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Fig. 1. We present a fully di�erentiable approach for optimizing triangle meshes both in 2D and on surfaces. Our approach allows to optimize the mesh using
any di�erentiable objective function, based on vertex positions or shapes of triangles using continuous optimization techniques. Here we demonstrate meshes
obtained on a surface by optimizing for (le�) sizes of triangles to depend inversely on the mean absolute curvature value, and (right) alignment of triangle
edges to the maximal principal curvature directions (i.e. triangle edges tend to follow the vector field). This optimization is done in a fully di�erentiable
manner without any post-processing or combinatorial operations such as edge flips or vertex splits. Our framework is general and can be thus integrated
within modern optimization and learning modules.

Triangle meshes remain the most popular data representation for surface
geometry. This ubiquitous representation is essentially a hybrid one that
decouples continuous vertex locations from the discrete topological triangu-
lation. Unfortunately, the combinatorial nature of the triangulation prevents
taking derivatives over the space of possible meshings of any given surface.
As a result, to date, mesh processing and optimization techniques have been
unable to truly take advantage of modular gradient descent components
of modern optimization frameworks. In this work, we present a di�eren-
tiable surface triangulation that enables optimization for any per-vertex
or per-face di�erentiable objective function over the space of underlying

Authors’ addresses: Marie-Julie Rakotosaona, LIX, École Polytechnique, France,
mrakotos@lix.polytechnique.fr; Noam Aigerman, Adobe Research, USA; Niloy J. Mitra,
Adobe Research, University College London (UCL), United Kingdom; Maks Ovsjanikov,
LIX, École Polytechnique, France; Paul Guerrero, Adobe Research, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/12-ART267 $15.00
https://doi.org/10.1145/3478513.3480554

surface triangulations. Our method builds on the result that any 2D tri-
angulation can be achieved by a suitably perturbed weighted Delaunay
triangulation. We translate this result into a computational algorithm by
proposing a soft relaxation of the classical weighted Delaunay triangulation
and optimizing over vertex weights and vertex locations. We extend the
algorithm to 3D by decomposing shapes into developable sets and di�eren-
tiably meshing each set with suitable boundary constraints. We demonstrate
the e�cacy of our method on various planar and surface meshes on a range
of di�cult-to-optimize objective functions. Our code can be found online:
https://github.com/mrakotosaon/di�-surface-triangulation.
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Additional Key Words and Phrases: meshing, geometry processing, surface
representation, neural networks
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1 INTRODUCTION
Triangle meshes are arguably the most predominant surface repre-
sentation, both in geometry processing and computer graphics, as
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well as in other �elds such as computational geometry and topology.
The popularity of triangle meshes comes from their simplicity, �exi-
bility, and the existence of many data structures for e�cient mesh
navigation and manipulation [Boissonnat et al. 2000; Devillers 2002;
Devillers et al. 2001; Toth et al. 2017]. Many methods have been
developed to compute or modify triangulations of given surfaces
or point clouds, while promoting properties such as alignment to
shape features (e.g., ridges or creases), adapting sampling density
to geometric detail, or triangle aspect ratio (see [Berger et al. 2017;
Cazals and Giesen 2004] for an overview).

Unfortunately, as of now, no method has been proposed to enable
a continuous, di�erentiable representation of triangulations. This is
mainly due to the fact that in addition to the continuous spatial aspect
- the position of each vertex - triangulations also have a discrete
combinatorial component - the connectivity, i.e., the set of edges
and triangles connecting the vertices. As a result, existing algorithms
either optimize the mesh quality by moving the vertex locations
while keeping their connectivity �xed [Nealen et al. 2006], re-mesh
from scratch, or iterate between updating the vertex positions and
their connectivity, e.g., [Hoppe et al. 1993; Tournois et al. 2008].
This lack of a uni�ed di�erentiable representation is particu-

larly unfortunate in light of recently-introduced gradient-based
optimization frameworks such as Pytorch [Paszke et al. 2019] and
TensorFlow [Abadi et al. 2016] for Machine Learning applications.
These frameworks rely on the di�erentiablity of the pipeline and
enable modular design. In absence of such a di�erentiable triangu-
lation framework, current deep-learning pipelines either perform
surface meshing during post-processing, or use formulations that
are learned via proxies [Liao et al. 2018; Liu et al. 2020; Rakotosaona
et al. 2021; Sharp and Ovsjanikov 2020], which typically do not give
explicit access to the resulting triangle mesh structure.

In this work, we devise what we believe to be the �rst formulation
for di�erential triangulation, enabling gradient-based optimization
for per-face and/or per-vertex objectives, such as size and curvature
alignment. Our approach is general, can be applied to manifolds
represented in any explicit representation, is modular, and supports
optimizing for any objective that can be expressed as a di�erentiable
function with respect to triangle properties like size and angles.
The main technical challenge in devising a di�erentiable trian-

gulation is developing a smooth representation that allows to con-
trol both the vertex positions and the (inherently-combinatorial)
mesh structure, while also ensuring the resulting mesh is always
a 2-manifold. Our core idea is to use the concept of a weighted
Delaunay triangulation (WDT) [de Berg et al. 2000]. It considers a
given set of vertices, along with per-vertex weights, which de�ne a
unique triangulation using a Voronoi-like partition of space.
In this paper we propose a di�erentiable weighted Delaunay tri-

angulation (dWDT), by considering (arbitrary) triplets of vertices
and whether they constitute a triangle in the triangulation de�ned
by the weights and vertices. While in classicWDT, this existence
receives a binary value, we generalize that de�nition by assigning
inclusion scores to triangle membership, thus giving them a soft
association. We demonstrate that this relaxation provides a uni�ed
control over both the vertices and the mesh structure, and can be
used to directly optimize any (di�erentiable) objective function de-
�ned on the triangles. Intuitively, we de�ne the triangle inclusion

scores in terms of Voronoi diagram distances that represent how
close a certain triangle is from inclusion into (or removal from) the
triangulation. Represented as a continuous quantity, we can opti-
mize triangle inclusion scores as a function of vertex positions and
weights. Importantly, Memari et al. [2011] showed that, in 2D, any
triangulation can be represented through a perturbation of a WDT,
in other words, any triangulation can be reached by adjusting vertex
positions and weights, and then applying aWDT. Therefore, our ap-
proach is both di�erentiable and generic, allowing to accommodate
a wide range of mesh structures.

