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Asymptotic behavior of a degenerate forest kinematic
model with a perturbation

Lu LI∗, Guillaume Cantin†

(December 26, 2023)

Abstract

In this paper, we study the asymptotic behavior of the global solution to a degenerate forest kinematic
model, under the action of a perturbation modelling the impact of climate change. When the main
nonlinearity of the model is assumed to be monotone, we prove that the global solution converges to a
stationary solution, by showing that a Lyapunov function deduced from the system satisfies a  Lojasiewicz-
Simon gradient inequality. Under suitable assumptions on the parameters, we prove the continuity of the
flow and of the stationary solutions with respect to the perturbation parameter. Although, due to a lack of
compactness, the system does not admit the global attractor, we succeed in proving the robustness of the
weak attractors, by establishing the existence of a family of positively invariant regions. We also present
numerical simulations of the model and experiment the behavior of the solution under the effect of several
types of perturbations. Finally, we show that the forest kinematic model can lead to the emergence of
chaotic patterns.

Key words. Forest kinematic model, perturbation, asymptotic behavior,  Lojasiewicz-Simon gradient
inequality, robustness.

AMS Subject Classification: 35K57, 35K65, 35B40, 35B41.

1 Introduction
Global Forest Resources Assessment 2020 (FRA 2020) declares that there are 4.06 billion hectares forests
around the world, cover nearly 1/3 of land globally. Forests, which are found around the globe, are the largest
terrestrial ecosystem of Earth by area, and are one of the most valuable ecosystems on Earth. There exist
tropical moist or dry forests around the Equator, and temperate forests at the middle latitudes, boreal forests
in subarctic climates (see [41]). Most importantly, forests provide a diversity of ecosystem services including
biodiversity, carbon stored, purifying water, aiding in regulating climate. Meanwhile, anthropic activities
and forest ecosystems interact with each other. Anthropogenic factors that can affect forests include illegal
or unsustainable logging, urban sprawl, human-caused forest fires, acid rain, invasive species, etc. There
are also many natural factors that can cause changes in forests over time, including forest fires, pollution,
insect pests, diseases, competition between species (see [35]), as well as the impacts of climate change (see
[8, 29]). However, the impact of these accidental factors on forest ecosystems can not be fully described by
non-random forest dynamics. In the past decades, scientists have continued to study global warming and
its impact on Earth, and it is a challenge for the scientific community to better understand the dynamics
of forest ecosystems. In this paper, our aim is to study, through a mathematical modelling approach, the
dynamics of forest ecosystems associated with simplified perturbations, which are caused by global warming
and anthropic activities.

In [27], a forest kinematic model determined by a system of parabolic-ordinary differential equations,
and describing the dynamics of a simplified forest ecosystem, was firstly investigated. Here, we consider the
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following forest kinematic model with a perturbation:
∂u

∂t
= αw − q(u) − µp(u), ∂w

∂t
= δ∆w − βw + αu, (1)

where the unknown functions u, w denote the density of trees and the density of seeds, respectively. As
detailed below, u satisfies a nonlinear ordinary differential equation involving a perturbation p(u) of a given
nonlinearity q(u), and w satisfies a linear diffusion equation in a domain Ω ⊂ R2 modelling a geographical
region occupied by a forest. This forest kinematic model belongs to a large class of degenerate reaction-
diffusion systems arising in life science and admitting remarkable properties. Such degenerate reaction-
diffusion systems have been widely studied, for instance in [32] to model the spread of early tumors along
linear or tubular structures; in [2, 36] to model the competing species with sedentary species. Therefore,
it is of long-term practical significance to study the properties of the forest kinematic model. Here, the
degeneracy corresponds to the absence of diffusion in the first equation. In other words, one species of the
system is sedentary (namely trees, which are typically motionless). Furthermore, the non-diffusive equation
admits a non trivial nonlinearity, which is often related to a hysteresis process that acts in the system (see
for instance [1, 25, 26, 46]). Hence, it is observed that these degenerate reaction-diffusion systems admit
discontinuous patterns. Although the properties of such patterns has been widely studied, for instance in
[4, 6, 11, 26, 28, 33, 34], their characteristic mechanisms are far from being completely understood. Indeed,
their local stability has been studied (for instance in [7, 11, 26]), but to the best of our knowledge, their
structural stability, that is, their behavior under the effect of a perturbation of the system, has not been
analyzed. In parallel, very recent results have been established on the asymptotic behavior of the trajectories
determined by these degenerate forest kinematic systems. Notably, a result of non-existence of the global
attractor for a degenerate reaction-diffusion system with hysteresis has been proved in [5]. Meanwhile, the
weak convergence of the solutions to a forest model towards heterogeneous stationary solutions has been
established in [23] by applying the  Lojasiewicz-Simon gradient inequality, and the weak convergence of the
solutions to a simplified model towards discontinuous patterns has been proved in [6] by using a macroscopic
mass effect under symmetry assumptions. However, it is worth pointing out that no attempt has been made to
analyze the robustness of the asymptotic behavior of these dynamical systems with respect to a perturbation
for now. It is precisely our aim in this paper to bring a novel contribution on this point. Therefore, we
study the asymptotic behavior of the perturbed problem (1). We establish a new result on the convergence of
the solutions towards stationary solutions and we prove non trivial statements on the robustness of the flow
and of the weak attractors, under the action of the perturbation parameter, in a functional context which
is characterized by a lack of compactness. Although it is very basic, the perturbation succeeds in faithfully
reproducing ecological properties of great interest, as highlighted by our numerical results. We emphasize
that our main results in this paper are based on the assumption that the perturbation is monotone. For the
non-monotone case, limited results have been obtained in [5] and [13].

Besides, since the 1970’s, many numerical studies show that reaction-diffusion systems can produce steady
state finite amplitude spatial patterns, for instance, fronts, spirals, targets, hexagons, stripes, dissipative
solitons, etc. Therefore, reaction–diffusion systems have attracted much interest as a prototype model for
pattern formation (see [24, 39]). However, patterns in nature are often chaotic, rarely exactly repeating, and
often involve fractals. Because extremely small differences in starting conditions can lead to widely differing
outcomes. The numerical simulations we perform in Section 5.3 justify this assertion.

Our paper is organized as follows. In Section 2, we firstly present the forest kinetic model and its well-
posedness results, and the Lyapunov function deduced by the dynamical system. We further characterize
the L2-ω-limit set of the global solution and prove its non emptiness. In Section 3, under the assumptions
of parameters, we prove the asymptotic convergence result (Theorem 4) by applying the  Lojasiewicz-Simon
gradient inequality (Proposition 11). It is remarkable that the conclusion only holds when the potential of the
perturbation is convex. In Section 4, we study the long time behavior of this model when the perturbation
parameter µ tends to 0. We prove the continuity of the flow (Theorem 6), and in the monotone case, we
can further prove the continuity of the stationary solutions (Theorem 7), which is nontrivial, and yields
the robustness of the weak attractors (Theorem 8). We also analyze the case of a strong perturbation and
show how it drives the system to converge to the trivial equilibrium (Theorem 9). Finally, in Section 5, we
present several numerical simulations, which help better understand how the ecotone can be shifted, and how
intermediate ecosystems can emerge under different climatic perturbations. We also show that randomly
generated initial conditions can lead to chaotic patterns.
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2 Setting of the problem
In this section, we present the degenerate forest kinematic model under study, the assumptions on the
perturbation introduced in the model, and basic results on the existence of local and global solutions.

2.1 Notations and preliminary results
Throughout this paper, C will stand for positive constants, which may depend on Ω and some other parame-
ters, but are independent of the choice of t, and may change from line to line. Ω ⊂ Rn is a bounded domain,
and its boundary Γ is sufficiently smooth. Let C

(
I,X) (respectively C1(I,X)) denote the space of continuous

(respectively continuously differentiable) functions defined on an interval I ⊂ R with values in a Banach
space X. Let Lp(Ω) and W k,p(Ω), p ∈ [1,∞], k ∈ N be the general Lebesgue and Sobolev spaces, equipped
with the norms ∥ · ∥Lp and ∥ · ∥W k,p , respectively. In particular, for p = 2, we simply note W k,2(Ω) = Hk(Ω).
If V is a Hilbert space with dual V ′, its inner product is denoted (u, v), u, v ∈ V , and the duality product in
V × V ′ is denoted < u, v >, u ∈ V , v ∈ V ′. To simplify the notations, we denote L2(Ω) = L2(Ω) × L2(Ω).

So as to guaranty the self-sufficiency of the paper, we now present an important result on semi-linear
equations. Let A be a sectorial operator in X of angle ξ < π

2 . Let η be a real coefficient such that 0 < η < 1,
and let F be a non-linear operator defined in D(Aη) with values in X. We consider the Cauchy problem

dU

dt
+AU = F (U), t > 0, U(0) = U0, (2)

with U0 ∈ X. We assume that F enjoys the property:

∥F (U) − F (V )∥X ≤ CF (1 + ∥AηU∥2
X + ∥AηV ∥2

X)∥Aη(U − V )∥X , (3)

for all U, V ∈ D(Aη), with a positive constant CF and a well-chosen η ∈ (0, 1). The following theorem is
proved in Ref. yagi2009abstract Theorem 4.4.

Theorem 1. For all U0 ∈ X, there exists TU0 > 0 such that problem (2) admits a unique solution U =
U(t, U0) in function space

U ∈ C((0, TU0 ]; D(A)) ∩ C([0, TU0 ];X) ∩ C1((0, TU0 ];X),

where TU0 depends only on ∥U0∥X .

2.2 The degenerate forest kinematic model
In this paper, we consider the following initial boundary value problem:

∂u
∂t = αw − qµ(u) in (0,+∞) × Ω,
∂w
∂t = δ∆w − βw + αu in (0,+∞) × Ω,
∂w
∂ν = 0 on (0,+∞) × Γ,

u(0, x) = u0(x), w(0, x) = w0(x) in Ω,

(4)

in a bounded and regular domain Ω ⊂ R2 with boundary Γ. The domain Ω models a geographical area
occupied by a forest. The unknown functions u = u(t, x) and w = w(t, x) respectively correspond to the
densities of the trees and the air-borne seeds. The biological coefficients α, β are the seed production and
seed deposition rates; δ is a diffusion rate in the air; qµ(u) denotes the mortality of the trees, which is a
smooth function associated with a perturbation term, given as

qµ(u) = q(u) + µp(u), q(u) = u[a(u− b)2 + c], µ ≥ 0, u ∈ R, (5)

where a, b, c are positive coefficients. We also assume that the coefficients α, β, δ and µ are positive, and
the perturbation p(u) is continuously differentiable in R and satisfies:

|p(s)| + |p′(s)| ≤ M1, ∃M1 > 0,∀s ∈ R. (6)
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A simple example of a perturbation p(u) has been studied in Ref. cantin2023onthe, given by

p(u) = 20u
[1 + 10(u− b)2]2 , u ∈ R+. (7)
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Figure 1: Effect of the perturbation parameter µ on the function qµ(u) defined by (5) and (7).
Remark 1. If the parameters α, β and c satisfy the condition√

βc ≤ α ≤ β, (8)

then there exist positive constants µ1 < µ2 such that qµ(u) is monotone for all 0 ≤ µ ≤ µ1, non monotone for
µ > µ1. For µ1 < µ < µ2, qµ(u) presents at least three monotone branches and admits at least 3 intersection
points with the line f(u) = α2

β u for all 0 ≤ µ < µ2. For µ > µ2, qµ(u) admits a unique intersection point
with the line f(u) = α2

β u. In the rest of the paper, we will always assume that the parameter condition (8) is
fulfilled.

Besides, the behavior of a type of time period perturbation is also attractive to study, for instance, in the
case of

p(u) = sin(20u), u ∈ R+, (9)
it illustrates from Figure 2(b) that there exists a perturbation parameter µ1 > 0 so that the perturbation
is monotone in [0, µ1], and admits 5 intersection points with the line f(u) = α2

β u. For µ1 < µ < µ2, qµ(u)
admits more than 5 intersection points. In Section 5, we will also perform some numerical simulations of the
degenerate kinematic forest model with different perturbations and study the effect of climatic perturbations
effect on the model. In particular, we will observe the emergence of ecotones in the forest ecosystem, see
Section 5.2 for more information.
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Figure 2: Effect of the perturbation parameter µ on the function qµ defined by (5) and (9).

