a network in [3] and
to general flows in [11, § 4]. For (uℓ, ur) ∈ D with qℓ, qr ⩾ 0, we denote by Q(uℓ, ur) the set of
q ∈ [0, Qa1(uℓ)] such that (ρ, q)

.
= RSp,a1 [uℓ, ûa1(q, uℓ)](0

−) satisfies the following conditions:

RSp,a2

[(
a21
a22
ρ, q
)
, ur

]
(0+) =

(
a21
a22
ρ, q
)
, q̃a2

((
a21
a22
ρ, q
)
, ur

)
⩾ 0. (5.3)

Then we denote

Dc
.
=
{
(uℓ, ur) ∈ D : qℓ, qr ⩾ 0, Q(uℓ, ur) ̸= ∅

}
, (5.4)

and, for all (uℓ, ur) ∈ Dc, we define

q0c
.
= maxQ(uℓ, ur), u−c

.
= RSp,a1 [uℓ, ûa1(q

0
c , uℓ)](0

−), u+c
.
=

(
a21
a22

ρ−c , q
0
c

)
. (5.5)

By construction we have q0c ⩾ 0, hence Proposition 2.7 ensures that ξ 7→ RSc[uℓ, ur](ξ) has at
most one wave in ξ < 0 (a 1-wave connecting uℓ to u−c = ûa1(q

0
c , uℓ)), one wave at ξ = 0 (a stationary

discontinuity) and up to two waves in ξ > 0 (a 1-wave followed by a 2-wave).
As a result, ξ 7→ RSc[uℓ, ur] can involve up to four waves, see Propositions 3.4. The numerical

example presented in Figure 11 shows that this is the case if we choose uℓ = (15, 0), ur = (10, 24), and
the sound speeds a1 = 1, a2 = 2. Indeed, we see a 1-rarefaction at x < 0, a stationary discontinuity
at x = 0, followed by a 1-shock close to x = 0 and then by a 2-rarefaction.

For the numerical simulations presented in Figures 11 and 15, we employ the Glimm scheme [13,54],
which has also been applied to c-Riemann solvers in [20]. Throughout all simulations, we adopt a
spatial discretization of ∆x = 10−4, and the time discretization is determined by considering the CFL
condition, with a fixed CFL value of 0.45.

The main properties of RSc are:

� v(RSc[uℓ, ur]) ⩾ 0 in R, because qℓ, q
0
c , qr ⩾ 0, i.e., the flow is one-way along the two pipes;

� pa1(ρ
−
c ) = pa2(ρ

+
c ), i.e., the pressure is continuous at ξ = 0, namely a21ρ

−
c = a22ρ

+
c , see [2, (27)].
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(b) ξ 7→ q∆(0.2, ξ)

Figure 11: An example of a numerical solution with four waves.

We can now exploit Corollaries 2.10 and 2.11 to give a more explicit characterization of Dc. To
this aim, let π : Ω → Ω be defined by

π(ρ, q)
.
=

(
a21
a22

ρ, q

)
.

Then, we can write Dc defined in (5.4) as

Dc =
{
(uℓ, ur) ∈ D : qℓ, qr ⩾ 0, π(Γ−

o,a1(uℓ)) ∩ Γ+
o,a2(ur) ̸= ∅

}
, (5.6)

where Γ−
o,a1 and Γ+

o,a2 are defined in (2.14) and (2.15), respectively. In particular, if (uℓ, ur) ∈ Dc, then
q0c in (5.5) corresponds to the point of π(Γ−

o,a1(uℓ)) ∩ Γ+
o,a2(ur) with maximal flow.

Remark 5.2. If a1 = a2, then RSc ≡ RSp by (5.5)3 and Proposition 3.3. In this case π becomes
the identity function and it is easy to prove that Γ−

o (uℓ) ∩ Γ+
o (ur) has at most one element; therefore

Q(uℓ, ur) contains at most one point, and hence the maximization procedure to compute q0c in (5.4)1
is not needed. This is why that procedure does not appear in Section 4.1.

On the other hand, if a1 ̸= a2 then Q(uℓ, ur) can contain infinitely many elements, see Figure 12.

We now prove that there exist a2 > a1 such that RSc is not coherent. Note that in the case
a1 = a2 we can apply the results in Subsection 4.1 and deduce that, on the contrary, the c-Riemann
solver is coherent.

Proposition 5.3. There exist a2 > a1 such that the c-Riemann solver RSc corresponding to (5.5) is
not coherent.

Proof. For every (uℓ, ur) in Dc, see (5.6), we have that (u−c , u
+
c )

.
= C(uℓ, ur) belongs to Dc because

q0c ⩾ 0 and u+c ∈ π(Γ−
o,a1(u

−
c )) ∩ Γ+

o,a2(u
+
c ) since (u−c , u

+
c ) ∈ (Γ−

o,a1(u
−
c ),Γ

+
o,a2(u

+
c )) and u+c = π(u−c ).

In particular this implies that C(u−c , u
+
c ) is well defined. Hence, to prove the statement we need to

show the existence of a2 > a1 and (uℓ, ur) ∈ Dc such that C(u−c , u
+
c ) ̸= (u−c , u

+
c ), see Figure 13. The

main point is to choose (uℓ, ur) in Dc so that π(ūa1(uℓ)) lies on the lower boundary B+
a2(ur) of the

set identified by (III) in Corollary 2.11, see Figure 7, hence π(ūa1(uℓ)) does not belong to Γ+
o (ur)

defined in (2.15). On the other hand, by the construction detailed below, π(ūa1(uℓ)) = π(ūa1(u
−
c ))

does belong to Γ+
o (u

+
c ).

As a first step, fix ur ∈ Ω with v(ur) > a2. Let uℓ ∈ Ω be the unique state with qℓ = 0 and such
that

0 < q̃a2

(
π
(
ua1(uℓ)

)
, ur

)
= qa1(uℓ) < qaa2(ur).