To apply our relaxation to 3D surfaces, we decompose the source
into local patches, and then perform per-patch di�erentiable mesh-
ing with appropriate boundary constraints. For example, in Figure 1
we show triangulations obtained by optimizing for di�erent objec-
tive functions, given the same original underlying surface models.
Themodular nature of our approachmakes it easy to switch between
target objective functions. Similarly, we can triangulate di�erent sur-
face representations (see Figure 9 for a triangulation of an analytic
surface de�ned by a function).

We evaluate our method to produce 2D and 3D meshes optimized
for a mix of target objective functions such as shape/size of triangles,
and alignment to given vector �elds, thereby highlighting that our
approach is both more �exible, and can accommodate for more
diverse objectives than alternative approaches.

2 RELATED WORK
Surface remeshing and triangle mesh optimization are both ex-
tremely well-studied problems in computational geometry, com-
puter graphics, and related �elds. Below we review methods most
closely related to ours, and refer to recent surveys, including [Al-
liez et al. 2008; Cheng et al. 2016; Khan et al. 2020; Khatamian and
Arabnia 2016] for a more in-depth discussion.

Simpli�cation-based approaches. A common objective for surface
remeshing is reducing the number of elements in the �nal mesh.
As a result, especially early remeshing techniques, starting with
the pioneering QEM approach [Garland and Heckbert 1997], of-
ten focused on preserving mesh quality during simpli�cation (see
[Garland and Heckbert 1997] for a survey of local methods). Such
methods are typically based on edge-collapse operation followed
by vertex position optimization, and have been extended both in
terms of e�ciency, e.g., [Hussain 2009; Ozaki et al. 2015], the use of
various metrics [Ng and Low 2014] including feature preservation
[Wei and Lou 2010], and even using spectral quantities [Lescoat et al.
2020] during edge collapse. However, such approaches are essen-
tially greedy and typically do not allow to optimize mesh properties
based on general structural criteria.

Local methods. A related set of methods includes approaches
based on local mesh modi�cation while aiming to improve the over-
all mesh quality, e.g., [Dunyach et al. 2013; Hu et al. 2016; Yue et al.
2007]. In addition to edge collapse, these local operators include edge
�ipping, edge splitting, and vertex translation. A prominent method
in this category is real-time adaptive remeshing (RAR) [Dunyach
et al. 2013], which uses an adaptive sizing function and edge �ipping
to optimize the mesh quality and vertex valence. This framework
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was recently extended for e�cient error-bounded remeshing [Cheng
et al. 2019] through a use of a range of powerful local re�nement
operations. Similarly, Explicit Surface Remeshing (ESR) [Surazhsky
and Gotsman 2003] is another e�cient method for remeshing based
on local re�nement operations coupled with angle-based smooth-
ing. The more recent Instant Meshes [Jakob et al. 2015] technique
advocates using local optimization and smoothing, while aiming to
optimize potentially global consistency. This results in a powerful
and e�cient framework, capable of handing both isotropic trian-
gular or quad-dominant meshes. Nevertheless, as with other local
techniques the topology (i.e. the connectivity between vertices) and
geometry are handled separately, preventing a uni�ed di�erentiable,
global mesh optimization.

Delaunay and CVT-basedmethods. Another powerful set of remesh-
ing methods, more closely related to our approach are based on De-
launay triangulations, and centroidal Voronoi tessellations (CVT).
The former category includes approaches based on triangle re�ne-
ment by �ipping non-locally Delaunay (NLD) edges [Dyer et al.
2007] and de�ning an intrinsic Delaunay triangulations [Fisher et al.
2007]. Furthermore, global optimization techniques have also been
used for �nding optimal Delaunay triangulations [Chen and Holst
2011] under the assumption that vertex connectivity is �xed. In a
di�erent line of work, centroidal Voronoi tessellations (CVT) have
been used for �nding an approximately uniform vertex distribu-
tions, so that their Voronoi diagram (and thus its dual, the Delaunay
triangulation) is well-shaped, e.g., [Du et al. 2003; Wang et al. 2015;
Yan et al. 2009] among many others. Such methods have also been
extended, for example, to explicitly penalize obtuse and sharp angles
[Yan and Wonka 2015] and to anisotropic remeshing by embedding
in an appropriate (e.g., feature or curvature-aware) space [Lévy and
Bonneel 2013]. Nevertheless, the �nal shape of the triangulation is
di�cult to control using these methods, and it is not easy to combine
multiple objective functions in a coherent optimization strategy.

Optimization-based approaches. Finally we also note methods
based explicitly on optimizing an objective. This includes both local,
e.g., [Dunyach et al. 2013; Hoppe et al. 1993] and global optimiza-
tion, e.g., [Marchandise et al. 2014; Valette et al. 2008] strategies
(see also Section 4.7 in [Khan et al. 2020]). Existing optimization
strategies most often rely on either smoothness energies [Desbrun
et al. 1999; Fu et al. 2014; Taubin 1995], use sampling [Fu and Zhou
2009] or a variant of CVT, e.g., [Yan et al. 2014] to optimize vertex
positions. In both cases, while the positions of the vertices can be
optimized, the connectivity is only de�ned implicitly and updated
separately, typically without explicitly taking into account the op-
timization objective. More fundamentally, the mesh structure is
purely combinatorial, preventing the use of powerful tools based
on di�erentiability.

