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Fig. 1. Our method can be used to reconstruct buildings from aerial images. Top: aerial images, on which a user can use our UI to specify the roof topology.
Middle: the reconstructed buildings obtained by our geometric optimization (textured by the input image). Bo�om: 3D geometry of the reconstructed buildings.

We propose a novel and flexible roof modeling approach that can be used for
constructing planar 3D polygon roof meshes. Our method uses a graph struc-
ture to encode roof topology and enforces the roof validity by optimizing a
simple but effective planarity metric we propose. This approach is signifi-
cantly more efficient than using general purpose 3D modeling tools such as
3ds Max or SketchUp, and more powerful and expressive than specialized
tools such as the straight skeleton. Our optimization-based formulation is
also flexible and can accommodate different styles and user preferences for
roof modeling. We showcase two applications. The first application is an
interactive roof editing framework that can be used for roof design or roof
reconstruction from aerial images. We highlight the efficiency and generality
of our approach by constructing a mesh-image paired dataset consisting
of 2539 roofs. Our second application is a generative model to synthesize
new roof meshes from scratch. We use our novel dataset to combine ma-
chine learning and our roof optimization techniques, by using transformers
and graph convolutional networks to model roof topology, and our roof
optimization methods to enforce the planarity constraint.
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Table 1. Different solutions for roof modeling.

Property
straight
skeleton

weighted
straight
skeleton

commercial
software Ours

Easy to use for beginners? ✓ ✓ ✗ ✓

Efficient for roof construction? ✓ ✓ ✗ ✓

Accurately reconstruct roofs from images? ✗ ✗ ✓ ✓

Light user input? ✓ ✓ ✗ ✓

Allow editing operations? ✗ ✓ ✓ ✓

Intuitive editing operations? ✗ ✗ ✓ ✓

Insensitive to noisy user input? ✗ ✗ ✓ ✓

CCS Concepts: •Computingmethodologies→ Shapemodeling; Shape

mesh modeling.

Additional KeyWords and Phrases: Roof modeling, Optimization, Interactive

editing, Roof synthesis
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1 INTRODUCTION

Roof modeling is an important topic in urban reconstruction. In our
work, we propose a novel and simple formulation for roof modeling
which is expressive enough to handle a large range of roofs. Our
formulation is also suitable for two applications: interactive recon-
struction of roofs from aerial images (See Fig. 1) and the generative
modeling of new roofs.
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(a) Straight Skeleton (b) Ours

Fig. 2. For a given outline with 16 vertices, we run the straight skeleton
method to obtain the 2D roof embedding and construct the corresponding
building as shown in (a). The straight skeleton computes a planar but com-
plicated 3D roof with 12 roof vertices (colored in red). As a comparison, our
method constructs a more plausible roof with 2 roof vertices.

(a) Straight
Skeleton

(b) Ours

Fig. 3. The straight skeleton method cannot handle the cases where there
exists a face that contains multiple outline edges. Top: we show the roof
graph computed by the straight skeleton and our method. Bo�om: we show
the corresponding constructed roofs.

The main challenges of roof modeling are how to mathemati-
cally describe the roof structure and how to enforce the planarity
of the roof faces. A popular tool for roof construction is to use the
straight skeleton [Aichholzer and Aurenhammer 1996; Aichholzer
et al. 1996] or one of its extensions to increase its modeling expres-
siveness [Biedl et al. 2015; Eppstein and Erickson 1999; Kelly and
Wonka 2011]. These methods typically use a closed roof outline
to describe the roof structure assuming that the interior topology
can be determined by the roof outline. The roof face planarity is
enforced during the computation of roof topology from the input
outline. Another solution is to use general purpose commercial
software such as 3ds Max and SketchUp to model roofs. Though
the commercial software can construct large variations of realistic
roofs, the roof planarity is either ignored (e.g., 3ds Max) or implicitly
enforced by triangulation (SketchUp).
We observe that these solutions have limitations in different as-

pects (see Table 1). For example, using only the outline for roof
structure specification is simple but not sufficient for roof modeling,
since different roofs can have the same outline. Moreover, deter-
mining the roof topology from the outline can be error-prone. For
example, for some outlines, the straight skeleton based methods cre-
ate spurious additional vertices close-by (Fig. 2), and fail to recover
the correct roof topology when there exists a face corresponding
to multiple outline edges (Fig. 3). On the other hand, commercial
software provides large freedom, but modeling is significantly more
complicated especially for non expert users and it is not easy to
enforce geometric constraints.
In our work, we propose to use a two-step procedure where we

first model the roof topology and optionally the approximate geome-
try and then refine the geometry using optimization. Specifically, we
propose to use a roof graph to specify roof topology which is simple
and flexible enough to represent a large range of roofs including
residential buildings (Fig. 1) and architecture with different styles
(Fig. 4). We then propose an optimization-based method for roof

(a) Hakka Tulou, China (b) Hexagonal Pavilion

(c) Temple (textured by the sketch)

(d) Nagoya Castle
Japan

(a)

(b)

(c)

(d)

Fig. 4. Building meshes of Asian architecture created by our method. The
reference images on the le� are collected from internet.

modeling from an input roof graph, where we introduce a simple
planarity metric. Our method is generic and can be adapted to differ-
ent settings such as including user-specified regularizers. Compared
to the straight skeleton based methods, our solution has stronger ex-
pressiveness with fewer assumptions placed on the underlying roofs.
Meanwhile, our solution is more robust and can better reconstruct
roofs from an image with higher accuracy. Compared to the general
purpose 3D modeling software, our method has a more natural and
systematic roof structure representation and is explicitly designed
to output planar 3D polygon roofs. Our roof modeling framework
can be easily used by novices requiring light user input.

Our method has two practical applications, interactive roof edit-
ing and roof synthesis from scratch. Specifically, our roof graph
representation allows different editing operations for modifying
roof topology, while our roof optimization efficiently updates the
roof embedding by enforcing planarity constraints. These features
allow a user to interactively model a planar roof by iteratively mod-
ifying roof topology and optimizing the roof planarity. Another
useful and novel application is to automatically synthesize realistic
roofs. Roof synthesis in general is a difficult problem, since it has a
mixture of discrete (roof topology) and continuous (roof planarity)
constraints. To tackle this issue, we train neural networks to gener-
ate a discrete roof graph then run our roof optimization method to
enforce the continuous geometric constraints.