The above conditions express the fact that π
(
ua1(uℓ)

)
belongs to B+

a2(ur); hence π
(
ua1(uℓ)

)
does not

belong to Γ+
o,a2(ur). The point π

(
ua1(uℓ)

)
is indeed the unique intersection of B+

a2(ur) with the image
q = a22ρ/a1 via π of the sonic line q = a1ρ (note that v(ua1(uℓ)) = a1).
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Figure 12: In the case represented above Q(uℓ, ur) = {α} ∪ (β, γ] has infinitely many
elements.
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q
q = a2ρBLur
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BLu

+
c
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q =

a22
a1
ρ

BL
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(ur)

1,a2
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ua
a2

(u+
c )

1,a2
uaa2(ur)

uaa2(u
+
c )

ur

uℓ

u−cu+c

ua1(uℓ)

π(ua1(uℓ))

q = a1ρ

FLuℓ
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π(FLuℓ
1,a1

)
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a2(ur)

B+
a2(u

+
c )

Figure 13: Construction given in the proof of Proposition 5.3. The shaded region and
the solid black lines represent Γ+

o,a2(ur). Above a1 = 1, a2 = 2 and ur = (10, 24).

By Lemmas 2.10 and 2.11 we have π(Γ−
o,a1(uℓ)) ∩ Γ+

o,a2(ur) has at most one element. In fact,
uniqueness is clear in the current construction; however, the existence is not granted, because the

22



intersection of π(FLuℓ
1,a1

) with BLur
2,a2

could have negative flow. Choose a1, a2 and ur such that

π(Γ−
o,a1(uℓ)) ∩ Γ+

o,a2(ur) has an element, which we denote by u+c = (ρ+c , q
0
c ), with q0c > 0; we provide a

numerical evidence of the existence of such a choice in Figure 13. Then we have C(uℓ, ur) = (u−c , u
+
c )

with u−c = ûa1(q
0
c , uℓ) ̸= uℓ by (5.5). Recall that (u−c , u

+
c ) ∈ Dc, as already observed at the beginning

of the proof.

We claim that C(u−c , u
+
c ) ̸= (u−c , u

+
c ). Observe that BLu+

c
2,a2

> BLur
2,a2

in (ρ+c ,∞), see item (d) in

Lemma 2.1, hence qaa2(u
+
c ) < qaa2(ur) because the sonic line q = a2ρ intersects first BLu+

c
2,a2

and then

BLur
2,a2

. As a consequence, the boundary B+
a2(u

+
c ) lies below B+

a2(ur), and, in particular, π
(
ua1(u

−
c )
)

belongs to Γ+
o,a2(u

+
c ). Let us stress that ua1(u

−
c ) = ua1(uℓ) because u−c ∈ Ruℓ

1,a1
and therefore

Ruℓ
1,a1

≡ Ru−
c

1,a1
in (0, ρ−c ] by item (f) in Lemma 2.1. These considerations imply that C(u−c , u

+
c ) =

(ua1(uℓ), π(ua1(uℓ))), which differs from (u−c , u
+
c ).

x

t

uℓ

u−c u+c

ur

x

t

u−c u+c

ũ

ū π(ū)

π
(ū
)

ũ

Figure 14: Two solutions constructed in Remark 5.4. Above we denoted ūa1(uℓ) by ū
and ũa2(π(ūa1(uℓ)), u

+
c ) by ũ.

Remark 5.4. For a better understanding of the counterexample constructed in the above proof,
we show how the two Riemann problems corresponding to (uℓ, ur) and (u−c , u

+
c ) are solved. The

Riemann problem with initial datum (uℓ, ur) is solved by a subsonic 1-rarefaction with negative speeds
connecting uℓ to u

−
c , a stationary discontinuity from u−c to u+c , and a 2-rarefaction from u+c to ur, whose

tail is subsonic and its head is supersonic, see Figure 14 on the left. The Riemann problem with initial
datum (u−c , u

+
c ) is solved by a 1-rarefaction from u−c to ūa1(uℓ), whose left state is subsonic and its

right state is sonic, and ends at ξ = 0, a stationary discontinuity from ūa1(uℓ) to π(ūa1(uℓ)), an “almost
stationary” 1-shock from π(ūa1(uℓ)) to ũa2(π(ūa1(uℓ)), u

+
c ) and a 2-shock from ũa2(π(ūa1(uℓ)), u

+
c ) to

u+c , see Figure 14 on the right. In particular, the second solution does not coincide with the piecewise
function

ξ 7→

{
u−c if ξ < 0,
u+c if ξ ⩾ 0,

and this implies that (uℓ, ur) belongs to the coherence domain CH of RSc.

We now illustrate by numerical examples the statement of Proposition 5.3. The construction given
in the proof of that proposition with data a1 = 1, a2 = 2, ur = (10, 24) and the approximations in
the computations, lead us to consider uℓ = (13.47, 0). Figures 15a and 15b show the correct solution,
corresponding to RSc[uℓ, ur], which is obtained when the traces u±c are computed once and for all
at the initial time. Figures 15c and 15d presents the case where the traces are updated at each time
step. The procedure of updating u±c at each time step, which is usual in numerical schemes for general
initial-value problems, has the serious drawback of introducing nearby incoherent states. The solution
obtained in this way substantially differs from the right one (see also Remark 5.4 and Figure 14): a
small rarefaction wave on the left is missing, the jump at 0 is solved by a rarefaction instead of a
shock wave, and the plateau following it is higher and much longer; moreover, oscillations appear in
the plateau in the region x > 0. Observe that Figures 15a and 15b correspond to Figure 14 on the
left; moreover, in a sense, the solution u∆(t, x) represented in Figures 15c and 15d at time t = 0.2 can
be obtained for t ∈ [0, 2∆t) by merging the solutions represented in Figure 14 on the left, at t = 0,
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(b) ξ 7→ q∆(0.2, ξ)
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(d) ξ 7→ q∆(0.2, ξ)

Figure 15: Numerical illustration of the incoherence of the c-Riemann solver
corresponding to (5.5). Left column: the traces u±c are computed once and for all
at the initial time. Right column: the traces are updated at each time step.

and on the right, at t = ∆t. The above considerations demonstrate the instability of the scheme in
this case, caused by the incoherence of RSc.