In contrast to these approaches, we propose a fully di�erentiable
framework that allows to jointly optimize for both vertex posi-
tions and triangle mesh connectivity, by using a soft version of the
weighted Delaunay triangulation (WDT). Our method is inspired
by theoretical results demonstrating that in 2D any triangulation
can be represented through a perturbation of aWDT [Memari et al.
2011]. Importantly, the same result does not hold for the standard
Delaunay triangulation, and therefore optimizing over the weights

of theWDT as well as the vertex positions allows signi�cantly more
control over the shape of the �nal triangulation and even allows
ignoring some input points if they are deemed unnecessary (i.e.,
high weights) in the �nal triangle mesh.
Importantly, the di�erentiable nature of our approach allows

optimizing for a range of criteria jointly, simply by formulating a
single (di�erentiable) objective function. Furthermore, it enables
optimization of both vertex positions and criteria that depend on
the connectivity in a uni�ed framework. Finally, our di�erentiable
meshing block can be also ultimately be used as part of a larger,
di�erentiable shape processing or design system.
Weighted Voronoi and power diagrams. Weighted Voronoi dia-

grams are also known as power diagrams, and have been researched
extensively in the context of triangulations [Glickenstein 2005].
In computer graphics, they have been used for various tasks such
as computing blue noise [De Goes et al. 2012], or simulating �uid
dynamics [De Goes et al. 2015]. [Goes et al. 2014; Memari et al.
2011; Mullen et al. 2011] considered power diagrams in the context
of formulating di�erent triangulation duals. They also propose to
optimize objectives on the dual. This is a di�erent context and use-
case than our di�erentiable formulation, which is geared towards a
gradient-guided optimization of arbitrary geometric objectives on
the triangulation.

Di�erentiability in computer vision. Recently, with the success of
deep learning in computer vision, making common operations di�er-
entiable has started to gain research interest. In particular relaxing
hard condition for deep learning purposes into soft formulations
has been used for tasks such as RANSAC [Brachmann et al. 2017],
rendering [Liu et al. 2019] or shape correspondence [Marin et al.
2020] among others. Similarly to these methods, we present a soft
formulation of triangle existence.

3 METHOD
Let (+ 0,) ) represent a triangulation of a surface in 3D space, with
+ 0 = (E 01, . . . , E 0=), E 08 2 R3 vertices, and ) its triangular faces. A
common strategy for triangulating a manifold surface is to �rst
�nd a 2D parameterization that maps the surface to a planar 2D
domain, then sample a set of vertices + = (E1, . . . , E=), E8 2 R2 in
the 2D domain, and compute a triangulation which respects the
chosen vertices. Our method relies on the ubiquitous Delaunay
triangulation [Cheng et al. 2016; Delaunay et al. 1934] (DT), used
for triangulating a given 2D vertex set. We denote it as ) = DT(+ ).
A Delaunay triangulation always includes all chosen vertices, and is,
uniquely de�ned with respect to them, as long as the points are in
general position. In order to gainmore control over the triangulation,
one can consider a weighted Delaunay triangulation [Aurenhammer
1987; Toth et al. 2017] ) = WDT(+ ,, ), where each vertex E8 has a
scalar weightF8 , with, = (F1, . . . ,F=). Traditional methods for
computing aWDT are typically not di�erentiable, as the space of
all possible faces is combinatorial.
We propose a di�erentiable weighted Delaunay triangulation

dWDT(+ ,, ) that is di�erentiable with respect to both the vertex
positions+ and the weights, . In conjunction with a parameteriza-
tion< that de�nes a bijective and piecewise di�erentiable mapping
< from a surface in 3D to a 2D parameter space, dWDT enables a
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Fig. 2. Overview of our approach.We propose a di�erentiable weighted Delaunay Triangulation (dWDT) to create a so� triangulation from a set of 2D
vertices + with associated associated weights, (shown as marker size). In the so� triangulation, triangles have inclusion scores ( of being part of the
triangulation. We illustrate triangle inclusion scores as edge colors (using the largest inclusion score of the two adjacent faces) and only show triangles with
inclusion score > 0.001. The 2D vertices+ are li�ed to form a so� 3D triangulation on the manifold’s surface using a fixed mapping<�1. Since the pipeline is
fully di�erentiable, we can propagate gradients of any di�erentiable loss on the 3D triangulation back to the vertex positions+ and weights, . Note that by
choosing appropriate weights, , our network can ignore points and produce a triangulation over a subset of points, if desired.

di�erentiable pipeline for triangulating 3D domains. We describe
our di�erentiable triangulation approach in two parts (see Figure 2).
First, in Section 3.1, we describe the di�erentiable weighted 2D
Delaunay triangulation dWDT. In this part, we �rst focus on the
de�nition ofDT and the existence of triangles, w.r.t. vertex positions
and weights, and then replace the binary triangle existence function
with a smooth triangle inclusion score, again de�ned w.r.t the vertex
positions and weights, in a way that naturally follows from the
de�nition of DT. This yields a soft and di�erentiable notion of a
triangulation that can easily be generalized to a weighted Delaunay
triangulation. Then, in Section 3.2, we describe a parameterization
< that maps between a manifold surface and our 2D Delaunay tri-
angulation to obtain dWDT on 3D surfaces, before describing the
losses and optimization setup in Section 3.3.

3.1 Di�erentiable Weighted Delaunay Triangulation
Assume we are given a set of vertices+ = {E1, ..., E |+ | } with E 9 2 R2.
Consider the set of all possible triangles de�ned over these vertices,
i.e., all possible triplets of vertices:

) ⇤ =
��
E 9 , E: , E;

�
|E 9 , E: , E; 2 +

 
. (1)

Any triangulation of the vertices+ is a subset of all possible triangles
) ⇢ ) ⇤ on + , and we can consider the triangulation’s existence
function 4 : ) ⇤ ! {0, 1}, de�ned for any triplet C8 2 ) ⇤ as

48 =

(
1 C 2 )

0 C 8 ) .
(2)

From this perspective, the binary and discrete existence function is
the cause of the combinatorial nature of the triangulation problem.
Hence, our main goal is to de�ne a smooth formulation in which this
function is di�erentiable as to enable gradient-based optimization.
We achieve this by extendingWDT to the smooth setting.