Note that the function qµ(u) derives from a potential Qµ(u) written as

Qµ(u) =
∫ u

0
(q(ξ) + µp(ξ))dξ, u ∈ R. (10)

In this paper, we prove a  Lojasiewicz-Simon gradient inequality under the assumption:

c− 1
3ab

2 + µp′(u) ≥ 0, (11)
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which implies that the potential Qµ(u) given by (10) is convex. More precisely, since

Q′′
µ(u) = 1

3a(3u− 2b)2 + c− 1
3ab

2 + µp′(u),

note that q0 = min
u∈R

Q′′
µ(u) ≥ 0 is required.

Now, our aim is to prove that the degenerate forest kinetic system (4) admits local solutions. To this end,
we rewrite it as a semi-linear equation in a proper Banach space.

2.3 Abstract formulation and local solutions
Following [49], we handle the degenerate forest kinetic system (4) in the Banach space X defined by

X = L∞(Ω) × L2(Ω),

equipped with the product norm ∥U∥X = ∥u∥L∞ + ∥w∥L2 , U = (u,w)⊤ ∈ X. The space of initial values is
given by

K = {U = (u,w)⊤ ∈ X; u,w ≥ 0}.

We consider the differential operator Λ defined as the realization of −δ∆ + β in L2(Ω) with the Neumann
boundary condition on Γ. It is known that Λ is a positive definite self-adjoint and sectorial operator, of angle
strictly less than π

2 , with domain

D(Λ) = H2
N (Ω) =

{
w ∈ H2(Ω); ∂w

∂ν
= 0 on Γ

}
.

Hence, the diagonal operator A = diag {1,Λ} is also a sectorial operator in X, with angle strictly less than
π
2 , and with domain D(A) = L∞(Ω) × D(Λ). Here, we emphasize that the domain of A is not compactly
embedded in X, although the domain of Λ is compactly embedded in L2(Ω). This is due to the absence of
diffusion in the first equation, and partly determines an original asymptotic behavior, as will be shown in
Section 4.

Next, we consider an exponent η ∈
( 3

4 , 1
)
. The sectorial operator Λ admits a fractional power Λη whose

domain is given by

D(Λη) = H2η
N (Ω) =

{
w ∈ H2η(Ω); ∂w

∂ν
= 0 on Γ

}
,

where H2η(Ω) is the interpolation space W 2η,2(Ω). We have the continuous embeddings

H2η(Ω) ⊂ C
(
Ω̄
)

⊂ L∞(Ω) ⊂ L2(Ω), (12)

note that ∥u∥D(Λη) and ∥Ληu∥L2(Ω) are equivalent. The diagonal operator A also admits a fractional power
Aη and its domain is given by D(Aη) = L∞(Ω) ×H2η

N (Ω).
In this way, the degenerate forest kinematic system (4) can be written in an abstract form

dU

dt
+AU = Fµ(U), t > 0,

U(0) = U0,
(13)

where Fµ(U) is the nonlinear operator defined by

Fµ(U) =
(
αw − qµ(u) + u

αu

)
, U = (u,w)⊤ ∈ D(Aη). (14)

Note that the domain of the nonlinear operator Fµ is uniform with respect to the perturbation parameter
µ. The following proposition establishes an estimate of Fµ which is crucial for proving the existence of local
solutions to the problem (13). This estimate will also be useful for studying the asymptotic behavior of the
solutions.
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Proposition 1. There exist constants C1, C2 > 0 such that the nonlinear operator Fµ defined in D(Aη) by
(14) satisfies

∥Fµ(U) − Fµ(Ũ)∥X ≤ C1(1 + ∥U∥2
X + ∥Ũ∥2

X)∥Aη(U − Ũ)∥X

+ µC2∥Aη(U − Ũ)∥X ,
(15)

for all µ ∈ R+ and U, Ũ ∈ D(Aη).

Proof. Let U = (u,w)⊤, Ũ = (ũ, w̃)⊤ ∈ D(Aη) with u, ũ ∈ L∞(Ω), w, w̃ ∈ H2η
N (Ω). We compute

∥Fµ(U) − Fµ(Ũ)∥X = ∥(αw − qµ(u) + u) − (αw̃ − qµ(ũ) + ũ)∥L∞ + ∥α(u− ũ)∥L2

≤ ∥α(w − w̃)∥L∞ + ∥qµ(u) − qµ(ũ)∥L∞ + ∥u− ũ∥L∞

+ ∥α(u− ũ)∥L2 .

By virtue of the continuous embeddings (12), we have

∥α(w − w̃)∥L∞ ≤ C∥w − w̃∥H2η ≤ C∥Aη(U − Ũ)∥X , (16)

since ∥Aη(U − Ũ)∥X = ∥u− ũ∥L∞ + ∥Λη(w − w̃)∥L2 . Similarly, we have

∥u− ũ∥L∞ ≤ C∥Aη(U − Ũ)∥X , ∥α(u− ũ)∥L2 ≤ C∥Aη(U − Ũ)∥X . (17)

Next, we have
∥qµ(u) − qµ(ũ)∥L∞ ≤ ∥q(u) − q(ũ)∥L∞ + µ∥p(u)p(ũ)∥L∞ .

We observe that q(s) − q(s̃) = (s− s̃)
[
a(s2 + ss̃+ s̃2) − 2ab(s+ s̃) + ab2 + c

]
, for all s, s̃ ∈ R, from which we

deduce

∥q(u) − q(ũ)∥L∞ ≤ C∥u− ũ∥L∞
(
∥u∥2

L∞ + ∥u∥L∞∥ũ∥L∞

+ ∥ũ∥2
L∞ + ∥u∥L∞ + ∥ũ∥L∞ + 1

)
≤ C∥Aη(U − Ũ)∥X(1 + ∥U∥2

X + ∥Ũ∥2
X).

In parallel, by the properties of p(u), we have

∥p(u) − p(ũ)∥L∞ ≤ M1∥u− ũ∥L∞ ,

which leads to

∥qµ(u) − qµ(ũ)∥L∞ ≤ C1∥Aη(U − Ũ)∥X(1 + ∥U∥2
X + ∥Ũ∥2

X)
+ µC2∥Aη(U − Ũ)∥X ,

(18)

where C, C1 and C2 depend on a, b and c. Finally, gathering estimates (16), (17) and (18) leads to (15). We
finish the proof.

Therefore, we can apply Theorem 1 and address the existence of a local-in-time solution to the abstract
problem (13).

Theorem 2 (Local solution). Let µ ≥ 0. For all U0 ∈ K, the Cauchy problem (13) admits a unique local
solution Uµ = (uµ, wµ)⊤ defined on [0, TU0 ] in the function space

uµ ∈ C([0, TU0 ], L∞(Ω)) ∩ C1((0, TU0 ], L∞(Ω)),
wµ ∈ C((0, TU0 ], H2

N (Ω)) ∩ C([0, TU0 ], L2(Ω)) ∩ C1((0, TU0 ], L2(Ω)),

where TU0 > 0 is only determined by the norm ∥U0∥X . Moreover, the local solution satisfies the estimate

t∥AU(t)∥X + ∥U(t)∥X ≤ CU0 , 0 < t ≤ TU0 , (19)

where CU0 > 0 depends only on ∥U0∥X .
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2.4 Global solutions and continuous dynamical system
We further prove that the local-in-time solutions to the degenerate forest kinematic system (4) are actually
global and determine a continuous dynamical system. The following proposition establishes an a priori
estimate for any local solution.

Proposition 2 (Dissipative estimate). Let µ ≥ 0. There exist an exponent σ > 0 and a constant C3 > 0
such that, for all U0 ∈ K, the local-in-time solution Uµ of the Cauchy problem defined by (13) and U(0) = U0,
defined on [0, TU0 ] with TU0 > 0, satisfies

∥Uµ(t)∥X ≤ C3(e−σt∥U0∥X + 1), (20)

for all t ∈ [0, TU0 ].

Proof. Let U0 ∈ X. We denote by Uµ(t) the local-in-time solution to the degenerate forest kinematic system
(4) stemming from U0, defined on [0, TU0 ] with TU0 > 0. We introduce the energy function L defined for
t ≥ 0 by

L(t) = 1
2

∫
Ω

(u2
µ(t) + w2

µ(t))dx.

The function L is continuously differentiable on R+ and we have

L̇(t) =
∫

Ω

∂uµ

∂t
(t)uµ(t)dx+

∫
Ω

∂wµ

∂t
(t)wµ(t)dx

= 2α
∫

Ω
uµ(t)wµ(t)dx−

∫
Ω
uµ(t)qµ

(
uµ(t)

)
dx

− δ

∫
Ω

|∇wµ(t)|2dx− β

∫
Ω
w2

µ(t)dx,

by applying the Green’s formula with the Neumann boundary condition.
Note that

2α
∫

Ω
uµ(t)wµ(t)dx ≤ 2α2

β

∫
Ω
u2

µ(t)dx+ β

2

∫
Ω
w2

µ(t)dx.

by employing the generalized Young’s inequality ab ≤ 1
2εa

2 + ε
2b

2, ∀a, b ∈ R (here, we take ε = β
2α > 0).

Next, we claim that the following lower estimate holds for all s ∈ R:

sqµ(s) ≥ g1s
2 − g2, g1, g2 > 0.

Indeed, it follows from the properties of p(s) that

sqµ(s) − (g1s
2 − g2) = s2[a(s− b)2 + c] + µsp(s) − g1s

2 + g2

≥ s2[a(s− b)2 + c− g1] + g2

≥ q2 + g2,

where q2 = inf
s∈R

{s2[a(s− b)2 + c− g1]}. Since the first coefficient of the quartic polynomial is positive, there
exists such a infimum q2. When g1 is chosen arbitrarily large, it suffices to choose a proper g2 such that
q2 + g2 ≥ 0.

Then, we deduce that

L̇(t) ≤ −
(
g1 − 2α2

β

)∫
Ω
u2

µ(t)dx− β

2

∫
Ω
w2

µ(t)dx+ g2|Ω|,

where g1 is chosen to ensure that g1 − 2α2

β > 0, and we denote

σ = min
(
g1 − 2α2

β
,
β

2

)
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to obtain
L̇(t) ≤ −2σL(t) + g2|Ω|.

We thus have
L(t) ≤ L(0)e−2σt + g2|Ω|

2σ (1 − e−2σt),

by applying Gronwall lemma, which reduces to(∫
Ω

(
u2

µ(t) + w2
µ(t)

)
dx

)1/2
≤
(∫

Ω

(
u2

0 + w2
0
)
dx

)1/2
e−σt + C.

We obtain
∥Uµ(t)∥L2 ≤ C(e−σt∥U0∥L2 + 1), (21)

for all t ≥ 0.
Next, it remains to show how the dissipative estimate (21), which holds in L2(Ω) = L2(Ω)×L2(Ω), implies

the stronger estimate (20) in X. Indeed, it suffices to apply similar arguments as in the proof of Proposition
11.1 in Ref. yagi2009abstract. Hence, replacing σ by new one, we can show that w and u satisfy respectively

∥wµ(t)∥L∞ ≤ C
[
(1 + t−η)e−σt∥U0∥L2 + 1

]
, (22)

∥uµ(t)∥L∞ ≤ C(e−σt∥U0∥X + 1), (23)

for all t > 0.
Finally, we combine the dissipative estimates (21) and (23) to obtain (20), which completes the proof.

With the dissipative estimate (20), we can directly state the existence of global solutions, that determine
a continuous dynamical system.

Theorem 3 (Global solutions and continuous dynamical system). Let µ ≥ 0. For all U0 ∈ K, the Cauchy
problem defined by (13) and U(0) = U0 admits a unique global solution Uµ(t, U0) = (uµ, wµ)⊤ defined on
[0,+∞) in the function space

uµ ∈ C([0,+∞), L∞(Ω)) ∩ C1((0,+∞), L∞(Ω)),
wµ ∈ C((0,+∞), H2

N (Ω)) ∩ C([0,+∞), L2(Ω)) ∩ C1((0,+∞), L2(Ω)).

Furthermore, the degenerate forest kinematic system (4) determines a continuous dynamical system Sµ(t)
defined in X by

Sµ(t)U0 = Uµ(t, U0), t ≥ 0. (24)

Remark 2 (Lack of compactness). Using the dissipative estimate (20), it can be shown that the continuous
dynamical system Sµ(t) admits an absorbing set Bµ ⊂ X which is bounded in D(A) (see[49] Chapter 11,
Section 4). However, we can not show that the absorbing set Bµ is compact, hence it turns out that the
study of the asymptotic behavior of the dynamical system Sµ(t) can not be described by means of the global
attractor.[5] In Section 3, we will bypass this lack of compactness by showing the existence of a family of
positively invariant regions.