Proposition 5.5. There exist a2 > a1 such that the c-Riemann solver corresponding to (5.5) is not
L111
loc-continuous with respect to the initial data.

Proof. Let (uℓ, ur) ∈ Dc be as in the proof of Proposition 5.3. Fix ε > 0 sufficiently small and

define uεℓ
.
= (ρℓ + ε, 0). Observe that FL

uε
ℓ

1,a1
lies above FLuℓ

1,a1
, hence π(ua1(u

ε
ℓ)) belongs to Γ+

o,a2(ur).
As a consequence RSc[u

ε
ℓ , ur] has a 1-rarefaction with negative speeds connecting uεℓ and ua1(u

ε
ℓ), a

stationary discontinuity from ua1(u
ε
ℓ) to π(ua1(u

ε
ℓ)), an “almost stationary” 1-shock from π(ua1(u

ε
ℓ))

to ũa2(π(ūa1(u
ε
ℓ)), ur) and a 2-rarefaction from ũa2(π(ūa1(u

ε
ℓ)), ur) to ur. By letting ε tend to zero the

speed of the 1-shock goes to zero and therefore RSc[u
ε
ℓ , ur] converges in L111

loc to{
RSp,a1 [uℓ, ua1(uℓ)](ξ) if ξ < 0,
RSp,a2 [ua1(uℓ), ur), ur](ξ) if ξ ⩾ 0,

which differs from RSc[uℓ, ur] constructed in Remark 5.4.

We do not consider the case a1 > a2 not to overload the paper.

6 Compressors

In Sections 4 and 5 we investigated the well-posedness and coherence of several couplings at the
intersection of two pipes. Such couplings are rather general, but they are understood to model “free”
flows through the junction. From this section on, we focus instead on couplings where external forces,
modeling the action of some device or friction effects, take place. We begin with compressors.
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A compressor is powered by the gas flowing through it; however, the gas consumption is very
low [40, p. 86] and is usually neglected in the modeling. To include the flux reduction due to gas
consumption (but discarding the gas loss in the pipe) one replaces the first Rankine-Hugoniot condition
(2.5) at x = 0, i.e., q−c = q+c , with (1−c̄)q−c = q+c , where c̄ is the flux fraction used by the compressor [40,
(17)]. We do not consider this case, which can be easily dealt as below by taking π2(ρ, q) = (1− c̄)q.

The purpose of a compressor is twofold. On the one hand, it increases the pressure and then
the density of the gas, i.e., p(ρ−c ) < p(ρ+c ) and ρ−c < ρ+c . On the other hand, it reduces the outlet
velocity, i.e., v(ρ−c ) > v(ρ+c ), because u−c and u+c have the same flow q0c but ρ−c < ρ+c . The latter
feature facilitates the occurrence of subsonic states and reduces the possibility of potentially dangerous
supersonic outflows.

The increase of the outflow pressure forces a higher outflow temperature; then, the isothermal
pressure (2.3) should be replaced by an isentropic pressure. We assume that the temperature rise is
negligible, as it is done in [24, (3), (59)], [34, (1.2), (1.5b)], [36, (7), (10b)], [40, (1), (15) and (16b)],
and still consider (2.3). The isentropic case can be dealt as well with slightly heavy computations.

We consider below both two-way and one-way flows; the compressor is located at x = 0. In
both two-way cases, we show that the coupling conditions do not select a unique coupling function
C. On the contrary, in the one-way cases, we prove the uniqueness of C and the coherence of the
corresponding c-Riemann solver.

6.1 Two-way flows

A first modeling assumes that the ratio between the incoming and outgoing pressures is constant. If the
compressor is switched on, then this ratio is greater than one if the flow at x = 0 is positive, otherwise
it is less than one; if the compressor is switched off then this ratio equals one. The corresponding
coupling condition can be written as

p(ρ+c ) =
(
1 +Kp(q

0
c )
)
p(ρ−c ). (6.1)

Here, if the compressor is switched on then either Kp(q
0
c ) > 0 in the case q0c > 0 or Kp(q

0
c ) ∈ (−1, 0)

otherwise; if the compressor is switched off then Kp(q
0
c ) = 0, see [27, (9)]. Observe that if Kp(q

0
c ) = 0

then condition (6.1) reduces to (4.1), which has already been studied in Subsection 4.1. For this
reason, below we assume that the compressor is always switched on, i.e., Kp(q

0
c ) ̸= 0.

In general Kp depends on time; we assume Kp to be piecewise constant since we are interested in
the corresponding c-Riemann solver. More precisely, we focus on

Kp(q
0
c ) =

{
K−

p if q0c ⩽ 0,

K+
p if q0c > 0,

− 1 < K−
p < 0 < K+

p . (6.2)

Note that (6.1) corresponds to π : Ω → Ω defined by (see Theorem 3.8)

π(ρ, q)
.
=
((

1 +Kp(q)
)
ρ, q
)
.

Notice that the model seems not to be completely meaningful when q0c = 0. However, the
counterexample showed in the proof of the next proposition avoids null flows at x = 0. Also notice
that the counterexample only involves subsonic flows.

Proposition 6.1. Fix K−
p ,K+

p ∈ R such that −1 < K−
p < 0 < K+

p . Condition (6.1) does not select
a unique c-Riemann solver in D.