Towards gaining intuition into WDT, let us �rst consider the
classic, non-weighted Delaunay triangulation DT(+ ) of a given set
of vertices + . This triangulation is de�ned by considering each
possible triangle C 2 ) ⇤ and deeming it as part of the triangulation
DT(+ ) if and only if its circumcenter is the shared vertex of the

three Voronoi cells centered at the triangle’s vertices (see Figure 3
for an illustration). The Voronoi cell of vertex E 9 is de�ned as the
set of points in R2 closer to E 9 than to any other vertex E: 2 + .

Said di�erently, each pair of vertices (E 9 , E: ) divides the 2D plane
into two half-spaces: the set of points closer to E 9 , denoted as � 9<: ,
and the set of points closer to E: , denoted as �:< 9 . The Voronoi
cell 0 9 centered at E 9 is de�ned as the intersection of half-spaces
0 9 :

—
:<9 � 9<: . The triangle circumcenter is the intersection point

of the three half-space boundaries between the three vertex pairs
that de�ne its edges. Hence, we can de�ne the existence function of
the Delaunay triangulation for a triplet of vertices, C8 = (E 9 , E: , E; )
with circumcenter 28 as

48 =

(
1 if 28 = 0 9 \ 0: \ 0;
0 otherwise.

(3)

Parameterizing Triangle Existence with respect to + . We are inter-
ested in how the triangulation) changes as the vertex positions are
changed - namely, we aim to analyze the range of vertex positions
that do not change its membership function 48 of a triangle C8 .
For any triangle C8 =

�
E 9 , E: , E;

�
, we consider the three reduced

Voronoi cells0 9 |8 ,0: |8 ,0; |8 respectively around the triangle’s vertices
E 9 , E: , E; , where we de�ne a reduced Voronoi cell 0 9 |8 centered at
the triangle vertex E 9 as the Voronoi cell created by ignoring the two
other vertices of the triangle, E: and E; (see Figure 3). The triangle C8
is part of the triangulation ) as long is its circumcenter 28 remains
inside the reduced Voronoi cells around its vertices. Similarly, C8 is
not part of ) as long as its circumcenter remains outside its three
reduced Voronoi cells. Note that, by construction, the circumcenter
simultaneously enters or exits the three reduced Voronoi cells. Thus,
we can re-formulate the triangle existence 48 as:

48 =

(
1 if 28 2 0G |8 for any G 2 { 9,:, ;}
0 otherwise.

(4)

Continuous Triangle Inclusion Scores. We now turn to making DT
di�erentiable by relaxing the binary existence function 48 de�ned
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Fig. 3. Triangle inclusion score and reduced Voronoi cell. A reduced
Voronoi cell for a given triangle C8 at a vertex E9 is constructed from the
point set that excludes the two other vertices of the triangle. A triangle C8
exists in the Delaunay triangulation, as long as its circumcenter 28 remains
inside the reduced Voronoi cell. We base triangle inclusion scores B8 | 9 on
the signed distance from 28 to the boundary of the reduced Voronoi cell.

in Equation (4) into a continuous inclusion score function, B8 , denot-
ing the inclusion score a triangle C8 2 ) ⇤ to exist as a member of
the triangulation ) , de�ned with respect to vertex positions. The
inclusion scores are based on the signed distance of the triangle
circumcenter to the boundary of the reduced Voronoi cells at the
triangle vertices: considering a single vertex E 9 of the triangle C8 ,
and its reduced Voronoi cell 0 9 |8 , the inclusion score is de�ned as:

B8 | 9 := f
�
U 3 (28 ,0 9 |8 )

�
, (5)

where 3 is the signed distance (positive inside, negative outside)
from a point 28 to the boundary of a reduced Voronoi cell 0 9 |8 , and
U is a scaling factor for the width of the Sigmoid f (we use U = 1000
in all experiments). The Sigmoid gives a smooth transition from
an inclusion score close to 1 inside the reduced Voronoi cell to an
inclusion score close to 0 outside, with an inclusion score 0.5 if
the circumcenter lies on the boundary of the reduced Voronoi cell,
i.e., exactly when the discrete triangle membership changes. The
triangle inclusion score B8 can then be de�ned as the average over
the three inclusion scores at its vertices E 9 , E: , and E; :

B8 =
1
3
(B8 | 9 + B8 |: + B8 |; ). (6)

Note that since the circumcenter simultaneously enters/exits the
reduced Voronoi cells around each vertex, all three inclusion scores
equal 0.5 at a discrete membership transition.

For each triangle C8 , we store the triangle inclusion score B8 and the
three inclusion scores B8 | 9 , B8 |: and B8 |; de�ned for its three vertices,
yielding a soft 2D triangulation (+ , () with inclusion scores ( . We
store the inclusion scores B8 | 9 in addition to the triangle inclusion
scores B8 , since most losses that we use are de�ned on vertices where
using a triangle’s vertex inclusion scores is more convenient. We
can, subsequently, convert this soft triangulation into a discrete 2D
triangulation (+ ,) ), by selecting all triangles where B8 > 0.5. This
gives us the same results as the discrete DT, the �nal triangulation
is guaranteed to be manifold.

Since the number of all possible triangles) ⇤ grows cubically with
the vertex count, we reduce the number of triangles under consid-
eration by observing that vertices in the triangles of a Delaunay
triangulation are typically within the :-nearest neighbors of each
other, for some small : (we use : = 80 in all experiments). Thus, at
each Voronoi cell 0 9 , we only consider triangles that are within the
:-nearest neighbors of E 9 and set all other triangle inclusion score
implicitly to 0. Note that since the 2D vertices + change positions
during optimization, we recompute nearest neighbours after each
iteration of our algorithm.