For U0 ∈ K, let U(t) = U(t, U0) be the global solution of (4). It immediately follows from the dissipative
estimate in Proposition 2 that

∥Uµ(t, U0)∥X ≤ C(e−σt∥U0∥X + 1), 0 ≤ t < ∞, U0 ∈ K.

In particular, we have

∥Uµ(t, U0)∥X ≤ C(∥U0∥X + 1), 0 ≤ t < ∞, U0 ∈ K.

This, together with (19), yields that

∥AUµ(t, U0)∥X ≤ (1 + t−1)p0(∥U0∥), 0 ≤ t < ∞, U0 ∈ K, (25)
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where p0(·) is a suitable continuous increasing function. Hence, we obtain

∥wµ(t)∥H2 ≤ (1 + t−1)p0(∥U0∥), 0 ≤ t < ∞, U0 ∈ K.

The latter inequality, together with (22), leads to

∥wµ(t)∥L∞ ≤ (1 + t−η)p0(∥U0∥), 0 ≤ t < ∞, U0 ∈ K. (26)

Therefore, we can further obtain the following estimates.

Proposition 3. For 0 < t < ∞ and U0 ∈ K, the time derivative dUµ

dt (t) satisfies∥∥∥∥∂uµ

∂t

∥∥∥∥
L∞

≤ (1 + t−η)p1(∥U0∥X), (27)∥∥∥∥∂wµ

∂t

∥∥∥∥
L2

≤ (1 + t−1)p1(∥U0∥X), (28)

where p1(·) is an appropriate continuous increasing function.

Proof. The first estimate (27) is derived directly from (26) and the first equation of u in model (4), and the
second estimate (28) is an immediate consequence of (25).

Proposition 4. For 0 < t < ∞ and U0 ∈ K, the second order time derivative dUµ

dt (t) satisfies∥∥∥∥∂2uµ

∂t2

∥∥∥∥
L∞

≤ (1 + t−1−η)p2(∥U0∥X), (29)∥∥∥∥∂2wµ

∂t2

∥∥∥∥
L2

≤ (1 + t−2)p2(∥U0∥X), (30)

where p2(·) is an appropriate continuous increasing function.

Proof. Take the time derivative of the second equation of w in model (4) to deduce the following estimate∥∥∥∥∂2wµ

∂t2

∥∥∥∥
L2

+
∥∥∥∥∂wµ

∂t

∥∥∥∥
H2

≤ C[1 + (t− τ)−1]
∥∥∥∥∂wµ

∂τ

∥∥∥∥
L2
, 0 < τ < t < ∞.

By taking τ = t
2 , we verify (30) and the estimate∥∥∥∥∂wµ

∂t

∥∥∥∥
H2

≤ (1 + t−2)p2(∥U0∥X), 0 < t < ∞.

It follows that ∥∥∥∥∂wµ

∂t

∥∥∥∥
L∞

≤ C

∥∥∥∥∂wµ

∂t

∥∥∥∥
H2η

≤ (1 + t−1−η)p2(∥U0∥X), 0 < t < ∞.

Then, (29) is observed by taking time derivative of the first equation of u in model (4).

2.5 Lyapunov function
It is easily seen that the potential Qµ(u) defined by (10) satisfies

Qµ(u) − αuw ≥ −C, ∀u,w ≥ 0,

with C > 0. Therefore, we can prove that the dynamical system (Sµ(t),K, X) determined by (24) admits a
Lyapunov function given by

Lµ(u,w) =
∫

Ω

[
δ

2 |∇w|2 + β

2w
2dx− αuw +Qµ(u)

]
dx. (31)

In [23], such a Lyapunov function has been considered to prove the weak convergence of the orbits of a forest
kinematic model towards stationary solutions. Besides, the existence of a Lyapunov function highlights the
dissipative nature of the degenerate forest kinematic system (4).
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Remark 3. Note that the behavior of the degenerate forest kinetic system (4) is partly governed by the
potential Hµ(u,w) defined by

Hµ(u,w) = β

2w
2 − αuw +Qµ(u), u, w ∈ R. (32)

Recall that the potential Qµ(u) is convex under the assumption (11). However, the convexity of Qµ(u) does
not imply that Hµ(u,w) is convex. Besides, in the case where q(u) is an unperturbed and non-invertible cubic
function, the properties of potential H(u,w) have been studied in [5].

Then, we establish the following proposition.

Proposition 5. For any trajectory Sµ(t)U0 = Uµ(t) of the forest kinematic model (4), U0 ∈ K, the time
derivative of the global solution is bounded in L2((1,∞),L2), i.e.,∫ ∞

1

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
< ∞.

Proof. Similar as the proof of Proposition 11.4 in Ref. yagi2009abstract, we have

−
∫

Ω

(∣∣∣∣∂u∂t
∣∣∣∣2 +

∣∣∣∣∂w∂t
∣∣∣∣2
)
dx = d

dt

∫
Ω

[
δ

2 |∇w|2dx+ β

2w
2dx− αuw +Qµ(u)

]
dx ≤ 0. (33)

Integrating (33) on a time interval [1, T ], with T > 0, leads to∫ T

1

∫
Ω

(∣∣∣∣∂uµ

∂t

∣∣∣∣2 +
∣∣∣∣∂wµ

∂t

∣∣∣∣2
)
dxdt ≤

∫
Ω

[δ
2 |∇wµ(1)|2dx+ β

2wµ(1)2dx

+ αuµ(T )wµ(T ) +Qµ(uµ(1))
]
dx.

Next, it follows from (20) that ∫ ∞

1

∫
Ω

(∣∣∣∣∂uµ

∂t

∣∣∣∣2 +
∣∣∣∣∂wµ

∂t

∣∣∣∣2
)
dxdt < ∞,

which ends the proof.

Following [49] (Proposition 11.5), we now state the following second proposition.

Proposition 6. For any trajectory Sµ(t)U0 = Uµ(t) of the forest kinematic model (4), U0 ∈ K, the time
derivative of the global solution dUµ

dt (t) converges to 0 as t → ∞ in the L2 norm.

Proof. Propositions 3 and 4 yield that
∣∣∣∣ d

dt

∥∥∥dUµ

dt (t)
∥∥∥2

L2

∣∣∣∣ ≤ CU0 for t ≥ 1, where the constant CU0 > 0 depends

only on ∥U0∥X . This, together with the integrability of
∥∥∥dUµ

dt (t)
∥∥∥2

L2
in (1,∞), implies the desired convergence

result.

Remark 4. The convergence of global solutions can be obtained as long as we can prove that dUµ

dt (t) ∈
L1((1,∞),L2). However, it cannot be directly deduced from the above two propositions that dUµ

dt (t) ∈
L1((1,∞),L2). To overcome this problem, we prove additional properties of the Lyapunov function and
of the global solutions, and we prove the  Lojasiewicz-Simon gradient inequality. We then obtain further es-
timation of the time derivative of the global solution, and thus prove the asymptotic convergence result in
Section 3.
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2.6 Stationary solutions
The forest kinematic model (4) admits homogeneous and heterogeneous stationary solutions. The homoge-
neous stationary solutions satisfy {

αw − qµ(u) = 0,
−βw + αu = 0.

(34)

The solutions of the latter system correspond to the intersection points between the function qµ(u) and the
line α2

β u. For µ = 0, system (34) admits three homogeneous stationary solutions, which are denoted by
O = (0, 0)⊤, U− = (u−, w−)⊤ and U+ = (u+, w+)⊤ (with 0 < u− < u+).

It follows from the approach in [28] that the homogeneous stationary solutions O = (0, 0)⊤, U+ =
(u+, w+)⊤ are stable, and the homogeneous stationary solution U− = (u−, w−)⊤ is unstable. For 0 < µ < µ2
(where µ2 is given in Remark 1), the number of homogeneous stationary solutions can be greater than 3. It
the sequel, we denote by

U+
µ = (u+

µ , w
+
µ )⊤ (35)

the greatest homogeneous stationary solution of the perturbed system (34). For µ > µ2, the trivial solution
O is the only homogeneous stationary solution.

Next, the heterogeneous stationary solutions are determined by the elliptic problem
αw̄ − qµ(ū) = 0 in Ω,
δ∆w̄ − βw̄ + αū = 0 in Ω,
∂w̄
∂v = 0 on Γ.

(36)

We will prove that the heterogeneous stationary solutions describe the asymptotic behavior of the forest
kinematic model (4). Indeed, based on the theories in Chapter 11, Section 4.2 in [49], for each U0 ∈ K, we
can introduce a modified L2-ω-limit set of the global solution Uµ(t) by setting

L2-ωµ(U0) =
{
Ūµ ∈ X; ∃tn ↗ ∞ such that∥Uµ(tn) − Ūµ∥L2 → 0

}
. (37)

Furthermore, adapting the proof of Theorem 11.5 in [49], the following proposition can be addressed.
Proposition 7. Let (11) hold, and let U0 ∈ K. Then, the L2-ω-limit set L2-ωµ(U0) is nonempty. Further-
more, the set consists of equilibria of (4), i.e., Ūµ = (ū, w̄)⊤ satisfies (36).

Our aim in Section 3 is to prove that the global solutions Uµ(t) = Sµ(t)U0 converge towards the hetero-
geneous stationary solution Ūµ.

3 Convergence towards equilibrium
In this section, we establish our main convergence result. First, we apply the same approach as in [18, 23]
to prove the  Lojasiewicz-Simon gradient inequality. In order to simplify the notations, we use the notation
Uµ(t) = (u,w)⊤ instead of Uµ(t) = (uµ, wµ)⊤ to denote the global solution to (4) with the initial value
U0 ∈ K, and we fix (ū, w̄)⊤ = Ūµ ∈ L2-ω(U0). It follows from Theorem 3 that the global solution Uµ(t)
satisfies

∥u(t)∥L∞ + ∥w(t)∥H2 ≤ R, 1 ≤ t < ∞, (38)
where R > 0 depends only on ∥U0∥X .

Then, we present the following propositions.
Proposition 8. Let (11) be satisfied, and Ū = (ū, w̄)⊤ ∈ L2-ω(U0). Then, ∥ū∥L∞ ≤ R holds. Moreover,
w̄ ∈ H2

N (Ω) and ∥w̄∥H2 ≤ R hold.
Proof. The first assertion immediately follows as a result of the weak*-compactness of the closed unit ball in
L∞(Ω).

Let us show the second assertion. By definition of the L2-ω-limit set, there exists a sequence tn ↗ ∞ such
that w(tn) → w̄ in L2(Ω). Since H2

N (Ω) is sequentially weakly compact and the sequence w(tn) is a bounded
sequence in H2

N (Ω), there exists a subsequence w(t′n) such that w(t′n) has a weak limit w̃ in H2
N (Ω). Of course

w(t′n) → w̃ in L2(Ω), so w̃ = w̄ ∈ H2
N (Ω). Furthermore, we know ∥w̄∥H2 ≤ lim inf

t′
n→∞

∥w(t′n)∥H2 ≤ R.
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Proposition 9. Let (11) be satisfied, and Ūµ = (ū, w̄)⊤ ∈ L2-ω(U0). Then, there exists a time sequence
tn ↗ ∞ such that Uµ(tn) → Ūµ in L2(Ω) ×H1

N (Ω).

Proof. By definition of the L2-ω-limit set, there exists a sequence tn ↗ ∞ such that Uµ(tn) → Ūµ in L2. Then,
since ∥w(t)+w̄∥H2 ≤ 2R for all t ≥ 1 from (38), we know that ∥w(tn)−w̄∥H1 ≤ ∥w(tn)−w̄∥

1
2
H2∥w(tn)−w̄∥

1
2
L2 ≤

√
2R∥w(tn) − w̄∥

1
2
L2 → 0 as tn → ∞.

We then set
V = L2(Ω) ×H1

N (Ω) (39)

in the following sections.