In summary, our main contributions are:

• A novel roof modeling method including a simple roof graph
representation that encodes roof topology and a new planarity
metric that can be used to enforce geometric constraints for
generating 3D polygonal roof meshes.

• An optimization-based framework that is complementary
to learning algorithms and user input for automatic roof
synthesis and interactive editing.

• We created a dataset consisting of 2539 roof meshes paired
with images without topological or geometric errors (see
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Fig. 5. We created a dataset of 3D planar roofs pairedwith the corresponding
aerial images. Here we show 150 example roofs and highlight the topology.
The paired images are shown in Fig. 17 in the supplementary materials.

Fig. 5) using our method, which can be helpful for different
visual computing tasks. Code and data are available.1

2 RELATED WORK

We review related work in three categories: roof construction algo-
rithms, roof reconstruction, and generative modeling.

2.1 Roof Construction Algorithms

In computer graphics, previous work proposes solutions to model
various aspects of architectural models, such as the room layout and
arrangement [Hu et al. 2020; Merrell et al. 2010] and indoor scene
synthesis [Fisher et al. 2015; Yu et al. 2011]. Roofs are one of the
components previous works attempted to model using algorithmic
or procedural approaches.
The straight skeleton algorithm [Aichholzer and Aurenhammer

1996; Aichholzer et al. 1996] is a popular geometric algorithm for the
generation of complex roof structures from user-specified roof out-
lines [Laycock and Day 2003]. The weighted straight skeleton [Biedl
et al. 2015; Eder and Held 2018; Eppstein and Erickson 1999] is an
extension to improve the modeling expressiveness to facilitate the
modeling of roof faces at different angles specified by users. Several
large-scale urbanmodeling projects are inspired by these techniques.
Larive and Gaildrat [2006] combine 3D building descriptions, in-
cluding the height of footprints and roofs, with GIS information to
create building models. Kelly and Wonka [2011] propose a subse-
quent extension to the weighted straight skeleton for the interac-
tive modeling of complete buildings. Besides, Buron et al. [2013]
consider to bring parallelism to grammar-based roof generation in
order to improve the computational efficiency. Other extensions to
the straight skeleton include the works of Sugihara [2013; 2019]
and Held and Palfrader [2017]. An alternative approach to model-
ing complex roofs is to create a combination of elementary roof
primitives, e.g. as done in procedural modeling [Müller et al. 2006].

1Demo Code: https://github.com/llorz/SGA21_roofOptimization

Complementary to our work in roof modeling, several magnificent
real-world buildings feature smooth roof shapes. The design of such
roofs [Liu et al. 2006; Pottmann et al. 2007, 2008] requires different
and specialized tools and should be considered as a separate topic.

2.2 Roof Reconstruction

Urban reconstruction aims at automatically generating 3D models
from real physical measurements, such as multi-view images or
point clouds [Demir et al. 2015; Musialski et al. 2013]. We focus
our review on recent methods that have roof reconstruction as a
major component. One category of algorithms uses optimization.
For example, Zhou and Neumann published a series of papers to
reconstruct coarse building models including roofs from LiDAR
point clouds [2008; 2010; 2011]. Lin et al. [2013] propose to find a
combination of planar primitives that best explains the input Li-
DAR data for roof reconstruction. Dehbi et al. [2021] propose an
active sampling strategy for RANSAC to fit plane approximations
to input point clouds. Nan and Wonka [2017] and Kelly et al. [2017]
employ integer programming to reconstruct coarse planar building
models. Arikan et al. [2013] propose an initial automatic method
to extract candidate planes and estimate coarse polygons from un-
organized point clouds, and then allow users to interactively edit
the model by optimization-based snapping operations. Verdie et
al. [2015] and Zhu et al. [2018] focus on segmenting parts belong-
ing to the roof surface, and then fitting a collection of piece-wise
planar planes [Liu et al. 2018] or prior defined templates for roof
reconstruction. Habbecke and Kobbelt [2012] propose an interac-
tive geometric modeling system that can be used for polygonal
roof editing with geometric regularities or constraints. Salinas et
al. [2015] present a mesh decimation approach that generates planar
abstractions of roof meshes. Bauchet and Lafarge [2020] adopt a
kinetic data structure to partition the 3D space into convex poly-
hedra from which the underlying surface mesh of the input point
cloud can be extracted. Another category of papers use deep learn-
ing [Alidoost et al. 2020; Yu et al. 2021; Zeng et al. 2018; Zhang et al.
2020] to directly output the reconstruction of 3D roof structures.
However, these methods do not propose a solution for enforcing
geometric constraints, while in our work, we mainly focus on en-
forcing geometric constraints in an optimization-based formulation
during interactive roof reconstruction.

2.3 Generative Modeling

Generative models aim to generate new samples that follow a sim-
ilar distribution as a collection of training samples. For example,
generative adversarial networks (GANs) [Goodfellow et al. 2014]
can be extended to 3D by synthesizing details on surfaces, e.g., [Kelly
et al. 2018] create textures on coarse building models. Volumetric
GANs [Wu et al. 2016] can create 3D models with a voxel grid
representation. Normalizing flows [Dinh et al. 2015; Rezende and
Mohamed 2015] (NF) have been extended to 3D by modeling the
distribution of point clouds as an invertible parameterized trans-
formation from a probability density embedded in 3D space [Kim
et al. 2020; Stypułkowski et al. 2019; Yang et al. 2019]. In the fol-
lowing, we mainly discuss variational autoencoders (VAEs) and
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3D roof Roof Graph Vertex Set Edge Set Dual Graph

(a) (b) (c) (d) (e)
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Fig. 6. 3D roof represented as a roof graph: (a) a simple 3D roof with 8 faces;
(b) the topology of the roof represented as a graph� = (+ , �) ; we highlight
the vertex set+ in (c) and the edge set � in (d), where the outline vertices
(edges) are colored in orange, and the roof vertices (edges) are colored in
blue. (e) We can also construct a dual graph of the roof graph, where each
face of the roof is represented as a node, and two nodes are connected to
each other if the corresponding roof faces are adjacent.

auto-regressive models (ARs) for 3D tasks that are closely related to
our roof synthesis application.

