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MATRIX DECOMPOSITION ON GRAPHS: A SIMPLIFIED FUNCTIONAL VIEW

Abhishek Sharma, Maks Ovsjanikov

LIX, Ecole Polytechnique, IP Paris

ABSTRACT

We propose a simplified functional view of matrix decompo-
sition problems on graphs such as geometric matrix comple-
tion. Our unifying framework is based on the key idea that
using a reduced basis to represent functions on the product
space is sufficient to recover a low rank matrix approxima-
tion even from a sparse signal. We validate our framework
on several real and synthetic benchmarks where it either out-
performs very competitive baselines or achieves competitive
results at a fraction of the computational effort of prior work.

Index Terms— Geometric Matrix Completion, Func-
tional Maps, Low Rank Estimators

1. INTRODUCTION

The assumption that high-dimensional data samples lie on or
close to a smooth low-dimensional manifold is exploited as
a regularizer or prior in many machine learning algorithms.
Often, the low-dimensional manifold information is exploited
via a graph structure between the data samples. As a result,
graphs are often used as a regularizers in various machine
learning problems such as dimensionality reduction [10],
hashing [16] or matrix completion [11] to name a few. In this
article, we focus on geometric matrix completion.

Matrix completion deals with the recovery of missing
values of a matrix of which we have only measured a subset of
the entries. In general, without any constraints, this problem
is ill-posed. However if the rank of the underlying matrix is
small, it is common to find the lowest rank matrix that agrees
with known measurements [5]. Under this low rank assump-
tion, the problem is very similar to dimensionality reduction
and can be rewritten as,

min
X

rank (X) +
µ

2
‖(X −M)� S‖2F . (1)

Here X stands for the unknown matrix, M ∈ Rm×n for the
ground truth matrix, S is a binary mask representing the in-
put support, and � denotes the Hadamard product. Various
problems in collaborative filtering can be posed as a matrix
completion problem [11, 21], where for example the columns
and rows represent users and items, respectively, and matrix
values represent a score determining the preference of user for
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that item. Often, additional structural information is available
in the form of column and row graphs representing similarity
of users and items, respectively. Most of the prior work that
incorporates geometric structure into matrix completion prob-
lems is either based on highly engineered frameworks, e.g.,
[18] or non convex formulation with several hyperparameters
[4] thereby making the overall optimization harder to opti-
mize. Instead, our simple formulation based on the functional
map representation [19], with a single regularizer, mitigates
the problems associated with [4].
Contributions. We propose a convex and smooth matrix
decomposition formulation that explicitly imposes and opti-
mizes for a low rank approximation and, as we demonstrate
below, is empirically more accurate in recovering a low rank
matrix approximation than competitive baselines. Our sim-
plified functional framework also proposes a novel regular-
ization that is shown to be competitive with a combination
of several regularizers on various real world datasets. More-
over, we also outline a condition under which a functional
map based framework can recover the low rank matrix.

2. RELATED WORK

Matrix completion has been studied with many viewpoints.
In this section, we first briefly cover related work on geomet-
ric matrix completion and then describe prior work that is
directly related to our work.
Geometric matrix completion. A prominent relaxation of
the rank operator in equation (1) is to constrain the space
of solutions to be smooth w.r.t. some geometric structure
of the matrix rows and columns. There exist several prior
works on geometric matrix completion that exploit geometric
information [3, 11, 21] such as graphs encoding relations
between rows and columns. More recent works leverage
deep learning on geometric domains [3, 18] to extract rele-
vant information from geometric data such as graphs. While
these techniques achieve state-of-the-art results, their design
is highly engineered and thus, non-intuitive and often lacks a
proper theoretical foundation.

Low Rank Estimators. In classical matrix completion or
estimation literature, there is large body of work that assumes
the underlying signal matrix M to be low rank and then tries
to estimate it using truncated SVD methods [14, 12, 7, 6, 13]
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as it is the best approximation of a given rank r to the data in
the least squares sense. Most of these work estimate this un-
known rank and provide bounds on optimality of hard thresh-
olded SVD in an asymptotic framework. Our method is not
directly related to these work and we explain it in more detail
in the methodology section 4.
Functional Maps. Our work is mainly inspired from the
functional map framework [19], which is used ubiquitously
in non-rigid shape correspondence, and has been extended to
handle challenging partial matching cases, e.g. [15]. This
framework has recently been adapted for geometric matrix
completion in [4], where the authors propose to build a func-
tional map between graphs of rows and columns. However,
they 1) impose several non convex regularization terms each
with a scaling hyperparameter and some even with differ-
ent initialization 2) explore a huge range of hyperparameter
space.