Weighted Delaunay triangulation. Our relaxed formulation of the
Delaunay triangulation can naturally be extended to the weighted
Delaunay triangulationWDT, where weights are associated to each
vertex. The weights allow shifting the boundary between the two
half-spaces � 9<: and �:< 9 , by the relative weights F 9 and F: of
the two vertices. The weighted half space � 9<: is de�ned as the set
of points G 2 R2 where

kG � E 9 k22 �F2
9  kG � E: k22 �F2

: (7)

so that a larger weight pushes the boundary away from the ver-
tex. This allows generalizing the de�nition of the Voronoi cell to a
weighted Voronoi cell. As a result, the existence function Equation
(4) and the inclusion score B8 | 9 in Equation (5) can be used as-is,
with the modi�ed de�nition of the half-planes, and considering the
weighted circumcenter of the triangle. This makes the inclusion
scores ( of the soft triangulation (+ , () a function of both the vertex
position + and their weights, .
Thus, weights enable further control over the resulting triangu-

lation, by enabling modi�cations the Voronoi cells (and therefore,
the triangulation itself). In fact, note that it is even possible for a
vertex to be excluded from a WDT (i.e., not be part of any trian-
gle), if the weight di�erence to any other vertex is so large that the
boundary line between the two half-spaces shifts past one of the ver-
tices - a property not possible with classical Delaunay triangulation.
We will make use of this property to allow our method to ignore
vertices deemed unnecessary, hence producing triangulations with
a reduced number of vertices. In the following, we consider the
weighted triangle circumcenters, denoted by 28 , and the weighted
Voronoi cells, denoted by 08 .

3.2 3D Surface Parameterization
So far we have de�ned di�erentiable triangulations of 2D sets of
vertices. In order to apply our dWDT on a 3D surfaceM, we reduce
the problem to a set of 2D (triangulation) problems.
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First, we construct a bijective piecewise di�erentiable mapping<
between the manifold and the 2D plane, i.e., a 2D parameterization.
Next, we elaborate on the computation of this parameterization. As
a pre-process, since we are not concerned with the original trian-
gulation but only the underlying surface it represents, we initially
remesh input models using isotropic explicit remeshing [Cignoni
et al. 2008] to yield meshes constituting between 3.5 � 4.5K trian-
gles. We normalize each model to unit area. We then decompose
the manifold into a set of separate patches {P1,P2, . . . } that can
be individually parameterized with less distortion than the whole
shape. Individual patches are found with a spectral clustering ap-
proach [Ng et al. 2002], using the adjacency matrix for a�nity. We
used 10 patches in all experiments.

Then, we construct a low-distortion mapping< between the sur-
face of a patch P8 and the 2D plane using Least-Squares Conformal
Maps [Lévy et al. 2002] (LSCM). To lower the distortion of the map-
ping for patches that are far from developable, we �rst measure the
distortion as the deviation of the local scale factor from the global
average. Patches with high distortion are cut along the shortest
geodesic between the area of maximum distortion and any existing
boundary. This process is repeated until the maximum distortion
of all patches, measured as the ratio between local scale and global
average is above 15% and the mapping is bijective. Finally, we nor-
malize the 2D parametrization of each patch to have equal average
edge length. We compute this mapping once, as a preprocess, and
reuse it in all steps of the optimization.

Di�erentiable 3D Surface Triangulation. Given the mapping <,
we can pull back the computed 2D triangulation (+ ,) ) to a part
of the 3D surface P8 using the inverse mapping <�1. Thus, our
di�erentiable triangulation of a 3D surface patch is de�ned as:

(+ 0, () :=
� �
<�1 (E1), . . . ,<�1 (E=)

�
, dWDT(+ ,, )

�
, (8)

which gives us the soft 3D triangulation (+ 0, () that consists of a
set of 3D vertices + 0 and triangle inclusion scores ( . Note that the
inclusion scores are di�erentiable functions of the 2D vertices+ and
their weights, , and that we can obtain a manifold discrete mesh
at any time by selecting all triangles with inclusion scores > 0.5.
Since the mapping< is piecewise di�erentiable, any loss L can be
applied directly to the 3D vertices + 0 and triangle inclusion scores
( , allowing gradients to propagate back to the parameters + and
, that de�ne + 0 and ( . We highlight that similarly to Leaky ReLU
activations, the piecewise di�erentiability does not signi�cantly im-
pact optimization. We discuss the losses we use in our experiments
in Section 3.3.

Boundary preservation. Special care must be taken to preserve the
boundary of each patch, so that putting the patches back together
does not result in gaps or overlaps. We use a two-part strategy to
ensure pieces �t back together. First, we de�ne a loss that repels
vertices from the boundary of a patch, which we describe in Sec-
tion 3.3. Second, we perform a post-processing step that cuts the
2D mesh (+ , () along the 2D boundary, based on a triangle �ipping
strategy along the boundary. Namely, we use the simple strategy
described in [Sharp and Crane 2020] between consecutive boundary
points of the optimized patches. The boundary between patches is
therefore kept �xed before and after the optimization step.

vj bj

ε

Fig. 4. Boundary repulsion loss. The repulsion loss is non-zero below a
(signed) distance n from the boundary. Non-boundary vertices inside the
red region are pushed towards the center of the patch.

3.3 Losses and Optimization
Our di�erentiable triangulation allows us to optimize a triangular
mesh on a surface in 3D using any di�erentiable loss de�ned on
the 3D vertex positions + and triangle inclusion scores ( . We ex-
periment with several di�erent losses, combinations of which are
useful for both traditional applications, as well as novel ones, as we
experimentally show in Section 4.

The triangle size loss LB encourages triangles to have a speci�ed
area:

LB (+ 0, () := 1Õ
8, 9 B8 | 9

’
8, 9

B8 | 9
⇣
0.5 k (E 0: � E 09 ) ⇥ (E 0; � E 09 )k2 ��(E 9 )

⌘2
,

(9)
where E 09 , E

0
: , and E

0
; are the 3D vertices of triangle C8 , and�(E 9 ) is the

target area at vertex E 9 , where � is de�ned as a continuous function
over the 3D surface. This loss allows us, for example, to coarsen
a triangulation, when used in conjunction with other losses. Note
that the size of the triangles is not constrained by the initial number
of vertices - due to theWDT our optimized result can contain fewer
vertices than the initial triangulation.