Variational autoencoders [Kingma and Welling 2014] parameter-
ize latent variable models with deep neural networks. Compared to
GANs, VAEs are easier to train but they typically produce images of
lower visual quality [Razavi et al. 2019; Van Den Oord et al. 2017].
While extending to 3D geometry [Brock et al. 2016], they have the
potential to synthesize 3D shapes, especially on domain-specific
tasks that require limited topological variations, such as face [Ran-
jan et al. 2018] or human body [Tan et al. 2018] modeling. VAEs
also have been used for generating structured models, such as fur-
niture [Gao et al. 2019; Mo et al. 2019; Yang et al. 2020]. In these
instances, there are separate generative models for the individual
object parts and the part arrangement.
Auto-regressive models (ARs) factorize a distribution over a se-

quence into several conditional densities. Each conditional density
models a single element in the sequence conditioned on all previ-
ous elements. Language models are auto-regressive in nature [Dai
et al. 2019; Radford et al. 2019]. Some works also model images as
sequences, e.g., PixelRNN [Van Oord et al. 2016] and its follow-up
works PixelCNN [Van den Oord et al. 2016], PixelCNN++ [Salimans
et al. 2017], and PixelSNAIL [Chen et al. 2018]. With the rise of
transformers, autoregressive models have been increasingly applied
to 3D data, including polygonal meshes [Nash et al. 2020], floor
plans [Para et al. 2020], and scenes [Wang et al. 2020]. We argue that
the discrete nature of ARs is a unique advantage for modeling 3D
data that does not consist of smoothly varying models, but needs
a latent representation that can handle discontinuities. Therefore,
we propose to adapt ARs to the generation of roof outlines. We will
demonstrate that ARs are more suitable than VAEs (the currently
most popular generative model) in the results.

3 BACKGROUND & PROBLEM FORMULATION

3.1 Definitions

For a planar 3D roof, we can use a roof graph to represent its topol-
ogy (as shown in Fig. 6 (b)). We first categorize the vertices + in
the roof graph into two sets, the outline vertices +O and the roof
vertices +R . The outline vertices are on the boundary of the (2D
projection of the) 3D embedding of the roof graph and the remain-
ing vertices are roof vertices. We denote by =O = |+O |, the number
of outline vertices, and =R = |+R |, the number of roof vertices.
We also use =E = =O + =R to denote the total number of roof ver-
tices. For example, for the roof graph shown in Fig. 6, we have

Roof Graph Dual Graph Complete Dual Graph
E1

E2 E3

E4 E5

E6 E7

E8
E9

E10
E11

E12E13
E14

51

52
53

58

50

54

55 56

57

Fig. 7. We can recover the roof graph by computing the dual of the dual
graph. Le� : a given roof graph. Middle: its corresponding dual graph. Right :
we add a node 50 indicating the outside region in the dual graph. We can
see that the roof graph (le�) is the dual of the complete dual graph (right).

+O =

{
E1, · · · , E8

}
,+R =

{
E9, · · · , E14

}
. Similarly, we can also cate-

gorize the edges in the roof graph into two sets, the outline edges �O
(both of the two endpoints of the edge are outline vertices), and the
roof edges �R (at least one of the endpoints is a roof vertex). A region
bounded by a set of edges and vertices in the embedding of the roof
graph defines a roof face. For example, we have 51 =

{
E1, E2, E9

}
and

53 =

{
E3, E10, E11, E12, E13, E14, E4

}
. Therefore, we can equivalently

represent the roof graph � by (+ , � ), where the edge set � can be
easily extracted from the face set � . We denote =5 = |� |, the number
of roof faces in the roof graph.

Dual graph. For each roof graph � = (+ , � ), we can construct
its dual graph �D

= (+ D , �D ), where each face in the roof graph
� is represented as a node in the dual graph �D , i.e., |+ D | = |� |.
Two nodes in + D are connected to each other by an edge (stored
in �D ) if and only if the corresponding two faces are adjacent (i.e.,
share an edge) in the roof graph � . We can store this connectivity
information into an adjacency matrix �D ∈ {0, 1}=5 ×=5 , i.e., �D

8 9 = 1

if 58 is adjacent to 59 . We can therefore equivalently represent the

dual graph as�D
= (+ D , �D ). In Fig. 6 (e) we show the dual graph

which is placed above the original roof graph. Note that it is possible
not only to construct a dual graph �D from the primal roof graph
� , but also to recover the primal roof graph from a dual graph by
computing the dual of the dual graph as shown in Fig. 7 (see Sec. 4.3
for more details).

We can embed a roof graph in 3D (2D) by assigning each vertex a
3D (2D) coordinate. For a vertex set + , we denote its 2D embedding
as s- ∈ R

=E×2 and its 3D embedding as - ∈ R
=E×3, where we store the

vertex positions in rows. See Fig. 6 (a) for a 3D roof that stems from
a 3D embedding of the roof graph in Fig. 6 (b).

3.2 Valid Roofs

An important constraint for a roof is that all faces have to be planar.
We can therefore use the planarity constraint to define valid 2D and
3D embeddings of roof graphs:

Definition 3.1. We call a 3D embedding of a roof graph valid if

each 3D roof face is planar and the roof has non-zero height.

Definition 3.2. We call a 2D embedding of a roof graph valid if

there exists a valid 3D embedding such that the projection of the 3D

embedding in the G~ plane is exactly the same as the 2D embedding.

Therefore, we can always obtain a valid 2D embedding by pro-
jecting a valid 3D embedding to the G~ plane. At the same time, we
can get a valid 3D embedding by lifting up a valid 2D embedding
along the I-axis (i.e., assigning each vertex a I-axis value).
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Roof Graph
Valid

2D Embedding

(a) (b) (c) (d) (e) (f) (g)

E1

E2
E3

E4 E5

E6 E7

E8
E9 E10

E11

E12
E13

E14

41,8

49,10

42,3

41,8//42,3//49,10

43,4

411,12 47,8

43,4//47,8//411,12

43,4

413,14

45,6

43,4//45,6//413,14
41,8

43,4

410,11

43,4 ∨ 41,8 ∨ 410,11

43,4

46,7

412,13

43,4 ∨ 46,7 ∨ 412,13

51 52

53

54

55

56

57

58

Fig. 8. Valid 2D embedding of a roof graph. For a pair of adjacent faces in the input roof graph (a), we consider their outline edges and their shared edge.
If for every pair of adjacent faces (c-g), these three edges are either parallel to each other or intersect at the same point, according to Remark 3.1, this 2D
embedding (b) is valid. Here the notation 41 ∨ 42 ∨ 43 means these three edges 41, 42, 43 intersect at the same point.