3. PRELIMINARIES

In this section, we cover some preliminaries about product
graphs and functional maps.
Product graphs Let G = (V,E,W ) be a (weighted) graph
with its vertex set V and edge set E and adjacency matrix de-
noted by W . Graph Laplacian L is given by L = D −W ,
where D = diag(W ) is the degree matrix. L is symmet-
ric and positive semi-definite and therefore admits a spec-
tral decomposition L = ΦΛΦ>. Let G1 = (V1, E1,W1),
G2 = (V2, E2,W2) be two graphs, with L1 = ΦΛ1Φ

>,
L2 = ΨΛ2Ψ

> being their corresponding graph Laplacians.
We define the Cartesian product of G1 and G2, denoted by
G1�G2, as the graph with vertex set V1 × V2.
Functional maps. Let X be a function defined on G1�G2.
It can be encoded as a matrix of size |V1| × |V2|. Then it can
be represented using the bases Φ,Ψ of the individual graph
Laplacians, C = Φ>XΨ. In the shape processing commu-
nity, such C is called a functional map, as it is used to map
between the functional spaces of G1 and G2. One of the ad-
vantages of working with the functional map representation
C rather than the matrix X is that its size is typically much
smaller, and is only controlled by the size of the basis, in-
dependent of the number of nodes in G1 and G2, resulting
in simpler optimization problems. Moreover, the projection
onto a basis also provides a strong regularization, which can
itself be beneficial for both shape matching, and, as we show
below, matrix completion.

4. LOW RANK MATRIX DECOMPOSITION

We assume that we are given a set of samples in some matrix
M ∈ Rm×n. In addition, we construct two graphs Gr,Gc,
encoding relations between the rows and the columns, respec-
tively. We represent the Laplacians of these graphs and their
spectral decompositions by Lr = ΦΛrΦ

>, Lc = ΨΛcΨ
>.

For the matrix completion problem, the matrix M is not com-
pletely known so we are also given a binary indicator mask S
that indicates 1 for measured samples and 0 for missing ones.
We minimize the objective function of the following form:

min
X

Edata(X) + µEreg(X) (2)

with Edata denoting a data term of the form

Edata(X) = ‖(X −M)� S‖2F , (3)

As observed in [4], we can decompose X = ΦCΨ>. Re-
markably, the data term itself, as we show in our experiments,
when expressed through the functional map i.e.X = ΦCΨ>

already recovers low-rank matrices and outperforms the re-
cent approach of [4] on synthetic geometric experiments for
matrix completion and obtains competitive results on dimen-
sionality reduction tasks. Before we explain the choice and
motivation of our regularizer Ereg, we explain next why the
data term itself already works remarkably well on rank con-
strained geometric problems.

4.1. Motivation and Analysis

Suppose that we constrain X to be a matrix such that X =
ΦCΨ> for some matrix C. Note that if Φ and Ψ have k
columns each then C must be a k × k matrix. We would like
to argue that solving equation (3) under the constraint that
X = ΦCΨ> will recover the underlying ground truth signal
if it is low rank and satisfies an additional condition that we
call basis consistency.

For this suppose that the ground truth hidden signal M
has rank r. Consider its singular value decomposition M =
UΣV >. As M has rank r, Σ is a diagonal matrix with r
non-zero entries. We will call M basis-consistent with re-
spect to Φ,Ψ if the first r left singular vectors Ur (i.e., those
corresponding to non-zero singular values) lie in the span of
Φ, and the first r right singular vectors Vr lie in the span of Ψ.
In other words, there exist some matrices R,Q s.t. Ur = ΦR
(note that this implies k ≥ r) and Vr = ΨQ. Given this
definition, it is easy to see that all basis-consistent matrices
with rank r ≤ k can be represented by some functional map
C. In other words, given Y that is basis-consistent, there is
some functional map C s.t. Y = ΦCΨT . Conversely any
X = ΦCΨT has rank at most k and must be basis-consistent
by construction.

Second, suppose we are optimizing equation (3) under
the constraint X = ΦCΨ> and that the optimum, i.e., the
ground truth matrix M , is basis-consistent. Then since the
energy Edata(C) is convex, given k2 known samples to fully
constrain the corresponding linear system, we are guaranteed
to recover the optimum low-rank basis-consistent matrix.