The boundary repulsion loss L1 encourages vertices to stay inside
the 2D boundary of the patch P during the optimization:

L1 (+ ,P) := 1
|+ |

’
9

4
n�min

⇣
n, (E9�1 9 )=19

⌘
, (10)

where 1 9 is the point on the boundary closest to the vertex E 9 and
=19 is the 2D boundary normal at that point (pointing inward). The
repulsion loss is non-zero below a (signed) distance n from the
boundary as we show in Figure 4.We set n to 0.01 in our experiments.
Note that we do not use our triangle inclusion scores in this loss,
since wewant all vertices to remain inside the boundary, irrespective
of inclusion scores. We note that since L1 has a local e�ect and does
not rely on global properties of the patch, patches can be non-convex.

The angle loss L0 encourages triangles to be equilateral.

L0 (+ 0, (,P) := 1Õ
8, 9 B8 | 9

’
8, 9

B8 | 9
��cos(\9 ) � cos(c/3)

�� , (11)

where \9 is the corner angle of triangle C8 including vertex E 9 . Note
that this loss can be modi�ed to produce isosceles triangles.
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The curvature alignment loss L2 encourages two edges per vertex
to align to the two directions of the minimum principal curvature
vector �eld ⇠ . We de�ne it as,

L2 (+ 0, (,P,⇠) := �1Õ
8, 9 B8 | 9

’
9

⇣

LSE([82N9 {⇠ (E 9 ) · ⌘ 9: B8 | 9 ,⇠ (E 9 ) · ⌘ 9; B8 | 9 })

+ LSE([82N9 {�⇠ (E 9 ) · ⌘ 9: B8 | 9 ,�⇠ (E 9 ) · ⌘ 9; B8 | 9 })
⌘

with ⌘ 9< =(E 09 � E 0<)/kE 09 � E 0< k2, (12)

where N9 are the triangles adjacent to E 09 , and E 09 , E
0
: , E

0
; are the

3D vertices of triangle C8 . LSE denotes the smooth maximum func-
tion LogSumExp over the weighted alignment scores of all edges
adjacent to vertex E 09 , where each triangle contributes two edges
corresponding to ⌘ 9: and ⌘ 9; . Intuitively, we want to maximize the
alignment of the best-aligned edge in a star of each vertex, for both
the positive and negative target guidance direction ⇠ (E 9 ), which is
the principal curvature �eld evaluated at E 9 .

Optimization. Given a loss L, as a sum of a selection of the terms
above, we optimize the 3D mesh" , parameterized by the 2D vertex
positions + and vertex weights, . Since our framework is com-
pletely di�erentiable, we use the Adam [Kingma and Ba 2015] op-
timizer. We initialize all vertex weights with random values and
use the mapping of the input mesh vertices to 2D as the initial 3D
vertex positions. We use a learning rate of 0.0001 in all experiments.
Please refer to the supplementary video for evolving triangulations
over optimization iterations.

4 RESULTS
We next describe experiments that highlight the key advantage of
our method - di�erentiability, which enables plugging in and mixing
any combination of di�erentiable losses, circumventing the need to
design a specialized optimization method for each loss combination.
Practically, the experiments show the e�cacy of our method, and
its ability to produce superior results than state-of-the-art methods
that are speci�cally tailored to those speci�c applications. Code of
our method is available at anonymous.code.

4.1 Customized Triangulation
Most triangulation tasks are formulated via user-provided require-
ments that are imposed on the resulting triangulation, such as de-
sired triangle sizes or edge alignment. We employ our di�erentiable
losses in two common scenarios, shown in Figures 1 and 5. We eval-
uate our method in both scenarios on 140 randomly selected meshes
(among those with genus 10 or less) sampled from Thingi10k [Zhou
and Jacobson 2016].

(i) Triangle size. We �rst optimize the triangulation to match a
given distribution of triangle sizes, represented as a scalar �eld
over the surface. We chose to assign sizes that are the reciprocal of
the mean absolute curvature value, so that high curvature regions
receive a �ner tessellation than lower-curvature regions.We sum the
losses LB , L1 , and L0 with weights 0.5, 500, and 107, respectively,
in order to scale each loss to the same range. Qualitative results are
shown in the left half of Figure 5.

As evaluation metric, we take the absolute di�erence between
the resulting triangle size and the target size distribution. Since we
are interested in the distribution of relative triangle sizes rather
than the absolute sizes, we normalize the triangle sizes per model
to have zero mean and unit standard deviation. To compare our
triangle sizes to the continuous target size distribution, triangle size
at each vertex is de�ned as the average size of all adjacent triangles.
In Figure 5, normalized triangle sizes are shown as colors while the
numbers below each result show the RMSE over all vertices.

We compare ourmethod to the remeshingmethod of Loseille [2017],
a state-of-the-art method for remeshing that can be guided by a
given triangle size �eld, and show a qualitative comparison on a
subset of shapes in Figure 5. In most cases our method can reproduce
the target size distribution more accurately. Note, for example, the
size distribution on the top of the pawn, on the heads, on the rim of
the hat and on the cat’s hind.