51

52
53

54
55

56

57

58

(a) (b) (c) (d)

Fig. 9. Different roof styles with the same outline. The roof style can
be encoded into the dual graph of the roof graph. Top: different dual graphs
(with green nodes and black edges) on top of their corresponding primal
roof graph (gray nodes and gray edges). Bo�om: we show the corresponding
reconstructed roofs with different styles.

Verification of the validity. To verify the validity of a given 3D
embedding, we can simply check if each 3D face is planar or not.
To verify the validity of a given 2D embedding, according to the
definition, we need to check if there exists a set of I-values that
combined with the given 2D embedding forms a valid 3D embedding.
An alternative and much easier way to verify the validity of a given
2D embedding is to use basic geometry:

Remark 3.1. The intersecting line of two adjacent 3D planar faces

with fixed outline edges, is either parallel to both outline edges, or

intersects the two outline edges at the same point. The same conclusion

holds when we project the 3D planar faces to G~-plane.

See Fig. 32 and Appendix A for a simple proof. Remark 3.1 gives
both a necessary and sufficient condition. Therefore, we can use it
to check the validity of a 2D embedding. See Fig. 8 for an example
of a valid 2D embedding.

3.3 Background: Straight Skeleton Methods

The straight skeleton [Aichholzer and Aurenhammer 1996; Aich-
holzer et al. 1996] or its extension the weighted straight skele-
ton [Biedl et al. 2015; Eppstein and Erick-
son 1999; Kelly andWonka 2011] are popu-
lar tools for roof construction. The straight
skeleton based methods take a 2D roof out-
line as input, and output a valid 2D/3D roof
embedding by solving for the roof topol-
ogy and roof embedding at the same time.
Specifically, the straight skeleton methods formulate the roof con-
struction problem as determining how roof planes with given slope
from a given roof outline intersect with each other. See the inset
figure for an example, where blue planes stemming from the outline
intersect and form the roof structure colored in red. This can be

Fig. 10. Multiple valid embeddings for the same roof graph. Top: a
set of 3D planar roofs with the same outline and topology. Bo�om: G~
projection of the corresponding roofs.

equivalently formulated as shrinking the input outline edges with a
constant rate and determining how the resulting interior polygon
changes. Once there is a change, an interior roof vertex or roof edge
can be detected accordingly. See [Felkel and Obdrzalek 1998] for a
more detailed description.

3.4 Observations & Challenges

The straight skeleton based methods can construct planar roofs
from given roof outline efficiently. However, they still have some
limitations. For example, the roof topology is determined at the
same time as the roof embedding, with an implicit assumption that
a single roof topology corresponds to the input roof outline, which
is not the case in practice. For example, we can observe that:

• Roofs with the same outline can have different styles. In
Fig. 9 we show four different roof constructions for the same

outline. We can observe that these four roofs have different style
and structure.

• Roofs with the same outline and topology can have differ-

ent embeddings. In Fig. 10 we show a set of 3D planar roofs
with exactly the same outline and the same adjacency between
faces. All of the shown roofs are valid but the 3D roof embeddings
are different, i.e., the roof vertices have different locations.

These observations suggest that it is not enough to only use the
roof outline for roof construction, as the straight skeleton based
methods do. We also need to specify the roof topology and geometry

in some way. As a result, to solve the roof construction problem, we
need to tackle the following challenges:

• How to specify the roof topology or roof style, i.e., the geometry
of the interior vertices of a roof?

• How to formulate or enforce roof planarity?
• How to avoid undesirable but valid roof embeddings?

In the following, we will discuss how the proposed primal-dual roof
graph representation can help to tackle these challenges and solve
for desirable planar roofs.
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Fig. 11. Roofs with outline vertices in different height. We highlight the
outline vertices with non-zero height in red.

4 METHODOLOGY: ROOF OPTIMIZATION

In this section, we introduce an optimization-based method to con-
struct a 3D planar roof where the roof structure/style is encoded
into a primal or dual roof graph. We first discuss how to formulate
the roof planarity, where we introduce a planarity metric to measure
the validity of an arbitrary 3D embedding of a roof graph (Sec. 4.1).
We then discuss how to reconstruct a planar roof from its primal
roof graph (Sec. 4.2) or its dual graph (Sec. 4.3) respectively. For
simplicity of method description, we make the same assumptions
as the straight skeleton method: (1) the outline vertices of a roof
are in the same height, and (2) each roof face stems from one of
the outline edges. We then discuss in Sec. 4.4 how to relax these
assumptions to deal with roofs with outline vertices in different
height (e.g., Fig. 11) and roofs with faces having multiple outline
edges (e.g., Fig. 3), which are not supported by straight skeleton
based methods.

4.1 Roof Planarity Formulation

Assume we have a 3D embedding - for the roof graph � = (+ , � ),
i.e., -8 is a 3D position for the vertex E8 in the roof graph, how can
we evaluate the validity of the embedding -?

Planarity metric on a point set. We first propose to use the fol-
lowing metric to measure the planarity of a set of 3D points / :
6(/ ) = f1

(
Cov(/ )

)
, where f1 (") is the smallest eigenvalue of the

square matrix " , Cov(Z) gives the covariance matrix of the set of
points / . We know that 6(/ ) ≥ 0 since the covariance matrix is
positive semi-definite. If the 3D points in / are coplanar, the rank of
the / is at most 2. Then, the smallest eigenvalue of the covariance
matrix is 0 and we have 6(/ ) = 0. Therefore, for an arbitrary set of
3D points / , the smaller 6(/ ) is, the more coplanar the points / are.
We therefore use 6(/ ) to measure the planarity of a set of points / .
Note that 6(/ ) is differentiable with respect to / .