This simple observation suggests that by restricting X =
ΦCΨ> and optimizing over the matrices C instead of X al-
ready provides a strong regularization that can help recover
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appropriate low-rank signals even without any other regular-
ization. Further, it avoids solving complex optimization prob-
lems involving iterative SVD, since C becomes the only free
variable, which can be optimized directly. For problems such
as geometric matrix completion, we observe that a weak addi-
tional regularization is often sufficient to obtain state-of-the-
art results. More formally, we state our result as follows

Proposition 1 We recover an optimal low rank matrix with
high probability as long as the underlying latent matrix X is
basis consistent.

Proof: The proof is based on the main result (Theorem 1 in
[5]) in low rank exact matrix recovery method. [5] prove that
there is a unique rank k matrix that agrees with the sampled
values with high probability and thus, recovers this underly-
ing hidden signal matrix. Our method also recovers a rank
k matrix by construction. Since our problem is convex, our
method will recover the best rank k matrix that is within the
span of the eigenfunctions. If the underlying matrix is ba-
sis consistent, then our method will recover the same exact
matrix as a low rank exact recovery method (by definition of
basis consistency).

Note that we verified on the Synthetic Netflix dataset that
our basis consistency condition is indeed satisfied.

4.2. Laplacian Commutativity as a Regularizer

Our Ereg contains a single regularization term on the func-
tional map induced between row space and column space de-
scribed next. We propose to use the simplest possible reg-
ularizer, which furthermore leads to a convex optimization
problem and can achieve state-of-the-art results. For this we
borrow a condition that is prominent in the functional map lit-
erature [20]. Namely, in the context of surfaces, the functional
map is often expected to commute with the Laplace-Beltrami
operator: Ereg =

∥∥CΛr −ΛcC
∥∥2 where Λr and Λc are di-

agonal matrices of Laplacian eigenvalues of the source graph
(row graph) and target graph (column graph). More broadly,
commutativity with the Laplacian imposes a diagonal struc-
ture of the functional map, which intuitively promotes preser-
vation of low frequency eigenfunctions used in the basis. In
the context of matrix completion this can be interpreted sim-
ply as approximate preservation of global low frequency sig-
nals defined on the two graphs.

Given these above definitions, our problem defined in
equation (2) reduces to

min
C
‖(X −M)� S‖2F + µ ∗

∥∥CΛr −ΛcC
∥∥2

where X = ΦCΨ>
(4)

As noted in several works, isometry between two spaces is a
key to functional map representation. Assuming isometry be-
tween real world graphs is however over optimistic. Thus, one
way to work under relaxed isometry condition is to instead

align the eigen basis with additional transformation matrix to
achieve diagonal functional map matrix [15, 4]. In practice,
we observe faster convergence if we replace C with PCQ>

, and let all three P ,C and Q be free variables.
Differences from SGMC [4] Even though both methods,

ours and SGMC build on the functional map framework, there
is a fundamental difference between the two. SGMC focus is
on high complexity functional map based model (large values
of C, multiple resolutions of C,P ,Q) and thus, requires a
variety of (non-convex) regularizers. In contrast, our core idea
is on the low rank matrix recovery based on the functional
map based decomposition alone X = ΦCΨ>(See ’Ours-
FM’ baseline in experiments Section 5.2).

To outline the differences more precisely, in addition to
Dirichlet energy on the two graphs, [4] also introduces two
regularizations on the transformation matrix P ,Q. Addi-
tionaly, [4] also uses a multi-resolution spectral loss named
SGMC-Zoomout (SGMC-Z) [17] with its own hyperparame-
ters (step size between different resolutions) besides several
scalars to weigh different regularizations.

Hyperparameters The optimization is carried out using
gradient descent in Tensorflow [1]. For all experiments, we
set µ and the learning rate to be .00001 for all the experi-
ments. We report the size of C explicitly in each experiment
below. For geometric matrix completion, we divide the num-
ber of available entries in the matrix randomly into training
and validation set in a 95 to 5 ratio respectively.

5. EXPERIMENTS

In the first half of this section, we extensively compare be-
tween our approach and Spectral Geometric Matrix Com-
pletion (SGMC)[4] on a synthetic example of a community
structured graphs. In the latter half, we compare with all ap-
proaches on various real world recommendation benchmarks.
For a fair comparison with [4], we use graphs taken from the
synthetic Netflix dataset. Synthetic Netflix is a small syn-
thetic dataset constructed by [11] and [18], in which the user
and item graphs have strong community structure. Similar
to [4], we use a randomly generated low rank matrix on the
product graph Gc�Gr to test the matrix completion accuracy.
Synthetic Netflix is useful in conducting controlled exper-
iments to understand the behavior of geometry-exploiting
algorithms. We consider the following two baselines:

Ours-FM: This baseline only optimizes for C without
any regularization. All results are obtained with C of size
30 × 30. This value was chosen after a cross validation from
a set of 20, 30, 40. SGMC: All results are obtained with their
open source code with their optimal parameters.