Proof. It is sufficient to fix uℓ, ur ∈ Ω with ρr ⩾ ρ(ur) and such that there exist u−1 , u
−
2 ∈ FLuℓ

1 with

q−1 > 0 > q−2 , π1(u
−
2 ) ⩾ ρ(ur) and such that π(u−1 ), π(u

−
2 ) ∈ BLur

2 , see for instance Figure 16. Note

that by (6.2) we have ρ+1 = (1 +K+
p )ρ−1 and ρ+2 = (1 +K−

p )ρ−2 .
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Figure 16: Two solutions satisfying the coupling condition (6.1). With a slight abuse
of notation, we use u±1 and u±2 in place of u±c and corresponding to the two solutions.

A different modeling considers the coupling condition

|q0c |

((
p(ρ+c )/p(ρ

−
c )
)sign(q0c )κ − 1

)
= K, (6.3)

at x = 0, where κ ∈ [2/7, 2/5] is a parameter that depends on the gas under consideration and K ⩾ 0
is the compressor power, see [32, (18) and first line on page 2106].

Assume the compressor is switched off, i.e., K = 0. Then either p(ρ+c ) = p(ρ−c ) or q0c = 0, while
in the previous case (6.1)-(6.2) only the former possibility occurred. If p(ρ+c ) = p(ρ−c ), then condition
(6.3) reduces to (4.1), which is dealt as in Subsection 4.1. If q0c = 0, then the corresponding c-Riemann
solver does not coincide with RSp on Dc and then the compressor influences the flow across x = 0
even if it is switched off.

Proposition 6.2. Fix K ⩾ 0. Condition (6.3) does not select a unique c-Riemann solver in D.

Proof. Assume K = 0. Let uℓ, ur ∈ Ω be such that u−p = u+p and take u−c = û(0, uℓ), u
+
c = ǔ(0, ur).

Then both up and uc satisfy (6.3) but they differ.
If K > 0, we can proceed as in the proof of Proposition 6.1 and show that (6.3) does not yet select

a unique c-Riemann solver. Indeed, in this case q0c ̸= 0 and (6.3) is equivalent to

p(ρ+c ) =

(
1 +

K

|q0c |

)sign(q0c )/κ

p(ρ−c ),

which is analogous to (6.1).

6.2 One-way flows

Consider the coupling condition (6.1)-(6.2), and assume that the flow is one-way, say q ⩾ 0. Then the
corresponding coupling condition writes

p(ρ+c ) = (1 +K+
p ) p(ρ−c ), (6.4)

for a constant K+
p > 0, see [38, (4)] and [46, (20)2]. Condition (6.4) implies u+c = π(u−c ), where

π
.
= (π1, π2) : Ω → Ω is defined by

π(ρ, q)
.
=
(
(1 +K+

p ) ρ, q
)
. (6.5)

In Figure 17 we represent π(FLuℓ
1 ) for a fixed subsonic state uℓ ∈ Ω with qℓ > 0.

Note that π(u) lies on the right of u for any u ∈ Ω; moreover, if u1, u2 ∈ Ω are respectively
supersonic and subsonic states, then π(u1) lies on the left of π(u2). Observe that

Dc =
{
(uℓ, ur) ∈ D : qℓ, qr ⩾ 0, π(Γ−

o (uℓ)) ∩ Γ+
o (ur) ̸= ∅

}
, (6.6)

where Γ−
o and Γ+

o are defined in (2.14) and (2.15), respectively. Then, for every (uℓ, ur) ∈ Dc, we have
v(uc) ⩾ 0 in the whole of R by (2.14) and (2.15), see also Corollaries 2.10 and 2.11.

26



ρ

q
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u+c

Figure 17: Portion of FLuℓ
1 with non-negative flux, solid line, and its image through π

defined in (6.5), dashed line. Here, K+
p = 1.

Proposition 6.3. Fix K+
p > 0. If the flow is one-way with q ⩾ 0, then the coupling condition (6.4)

selects a unique coupling function C in the set Dc given in (6.6). Moreover, the c-Riemann solver
RSc corresponding to (6.4) is coherent.

Proof. First, we prove that C is well defined in Dc. This is equivalent to show that for any (uℓ, ur)
in Dc there exists a unique pair (u−c , u

+
c ) in Γ−

o (uℓ) × Γ+
o (ur) such that u+c = π(u−c ). By (6.6) we

have the existence of such a pair; we prove now that it is unique. Notice that (6.4) implies (3.6);
therefore, there are only two possible ways to construct a c-solution, that correspond to (1) and (2)
in Corollary 3.6. Observe that BLur

2 ∩ π(Γ−
o (uℓ)) has at most one element, see Figures 1, 6 and 17;

hence, there exists at most one u− ∈ Γ−
o (uℓ) such that π(u−) ∈ BLur

2 . Then, referring to that corollary,
the unique candidates for u−c are uℓ in case (1) and u− in case (2). We need to show now that it
is possible to construct a c-solution satisfying (1) if and only if it is not possible to construct a c-
solution satisfying (2). This is equivalent to show that uℓ is supersonic and π(uℓ) ∈ Γ+

o (ur) if and
only if BLur

2 ∩ π(Γ−
o (uℓ)) = ∅.