(ii) Vector-�eld alignment. In our second scenario, we optimize
3D meshes with the loss L2 that encourages edges to align with a
given vector �eld. We chose to use minimum principal curvature
directions to encourage meshes which edges that adhere to ridge
lines and geometric features. At the same time, we emphasize that
any other user-prescribed �eld could be used as well. We minimize
the loss L2 combined with the boundary repulsion loss L1 with
weights of 1 and 500, respectively. Qualitative results are shown in
the right half of Figure 5.
As evaluation metric, we take the absolute angular di�erence

between both the positive and negative prescribed curvature direc-
tion at each vertex and the best-aligned edge. We compare with
Instant Meshes [Jakob et al. 2015], a method specialized to creating
feature-aligned equilateral triangulations. Since Instant Meshes is
designed to align to sharp features and is not well de�ned near �at
regions or umbilical points, we weight the per vertex-alignment
error using the following term:

F 9 =
|: 91 � : 92 |

0.5 ⇤ ( |: 91 | + |: 92 |)
, (13)

where : 91 and :
9
2 are the signed principal curvature magnitudes at

vertex 9 . Intuitively, this term reduces the in�uence of regions that
are nearly �at or umbilical, so as to not penalize the baseline in
those regions unfairly. In Figure 5, edge alignment errors are shown
as colors while the numbers below each result show the RMSE over
all vertices.
Our general-purpose triangulation achieves signi�cantly better

alignment, as can be seen by the signi�cantly lower color-coded and
average error on all models. While the baseline method of [Jakob
et al. 2015] generates triangles that are very close to equilateral,
the alignment with the curvature directions su�ers, as can be seen
on the lower part of the pawn, where none of the edges align well
with the curvature directions. Similarly, for the cylindrical hat, our
method generates edge-loops “hugging” the cylinder, while Instant
Meshes does not present such edge-loops. On more organic models,
such as the cat and human, lack of alignment is even more evident,
e.g., on the human’s brow.
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Fig. 5. �alitative Results. We show two applications of our approach. In the le� half of the figure we optimize for given target triangle sizes, and compare
with a state-of-the-art remeshing method [Loseille 2017] (triangles are colored according to size). In the right half, we optimize for edges that are aligned to the
principal curvature directions and compare with Instant Meshes [Jakob et al. 2015] (colors illustrate alignment errors). Boundaries of the patch decomposition
are shown as white lines on the input meshes. The average error is given below each result - for our method we give the error with / without faces adjacent to
a patch boundary. Note that our di�erentiable triangulation more accurately satisfies the target triangle sizes or edge directions.

Quantitative evaluation. We further evaluate our method on our
complete dataset of 140 meshes taken from Thingi10k [Zhou and
Jacobson 2016]. The quantitative results in Table 1 show the RMSE
of the metrics described above over all vertices and all shapes in the

dataset. Since the vertices at the boundary of our patches cannot
fully be optimized with our approach, we provide errors computed
both with and without the vertices at the patch boundaries. In both
cases and in both applications, our method approximates the correct
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Fig. 6. Optimization steps.We show our results at di�erent optimization steps for curvature alignment (top row), and triangle size (bo�om row).

triangle sizes and edges directions signi�cantly better than the state-
of-the-art methods [Loseille 2017] and [Jakob et al. 2015].

Table 1. �antitative results. We compare both the triangle size and
curvature alignment applications to state of the art remeshing methods.
For our results, we provide values computed both with and without the
boundary triangles.

input mesh [Loseille 2017] ours w/o bound. ours

1.320 0.865 0.499 0.686
triangle size

input mesh [Jakob et al. 2015] ours w/o bound ours

14.043 11.850 7.919 8.4617
curvature alignment

4.2 Optimization
Choice of optimizer. We evaluate the e�ect of di�erent optimiza-

tion methods, comparing ADAM, LBFGS, and Simulated Annealing.
In Figure 7 we show results on a 2D triangulation example where we
optimize for both triangle sizes, and alignment to a custom vector
�eld. We run each optimizer for 1000 steps and observe that while
LBFGS can achieve better performances on some patches, ADAM
produces good results more consistently, and hence we opted to
use it in all our experiments. We use Simulated Annealing (SA)
with the discrete mesh representation instead of our formulation
as SA does not handle gradients. After computing the non di�eren-
tiable weighted Delaunay triangulation, we minimize the discrete
version of our losses: for instance we align existing edges to the
curvature vector �eld and �t the area of existing triangles to the
target area function. Both gradient-based methods perform sig-
ni�cantly better than the non-gradient based method, Simulated

Annealing, suggesting that our search space is typically too complex
to allow for a more random search strategy that is not guided by
gradients. We included the comparison to the non-gradient-based
simulated annealing to show gradient-based methods are more apt
for this problem; however, putting performance aside, we note that
simulated annealing cannot accomplish the main goal of our work,
which is to devise a triangulation module that can be used within
di�erentiable optimization frameworks (e.g., PyTorch [Paszke et al.
2019]).

Optimization process. In Figure 6 we show the evolution of the
triangulation through the optimization steps. The gradual change
shows that indeed our di�erential triangulation enables gradient-
based optimization which smoothly decreases the energy towards
a local minimum. Please refer to the supplemental video for more
detailed visualizations of the optimization process.

4.3 Loss blending
As an important advantage, our method naturally enables blending
and interpolating the relative weights placed on di�erent loss terms,
such as triangle size and adherence to equilateral triangles. We show
the plot of energies with respect to such a blending in Figure 8 using
the aggregated loss term de�ned as,

L(+ 0, %) := C ⇥ L0 + (1 � C) ⇥ LB (14)

with C being the blending weight. We evaluate over 7 values of
the weight on a subset of 7 models from our dataset. This allows
us to easily trade o� between characteristics for the triangulation.
Note that this was not previously possible for specialized methods
targeted towards individual tasks.

4.4 Method of vertex initialization
We compare our method with an alternative vertex initialization
technique in Table 2. Given �xed per-patch boundary vertices, we
uniformly sample the remaining vertices on the 3D surface using
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Fig. 7. Comparing di�erent optimizers. We compare ADAM, LBFGS and Simulated Annealing on a 2D mesh. We start from a 2D mesh with random
vertices. In the top row, we optimize edges to align with a given vector field. The best-aligned edges are color-coded according to the alignment error (blue is
lowest error, yellow largest error). The average alignment error is shown at the top. In the bo�om row, we optimize triangle areas to align with a given size
field. Vertices are color-coded according to the average neighboring triangle area (blue are smaller triangles, yellow larger triangles), with RMSE shown at the
top. Note how the two gradient-based optimizers ADAM and LBFGS perform significantly be�er than the gradient-less simulated annealing.
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Fig. 8. Loss blending.We blend the triangle sizing loss LB and the equi-
lateral triangle loss L0 on 7 models of the dataset. We show the error in
triangle distribution and the standard deviation of face angles. Note that
given a triangulation, the average angle value is 60�. We observe that we can
combine the two losses to obtain a trade o� between the desired properties.

rejection sampling. We evaluate both initialization methods on the
same subset of shapes from Section 4.3. We observe that the al-
ternative initialization method produces initial triangulations with
higher errors. While our method is not completely insensitive to
the initialization strategy, it can signi�cantly decrease the loss in
both cases.