3.1 Modification of the Lyapunov function
In order to consider the Lyapunov function given by (31) on the space V , we need to modify the potential
Qµ(u) such that Qµ(u) = O(u2) when |u| ≫ 1, where O(·) is big O notation, without changing the value Lµ

on the global solution Uµ(t) and Ūµ.
Therefore, the constructed function Q̃µ : R → R has following properties:

(i) Q̃µ(u) = Qµ(u) for u ∈ (−1, R+ 1);
(ii) Q̃µ(u) = O(u2) for u ∈ (−∞,−1] ∪ [R+ 1,∞);
(iii) Q̃µ ∈ C2(R) and the second derivative satisfies

0 < q0 ≤ Q̃′′
µ(u) ≤ q1 for any u ∈ R, (40)

with some constant q1 > 0 (recall that q0 = c− 1
3ab

2 + µp′(u), as defined in (11)).
Based on the modified Q̃µ, we thus obtain the modified Lyapunov function L̃µ : V → R written as

L̃µ(u,w) =
∫

Ω

[
δ

2 |∇w|2 + β

2w
2 − αuw + Q̃µ(u)

]
dx for Uµ = (u,w)⊤ ∈ V. (41)

Since Q̃µ(u) = Qµ(u) for 0 ≤ u ≤ R, it is known that L̃µ(Uµ(t)) = Lµ(Uµ(t)) along the global solution U(t),
i.e., Q̃(·) still plays the role of a Lyapunov function for the global solution. Furthermore, the estimation (38)
ensures that L̃µ(Ūµ) = Lµ(Ūµ).

For such a modified Lyapunov function L̃µ : V → R, we calculate the first Fréchet derivative L̃ ′
µ : V → V ′.

Note that V ′ = L2(Ω) × H−1(Ω) by identifying L2(Ω)′ as L2(Ω). Furthermore, we regard Λ = −δ∆ + β as
an isomorphism from H1

N (Ω) onto H−1(Ω).

Proposition 10. The function L̃µ : V → R is Fréchet differentiable with its derivative

L̃ ′
µ(Uµ) =

(
−αw + qµ(u)

Λw − αu

)
∈ V ′ for Uµ = (u,w)⊤ ∈ V. (42)

In particular, we have L̃ ′
µ(Ūµ) = 0 for Ūµ ∈ L2-ω(U0).

Proof. For Uµ = (u,w)⊤, Ũµ = (ũ, w̃)⊤ ∈ V , we have

L̃µ(Uµ + Ũµ) − L̃µ(Uµ) −
〈(

−αw + qµ(u)
Λw − αu

)
,

(
ũ
w̃

)〉
V ′×V

=
∫

Ω
[−αũw̃ + Q̃µ(u+ ũ) − Q̃µ(u) − Q̃′

µ(u)ũ]dx+ 1
2 ⟨Λw̃, w̃⟩H−1×H1 .

Due to (40), we have ∣∣∣∣∫
Ω

[Q̃µ(u+ ũ) − Q̃µ(u) − Q̃′
µ(u)ũ]dx

∣∣∣∣ ≤ q1

2 ∥ũ∥2
L2 ,

thus, ∣∣∣L̃µ(Uµ + Ũµ) − L̃µ(Uµ) −
〈
L̃ ′

µ(Uµ), Ũµ

〉
V ′×V

∣∣∣ ≤ CLµ
∥Ũµ∥2

V , (43)
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where CLµ is positive. The Fréchet derivative (42) is obtained.
Recall that Ūµ ∈ L2-ω(U0) satisfies (36). Moreover, since 0 ≤ ū ≤ R for a.e. x ∈ Ω, we know that

Q̃′
µ(ū(x)) = Q′

µ(ū(x)) = qµ(ū). Therefore, we have L̃ ′
µ(Ūµ) = 0.

We note that L̃ ′
µ : V → V ′ is not Fréchet differentiable. Furthermore, due to (40), it is easily derived

that L̃ ′
µ is Lipschitz continuous, i.e., there exists a constant L0 > 0 such that∥∥L̃ ′

µ(Uµ) − L̃ ′
µ(Ũµ)

∥∥
V ′ ≤ L0∥Uµ − Ũµ∥V for Uµ, Ũµ ∈ V. (44)

3.2  Lojasiewicz-Simon gradient inequality
We then prove that the Lyapunov function L̃µ(Uµ) give by (41) satisfies the  Lojasiewicz-Simon gradient
inequality with the following form.

Proposition 11. Set θ ∈ (0, 1
2 ). There exists r > 0 and ϵ > 0 such that∣∣L̃µ(Uµ) − L̃µ(Ūµ)

∣∣ ≤ ϵ
∥∥L̃ ′

µ(Uµ)
∥∥ 1

1−θ

V ′ if ∥Uµ − Ūµ∥V < r, (45)

where L̃µ(Uµ) is given by (41).

Proof. We divide the proof of the above  Lojasiewicz-Simon gradient inequality into three steps.
Step 1. Note that Λ−1 : L2(Ω) → L2(Ω) is a compact self-adjoint operator. Here, we consider the eigenvalue
problem

Λ−1en = ηnen in L2(Ω).

As a result of the theory of compact self-adjoint operators, there exists a Hilbert basis {en}n∈N(⊂ H2
N (Ω))

of L2(Ω) and positive eigenvalues {ηn}n∈N such that ηn ↘ 0 as n → +∞. For each N ∈ N, considering
orthogonal projection PN from L2(Ω) onto span {e1, · · · , eN }, then we have the following estimation

∥w∥2
L2(Ω) ≤ ∥PNw∥2

L2(Ω) + ηN+1 ⟨Λw,w⟩H−1×H1 for w ∈ H1
N (Ω).

Therefore, for Uµ = (u,w)⊤ ∈ V , the mapping F : V → V ′ is written as

F (Uµ) = L ′
µ(Uµ) +

(
0

λPNw

)
=
(

−αw + Q̃′
µ(u)

Λw − αu+ λPNw

)
, (46)

which is a coercive monotone operator if N ∈ N and λ > 0 are sufficiently large. In other words, the following
proposition is confirmed.

Proposition 12. For sufficiently large N ∈ N and λ > 0, there exists a constant L1 > 0 such that

1
L1

∥Uµ − Ũµ∥2
V ≤

〈
F (Uµ) − F (Ũµ), Uµ − Ũµ

〉
V ′×V

for Uµ, Ũµ ∈ V. (47)

Proof. We firstly calculate that〈
L̃ ′

µ(Uµ) − L̃ ′
µ(Ũµ), Uµ − Ũµ

〉
V ′×V

= − 2α
∫

Ω
(u− ũ)(w − w̃)dx+

∫
Ω

[Q̃′
µ(u) − Q̃′

µ(ũ)](u− ũ)dx+ ⟨Λ(w − w̃), w − w̃⟩H−1×H1 .

Due to Q̃′
µ(ξ) − Q̃′

µ(ξ̃) =
∫ 1

0 Q̃
′′
µ(θξ + (1 − θ)ξ̃)dθ × (ξ − ξ̃) for ξ, ξ̃ ∈ R, applying (40) again, we have∫

Ω
[Q̃′

µ(u) − Q̃′
µ(ũ)](u− ũ)dx ≥ q0∥u− ũ∥2

L2 ,

and
−2α

∫
Ω

(u− ũ)(w − w̃)dx ≥ −q0

2 ∥u− ũ∥2
L2 − 2α2

q0
∥w − w̃∥2

L2
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by employing the Young’s inequality. Thus, it follows that

〈
L̃ ′

µ(Uµ) − L̃ ′
µ(Ũµ), Uµ − Ũµ

〉
V ′×V

≥ q0

2 ∥u− ũ∥2
L2 − 2α2

q0
∥w − w̃∥2

L2 + ⟨Λ(w − w̃), w − w̃⟩H−1×H ,

so we have〈
F (Uµ) − F (Ũµ), Uµ − Ũµ

〉
V ′×V

≥ q0

2 ∥u−ũ∥2
L2+(λ−2α2

q0
)∥w−w̃∥2

L2+(1−ληN+1) ⟨Λ(w − w̃), w − w̃⟩H−1×H .

Then, we finish the proof by choosing λ > 2α2

q0
and taking N ∈ N large enough (so that ηN+1 is sufficiently

small).

It follows from Proposition 12 that F : V → V ′ is injective. Furthermore, it is derived by the Browder-
Minty theorem (see [44], Theorem 10.49) that F is surjective. As for its inverse F −1 : V ′ → V , which is
deduced by (47) that ∥∥F −1(U∗

µ) − F −1(Ũ∗
µ)
∥∥

V
≤ L1∥U∗

µ − Ũ∗
µ∥V ′ for U∗

µ, Ũ
∗
µ ∈ V ′. (48)

Step 2. As a restriction of F , consider the mapping F̃ : D → X given by

F̃ (Uµ) =
(

−αw + Q̃′
µ(u)

Λw − αu+ λPNw

)
∈ X, for Uµ = (u,w)⊤ ∈ D (49)

Then, we obtain the following proposition. Note that the orthogonal projection PN on L2(Ω) is regarded
as a bounded linear operator from H2

N (Ω) to L2(Ω).

Proposition 13. F̃ : U(Ūµ) ⊂ D → X is an analytic function, where U(Ūµ) is a neighborhood of Ūµ in D.

Proof. It is easy to prove that mapping Q̃µ : L∞(Ω) → L∞(Ω) is analytic at ū ∈ L∞(Ω). In fact, if Q̃′
µ is

analytic at ū ∈ L∞(Ω), a neighborhood of ū exists such that Q̃′
µ is analytic on its neighborhood. We omit

the proof here.

In particular, for Uµ = (u,w)⊤ ∈ U(Ūµ), its first derivative F̃ ′ : U(Ūµ) → L(D, X) is given by

F̃ ′(Uµ) =
(

Q̃′′
µ(u) −α
−α Λ + λPN

)
∈ L(D, X),

where the inverse mapping theorem theorem (see [50], Corollary 4.37) is applied. We further have the
following proposition.

Proposition 14. F̃ ′(Ūµ) : D → X is bijective.

Proof. Note that T ∈ L(V, V ′) given by

T =
(

Q̃′′
µ(u) −α
−α Λ + λPN

)
∈ L(V, V ′).

By using the same approach in the proof of Proposition 12, 1
L1

∥Uµ∥2
V ≤ ⟨TUµ, Uµ⟩V ′×V for Uµ ∈ V is

obtained. Therefore,
T is a linear isomorphism from V onto V ′. (50)

Let U∗
µ = (u∗, w∗)⊤ ∈ X. Since also (u∗, w∗)⊤ ∈ V ′, it follows from (50) that there exists a unique

Uµ = (u,w)⊤ ∈ V such that

T

(
u
w

)
=
(

uQ̃′′
µ(u) − αw

−αu+ Λw + λPNw

)
=
(
u∗

w∗

)
It is obviously that Λw = w∗ + αu− λPNw ∈ L2(Ω), and u = 1

Q̃′′
µ(u) (u∗ + αw) ∈ L∞(Ω) by employing (40).

Therefore, F̃ ′(Ūµ) is bijective from D to X.
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Due to Proposition 13, Proposition 14 and [50] Corollary 4.37, there exists a neighborhood V(F̃ (Ūµ)) ⊂ X
such that

F̃ : U(Ūµ) → V(F̃ (Ūµ)) is an analytic diffeomorphism (51)

by choosing sufficiently small U(Ūµ).
Step 3. Considering the finite-dimensional linear space

EN = 0 × span{e1, · · · , eN } ⊂ D

equipped with the norm ∥ · ∥EN
, we then have the norm equivalence

∥(0, wN )⊤∥EN
= ∥wN ∥H1 for (0, wN )⊤ ∈ EN . (52)

Therefore, we present the following proposition.

Proposition 15. There exist constants ϵ0 > 0 and r0 > 0 such that∣∣L̃µ ◦ F̃ −1((0, λPNw)⊤) − L̃µ(Ūµ)
∣∣1−θ ≤ ϵ0

∥∥(L̃µ ◦ F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

for ∥w − w̄∥H1 < r0. (53)

Proof. It is obviously that L̃µ is analytic as a function from U(Ūµ) ⊂ D to R. Combined with (51), we have
the function composition:

L̃µ ◦ F̃ −1 : V(F̃ (Ūµ)) ∩ EN → R is an analytic function from EN to R. (54)

Then, employing the classical  Lojasiewicz Theorem (see [31]) to assume that θ ∈ (0, 1
2 ] and ϵ0, r1 > 0 exist,

such that∣∣L̃µ ◦ F̃ −1((0, wN )⊤) − L̃µ ◦ F̃ −1(F̃ (Ū))
∣∣1−θ ≤ ϵ0

∥∥(L̃µ ◦ F̃ −1)′((0, wN )⊤) − (L̃µ ◦ F̃ −1)′(F̃ (Ū))
∥∥

E′
N

,

if (0, wN )⊤ ∈ EN satisfies ∥(0, wN − λPN w̄)⊤∥EN
< r1. Note that

(L̃µ ◦ F̃ −1)′(F̃ (Ū)) = L̃ ′
µ(F̃ −1(F̃ (Ū))) ◦ (F̃ −1)′(F̃ (Ū))

= L̃ ′
µ(Ū) ◦ (F̃ −1)′(F̃ (Ū))

= 0.