Assume by contradiction, see Figure 18, that there exists (uℓ, ur) ∈ Dc with both uℓ supersonic
(hence qℓ > 0), π(uℓ) ∈ Γ+

o (ur), and u− ∈ Γ−
o (uℓ), which is non-supersonic with q− > 0, π(u−) ∈

BLur
2 . Note that v(u−) ⩽ a < v(uℓ); hence u− ̸= uℓ. By (I) in Corollary 2.10 we deduce that

RSp[uℓ, u
−] only consists of a 1-shock, hence qℓ > q− and ρℓ < ρ−. As a consequence, see Figure 17,

we have π1(uℓ) < π1(u
−) and π2(uℓ) = qℓ > q− = π2(u

−). These considerations and the fact that
π(u−) ∈ BLur

2 imply that π(uℓ) cannot belong to BLur
2 but lies on its left, because BLur

2 is strictly
increasing in q ⩾ 0. Hence RSp[π(uℓ), ur] involves a 1-shock, which has positive propagation speed
because π(uℓ) ∈ Γ+

o (ur); therefore π(uℓ) is non-subsonic by (b) in Proposition 2.7. As a consequence,

ρ

q

uℓ
ur

π(uℓ)

u∗

u− π(u−)

FLuℓ
1

BLur
2

π(FLuℓ
1 )

F̃L
π(uℓ)

1

Figure 18: A hypothetical configuration where both cases (1) and (2) of Corollary 3.6

occur simultaneously. Above, F̃L
π(uℓ)

1 represents a “fake” FL
π(uℓ)
1 ; in fact, in the proof

of Proposition 6.3 we show that this configuration cannot occur.

there exists u∗ ∈ FLuℓ
1 ∩ FL

π(uℓ)
1 with ρℓ < π1(uℓ) < ρ∗ and π2(uℓ) = qℓ < q∗, see Figure 18; hence

u∗ ∈ Suℓ
1 ∩ S

π(uℓ)
1 and therefore uℓ, π(uℓ) ∈ Su∗

1 by (f) in Lemma 2.1. This leads to a contradiction:
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by the concavity of Su∗
1 , see item (c) in Lemma 2.1, the intersection Su∗

1 ∩ {(ρ, qℓ) : ρ ∈ (0, ρ∗)} has
at most one element because qℓ < q∗. This proves our claim. Then, the coupling function C is well
defined.

Second, we show that the c-Riemann solver is coherent. We proved above that the coupling function
C associated to (6.4) is well defined in Dc. Fix (uℓ, ur) ∈ Dc and consider (u−c , u

+
c ) = C(uℓ, ur). We

have (u−c , u
+
c ) ∈ Γ−

o (uℓ) × Γ+
o (ur) and u+c = π(u−c ); moreover, (u−c , u

+
c ) ∈ Γ−

o (u
−
c ) × Γ+

o (u
+
c ) and

therefore u+c = π(u−c ) ∈ π(Γ−
o (u

−
c )) ∩ Γ+

o (u
+
c ) ̸= ∅. Hence (u−c , u

+
c ) ∈ Dc and then (1) in Theorem 3.8

holds.
We now prove (2) in Theorem 3.8. Fix (u−, u+) ∈ Dc. If (u−, u+) = C(uℓ, ur), then (u−, u+) ∈

Γ−
o (uℓ)×Γ+

o (ur) by (3.3) and u+ = π(u−) by (6.4) and (6.5). Conversely, if (u−, u+) ∈ Γ−
o (uℓ)×Γ+

o (ur)
and u+ = π(u−) then (u−, u+) = (u−c , u

+
c ) = C(uℓ, ur) by the uniqueness showed above. Thus also (2)

in Theorem 3.8 holds.
Item (3) in Theorem 3.8 holds by the uniqueness showed above. Therefore Theorem 3.8 applies

and this concludes the proof.

As already observed in the first part of the above proof, (6.4) implies (3.6); hence, the structure
of the solution is as described in Corollary 3.6.

Remark 6.4. The flow can be supersonic across the compressor, i.e., v(u−c ), v(u
+
c ) > a. Indeed,

according to the last statement in Corollary 3.6, we have v(u−c ) > a if and only if both u−c = uℓ and
v(uℓ) > a; moreover, in this case we may also have v(u+c ) > a, because u+c = π(u−c ) and (6.5) imply
v(u+c ) = q0c/ρ

+
c ≈ v(u−c ) = q0c/ρ

−
c for K+

p sufficiently small.

Now, consider the coupling condition (6.3). Assume that the flow is one-way, say q ⩾ 0, and that
the compressor is switched on, i.e., K > 0. Then the corresponding coupling condition can be written
as

q0c

((
p(ρ+c )/p(ρ

−
c )
)κ

− 1

)
= K, (6.7)

see [12, (3.1.39), (3.1.40), (3.1.41)], [24, (59)], [34, (1.5b)], [36, (10b)], [40, (15) and (16b)], [41, (C3)],
[52, § 2.3], [53, (71) and (74)]. In [24] and [34] the authors let κ vary in [2/7, 2/5] and [1/3, 3/5],
respectively. By the assumptions we have

ρ+c > ρ−c , q0c > 0. (6.8)

Therefore (6.7) is equivalent to

p(ρ+c ) =

(
1 +

K

q0c

)1/κ

p(ρ−c ).

Note that u+c = π(u−c ), where π
.
= (π1, π2) : {(ρ, q) ∈ Ω : q ̸= 0} → {(ρ, q) ∈ Ω : q ̸= 0} is defined by

π(ρ, q)
.
=

((
1 +

K

q

)1/κ

ρ, q

)
. (6.9)

In Figure 19 we represent π(FLuℓ
1 ) for a fixed subsonic state uℓ ∈ Ω with qℓ > 0. Note that π(u) lies on

the right of u for any u ∈ Ω; moreover, if u1, u2 ∈ Ω are supersonic and subsonic states with q1 = q2,
respectively, then π(u1) lies on the left of π(u2).

Observe that
Dc =

{
(uℓ, ur) ∈ D : qℓ, qr ⩾ 0, π(Γ−

o (uℓ)) ∩ Γ+
o (ur) ̸= ∅

}
. (6.10)

This implies v(uc) ⩾ 0 in the whole of R, for any (uℓ, ur) ∈ Dc, by (2.14) and (2.15), see also
Corollaries 2.10 and 2.11.