Table 2. Vertex initialization methods. We compare an initialization
based on remeshed 3D vertices to an initialization based on a uniform
distribution over the 3D surface. The uniform initialization has significantly
higher initial error, but our method can still decrease the loss significantly.

init. method input mesh ours

remeshed model vertices 1.354 0.634
uniform 1.429 0.791

triangle size

init. method input mesh ours

remeshed model vertices 13.809 9.037
uniform 19.119 11.028

curvature alignment

4.5 Runtime and memory
We show the average runtime and maximum memory usage of our
method formultiple values of k in Table 3 andmultiple vertices count
per patch in Table 4. The runtime is for a typical optimization with
1000 iterations. Both time and memory are linear in the number of
vertices and cubic in the number of neighbors k. In our experiments,
we typically optimize for 1000 steps for the curvature alignment
task and 1500 steps for the triangle size task.
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Table 3. Runtime and memory usage w.r.t. k. We report the average
runtime for an optimization with 1K iterations and maximum memory
usage per patch.

k 70 80 90

runtime (sec) 132 185 252
memory (GB) 7.6 9.47 13.2

Table 4. Runtime and memory usage w.r.t. number of vertices per
patch.We report the average runtime for an optimization with 1K iterations
and maximum memory usage per patches of varying number of vertices.
Time and memory are linear in the number of vertices. Note that we can
adjust the size of our patches as needed to avoid memory limitations.

n vertices 500 700 900 1100

runtime (sec) 266 364 477 581
memory (GB) 9.0 12.6 16.3 21.1

4.6 Analytic Surfaces
Our di�erentiable triangulation method can be applied to any kind
of 3D surface, as long as bijective piecewise di�erentiable param-
eterization of the surface is available. In Figure 9, we experiment
with an analytically de�ned 3D surface, a catenoid [Dierkes et al.
2010]. This surface is de�ned as a function over a 2D parameter
domain (thus, the analytical function itself is our mapping<). We
start with randomly distributed vertices in the parameter domain
and optimize for either triangle sizes based on the curvature mag-
nitude that we compute analytically or for equal-sized triangles in
the 3D domain. Curvature values were computed analytically from
the surface de�nition. We can see that our approach successfully
optimizes these objectives on the analytic surface.

4.7 Discussion on performance
We observe that our method presents an overhead compared to task-
speci�c methods in terms of running time and the size of processed
meshes. But with this overhead, our method buys generality and
di�erentiability. We can minimize multiple di�erent objectives (like
the objectives of [Loseille 2017], [Jakob et al. 2015]), or can easily
combine multiple objectives, without modifying our pipeline and
our method can be used as a component in a di�erentiable frame-
work. Our numerical results are on par with speci�cally tailored
remeshing methods. Note that several recent learning-based meth-
ods work with even smaller point counts (1024 points in PointNet
[Qi et al. 2017], 2250 Edges in MeshCNN [Hanocka et al. 2019], 2048
points in [Luo and Hu 2021]), but these restrictions are quickly de-
creasing with improvements in GPU hardware and methodological
improvements.

5 CONCLUSION, LIMITATIONS & FUTURE WORK
The framework presented in this paper is the �rst, to the best of
our knowledge, to enable approaching surface triangulation from a
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Fig. 9. Analytic surfaces. Our method can triangulate surfaces given in
any representation: here we triangulate an analytic surface (a catenoid), with
the parameteric domain shown on the top row, and the 3D surface on the
bo�om row. Starting from randomly distributed vertices (le�), our approach
successfully triangulates the analytic surface with curvature-based triangle
sizes (middle) and equal triangle sizes (right).

di�erentiable point of view. As shown in the experiments, di�eren-
tiability enables a generic and �exible framework, which can handle
various geometric losses, along with their combinations, while tak-
ing advantage of modern optimization frameworks. We believe it is
the �rst step towards a black-box, di�erentiable triangulation mod-
ule in deep learning frameworks such as PyTorch and TensorFlow
where it can be immensely helpful in devising a trainable pipeline,
e.g., learning to triangulate models based on deformation sequences.
Our method has two main limitations, the �rst of which is that

the surface needs to be segmented into patches before triangulat-
ing. The boundaries of these patches do not participate in the opti-
mization and hence some visible artifacts exist across boundaries.
Nevertheless, we note that as shown in the experiments, even with
this limitation, our approach achieves signi�cantly better results
than the state of the art. A possible solution for this would be to
repeat the meshing by iteratively selecting di�erent patches and
reparameterizing until convergence.

The second limitation of our method is that it cannot yet handle
a large number of points (e.g., 100k+), or large patches, as we need
to compute the inclusion scores over a the large space of possible
triangles. As future work, we plan to consider a multiscale approach
for tackling this issue.

We are excited about the possibilities our approach opens up. For
one, since our method can work with surfaces represented in any
explicit format (as we show in Figure 9), we wish to explore triangu-
lating surfaces in other representations, such as NURBS, or neural
representations such as AtlasNet [Groueix et al. 2018; Morreale et al.
2021]. Extending our method further to point clouds and recovering
not only an optimized triangulation but also the topological struc-
ture (i.e. the connectivity that de�nes a surface) could be immensely
important for future applications. As an immediate application, we
wish to harness di�erentiabilty to train a network to directly output
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vertex weights and displacements for any given surface in a single
forward pass, and thus avoid test-time optimization.
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