Polygonal roof planarity. With the planarity metric in hand, we
can easily measure the validity (planarity) of a roof embedding - .
Specifically, we denote as -58 the corresponding 3D embedding of
the face 58 in � . As discussed above, 6(-58 ) measures the planarity
of the embedding of face 58 . We can sum over the planarity metric
on each face 58 as a measure of the roof planarity:

Eplanarity
(
-
)
=

∑=5

8=1 f1

(
Cov

(
-58

) )
(1)

Further, we can construct a valid roof by solving for an embedding
- that has zero planarity error as defined above, which can be
formulated as an optimization problem. In the following, we will
discuss in details how to achieve a roof construction from a primal
or a dual roof graph, respectively.

0 5 10 15 20

10
−10

10
−5

10
0

10
3

# iteration (:)

Planarity Error : = 1 : = 2 : = 3 : = 4

: = 5 : = 6 : = 7 : = 8

: = 9 : = 10 : = 15 : = 20

Fig. 12. Planarity error over iterations. We visualize the 3D embedding
updated over iterations by minimizing the planarity measure.

4.2 Roof Construction from Primal Graph

We assume that we are given a primal roof graph � = (+ , � ). For
example, a user can draw a roof graph similar to Fig. 6 (b). In this
case, a 2D embedding s-user is also provided by the user. Recall
that we use s- to denote a 2D embedding and use - to denote a 3D
embedding of the vertex set + . Note that this 2D embedding s-user

is unlikely to be valid due to the noise in the user annotations, but it
provides a strong prior of the expected positions of the roof vertices
from the user. Then our goal is to solve for a valid 3D embedding -
from the user input.

Preprocessing. We first lightly regularize the 2D positions of the
outline vertices from user input, i.e. s-user

O , to promote the accu-
racy of the parallel edges. Specifically, the outline edges labeled or
drawn by users can be inaccurate: some outline edges that should
be parallel are only approximately parallel. Therefore, for a pair of
edges that has a smaller angle than the threshold \ , we modify the
outline vertex positions a bit to make them parallel to each other
numerically, and this leads to new outline vertex positions s-O .

Problem formulation. To find a valid 3D embedding, without loss
of generality - , we can fix the outline vertices +O to -O = [ s-O , 0]
(i.e., with 0 I-axis value). Our goal is to find a 3D embedding -R for
the roof vertices +R . We propose to solve the following problem:

min-R Eplanarity
(
-
)
+ _

 s-R − s-user
R

2
�

s.t. G∗I = ℎ (2)

where G∗ is a randomly selected roof vertex in-R , ℎ is a pre-defined
roof height parameter. We can optimize the above problem with
initialization -R = [ s-user

R , h], i.e., set the I-axis value of all the
roof vertices to ℎ. Our objective function promotes the planarity of
the embedding - and at the same time promotes its corresponding
2D embedding s- to be close to the user input. See Fig. 12 for an
example where we show the intermediate roofs over iterations. We
also include a hard constraint that enforces one of the roof vertices
to have I-value (height) as ℎ. This design choice has two advantages:
(1) it helps to avoid degenerate global minimizers. Without this hard
constraint, we can see that any arbitrary 2D embedding of the roof
graph with zero I-axis values leads to a 3D embedding of the graph
where the planarity of each face is satisfied. To avoid this type of
degenerate solutions, we can force that at least one roof vertex has
non-zero height. (2) this hard constraint also provides the user a
way to control the overall height of the constructed 3D roof.

4.3 Roof Construction from Dual Graph

Another scenario is that we are given a dual roof graph �D
=

(+ D , �D ). Recall that each roof face 58 is represented as a node
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# iterations :

Laplacian Energy : = 1 : = 2 : = 3 : = 4 : = 5 : = 15

Fig. 13. 2D Spectral Embedding. Here we show two examples of embedding
a roof graph into 2D with fixed outline by minimizing the Laplacian energy.
We initialize all the roof vertices at the center of the roof outline.

in + D , and �D stores the face adjacency. In practice, such a dual
graph can be described by the roof outline +O and �D , Specifically,
the 2D roof outline is given as a list of consecutive 2D points. Once
stored in a matrix we have s-O ∈ R

=O×2. I.e., we have =O outline
vertices+O embedded in 2D with vertex positions s-O . Then we can
obtain =O outline edges, �O =

{
41,2, · · · , 48,8+1, · · · , 4=O ,1

}
, where

the edge 48,8+1 connects the outline vertices E8 and E8+1. We assume
each roof face stems from one of the outline edges, and we denote
58 as the face that is associated with the outline edge 48,8+1. Then
the face adjacency is specified in the matrix �D ∈ {0, 1}=O×=O .

The roof outline s-O can either be drawn by a user or generated
by a transformer. Similarly the face adjacency �D can either be
specified by a user or predicted by a trained network.

Recovering primal from dual. Since the roof planarity is defined
on the primal roof graph representation, we need to first recover
the primal graph from its dual graph. Specifically, we first add an
outside node to the dual graph, and connect all the node in �D to
the outside node to obtain a complete dual graph. Then the primal
graph can be recovered by computing the dual of the complete dual
graph (see Fig. 7).

Problem formulation. With the recovered primal roof graph, we
can solve for a roof embedding - by optimizing the roof planarity
as before. However, there is a big difference from the previous case,
where we do not have the user-specified roof interior structure
s-user
R for initialization and for guiding the roof optimization to a

preferred structure. We therefore propose a new energy:

min-R Eplanarity
(
-
)
+ WEaesthetic

(
-
)

s.t. G∗I = ℎ (3)

where Eaesthetic
(
-
)
encodes some additional aesthetic constraints

which can help to solve for a planar roof with preferred properties.

4?