The proof of the following proposition is analogous to that of Proposition 6.3 (it is sufficient to
consider Figures 19, 20 in place of Figures 17, 18, respectively), and is then omitted.

Proposition 6.5. Fix K > 0. If the flow is one-way with q ⩾ 0, then the coupling condition (6.7)
selects a unique coupling function in the set Dc given in (6.10), and the corresponding c-Riemann
solver is coherent.
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ρ

q

uℓ

u−c
u+c

Figure 19: Portion of FLuℓ
1 with positive flux, solid line, and its image through π defined

in (6.9), dashed line. Here, K = 1/5 and κ = 11/30.

ρ

q

uℓ
ur

π(uℓ)

u∗

u− π(u−)

FLuℓ
1

BLur
2

π(FLuℓ
1 )

F̃L
π(uℓ)

1

Figure 20: A hypothetical configuration where both cases (1) and (2) of Corollary 3.6

occur simultaneously. Above, F̃L
π(uℓ)

1 represents a “fake” FL
π(uℓ)
1 ; in fact, it is possible

to show that this configuration cannot occur.

Note that (6.8)1 implies (3.6); hence the structure of the solution is as described in Corollary 3.6.
A remark analogous to Remark 6.4 also holds in this case.

We conclude this subsection by mentioning the one-way flow through a compressor modeled in [37,
§ 2.3]; the modeling is as follows. If the compressor is active, then it increases the outflow pressure
by an additive term ∆(t); if the compressor is in bypass mode, then the in- and outflow pressures
are equal; the flow is zero if the compressor is closed. This simplified modeling is analogous to the
one presented in Subsection 7.2 for valves (and then suffers in principle of the same drawbacks), with
an important difference: while the action of a valve can be modeled as instantaneous, it takes time
to compress the gas, and this is why ∆(t) depends on t. As a consequence, even if we prescribe the
pressure rise to equal some constant ∆̄, to achieve this value it takes a time t̄ such that ∆(t̄) = ∆̄.
As a consequence, this modeling falls out of our modeling (see however the similar “delayed” valve
in [21, § 6]).

7 Valves

As well as compressors, valves are an important ingredient in gas networks. In this section we first
briefly recall some recent results concerning their coherence and its physical meaning. Then we show
that some simplified models usually exploited for flow optimizations in networks are not coherent.

7.1 Coherence and chattering

In this subsection we briefly resume the results contained in [19–22]. To the best of our knowledge,
they are the first rigorous results about non-stationary isothermal flows through valves.

Pressure-relief valves are considered in [19]. A detailed study is done for case of a valve which is
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closed if |p(ρ̌(0, ur))− p(ρ̂(0, uℓ))| ⩽ M , for a fixed M > 0, otherwise it is open. The velocities of the
flows are general: no assumption of subsonicity is done. In such a case, the coherence domain of the
c-Riemann solver is explicitly provided. Other properties are studied as well: consistence, the L111

loc-
continuity domain of the solver, and examples of invariant domains. The lack of coherence has been
interpreted in that paper as modeling the phenomenon of chattering, the rapid and repeated opening
and closing of the valve; see [19–22] and references therein for more information on this phenomenon.

The case of one-way valves is discussed in [21]; this means that the flow through the valve is possible
in a single direction. As an example of the general framework treated there, it was considered the case
of a valve that aims at keeping a fixed outgoing flow q∗ > 0; when this is not possible, then the valve
shuts. Such valves are known as pressure independent characterized control valves. The main results
are an explicit characterization of the coherence domain of the c-Riemann solver, and a discussion of
the invariant domains. Also the case of a valve with a non-zero reaction time is considered.

The paper [22] deals with flux-maximizing valves. Moreover, the flow is imposed to occur within
prescribed bounds of pressure and flow; this requirement clearly corresponds to the existence of
invariant domains. Within this framework, three kinds of valves are described, which differ for their
action; two of them lead to a coherent solver, the third one does not.

How to “remove” the chattering of valve? A theoretical answer to this issue is given in [20]: one
has to modify the corresponding c-Riemann solver in order that it becomes coherent. An example
of this procedure is shown for the (incoherent) c-Riemann solver considered in [21]; the new solver
differs from the old one only for the states that led the old solver to lose coherence. Moreover, for
incoherent initial data, the new solver selects the unique solution that maximizes the flow through the
valve among all c-Riemann solvers. Several numerical simulations are also provided.

A partial conclusion of the results of the above papers is that the mechanism that leads to the
loss of coherence, and then possibly trigger chattering, is hard to understand. Indeed, such a behavior
strongly depends on the type of valve under consideration and establishing general criteria is not yet
clear.

7.2 Control valves in optimization

An important issue in gas networks concerns the optimization of flows, depending on the presence of
compressors, valves and other devices in the network [37,53]. The complexity of the problem essentially
requires that the flows are constant in each pipe and variations only occur at the junctions. In this
short subsection we briefly comment on how valves are modeled in such a framework and show such
oversimplified modelings are not coherent.

A control valve can be modeled by the coupling conditions

p(ρ+c ) = p(ρ−c )−∆ if the valve is active,

p(ρ+c ) = p(ρ−c ) if the valve is in bypass mode,

q0c = 0 if the valve is closed,

where ∆ > 0, see [37, § 2.2] and [53, § 3.4.17]. In general the pressure difference ∆ depends on time;
we assume that it is constant since we are interested in the corresponding c-Riemann solver.