Therefore, we have∣∣L̃µ ◦ F̃ −1((0, wN )⊤) − L̃µ(Ū)
∣∣1−θ ≤ ϵ0

∥∥(L̃µ ◦ F̃ −1)′((0, wN )⊤)
∥∥

E′
N

if ∥(0, wN −λPN w̄)⊤∥EN
< r1. (55)

Due to (52), there exists r0 > 0 small enough so that ∥w − w̄∥H1 < r0 and ∥(0, wN − λPN w̄)⊤∥EN
< r1.

Thus, (53) can be deduced by (55), we finish the proof of Proposition 15.

Furthermore, we estimate the right side of (53) to have∥∥(L̃µ ◦ F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

=
∥∥L̃ ′

µ(F̃ −1((0, λPNw)⊤)) ◦ (F̃ −1)′((0, λPNw)⊤)
∥∥

E′
N

≤ Cr

∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤))

∥∥
V ′ ,

where the constant Cr is positive and depends only on r0, we note that it follows from (51) that∥∥(F̃ −1)′((0, λPNw)⊤)
∥∥

L(EN ,V ) ≤ Cr if ∥w − w̄∥H1 < r0.

For arbitrarily u ∈ L2(Ω), we have∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤))

∥∥
V ′ ≤

∥∥L̃ ′
µ(F̃ −1((0, λPNw)⊤)) − L̃ ′

µ((u,w)⊤)
∥∥

V ′ +
∥∥L̃ ′

µ((u,w)⊤)
∥∥

V ′

≤ L0
∥∥F̃ −1((0, λPNw)⊤) − F̃ −1(F̃ ((u,w)⊤))

∥∥
V

+
∥∥L̃ ′

µ(Uµ)
∥∥

V ′

≤ (L0L1 + 1)
∥∥L̃ ′

µ(Uµ)
∥∥

V ′
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by employing (44), (48) and (46). Then, for Uµ = (u,w)⊤ ∈ V, ∥w − w̄∥H1 < r0, it follows that∣∣L̃µ ◦ F̃ −1((0, λPNw)⊤) − L̃µ(Ūµ)
∣∣1−θ ≤ ϵ0Cr(L0L1 + 1)

∥∥L̃ ′
µ(Uµ)

∥∥
V ′ . (56)

Besides, note that Ũµ = F̃ −1((0, λPNw)⊤) − Uµ, it follows from (43) that∣∣L̃µ(Uµ) − L̃µ ◦ F̃ −1((0, λPNw)⊤)
∣∣

=
∣∣L̃µ(Uµ) − L̃µ(Uµ + Ũµ)

∣∣
≤
∥∥L̃ ′

µ(Uµ)
∥∥

V ′

∥∥F̃ −1((0, λPNw)⊤) − Uµ

∥∥
V

+ CLµ

∥∥F̃ −1((0, λPNw)⊤) − Uµ

∥∥2
V

≤(L1 + CLµL
2
1)
∥∥L̃ ′

µ(Uµ)
∥∥2

V ′ , (57)

where, (48) and (46) are applied.
Therefore, it is derived from (56) and (57) that∣∣L̃µ(Uµ) − L̃µ(Ūµ)

∣∣ ≤ ϵ0Cr(L0L1 + 1)
∥∥L̃ ′

µ(Uµ)
∥∥ 1

1−θ

V ′ + (L1 + CLµL
2
1)
∥∥L̃ ′

µ(Uµ)
∥∥2

V ′

≤ C0
∥∥L̃ ′

µ(Uµ)
∥∥ 1

1−θ

V ′ if ∥Uµ − Ūµ∥V < r,

where the constant C0 is positive and depends on ϵ0, CLµ
, Cr, L0, L1 and θ, by taking r ∈ (0, r0) small enough

to make sure that
∥∥L̃ ′

µ(Uµ)
∥∥2

V ′ ≤
∥∥L̃ ′

µ(Uµ)
∥∥ 1

1−θ

V ′ . We eventually finish the proof of Proposition 11.

Remark 5. Note that the condition (11) is a restrictive one, otherwise (especially, when the perturbation µ
is large), the approach we apply in this section can not ensure the  Lojasiewicz-Simon gradient inequality still
holds. Therefore, we can not further prove the following asymptotic convergence result.

3.3 Asymptotic convergence result
To prove the asymptotic convergence of global solutions, we firstly present the following lemma (see Appendix
in [23] and [15] Lemma 7.1), which gives a sufficient condition in order that a function in L2(0,∞) is also in
L1(0,∞).

Lemma 1. Let F : (0,∞) → [0,∞) be a nonnegative continuous function satisfying F ∈ L2(0,∞). Assume
that an interval I = (T, T ′) ⊂ (0,∞), an exponent α ∈ (1, 2), and a constant κ > 0 exist such that(∫ ∞

t

F (τ)2dτ

)α

≤ κF (t)2, ∀t ∈ I. (58)

Then, the following inequality holds: ∫
I

F (τ)dτ ≤ κ′∥F∥α′

L2(T,∞), (59)

where α′ > 0 depends only on α, and κ′ > 0 depends only on α and κ.

Then, we have the following proposition.

Proposition 16. Sufficiently large time T > 0 and a constant κ > 0 exist such that the following assertion
holds. If t > T satisfies ∥Uµ(t) − Ūµ∥V < r, then(∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

)2(1−θ)

≤ κ

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
. (60)

Proof. Since we have
∥∥∥dUµ

dt (t)
∥∥∥
L2

→ 0 as t → ∞ due to Proposition 6, take T > 1 large enough such that∥∥∥∥∂u∂t (t)
∥∥∥∥

L2
< 1, ∀t > T,
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and we fix such time T > 1. Set t ∈ (T,∞) such that ∥Uµ(t) − Ūµ∥V < r. By the definition of L2-ω(U0),
such a time t actually exists.

By integrating equation (33) respect to time on (t,∞), we have∫ ∞

t

∫
Ω

(∣∣∣∣∂u∂τ (τ)
∣∣∣∣2 +

∣∣∣∣∂u∂τ (τ)
∣∣∣∣2
)
dxdτ = L̃µ(Uµ(t)) − L̃µ(Ūµ),

it follows from (45) that ∫ ∞

t

(∥∥∥∥∂u∂τ (τ)
∥∥∥∥2

L2
+
∥∥∥∥∂w∂τ (τ)

∥∥∥∥2

L2

)
dτ ≤ ϵ∥L̃ ′

µ(Uµ(t))∥
1

1−θ

V ′ . (61)

It follows from Proposition 10 that L̃ ′
µ(Uµ(t)) = (− ∂u

∂t ,−
∂w
∂t )⊤ ∈ V ′, which yields

∥L̃ ′
µ(Uµ(t))∥2

V ′ ≤ C

(∥∥∥∥∂u∂t (t)
∥∥∥∥2

L2
+
∥∥∥∥∂w∂t (t)

∥∥∥∥2

H−1

)
.

Combined with (61), we have ∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ ≤ C ′

∥∥∥∥dUµ

dt
(t)
∥∥∥∥ 1

1−θ

L2
,

where, C ′ depends on positive constants ϵ and θ ∈ (0, 1
2 ). We thus conclude the proof.

Furthermore, we prove the following lemma.

Lemma 2. There exists a sufficiently large tN > 0 such that ∥Uµ(t) − Ūµ∥V < r for all t ≥ tN .

Proof. Due to Proposition 9, there exists a time sequence tn ↗ ∞ such that Uµ(tn) → Ūµ in V . Thus, a
sufficiently large N0 exists to ensure that

∥Uµ(tn) − Ūµ∥V ≤ r

3 , ∀n ≥ N0.

Moreover, for n ≥ N0, set t′n = inf{t ∈ (tn,∞); ∥Uµ(t) − Ūµ∥V = r}; in particular, t′n = ∞ when
∥Uµ(t) − Ūµ∥V < r for all t ≥ tn. Recalling Lemma 1, we take F (t) =

∥∥∥dUµ

dt (t)
∥∥∥
L2

, α = 2(1 − θ), T = tn, and
T ′ = t′n. Then, due to Proposition 16, it follows

∫ t′
n

tn

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ < κ′

(∫ ∞

tn

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
dt

) θ′
2

,

where θ′ depends only on θ. Therefore,

∥Uµ(t′n) − Uµ(tn)∥V ≤ C

∫ t′
n

tn

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ ≤ Cκ′

(∫ ∞

tn

∥∥∥∥dUµ

dt
(t)
∥∥∥∥2

L2
dt

) θ′
2

.

Then, ∥Uµ(t′N ) − Uµ(tN )∥V ≤ r
3 can be derived by taking N ≥ N0 large enough.

Besides, we know that t′N = ∞, for such N ≥ N0. Indeed, suppose that t′N < ∞. Then, ∥Uµ(t′N )−Ūµ∥V =
r. On the other hand, we have

∥Uµ(t′N ) − Ūµ∥V ≤ ∥Uµ(t′N ) − Uµ(tN )∥V + ∥Uµ(tN ) − Ūµ∥V ≤ 2r
3 ,

which is a contradiction.

Finally, we conclude the asymptotic convergence result.
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Theorem 4. Note that the assumption (11) holds, Uµ(t) = Sµ(t)U0 is the global solution to the forest
kinematic model (4) with initial value U0 ∈ K, and let Ūµ ∈ L2-ω(U0) is a stationary solution to (4). Then,
we have Uµ(t) → Ūµ in L2(Ω) as t → ∞.
Proof. Due to Lemma 1, 2 and Proposition 16, there exists a sufficiently large tN > 0 such that∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ ≤ κ′

(∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

) θ′
2

, ∀t ≥ tN .

Furthermore, since the definition of L2-ω(U0), there exists a time sequence tn ↗ ∞ such that Uµ(tn) → Ūµ

in L2(Ω). Then, we have

∥Uµ(t) − Ūµ∥L2 ≤ ∥Uµ(t) − Uµ(tn)∥L2 + ∥Uµ(tn) − Ūµ∥L2

≤
∫ tn

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥
L2
dτ + ∥Uµ(t) − Uµ(tn)∥L2

and when tn goes to infinity, we obtain

∥Uµ(t) − Ūµ∥L2 ≤ κ′

(∫ ∞

t

∥∥∥∥dUµ

dτ
(τ)
∥∥∥∥2

L2
dτ

) θ′
2

.

Therefore, we conclude the assertion.

4 Robustness of the weak attractors
In this section, we analyze the robustness of the dynamical system (24) determined by the degenerate forest
kinetic system (4). As explained previously in Remark 2, we have to face a lack of compactness, which
is due to the absence of diffusion in the first equation of system (4). Therefore, as shown in [5], the long
time behavior of the dynamical system (24) cannot be described by means of the global attractor. However,
following [49], we can still analyze the weak convergence of its orbits, in the topology of the Banach space Y
given by

Y = L2(Ω) = L2(Ω) × L2(Ω). (62)
Hence, for U0 ∈ K and B ⊂ X, we consider the weak L2-ω-limit sets of the dynamical system Sµ(t) given by

ωµ
Y (U0) =

⋂
t≥0

{
Sµ(s)U0; t ≤ s < ∞

}Y
, (63)

where the closures are in Y . Note that ωY
µ (U0) actually coincides with the set L2-ωµ(U0) defined in (37).

We bypass the lack of compactness by proving the existence of a family {Rµ} of positively invariant
regions, from which we deduce the continuity of the flow induced by the dynamical system (24). Combined
with the asymptotic convergence result obtained in Section 3.3, we can further prove the continuity of the
stationary solutions. Therefore, the robustness of the weak ω-limit sets under the effect of the perturbation
parameter µ can be derived. In the end of this section, we address that the case of a small perturbation
µ ∈ (0, µ2) proves to be the most interesting, since the case of a strong perturbation µ > µ2 leads to trivial
dynamics.