4?1

4?2

(a) (b)

For example, we can categorize the
roof edges into three categories ac-
cording to Remark 3.1: the roof edges
parallel to the corresponding outline
edges are colored green ( ), the roof
edges that connect to an outline vertex are colored yellow ( ), and
the other roof edges are colored red ( ), as illustrated in (b) of the
inset figure. In practice, we would like to have (1) the green roof
edge has equal distance to the corresponding outline edges, i.e., in
the medial axis; (2) the yellow roof edge is an angle bisector that
equally splits the angle formed by the two corresponding outline

Roof Graph Initial Embedding
err > 104

Optimized ([ = 0)
err < 10−9

Optimized ([ = 1)
err < 10−9

roof vtx

outline
vtx

Fig. 14. Constructing the roof of the hexagonal pavilion shown in Fig. 4,
where the outline vertices have different height. Starting from the initial
embedding (le�), we optimize the roof planarity with (right) and without
(middle) the variance energy defined on vertex height, i.e., with [ = 1 and
[ = 0 respectively. The red dashed and curved lines highlights the fact that
the roof embedding is more symmetric with the variance energy. We also
report the planarity error ("err") of the three embeddings.

edges. We therefore have the following aesthetic constraints:

Eaes. =
∑

?∈{ }

〈®4? , ®4?1 〉 − 〈®4? , ®4?2 〉
2
�
+ ∑
@∈{ }

dist(®4@, ®4@1 ) − dist(®4@, ®4@2 )
2
�

where ®4 is an unit vector on edge 4; for a roof edge 4 , we can find
the outline edge 4?1 , 4?2 in its neighboring faces as illustrated in (a)

of the inset figure; dist( ®0, ®1) gives the distance between two parallel

unit vectors ®0 and ®1.
Initialization: 2D embedding by spectral drawing. Without user

inputs, we propose to use spectral graph drawing in 2D as initial
embedding for planarity optimization as opposed to random initial-
ization, which can help to avoid self-intersections. Specifically, we
first find a 2D embedding s-R for the roof vertices by minimizing the
Dirichlet energy using the graph Laplacian [Ren et al. 2018], then we
initialize the 3D embedding by -R = [ s-R ,h]. We can then update
the 3D embedding by minimizing the roof planarity as discussed
above.
To embed the roof graph in 2D by spectral embedding, we first

construct the adjacency matrix �+ ∈ R
=×= between the vertices in

+ , i.e., �+ (?, @) equals to 1 if (E? , E@) is an edge in some face 58 , and
equals to 0 otherwise. We can then construct the graph Laplacian
!+ = diag

(
1
)
=�+

)
− �+ . Then we can embed the roof graph with

fixed outline by minimizing the Laplacian energy:

min s-R


(

s-O
s-R

))
!+

(
s-O
s-R

) 
2

�

(4)

Note that, the spectral energy is considered at the complete roof
graph while we only solve for the roof vertices s-R with fixed outline
s-O . In this case, we can obtain a planar 2D embedding without self-
intersections (see Fig. 13 for some examples).

4.4 Relaxing the Assumptions on Roof Graphs

Here we discuss how to use our optimization-based formulation to
handle roofs with outline vertices at different height and roofs with
faces containing multiple outline edges.

Roof with outline vertices at different heights. We can simply ex-
tend our method to handle a roof with outline vertices at different
heights by setting the outline vertices as free variables for the opti-
mization. Our method can handle common cases such as two roof
outline edges of different heights emanating from the same vertex or
sloped roof outline edges. See Fig. 14 for an example, where we label
the outline vertices in three categories colored in green ( ), yellow
( ) , and gray ( ) respectively. To construct a realistic pavilion, the
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51
52

53
5458

5557

56

51
52

5354 (58 )
55

56

57

(a) (b)

Fig. 15. Roof face containing multiple outline edges. We show two
examples (a-b) of using dual graph (right) to encode the roof topology (le�).
In (b): we merge the face 54 and 58 in (a) into a single face, and we highlight
the changes in the face adjacency matrix on the right.

Fig. 16. Our synthesized buildings from scratch. Our method can au-
tomatically generate realistic roof outlines and correctly predict face adja-
cency. We then run our roof optimization method to construct roofs from
the learned components.

green and yellow outline vertices are expected to be higher than the
gray outline vertices. Therefore, we propose to solve the following
problem:

min
GG~I , G

,
I

Eplanarity (- ) + _
 s- − s-user

2
�
+ [Var(GI ) + [Var(GI )

where GG~I means that the G~I-axis values of the red vertices are

variables for optimization, and G ,
I means that only the I-axis value

of the green/yellow vertices are variables while their G~-axis values
are fixed. There are two modifications made to Eq. (2): (1) we set the
I-axis value of the green and yellow outline vertices as variables for
the optimization besides the positions of the roof vertices. (2) we
add extra energy terms to regularize the variance of the height of the
green/yellow vertices, Var(GI ) and Var(GI ). The additional regular-
izers can help to construct a more symmetric and realistic pavilion
(see Fig. 14 with [ = 0 and [ = 1). In summary, our optimization-
based formulation is flexible to address user preferences by adding
variables to the optimization and including different types of regu-
larizers for different types of roofs. Fig. 11 shows more examples of
roofs with outline vertices with different heights.

Roof face containing multiple outline edges. Our roof optimization
from the primal graph can handle the case where a face contains
multiple outline edges directly. Here we only discuss how to handle
this with the dual graph as input. The main issue is how to rep-
resent such a roof in a dual graph. This can be easily handled by
modifying the face adjacency matrix �D . Specifically, each outline
edge corresponds to a roof face; and for the set of outline edges
that correspond to the same face, the corresponding rows in �D

are merged to the first outline edge, while the rest outline edges are
ignored by setting all the entries to 0. See Fig. 15 for an example
of how �� is constructed. In this way, we can use a dual graph to
represent the roof topology where faces can have multiple outline
edges. Note that the straight skeleton methods do not support this
feature (e.g., see Fig. 3, Fig. 29, and Fig. 30).

Alternative solutions. In Appendix B we discuss three alternative
planarity metrics that can be used for planar roof modeling as well.

a1 a2 a3 · · ·

Transformer

? (a3 |a<3)

Embeddings

Block 1

· · ·
Block !

Attention

⊕
MLP

⊕

Fig. 17. Our auto-regressive transformer with input of a fla�ened vertex
sequence, and output of the probability distribution of the next token.
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Fig. 18. Face adjacency prediction building block. � is the feature di-
mensions.

⊕
is the concatenation operator. From top to bo�om, we show

the adjacency model, the edge model, and the global model

Fig. 19. Top: the predicted adjacency with probability using our transformer.
Middle: post-processed adjacency that forms a valid dual graph. Bo�om:
the corresponding constructed 3D roofs using our method.

In Appendix C we introduce another solution to optimize for a valid
2D embedding directly based on Remark 3.1.