In the case the control valve is in bypass mode the comments in Subsection 4.1 apply and then
RSc ≡ RSp. The case of a closed control valve corresponds to take q0c = 0, u−c = û(0, uℓ) and
u+c = ǔ(0, ur); observe that û(0, uℓ) and ǔ(0, ur) are well defined for any (uℓ, ur) ∈ D because 0 ∈
(Q(ur), Q(uℓ)) by (2.17). If the valve is always active, then the situation is more delicate. Indeed, the
coupling condition

p(ρ+c ) = p(ρ−c )−∆ (7.1)

has two main drawbacks: it neither selects a unique c-Riemann solver nor it is coherent, as we show
in the next two propositions. For δ

.
= ∆/a2 we first introduce π : Ω → Ω by π(ρ, q)

.
= (ρ− δ, q).

Proposition 7.1. The coupling condition (7.1) does not select a unique c-Riemann solver.
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Figure 21: Two solutions satisfying the coupling condition (7.1). With a slight abuse
of notation, we write u±1 and u±2 in place of u±c and corresponding to the two solutions.
Moreover, we write π(Γ−

o ) in place of π(Γ−
o (uℓ)) and ũi in place of ũi(u

+
i , ur), i ∈ {1, 2}.

The solution on the right maximizes the flow across x = 0. The state ũ2 is not
represented in the figure on the left because its flux is too large.

Proof. For any ∆ > 0, it is easy to find uℓ, ur ∈ Ω such that π(Γ−
o (uℓ)) ∩ Γ+

o (ur) has more than one
element, indeed infinitely many, see Figure 21. Then it is sufficient to observe that we can associate
to any u+c ∈ π(Γ−

o (uℓ)) ∩ Γ+
o (ur) a weak solution of the form (3.2) satisfying (7.1).

A simple way to fix the drawback pointed out in the above proposition consists in imposing a
maximization property of the flow across the coupling: among all the c-Riemann solvers satisfying
(7.1), we choose the one that maximizes the flow across x = 0. Such a c-Riemann solver is unique by
the strict monotonicity of Γ−

o (uℓ), but it is not coherent.

Proposition 7.2. The c-Riemann solver satisfying (7.1) and maximizing the flow at x = 0 is not
coherent.

ρ

q BLur
2

BL
ua(ur)
1ua(ur)

B+(ur)

ur

uℓ

u−

u+

uπ(u)

FLuℓ
1

π(Γ−
o )

Figure 22: Construction given in the proof of Proposition 7.2. The shaded region and
the solid thick black lines represent Γ+

o (ur); its lower bound B+(ur) is the dashed black
line. We denote π(Γ−

o (uℓ)) by π(Γ−
o ) and u(uℓ) by u.

Proof. For any ∆ > 0, it is easy to find uℓ, ur ∈ Ω with v(ur) > a and qℓ = 0, such that π(u(uℓ))
belongs to B+(ur), see Figure 22, and such that there exist u− ∈ Γ−

o (uℓ) and u+ ∈ BLur
2 satisfying

u+ = π(u−) and 0 < v(u+) < a. By construction we have C(uℓ, ur) = (u−, u+). On the other hand,
by reasoning as in the proof of Proposition 5.3, we deduce C(u−, u+) = (u(uℓ), π(u(uℓ))) ̸= (u−, u+)
and this concludes the proof.

In [53, § 3.4.18] the authors consider a control valve without remote access. Such a valve is designed
to keep the outgoing pressure below a given threshold, p(ρ+c ) ⩽ pset. The valve is in bypass mode
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if p(ρ−c ) ⩽ pset, it automatically closes when p(ρ−c ) > pset + ∆, where ∆ is a constant; otherwise
the control valve is active, reducing the pressure by some amount δ = δ(uℓ, ur) ∈ (0,∆] so that
p(ρ+c ) = p(ρ−c )− δ = pset. As a result we have

p(ρ+c ) = p(ρ−c ) if p(ρ−c ) ⩽ pset, (7.2a)

p(ρ+c ) = pset if pset < p(ρ−c ) ⩽ pset +∆, (7.2b)

q0c = 0 if p(ρ−c ) > pset +∆. (7.2c)

ρ

q

uℓ = ur

ǔ û

u−cu+c

ρset ρset∆

BLur
2BLǔ2

FLû1FLuℓ
1

x

t

uℓ ur

ǔû

x

t

û ǔ

u+cu−c

Figure 23: Incoherent Riemann data for the coupling conditions (7.2), see
Proposition 7.3, with uℓ = ur = (2, 1), pset ≈ 1.64273, ∆ ≈ 1.0968 and
q0c (û(0, uℓ), ǔ(0, ur)) = 0.5. Above we denoted pset/a2 by ρset, (pset + ∆)/a2 by ρset∆ ,
û(0, uℓ) = u−c (uℓ, ur) by û, ǔ(0, ur) = u+c (uℓ, ur) by ǔ, u−c (û(0, uℓ), ǔ(0, ur)) by u−c ,
u+c (û(0, uℓ), ǔ(0, ur)) by u+c ,

Proposition 7.3. The c-Riemann solver corresponding to a control valve without remote access
corresponding to (7.2) is uniquely determined but not coherent.

Proof. The proof is analogous to that of Proposition 7.2 (see also above it) and is therefore omitted,
see Figure 23. The mutual positions of the (almost coinciding) curves BLur

2 and BLǔ2 (as well as FLuℓ
1

and FLû1) can be deduced by Lemma 2.1.

8 Resistors

Resistors are fictitious elements introduced to model the cumulative resistance of equipment (e.g.,
internal piping, filters), which cause a pressure loss at the intersection of the pipes in the direction
of the flow. As a consequence, the momentum is not conserved at those points. The pressure drop
fext > 0, which is not given analytically but provided by tables [25], depends on the geometry of the
intersection, a resistance coefficient, the actual flow, and the pressure at the intersection.