4.1 Positively invariant regions
The following theorem establishes the existence of a family of positively invariant regions for the dynamical
system {Sµ(t)} defined by (24).
Theorem 5 (Positively invariant region). Let µ ≥ 0. Then the region Rµ ⊂ X defined by

Rµ =
{

(u,w) ∈ X | (u(x), w(x)) ∈ Rµ, ∀x ∈ R
}

(64)

with Rµ = [0, u+
µ ] × [0, w+

µ ] (where (u+
µ , w

+
µ ) is given by (35)) is positively invariant by the flow induced by

the degenerate forest kinetic system (4), that is, if U0 ∈ Rµ, then Sµ(t)U0 ∈ Rµ for all t > 0.
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Proof. Let U0 ∈ Rµ, for t ≥ 0, we denote by Uµ(t) = Sµ(t)U0 the global solution of the degenerate reaction-
diffusion system (4) stemming from U0.

We consider a cut-off function χ defined on R by

χ(s) =
{

1
2s

2 if s < 0,
0 if s ≥ 0.

We observe that χ is continuously differentiable on R, and elementary computations show that the following
properties hold for all r, s ∈ R:

χ(s) ≥ 0, χ′(s) ≤ 0, (65)
0 ≤ sχ′(s) ≤ 2χ(s), (66)
rχ′(s) + sχ′(r) ≤ rχ′(r) + sχ′(s). (67)

Now we introduce the functions ξ and ζ defined for all t ≥ 0 by

ρ1(t) =
∫

Ω
χ(u+

µ − uµ(t))dx, ρ2(t) =
∫

Ω
χ(w+

µ − wµ(t))dx.

Since U0(x) ∈ Rµ = [0, u+
µ ] × [0, w+

µ ] for all x ∈ Ω, we have ρ1(0) = ρ2(0) = 0. Furthermore, since χ(s) ≥ 0
for all s ∈ R, we have ρ1(t) ≥ 0 and ρ2(t) ≥ 0 for all t > 0. Since ρ1 is continuously differentiable on R, we
obtain its time derivative

ρ̇1(t) =
∫

Ω

∂(u+
µ − uµ(t))
∂t

χ′(u+
µ − uµ(t))dx

= α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx−
∫

Ω
[qµ(u+

µ ) − qµ(uµ(t))]χ′(u+
µ − uµ(t))dx

= α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx−
∫

Ω
Jµ(u+

µ , uµ(t))(u+
µ − uµ(t))χ′(u+

µ − uµ(t))dx

≤ α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx+ 2J∗
µρ1(t)

by applying (66) and denoting that

Jµ(u+
µ , uµ(t)) =

qµ(u+
µ ) − qµ(uµ(t))
u+

µ − uµ(t)
, ∀t ≥ 0.

It is obvious that Jµ(u+
µ , uµ(t)) gives the coefficient of the line that joins the points of coordinates (u+

µ , qµ(u+
µ ))

and (uµ(t), qµ(uµ(t))) in the plane R2. Hence, there exists J∗
µ ≥ 0 such that

Jµ(u+
µ , uµ(t)) ≥ −J∗

µ, ∀t ≥ 0.

In particular, if assumption (11) is satisfied, which ensures that Jµ(u+
µ , uµ(t)) is positive, then we can easily

erase the corresponding term in the above estimation.
In parallel, the time derivative of ρ2 is given by

ρ̇2(t) =
∫

Ω

∂(w+
µ − wµ(t))
∂t

χ′(w+
µ − wµ(t))dx

= δ

∫
Ω

∆(w+
µ − wµ(t))χ′(w+

µ − wµ(t))dx+ α

∫
Ω

(u+
µ − uµ(t))χ′(w+

µ − wµ(t))dx

− β

∫
Ω

(w+
µ − wµ(t))χ′(w+

µ − wµ(t))dx

≤ α

∫
Ω

(u+
µ − uµ(t))χ′(w+

µ − wµ(t))dx
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by applying property (66) and the Green formula with the Neumann boundary condition, i.e., for all t ≥ 0,∫
Ω

∆(w+
µ − wµ(t))χ′(w+

µ − wµ(t))dx = −
∫

Ω

∣∣∇(w+
µ − wµ(t))

∣∣2 dx ≤ 0.

Eventually, for all t ≥ 0, we have

ρ̇1(t) + ρ̇2(t) ≤ α

∫
Ω

(u+
µ uµ(t))χ′(w+

µwµ(t))dx+ α

∫
Ω

(w+
µ − wµ(t))χ′(u+

µ − uµ(t))dx+ 2J∗
µρ1(t)

≤ α

∫
Ω

(w+
µwµ(t))χ′(w+

µwµ(t))dx+ α

∫
Ω

(u+
µ − uµ(t))χ′(u+

µ − uµ(t))dx+ 2J∗
µρ1(t)

≤ 2α[ρ1(t) + ρ2(t)] + 2J∗
µρ1(t)

≤ 2(α+ J∗
µ)[ρ1(t) + ρ2(t)]

by employing property (67). We then apply the Gronwall lemma to deduce that

ρ1(t) + ρ2(t) ≤ [ρ1(0) + ρ2(0)]e2(α+J∗
µ)t ≤ 0, ∀t ≥ 0.

Owning to ρ1(0) = ρ2(0) = 0, it deduce that ρ1(t) + ρ2(t) = 0, we have moreover ρ1(t), ρ2(t) ≥ 0, which
yields that ρ1 = ρ2 ≡ 0, which completes the proof.

Although the invariant region Rµ defined by (64) depends on the perturbation parameter µ, we can prove
the existence of a L∞-bound for the dynamical system Sµ(t), which is uniform with respect to µ. Indeed, it
suffices to remark that the homogeneous stationary solution (u+

µ , w
+
µ ) given by (35) that delimits Rµ varies

continuously with µ. Note that such a uniform bound could not be established for the absorbing set Bµ

derived from Theorem 3 (see Remark 2).
Corollary 1 (Uniform bound). There exists a positive constant MR such that, for all µ ∈ [0, µ2] and for all
U0 ∈ Rµ:

∥Sµ(t)U0∥L∞(Ω)2 ≤ MR. (68)

Proof. Let µ ∈ [0, µ3] and let U0 ∈ Rµ. For t ≥ 0, we denote
(
uµ(t), wµ(t)

)
= Sµ(t)U0. By virtue of Theorem

5, we have
|uµ(t)| ≤ u+

µ , |wµ(t)| ≤ w+
µ , ∀t ≥ 0.

Next, it is easily seen that (u+
µ , w

+
µ ) depends continuously on µ. Hence we can consider

u+
max = max

0≤µ≤µ2
u+

µ , w+
max = max

0≤µ≤µ2
w+

µ ,

from which we deduce |uµ(t)| ≤ u+
max and |wµ(t)| ≤ w+

max for all t ≥ 0 and for all µ ∈ [0, µ2]. Finally, we
introduce MR = max(u+

max, w
+
max), which achieves the proof.

4.2 Continuity of the stationary solutions
Note that the continuous dynamical system Sµ(t) of problem (4) is defined as (24), and S0(t) is generated by
the unperturbed degenerate forest kinematic model, i.e. µ = 0 in (4). Now we present the following theorem,
which yields the continuity of the flow, and plays a significant role to prove the continuity of the stationary
solutions.
Theorem 6 (Continuity of the flow). Suppose that assumption (11) holds. Suppose moreover that Rµ ⊂ R0
for all µ ∈ (0, µ2). Let Uµ(t) = (uµ, wµ)⊤ and U(t) = (u,w)⊤ denote, respectively, the global solutions to
the degenerate forest kinematic model (4) when µ > 0 and µ = 0. Then, there exists a positive constant
ϱ = min{ q0

2 , β}, such that, for all U0 ∈ Rµ and all t ≥ 0, the following estimate is fulfilled:

∥Sµ(t)U0 − S0(t)U0∥2
Y ≤ µ2M2

1 |Ω|
q0(α− ϱ) (e2(α−ϱ)t − 1). (69)

Moreover,
(i) if α− ϱ < 0, then Uµ(t) µ→0+

−→ U(t) in Y uniformly for t ∈ [0,+∞);

(ii) if α− ϱ > 0, then Uµ(t) µ→0+

−→ U(t) in Y uniformly in every compact interval [0, T ] with T > 0.
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Proof. Let φ = uµ − u, ψ = wµ − w and Ψ(t) = (φ,ψ)⊤ = Uµ(t) − U(t), then we can rewrite the degenerate
forest kinetic system as following

∂φ

∂t
= αψ − qµ(uµ) + q(u) in (0,+∞) × Ω,

∂ψ

∂t
= δ∆ψ − βψ + αφ in (0,+∞) × Ω,

∂ψ

∂ν
= 0 on (0,+∞) × Γ,

φ(0, t) = φ0, ψ(0, t) = ψ0 in Ω.

(70)

Multiply the first equation of (70) by φ, and integrate the product in Ω to have

1
2
d

dt
∥φ∥2

L2 = α

∫
Ω
φψdx−

∫
Ω

(qµ(uµ) − q(u))φdx,

we next multiply the second equation of (70) by ψ, and integrate the product in Ω to have

1
2
d

dt
∥ψ∥2

L2 = δ

∫
Ω

∆ψ · ψdx− β∥ψ∥2
L2 + α

∫
Ω
φψdx.

Combine the above two equations to have

1
2
d

dt
∥Ψ∥2

Y = 2α
∫

Ω
φψdx+ δ

∫
Ω

∆ψ · ψdx− β∥ψ∥2
L2 −

∫
Ω

(qµ(uµ) − q(u))φdx.

Note that
2α
∫

Ω
φψdx ≤ α∥φ∥2

L2 + α∥ψ∥2
L2

by employing the Young’s inequality, and

δ

∫
Ω

∆ψ · ψdx = −δ∥∇ψ∥2
L2 ≤ 0

by employing the Green formula with Neumann boundary conditions. Besides, owning to the properties of
the potential Qµ(u), p(u), the Lp interpolation inequality, and the ϵ-Young’s inequality we have

−
∫

Ω
(qµ(uµ) − q(u))φdx = −

∫
Ω

(qµ(uµ) − qµ(u))φdx−
∫

Ω
µp(u)φdx

≤ −q0∥φ∥2
L2 + µM1

∫
Ω
φdx

≤ −q0∥φ∥2
L2 + ϵ∥φ∥2

L2 + µ2M2
1 |Ω|

4ϵ

≤ −q0

2 ∥φ∥2
L2 + µ2M2

1 |Ω|
2q0

,

by taking ϵ = q0
2 . Then, it is derived from the above that

1
2
d

dt
∥Ψ∥2

Y ≤ α∥φ∥2
L2 + α∥ψ∥2

L2 − β∥ψ∥2
L2 − q0

2 ∥φ∥2
L2 + µ2M2

1 |Ω|
2q0

≤ (α− ϱ)∥Ψ∥2
Y + µ2M2

1 |Ω|
2q0

,

where ϱ = min{ q0
2 , β}, then it follows from the Gronwall lemma that

∥Ψ∥2
Y ≤ e2(α−ϱ)t∥Ψ0∥2

Y + µ2M2
1 |Ω|

q0(α− ϱ) (e2(α−ϱ)t − 1)

≤ µ2M2
1 |Ω|

q0(α− ϱ) (e2(α−ϱ)t − 1).
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Furthermore, if α− ϱ < 0, it is obvious that there exists a positive constant ε small enough so that

∥Uµ(t) − U(t)∥Y ≤ ε

3 =

√
2µ2M2

1 |Ω|
q0(α− ϱ) , µ → 0+.

Similarly, if α − ϱ > 0, then there exists a positive constant Cµ,t depending on the perturbation parameter
µ and t so that

∥Uµ(t) − U(t)∥Y ≤ Cµ,t =

√
µ2M2

1 |Ω|
q0(α− ϱ) (e2(α−ϱ)t − 1), µ → 0+, t ∈ [0, T ], T > 0.

We eventually complete the proof.

By virtue of case (i) in Theorem 6, the following main result can be deduced.

Theorem 7 (Continuity of the stationary solutions). Suppose that the assumptions in Theorem 6 hold. Let
Ūµ, Ū be the stationary solutions to the forest kinematic model (4) when µ > 0 and µ = 0 respectively. Then,
if α− ϱ < 0, we have Ūµ

µ→0−→ Ū in Y .