5 GENERATIVE MODELS FOR ROOF SYNTHESIS

One direct application of our method is roof synthesis from scratch
(see Fig. 16). We believe that synthesizing a valid roof directly can be
hard since the model needs to take care of the discrete constraints
(roof topology) and the continuous constraints (roof embedding) at
the same time. We propose to tackle the roof synthesis problem by
combining generative models for roof topology generation (dealing
with discrete constraints only) with roof optimization (dealing with
continuous constraints only). Specifically, we propose a transformer

for roof outline generation and a graph neural network for face
adjacency prediction. The architectures for both networks can be
found in the supplementary materials.
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(a)

(b)

(c)

(d)

(e)

Fig. 20. Roof reconstruction from aerial images. (a) 16 input images of roofs with different complexity. (b) our reconstructed roofs with texture. (c) the
topology of our reconstructed roofs. (d) the results of the straight skeleton where the visually erroneous regions are colored in red. (e) we use the weighted
straight skeleton method to refine the results in (d) aiming to make them more consistent with the input image. The weighted straight skeleton successfully
resolved 5 inconsistencies. However it also introduced new inconsistencies (colored in black) and failed to resolve several inconsistencies (colored in red).

Outline generation. Our goal is to model a distribution of the
2D roof outline -O ∈ R

=O×2, where we assume the outline ver-
tices are in counter-clockwise order and the first vertex is the one
closest to the lower left corner. We flatten the coordinate matrix
to # B4@

=

{
a1, a2, · · · , a2=O

}
. The vertex values are first normal-

ized to range [0, 1] and then quantized to 1-bits, i.e., a8 belongs
to the set {1, 2, · · · , 21 } for any 8 . We also append the sequence
# B4@ with a stopping token B . Consequently, the sequence has the
length of 2=O + 1 and each entry of the sequence has 21 + 1 kinds
of tokens. We train a transformer [Vaswani et al. 2017] to convert
the input tokens # B4@ to roof outline embeddings. The probability
of # B4@ can be factorized into a chain of conditional probabilities:
? (# B4@ ;i) = ∏2=O

8=1 ? (a8 |a<8 ;i) , where i are the parameters of the
model. The model is an auto-regressive network implemented with
a transformer. The network outputs a probability ? at time step 8

based on a<8 = {a1, a2, · · · , a8−1}. See Fig. 17 for the structure of
our transformer. We train this model by minimizing the negative
log-likelihood over all training sequences.

Face adjacency prediction. With the generated roof outline, we
propose a GCN [Kipf and Welling 2016] to predict the face adja-
cency, i.e., ?8, 9 , the probability of having the face stemming from
the edge 48,8+1 being adjacent to the face stemming from the edge
4 9, 9+1, for all 1 ≤ 8, 9 ≤ =O . The network is built by ! basic building
blocks. The ;-th block updates 3 types of representations: (1) an edge

model updates the feature representation 5̄
(;)
8 for the edge 48,8+1; (2)

an adjacency model updates the feature representation 5̄
(;)
8, 9 for the

adjacency (48,8+1, 4 9, 9+1); (3) a global model updates the global fea-

ture representation 6 (;) . See Fig. 18 for an illustration of these three
building blocks. Specifically, the input roof outline is transformed by

! blocks and we obtain the final adjacency representation 5̄
(!)
8, 9 . We

project the representation through a fully-connected layer which

outputs the adjacency probability: ?8, 9 = Sigmoid
(
FC

(
5̄
(!)
8, 9

) )
∈ [0, 1].

The loss function of our GCN is the binary cross entropy between
the predicted probability ?8, 9 and the ground-truth adjacency �� .
See Fig. 19 for some qualitative examples, where we visualize the
probability ?8, 9 via opacity (top row). We can extract the dual graph
with the highest predicted probability (second row) and construct
planar roofs by using our roof optimization method (bottom row).
See the supplementary materials for more details and discussions
about our generative models.

6 RESULTS

In this section, we show results of our roof optimization method
from the primal graph and dual graph. We demonstrate the advan-
tages of our method over the straight skeleton based methods and
commercial software.

6.1 Roof Reconstruction from Aerial Images

6.1.1 Comparison to Straight Skeleton based methods. In Fig. 20 we
compare to the straight skeleton based methods on roof reconstruc-
tion, which take user-specified roof outlines as input [Aichholzer
and Aurenhammer 1996; Eppstein and Erickson 1999]. We test on 16
aerial images containing roofs with different structure and complex-
ity. Then the primal roof graph of the input image is specified by a
user. We run our roof optimization method to reconstruct the roofs,
and report the runtime including user labeling and optimization in
Table 2 and show our reconstructed roofs in Fig. 20 (b-c). Note that,
for the most complicated roof with more than 50 of roof vertices, it
only takes less than 5 minutes to label and reconstruct a realistic
roof from the aerial image.
We then compare to the straight skeleton and the weighted

straight skeleton using the same roof outline as ours. In row (d) of
Fig. 20, we show the results of the straight skeleton. Though globally,
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Table 2. Comparison to straight skeleton based methods. We report
the complexity of the roofs shown in Fig. 20, including the number of
vertices (=E ) and faces =5 . For each image shown in Fig. 20 (with underlying
roof having =E vertices and =5 faces), We report the number of visual
inconsistencies (#err) between the constructed roof and the image, the
number of vertices (Ď=E ) and faces (Ď=5 ) on the reconstructed roof, and the
construction time (C ) of different methods.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
=E 22 24 25 25 27 27 32 33 33 33 34 35 36 39 39 51
=5 12 17 14 14 15 16 17 20 18 20 18 21 19 22 21 38

Ours 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ss 0 2 0 0 1 2 1 2 0 3 2 2 1 3 2 4#err

wss 0 2 0 0 1 2 1 1 0 2 2 2 1 2 2 2

Ours 22 24 25 25 27 27 32 33 33 33 34 35 36 39 39 51
ss 22 22 26 26 30 28 34 40 34 38 38 40 38 40 44 50Ď=E

wss 22 22 26 26 30 28 34 40 34 38 38 40 38 40 44 50

Ours 12 17 14 14 15 16 17 20 18 20 18 21 19 22 21 38
ss 12 12 14 14 16 15 18 21 18 20 20 21 20 21 23 26Ď=5

wss 12 12 14 14 16 15 18 21 18 20 20 21 20 21 23 26

Ours 89.4 115 153 97.9 114 92.9 151 145 155 167 148 158 179 199 178 284
ss 16 20 24 18 20 16 28 29 27 33 32 35 31 33 38 38