As a first example, consider a one-way flow q ⩾ 0, with pressure laws p1(ρ) = a21 ρ and p2(ρ) = a22 ρ
in the two pipes x < 0 and x > 0 as in Section 5, and assume that the pressure loss at the intersection
is given by a constant quantity fext. Then we consider the coupling condition [2, (32)]

a22ρ
+
c = a21ρ

−
c − fext. (8.1)

If a1, a2 > 0 (possibly a1 = a2), then the c-Riemann solver associated to (8.1) is not uniquely defined;
however, the c-Riemann solver associated to (8.1) and maximizing the flow at x = 0 is uniquely defined
but it is not coherent. Indeed, it is easy to adapt the proofs of Propositions 7.1 and 7.2 by modifying

the definition of π as π(ρ, q)
.
=

(
a21
a22

ρ− fext
a22

, q

)
.

As a further example, assume the absolute pressure loss is either constant [53, (12)]

p(ρ+c ) = p(ρ−c )− sign(q0c )∆, (8.2)
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or modeled by a quadratic function of the (turbulent) flow [53, (13)]

p(ρ+c ) = p(ρ−c )−Kp
|q0c | q0c
ρ−c

. (8.3)

Condition (8.2) coincides with (7.1) in the case q0c ⩾ 0. Then, it is clear that (8.2) does not select a
unique c-Riemann solver, see Proposition 7.1; uniqueness occurs if the flow is one-way and by imposing
the flow maximization property at the coupling, but in this case the c-Riemann solver is not coherent,
see Proposition 7.2.

We turn now to (8.3). Observe that u+c = π(u−c ), where π : Ω → Ω is defined for κp
.
= Kp/a

2 by
π(ρ, q)

.
=
(
ρ− κp |q| q/ρ, q

)
. Also (8.3) does not select a unique c-Riemann solver (by reasoning as in

Proposition 7.1). However, if we impose a maximization property of the flow across the coupling, then
it selects a unique c-Riemann solver; nevertheless, it is not coherent (by arguing as in Proposition 7.2).

9 Conclusions and some open problems

In this paper we provided a general framework for the study of coupling Riemann problems and
provided some results about their coherence. This mathematical problem arises in the modeling of
gas flows through two connected pipes. Rather surprisingly, some coupling conditions proposed in the
literature do not give rise to a unique coupling Riemann solver; other conditions have instead this
property but the corresponding solver fails to be coherent. At last, there still are some conditions
satisfying both requirements. For the reader’s convenience, we provide an overview of our results in
Table 1.

Our analysis is restricted for simplicity to the isothermal Euler system, but it could be generalized
to several extents. For instance, to isentropic flows and to general flows modeled by the full 3×3 Euler
system. For brevity, we did not address explicitly the case of pipes with different cross-sectional areas
[16–18], or misaligned [16, 17]; also these cases could be dealt following the lines above. Analogously,
it is not hard to extend to two-way flows what we discussed of the one-way flows only.

There are however several related problems that would deserve consideration but to which this
paper does not provide answers. For instance, which couplings have the properties that the corresponding
c-Riemann solvers are L111

loc-continuous with respect to the initial data? This property is satisfied by
the Lax Riemann solver. Is it possible to characterize some invariant domains for Cauchy problems?
This would be a first step toward the solution of the Cauchy problems in the large.

About coherence, we emphasize that its failure is not due to bad modeling, but reflects some
physical phenomenon; this is the case, for instance, of the chattering of valves [19–22]. The issue of
how to modify a valve to get coherence is tackled in [20]. The same problem obviously occurs for other
mechanical devices, for instance, compressors.
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Section Coupling Two-way flow Two pressures Uniqueness Coherence

4.1 p(ρ+c ) = p(ρ−c ) YES NO YES YES

4.2 P (u+c ) = P (u−c ) YES NO NO

4.2 P (u+c ) = P (u−c ) and F (u+c ) ⩽ F (u−c ) YES NO YES YES

4.3 E(u+c ) = E(u−c ) YES NO NO

5.1 v(u+c ) ⩽ a2 NO YES YES YES

5.2 pa2(ρ
+
c ) = pa1(ρ

−
c ) NO YES YES NO

6.1 p(ρ+c ) =

{
(1 +K−

p )p(ρ−c ) if q0c ⩽ 0

(1 +K+
p )p(ρ−c ) if q0c > 0

YES NO NO

6.1 |q0c |
((

p(ρ+c )/p(ρ
−
c )
)sign(q0c )κ − 1

)
= K YES NO NO

6.2 p(ρ+c ) = (1 +K+
p ) p(ρ−c ) NO NO YES YES

6.2 q0c

((
p(ρ+c )/p(ρ

−
c )
)κ − 1

)
= K NO NO YES YES

7.1 several valves in [19–22] YES/NO NO YES YES/NO

7.2 p(ρ+c ) = p(ρ−c )−∆ NO NO NO

7.2 p(ρ+c ) = p(ρ−c )−∆ and q-max NO NO YES NO

7.2

q0c = 0 if p(ρ−c ) > pset +∆

p(ρ+c ) =

{
pset if pset < p(ρ−c ) ⩽ pset +∆

p(ρ−c ) if p(ρ−c ) ⩽ pset
NO NO YES NO

8 pa2(ρ
+
c ) = pa1(ρ

−
c )− fext NO YES NO

8 pa2(ρ
+
c ) = pa1(ρ

−
c )− fext and q-max NO YES YES NO

8 p(ρ+c ) = p(ρ−c )− sign(q0c )∆ YES NO NO

8 p(ρ+c ) = p(ρ−c )−∆ and q-max NO NO YES NO

8 p(ρ+c ) = p(ρ−c )−Kp
|q0c | q0c
ρ−c

YES NO NO

8 p(ρ+c ) = p(ρ−c )−Kp
|q0c | q0c
ρ−c

and q-max NO NO YES NO

Table 1: Overview of the coupling conditions and related results. Above, “q-max”
stands for “flow maximization”; “two pressures” refers to the possibility of having two
different pressure laws, one in x < 0 and the other in x > 0.
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