Proof. It follows from Theorem 4 that Uµ(t) → Ūµ in Y as t → ∞, i.e., for all ε > 0, there exists µ ∈ [0, µ1]
so that

∥Uµ(t) − Ūµ∥Y ≤ ε

3 .

In parallel, when µ = 0, Theorem 4 still holds as long as the assumption c − 1
3ab

2 ≥ 0 is satisfied, i.e.,
U(t) → Ū in Y as t → ∞. Thus, we have

∥U(t) − Ū∥Y ≤ ε

3 .

Combine with the conclusion in case (i) of Theorem 6 , we eventually deduce that

∥Ūµ − Ū∥Y ≤ ∥Ūµ − Uµ(t)∥Y + ∥Uµ(t) − U(t)∥Y + ∥U(t) − Ū∥Y ≤ ε, µ → 0+, t → ∞,

which completes the proof.

Remark 6. Note that we can not conclude that Ūµ
µ→0+

−→ Ū in Y when α − ϱ > 0. Due to the assertion
in case (ii) of Theorem 6, the dissipative estimation (69) only holds on a compact time interval [0, T ]. In
particular, the above convergence results and continuity estimations are based on the assumption that Qµ(u)
is convex. Otherwise, it is still an open problem, and the difficulty comes with the perturbations.

4.3 A robust family of weak attractors
Numerous results on the effect of a perturbation on the asymptotic behavior of a given dynamical system have
been established. Very often, these results express a type of robustness of the global attractor [9, 12, 17, 19,
21, 22, 30, 37, 48], whereas results on the robustness of ω-limit sets are rare [10]. More specifically, robustness
is often described by proving the upper or lower semi-continuity of the global attractor with respect to the
perturbation parameter. As mentioned previously, compactness is a necessary requirement for proving such
statements [38]. Here, the compactness requirement is not fulfilled. However, we can still prove that the set
Aµ defined by

Aµ =
⋃

U0∈Rµ

ωµ
Y (U0)

Y

, µ ≥ 0, (71)

where the set ωµ
Y (U0) is given by (63), attracts the trajectories of the forest kinematic model (4) and varies

smoothly with µ. Recall that the distance in Y between a element u ∈ Y and a bounded set B ⊂ Y is defined
as dY (u,B) = infv∈B dY (u, v), and the semi-distance in Y between two bounded sets B1, B2 ⊂ Y is defined
by dY (B1, B2) = supu∈B1 dY (u,B2).
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Theorem 8 (A robust family of weak attractors). Suppose that assumption (11) holds. Suppose moreover
that Rµ ⊂ R0 for all µ ∈ [0, µ1]. Then the set Aµ defined by (71) satisfies the following properties:

(i) Aµ is invariant, closed and uniformly bounded in Y , for all µ ∈ [0, µ1];

(ii) Aµ attracts in Y the trajectories of (4) starting in Rµ, for all µ ∈ [0, µ1], that is:

lim
t→+∞

dY

(
Sµ(t)U0,Aµ

)
= 0, (72)

for all U0 ∈ Rµ and for all µ ∈ [0, µ1];

(iii) if α− ϱ < 0, then the family {Aµ}0≤µ≤µ1 satisfies

dY

(
Aµ,A0

)
≤ Cµ, (73)

where C is a positive constant and ϱ = min
(

q0
2 , β

)
.

Proof. (i) Let µ ∈ [0, µ1]. It follows from the definition (71) that Aµ is invariant and closed in Y . Next, let
Uµ ∈ Aµ. Then there exists a sequence (Uµ,n) in

⋃
U0∈Rµ

ωµ
Y (U0) such that (Uµ,n) converges to Uµ in Y as n

tends to +∞. By virtue of Theorem 4, we have ωµ
Y (U0) = {ℓµ(U0)}, for each U0 ∈ Rµ, where we shortly

denote by ℓµ(U0) the limit in Y of the trajectory Sµ(t)U0. Hence, we have Uµ,n = ℓµ(Uµ,n,0) for each n ≥ 0,
with Uµ,n,0 ∈ Rµ. Now, Corollary 1 guarantees that ∥Sµ(t)Uµ,n,0∥Y ≤ M̃R for all t ≥ 0, where M̃R is a
positive constant that does not depend on µ. We can deduce that ∥Uµ,n∥Y ≤ M̃R for all n ≥ 0, and finally
that ∥Uµ∥Y ≤ M̃R, for all Uµ ∈ Aµ and for all µ, which proves that Aµ is uniformly bounded in Y .

(ii) Let U0 ∈ Rµ. Theorem 4 guarantees that Sµ(t)U0 converges in Y to ℓµ(U0) as t tends to +∞, with
ωµ

Y (U0) = {ℓµ(U0)}, which can be written

lim
t→+∞

dY

(
Sµ(t)U0, ℓ

µ(U0)
)

= 0.

But we have
dY

(
Sµ(t)U0,Aµ

)
≤ dY

(
Sµ(t)U0, ℓ

µ(U0)
)
,

since ℓµ(U0) ∈ Aµ, which proves (72).
(iii) Let Uµ ∈ Aµ. We consider again a sequence (Uµ,n) in

⋃
U0∈Rµ

ωµ
Y (U0) such that (Uµ,n) converges to

Uµ in Y as n tends to +∞, and we write again Uµ,n = ℓµ(Uµ,n,0) with Uµ,n,0 ∈ Rµ. Now, we have

dY (Uµ,n,A0) = dY

(
ℓµ(Uµ,n,0),A0

)
≤ dY

(
ℓµ(Uµ,n,0), ℓ0(Uµ,n,0)

)
,

where ℓ0(Uµ,n,0) denotes the limit in Y of the unperturbed trajectory S0(t)Uµ,n,0 (which is well defined, since
Rµ ⊂ R0). Since α < min

(
q0
2 , β

)
, Theorem 6 ensures that

dY

(
ℓµ(Uµ,n,0), ℓ0(Uµ,n,0)

)
≤ Cµ,

for all µ ∈ [0, µ1] and for all n ≥ 0, with C > 0. We can deduce that

dY (Uµ,n,A0) ≤ Cµ,

for all n ≥ 0 and consequently that
dY (Uµ,A0) ≤ Cµ,

for all Uµ ∈ Aµ. We obtain
dY (Aµ,A0) ≤ Cµ,

which proves (73). The proof is complete.

Remark 7. Theorem 8 guarantees that the set Aµ defined by (71) attracts in Y the trajectories of the
kinematic forest model (4). However, due to the lack of compactness, it is not known if the set Aµ attracts
the bounded sets of Rµ.
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4.4 Case of a strong perturbation
We end this section with the case of a strong perturbation, obtained for µ > µ2. The following theorem
proves that in this case, the orbits of the dynamical system (24) converge to the trivial equilibrium.

Theorem 9. Let µ > µ3, then there exists ρ∗ > 0 such that for each U0 ∈ K, the solution Uµ(t) of the
degenerate forest kinetic system (4) stemming from U0 satisfies

∥Uµ(t)∥Y ≤ ∥U0∥Y e
−ρ∗t, t ≥ 0.

Proof. Since µ > µ3, there exists ρ > 0 such that qµ(u) ≥
(

α2

β + ρ
)
u if u ≥ 0 and qµ(u) ≤

(
α2

β + ρ
)
u if

u ≤ 0. Hence we have

uqµ(u) ≥
(
α2

β
+ ρ

)
u2,

for all u ∈ R. Now we introduce the energy function L defined for t ≥ 0 by

L(t) = 1
2

∫
Ω

[u2
µ(t) + w2

µ(t)]dx,

which is continuously differentiable and we have

L̇(t) =
∫

Ω
uµ(t)∂uµ

∂t
(t)dx+

∫
Ω
wµ(t)∂wµ

∂t
(t)dx

= 2α
∫

Ω
uµ(t)wµ(t)dx−

∫
Ω
uµ(t)qµ(uµ(t))dx+ δ

∫
Ω
wµ(t)∆wµ(t)dx− β

∫
Ω
w2

µ(t)dx

≤ 2α
∫

Ω
uµ(t)wµ(t)dx−

(
α2

β
+ ρ

)∫
Ω
u2

µ(t)dx− β

∫
Ω
w2

µ(t)dx

by applying the Green formula with the Neumann boundary and the assumption above.
Now we apply the generalized Young’s inequality to write∫

Ω
uµ(t)wµ(t)dx ≤ 1

2ε

∫
Ω
u2

µ(t)dx+ ε

2

∫
Ω
w2

µ(t)dx,

with any ε > 0, then we have

2α
∫

Ω
uµ(t)wµ(t)dx ≤ α

ε

∫
Ω
u2

µ(t)dx+ αε

∫
Ω
w2

µ(t)dx,

in which we can choose a proper ε to ensure α
ε = α2

β + ρ
2 , i.e., ε = α

α2

β + ρ
2

.

Therefore, we obtain
L̇(t) ≤ −ρ

2

∫
Ω
u2

µ(t)dx− (β − αε)
∫

Ω
w2

µ(t)dx,

where β − αε > 0 is naturally guaranteed by our choice of ε. Note that ρ∗ = min(ρ, β − αε), we thus obtain
that

L̇(t) ≤ −ρ∗L(t).

Employing again the Gronwall lemma, we eventually complete the proof.

5 Numerical simulations
In this section, we aim to illustrate with relevant numerical simulations the theoretical results established
above, and to show how the perturbed forest kinetic model (4) fulfills various ecological properties of interest.
First, we experiment the effect of several perturbations on the position of the ecotone, which corresponds to
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the frontier between the forest and another ecosystem (as for instance savanna in tropical regions, or tundra
in boreal regions). These perturbations are expected to model the impact of global warming on the biological
dynamics of the ecosystem. However, as the complex mechanisms of global warming are not yet precisely
understood, we experiment several functions for the perturbation p(u) involved in (5), mainly determined by
polynomial or sinusoidal expressions. Then, we present numerical results that prove that the forest kinetic
model (4) can reproduce the formation of chaotic patterns.

Our numerical computations were performed using a Strang type splitting scheme [47], with a finite
elements discretization in space, and a Runge-Kutta method in time. The computation code was executed
in a Debian/GNU-LINUX environment, with the free software FreeFem++ [20]. For all simulations, we have
considered an elliptic domain Ω of width L = 500 and height ℓ = 300; we have fixed the parameters of the
forest kinetic model (4) as follows:

α = β = 1, δ = 10, a = 0.6, b = 1, c = 0.9. (74)

With these parameters, the unperturbed problem admits three homogeneous equilibrium states given by

O = (0, 0), U− =
(

1 − 1√
6
, 1 − 1√

6

)
, U+ =

(
1 + 1√

6
, 1 + 1√

6

)
. (75)

5.1 Shift of the ecotone or modification of the persistence equilibrium
One of the most fascinating properties of forest ecosystems is their ability to migrate in space, while they are
obviously populations of sedentary individuals. Recently, it has been proved in [5] that this indirect diffusion,
when combined with a hysteresis process, can explain the separation of trajectories, that reproduces the
formation of an ecotone (see [40]). As forest ecosystems are highly destabilized by climatic and anthropic
perturbations, it is relevant to investigate the impact of a perturbation on the position of the ecotone. In
the ecological science literature, it is well described that the ecotone can be simply shifted to the north or
to the south, depending on the nature of the perturbation and on the geographical region, or can be highly
modified and exhibit the formation of chaotic or fractal patterns [51]. For instance, in [14], a northward shift
is proved to occur in the boreal forest-tundra ecotone; in [42], the tropical forest-savanna ecotone is studied
and it is shown that climate change can modify the trees density near the ecotone; in [43], island tropical
montane cloud forests are studied and it is observed that climate change might push them towards higher
elevations.