To evaluate the performance of the algorithms in this sec-
tion, we report the root mean squared error computed on the
complement of the training set.

We compare the two approaches on different constraints
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Table 1. Testing the dependence on the density of the sam-
pling set for a random rank 10 matrix of size 150× 200.

Density in % Ours Ours-FM SGMC
1 2e-2 2e-2 1e-1
5 8e-7 1e-3 5e-4
10 2e-7 5e-5 2e-4
20 1e-7 2e-5 1e-4

Table 2. Testing the robustness to noisy graphs.
Noise Ours Ours-FM SGMC
5 1e-3 2e-3 5e-3
10 4e-3 3e-3 1e-2
20 6e-3 6e-3 1e-2

ranging from rank of the underlying matrix to the sampling
density. Note that optimality bounds for classical matrix com-
pletion algorithms also depend on constraints such as sam-
pling density, noise variance etc.

Rank of the underlying matrix. We observe that as the
rank increases up to 15, it becomes harder for both methods to
recover the matrix. We remark that Ours-FM alone recovers
the low rank very effectively. However, on real data, we find
the additional regularizer in Ours to be more effective than
Ours-FM. We also remark that Ours-FM consistently outper-
forms SGMC for all rank values. For the training set we used
10% of the points chosen at random (same training set for all
experiments summarized in Table 3).

Sampling density. We demonstrate that in the data-poor
regime, our regularization is strong enough to recover the ma-
trix, compared to performance achieved by incorporating ge-
ometric regularization through SGMC. These experiments are
summarized in Table 1. Note that gap between us and SGMC
remains high even when the sample density increases to 20%.
Even when using 1% of the samples, we perform better than
SGMC.

Noisy graphs. We follow the same experimental setup
as [4] and perturb the edges of the graphs by adding random
Gaussian noise with zero mean and tunable standard devia-
tion to the adjacency matrix. We discard the edges that be-
came negative as a result of the noise, and symmetrize the
adjacency matrix. Table 2 demonstrates that our method is

Table 3. Perturbation in the rank of the underlying matrix.
Rank Ours Ours-FM SGMC
5 1e-7 2e-5 1e-4
10 2e-7 2e-5 2e-4
12 5e-7 4e-5 9e-4
15 6e-3 1e-3 1e-2

Table 4. Test error on Flixster and Movielens-100K
Model Flixster ML-100K
MC [5] 1.533 0.973
GMC [11] – 0.996
GRALS [21] 1.245 0.945
RGCNN [18] 0.926 0.929
GC-MC [3] 0.917 0.910
Ours-FM 1.02 1.12
DMF[2] 1.06 0.922
SGMC 0.900 0.912
SGMC-Z 0.888 0.913
Ours 0.888 0.915

robust to substantial amounts of noise in graphs. Surprisingly,
Ours-FM demonstrates even stronger resilience to noise.

Runtime Comparison. Our method runs atleast 20
times faster than SGMC when compared on synthetic ex-
periments described above. This is not surprising as SGMC
involves optimizing various regularizers and with high values
of P ,C,Q.
In addition to synthetic Netflix, we also validate our method
on two more recommender systems datasets for which row
and column graphs are available. Movielens-100K [8] con-
tains ratings of 1682 items by 943 users whereas Flixter [9]
contains ratings of 3000 items by 3000 users. All baseline
numbers, except Ours-FM, are taken from [18] and [4]. In
addition to SGMC and SGMC(Z), we also compare with
DMF[2]. This is a matrix factorization approach that was
adapted for matrix completion tasks by [4]. Note that this
approach does not incorporate any geometric information.
We explain some observations from Table 4: First, our base-
line, Ours-FM, obtains surprisingly good performance across
datasets. This underscores the regularization brought in by
the Laplacian eigen-basis of row and column graphs. Sec-
ond, non geometric model such as DMF shows competitive
performance with all the other methods on ML-100K. This
suggests that the geometric information is not very useful for
this dataset. Third, our proposed algorithm is competitive
with the other methods while being simple and interpretable.
Lastly, these experimental results validate the effectiveness of
our single regularization when compared to the combination
of several non-convex regularizations introduced in [4].

Conclusion We establish empirically and theoretically
that using a reduced basis to represent a function on the
product space of two graphs already provides a strong reg-
ularization, that is sufficient to recover a low rank matrix
approximation. Moreover, by extensive experiments, we
show that our functional map based framework is very com-
petitive when compared to some complex baselines proposed
before.
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