Here, to reproduce these complex mechanisms, we consider two shift perturbations s1, s2 defined by

s1(u) = auu−(u− u+), s2(u) = −auu−(u− u+). (76)

The effect of these shift perturbations on the cubic function q(u) is depicted in Figure 3: when µ increases,
the persistence equilibrium U+ is not modified. However, the saddle equilibrium U−

µ is shifted to the left
under the action of s1(u), or to the right under the action of s2(u). The shift can also be visualized on the
energy levels of the potential Hµ(u,w) defined by (32), as illustrated in Figure 4.
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Figure 3: Effect of the shift perturbations s1(u), s2(u) defined by (76) on the cubic function q(u). (a) Shape of the
unperturbed cubic function q(u). (b) When µ increases, the persistence equilibrium U+ is not modified; the saddle
equilibrium U−

µ is shifted to the left under the action of s1(u). (c) The saddle equilibrium U−
µ is shifted to the right

under the action of s2(u).
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Figure 4: Effect of the shift perturbations s1(u), s2(u) defined by (76) on the energy levels of the potential Hµ(u, w)
defined by (32). (a) Energy levels of the unperturbed potential. (b) Under the action of s1(u), the saddle U−

µ is
shifted to the left, whereas the persistence equilibrium U+ is not modified. (c) Under the action of s2(u), the saddle
U−

µ is shifted to the right.
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Figure 5: Numerical simulation showing the effect of the shift perturbations s1(u), s2(u) on the position of the
ecotone. In the last row, the position of the ecotone is highlighted by a brown band. Under the action of s1(u), the
ecotone is shifted to the left (second column). Under the action of s2(u), it is shifted to the right (third column).

Next, we have considered an initial condition
(
u0(x), w0(x)

)
which is equally distributed within the basins

of attraction of the extinction equilibrium O and of the persistence equilibrium U+. As proved in [6], the
trajectory of the forest kinetic model (4) starting from such an initial condition is expected to converge to
a heterogeneous stationary solution that reproduces the ecotone. Hence, we have computed the trajectories(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
, of the unperturbed problem and of the problem perturbed by s1(u) or

s2(u), respectively. The results are depicted in Figure 5, where we focus on the density of trees. In this figure,
the color semantics is chosen according to intuition: deep green illustrates a high density of trees, while pale
green represents a low density of trees. We have chosen a 3D view in order to visualize the formation of the
ecotone. In the first column, we show the time evolution of the density of trees u(t, x) of the unperturbed
trajectory, from t = 0 (at the top), until t = 1000 (at the bottom). In the second and third columns, we
show the time evolution of the density of trees uµ(t, x) of the trajectories perturbed by s1(u) and s2(u),
respectively. In the asymptotic phase (t = 1000), the ecotone is highlighted by a brown band, located at the
position of the domain Ω where the density of trees decreases very rapidly. As expected, the ecotone is shifted
to the left under the action of s1(u), which implies that the area occupied by the high density of trees spreads
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in the domain Ω. If the perturbation parameter µ is increased, the area occupied by a high density of trees
can even invade the whole domain Ω. At the opposite, the ecotone is shifted to the right under the action
of s2(u), which implies that the area occupied by a high density of trees shrinks. Hence, these numerical
simulations show that the perturbed forest model (4) can faithfully reproduce ecological observations of great
interest.
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Figure 6: Effect of the perturbations m1(u), m2(u) defined by (77) on the cubic function q(u). (a) Shape of the
unperturbed cubic function q(u). (b) The persistence equilibrium U+

µ decreases under the action of m1(u). (c) It
increases under the action of m2(u). In parallel, the saddle point U− is not modified.
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Figure 7: Effect of the perturbations m1(u), m2(u) defined by (77) on the energy levels of the potential Hµ(u, w).
(a) Energy levels of the unperturbed potential. (b) The persistence equilibrium U+

µ decreases under the action of
m1(u). (c) It increases under the action of m2(u).

Afterwards, we have also experimented two perturbations m1, m2 that are expected to modify the persis-
tence equilibrium U+, without impacting the position of the ecotone. The perturbations m1, m2 are defined
by the polynomial expressions

m1(u) = auu+(u− u−), m2(u) = −auu+(u− u−). (77)

The effects of the perturbations m1(u), m2(u) on the cubic function q(u) and on the energy levels of the
potential H(u,w) are depicted in Figures 6 and 7, respectively. Under the action of the perturbation m1(u),
the persistence equilibrium U+

µ is decreased, whereas it is increased under the action of the perturbation
m2(u). In parallel, the saddle point U− is not modified.

With the perturbations m1(u), m2(u) defined by (77), we have again considered an initial condition(
u0(x), w0(x)

)
which is equally distributed within the basins of attraction of the extinction equilibrium O

and of the persistence equilibrium U+. The perturbed trajectories starting from that initial condition are
depicted in Figure 8. We observe that the trajectory behaves as expected, with a modification of the level of
the persistence equilibrium U+

µ and no modification of the position of the ecotone. It is worth noting that this
behavior reproduces a non trivial ecological transition which is well observed and described: indeed, under
the action of climate change, forest ecosystems can exhibit a deep modification of their dynamics, such as,
for instance, the savannization of the Amazon forest (see e.g. [45]), that leads to a sharp fall of the density
of trees in the ecosystem.
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Figure 8: Numerical simulation showing the effect of the perturbations m1(u), m2(u) on the level of the persistence
equilibrium U+. In the last row, the position of the ecotone is again highlighted by a brown band. Under the action
of m1(u), the level of persistence is decreased (second column). Under the action of m2(u), it is increased (third
column). In parallel, the position of the ecotone is not varied.

5.2 Emergence of intermediate ecosystems
We continue with numerical simulations of the forest kinematic model (4) perturbed by a periodic process.
Hence, we consider the perturbations p1(u), p2(u) and p3(u) defined by

p1(u) = sin(20u), p2(u) = sin(9u), p3(u) = sin(11u). (78)

The effects of the perturbations p1(u), p2(u) and p3(u) are depicted in Figures 9 and 10, with µ = 0.035,
µ = 0.09 and µ = 0.07, respectively. Note that these values of the perturbation parameter µ guarantee that
the perturbed cubic function qµ(u) is still monotone; however, it admits more than three intersection points
with the line w = α2

β u. These supplementary intersection points are expected to perturb the form and the
position of the ecotone. In parallel, the positions of the intersection points can modify the values of the trees
density at equilibrium.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

µ = 0

α2

β u

q(u)

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 < µ < µ1

α2

β u

q(x) + µp1(u)

(b)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 < µ < µ1

α2

β u

q(x) + µp2(u)

(c)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 < µ < µ1

α2

β u

q(x) + µp3(u)

(d)

Figure 9: Effect of the perturbations p1(u), p2(u), p3(u) defined by (78) on the cubic function q(u). (a) Shape of
the unperturbed cubic function q(u). (b)-(c)-(d) The perturbed function qµ(u) admits more than three intersection
points with the line w = α2

β
u.
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Figure 10: Effect of the perturbations p1(u), p2(u), p3(u) defined by (78) on the energy levels of the potential
H(u, w). (a) Energy levels of the unperturbed potential H(u, w). (b)-(c)-(d) The perturbed potential Hµ(u, w)
admits a supplementary saddle point and a supplementary sink.
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Figure 11: Numerical simulation showing the effect of the periodic perturbations p1(u), p2(u), p3(u) on the dynamics
of the forest model (4). In the last row, the positions of the ecotones are highlighted by brown bands. Under the
action of the perturbations, the form of the ecotone is modified and intermediate ecosystems emerge. The size and
trees densities of these intermediate ecosystems are very sensitive to the nature of the perturbation.

With the perturbations p1(u), p2(u), p3(u) defined by (78), we have again considered an initial condition(
u0(x), w0(x)

)
which is equally distributed within the basins of attraction of the extinction equilibrium O

and of the persistence equilibrium U+. The perturbed trajectories starting from that initial condition are
depicted in Figure 11. In this figure, we show the time evolution of the density of trees uµ(t, x) for each
perturbation. We observe that the position and the form of the ecotone are modified and intermediate
ecosystems emerge. The size and trees densities of these intermediate ecosystems are very sensitive to the
intensity and the nature of the perturbation. In each case, the perturbation leads to a decrease of the total
living biomass, which is in concordance with ecological observations (see for instance [16]).

5.3 Randomly generated initial conditions lead to chaotic patterns
We end this section with numerical simulations of the forest kinetic model (4), starting from randomly
generated initial conditions. We have chosen an initial condition

(
u0(x), w0(x)

)
, x ∈ Ω, using the random

number generator randreal() of the FreeFem++ software, and we have computed two trajectories of the
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Figure 12: Numerical simulation showing the time evolution of the densities of trees u(t, x), uµ(t, x) (first and second
columns) and of the densities of seeds w(t, x), wµ(t, x) (third and fourth columns), corresponding to an unperturbed
trajectory and a perturbed trajectory of the forest kinetic model (4), respectively. Starting from a randomly generated
initial condition, the trajectories converge to a stationary solution that exhibits spots patterns with a low density of
trees and seeds.

forest kinetic model (4). The first trajectory
(
u(t, x), w(t, x)

)
is the solution of the unperturbed problem

(that is, with µ = 0), while the second trajectory
(
uµ(t, x), wµ(t, x)

)
is the solution of the perturbed problem,

with p(u) = sin(20u) and µ = 0.035.
Our results are presented in Figure 12. In this figure, the left column shows the time evolution of the

density of trees u(t, x) (of the unperturbed trajectory), from t = 0 (at the top), until t = 2000 (at the
bottom). The color semantics is the same as in Figures 5 and 8 (deep green models a high density of trees,
and pale green corresponds to a low density of trees). However, we have chosen a map view rather than a 3D
view, so as to better visualize the formation of patterns. The second column shows the time evolution of the
density of trees uµ(t, x) (of the perturbed trajectory), with the same color semantics. The third and fourth
columns show the time evolution of the densities of seeds w(t, x) and wµ(t, x) (unperturbed and perturbed
trajectories, respectively); white and yellow correspond to a high density of seeds, while blue and brown
model a low density of seeds.

We observe that the trajectories converge to a heterogeneous stationary solution that exhibits spots
patterns with a low density of trees and seeds. For instance, a white spot of low density of trees is located at
the position (400, 200) of the domain Ω (first and second columns, at the bottom), in correspondence with a
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Figure 13: Numerical simulation showing the limits of two trajectories
(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
starting

from another randomly generated initial condition
(
u0(x), w0(x)

)
. The trajectories converge to a stationary solution

that again exhibits spots patterns with a low density of trees and seeds. However, the number and location of spots
are completely different than in Figure 12.

brown spot of low density of seeds, located at the same position (third and fourth columns, at the bottom).
According to Theorem 8, the stationary solution is robust with respect to a variation of the perturbation
parameter µ, that is, the spots are smoothly modified by an increase of µ. Hence, modifications of the
spots can be identified after a careful look, but these modifications are small. However, these spots are very
sensitive a change of the initial condition

(
u0(x), w0(x)

)
. Indeed, we show in Figure 13 the limits of two other

trajectories
(
u(t, x), w(t, x)

)
,
(
uµ(t, x), wµ(t, x)

)
, starting from another randomly generated initial condition(

u0(x), w0(x)
)
. As in Figure 12, we observe the formation of spots, modeling a low density of trees and

seeds. While these spots are again smoothly modified by the perturbation parameter µ, their number and
location are completely different in Figures 12 and 13. Therefore, these patterns admit a chaotic behavior.
It is worth emphasizing that such a chaotic behavior has been intensely studied in non degenerate reaction-
diffusion systems admitting a diffusion driven instability (see for instance [3], [39] and the references therein);
however, chaotic patterns emerging in degenerate reaction-diffusion systems as the forest model (4) have not
been as much analyzed. In particular, given an initial condition

(
u0(x), w0(x)

)
, it seems very difficult to

predict the position of spots of the corresponding trajectory.

6 Conclusion
In this paper, we studied the dynamics of a perturbed forest kinematic model (4). We firstly presented
the normal well-posedness results. Then, we established the asymptotic convergence result by proving the
 Lojasiewicz-Simon gradient inequality, which is guaranteed by the monotonicity of the nonlinear perturba-
tion qµ(u), i.e. when assumption (11) holds. Moreover, we established the existence of a family of positively
invariant regions for the dynamical system {Sµ(t)}, and proved the continuity of the flow, which yields the
continuity of the stationary solutions. We further addressed the robustness of the weak attractors, which is
highly nontrivial. However, when the monotonicity assumption is violated, the set of equilibria in the weak
topology contains numbers of essentially discontinuous solutions,[13] which is challenging and will be studied
in our forthcoming research. We also presented the case of a strong perturbation, which leads to trivial
dynamics. At last but not the least, we performed numerical simulations to illustrate our theoretical results.
We showed the modification of the persistence equilibrium, and the emergence of intermediate ecosystems as-
sociated with different perturbations. We also introduced the chaotic patterns caused by randomly generated
initial conditions.
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