C

(s)
wss - 300 - - 60 180 180 300 - 120 180 60 60 480 180 360

(a) Straight Skeleton
(b) Ours

Fig. 21. Top: the straight skeleton algorithm is sensitive to the input and
can lead to different roof structure for very similar roof outlines. Bo�om:
as a comparison, our model allows to fix the roof structure with different
outlines. We overlay the roof graph with a fixed-scale grid colored in gray
to be�er visualize the difference between the outlines.

the obtained results appear reasonable, note that the reconstructed
roofs using straight skeleton contain a lot of structural inconsisten-
cies w.r.t. the input images and unrealistic errors (highlighted in
red). We then use the weighted straight skeleton to fine-tune the
results in order to fix the errors by tuning the edge weights. We
use the GUI provided by [Kelly and Wonka 2011] for the weighted
straight skeleton where the user is allowed to change the weight
for each outline edge. We asked a well-trained user to tune the edge
weights until the structure of the reconstructed roof is as consistent
as possible with the one shown in the image. We can see that the
weighted straight skeleton can fix some inconsistencies and errors
in the roofs constructed using the straight skeleton (for those suc-
cessful edits, we changed the highlighting color from red to black).
However, there are still many structural errors that cannot be fixed
by changing the weights (highlighted in red).

In Table 2 we report the topology of the reconstructed roofs from
different methods, including the number of vertices ( s=E ) and faces
(Ď=5 ). We can see that the roofs reconstructed by the standard or

Table 3. Comparison to commercial so�ware.We compare to the roofs
constructed in 3dsMax (3D) and SketchUP (SU) and report if the constructed
roof is planar (valid), the number of topological errors ("err"), the ratio of the
polygon faces in the roof ("poly%"), the number of vertices (Ď=E ) and faces
(Ď=5 ) of the constructed roof, and the modeling time in minutes (C ).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3D ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗valid

SU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ours 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3D 9 12 10 11 12 12 16 15 15 11 16 15 16 18 17 20#err

SU 20 16 21 19 16 27 33 21 25 38 28 30 33 33 29 42

Ours 75 65 71 79 67 69 82 75 83 60 72 57 79 73 71 42

3D 75 62 71 79 75 67 87 75 83 52 76 60 80 72 74 56
poly

(%)
SU 0 24 2.6 3.3 20 2.3 2.0 22 7.0 10 11 9.8 3.8 15 14 0

Ours 22 24 25 25 27 27 32 33 33 33 34 35 36 39 39 51

3D 22 31 37 26 28 28 44 34 34 35 44 35 36 40 39 53Ď=E

SU 22 29 26 25 28 30 36 45 33 52 39 40 37 46 42 58

Ours 12 17 14 14 15 16 17 20 18 20 18 21 19 22 21 38

3D 12 21 14 14 16 18 18 20 18 21 21 25 20 25 23 36Ď=5

SU 32 33 35 33 31 43 50 41 43 58 46 51 52 55 50 82

Ours 1.5 1.9 2.6 1.6 1.9 1.6 2.5 2.4 2.6 2.8 2.5 2.6 3.0 3.3 3.0 4.7

3D 6 7 7 6 6 12 12 11 7 14 6 9 10 8 10 23
C

(min)
SU 12 16 15 12 22 20 21 22 21 25 19 32 22 14 25 36

draw outline cut faces

move vtx

move vtx along I-axis constructed roof

(red face: non-planar)

Fig. 22. Workflow of using 3ds Max for roof modeling (No.3 roof in Fig. 20).

specify roof topology build roof beams

add planar roof tops

constructed roof

(red: interior structure)

Fig. 23. Workflow of using SketchUp for roof modeling (No.9 roof in Fig. 20)

the weighted straight skeleton method always have the same num-
ber of vertices and faces. It suggests that although the weighted
straight skeleton can fix some visual inconsistencies from the stan-
dard method, it cannot change the roof topology. The structural
errors of the straight skeleton based methods in Fig. 20 show that
these methods have much less expressiveness power in roof topol-
ogy representation than our method. As suggested in Fig. 21, the
straight skeleton method is very sensitive to the input condition
and can lead to different topology for similar building outlines.

6.1.2 Comparison to Commercial So�ware. We also compare to two
commercial software frameworks for roof reconstruction. We asked
two experts, one with 5-year experience of modeling in 3ds Max,
and the other with 3-year experience of modeling in SketchUp, to
reconstruct the roofs shown in Fig. 20. The only instruction we gave
to the experts was to model a polygonal roof that is as consistent as
possible with the given image and as simple as possible. The two
experts that worked independently followed a similar logic: they
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ERR = 28 ERR = 29
SketchUp Real Model SketchUp Real Model

(=1 = 18) (=2 = 46) (=1 = 21) (=2 = 50)

Fig. 24. Evaluating roofs constructed in SketchUp. The expert working
in SketchUp hid some edges to make the constructed roofs visually consis-
tent with the input image (le�). However, the real models shown on the right
are more complicated. We therefore measure the unwanted complexity, i.e.,
the difference between the number of faces in the real model (=2) and the
number of faces in the visually expected model (=1), to evaluate SketchUp.
We highlight the faces in the real models that are not triangles in red.

first specified the roof topology on top of the imported image by
drawing the outline and then by adding/cutting faces; then they
constructed a 3D roof based on the roof topology. Specifically, the
3ds Max expert chose to move vertices mainly along the z-axis and
checked in different views until satisfied with the reconstructed
roofs, as shown in Fig. 22. The SketchUp expert chose to first build
the roof beams, i.e., vertical planes such that the rooftop planes can
be placed on top of it. See Fig. 23 for an example. We show some
quantitative comparison in Table 3. For the roofs that are constructed
in SketchUp, we ignore the constructed interior structures and only
evaluate the rooftops.
In general, commercial software provides more modeling tools

and can model a larger variety of polygonal meshes. There are still
some limitations for roof modeling. First, commercial software needs
domain knowledge to be used efficiently, while our user input is
light and friendly for novice users. For example, the 3ds Max expert
used different types of operations including creating polygons by
adding edges, moving vertex positions in a 2D plane, cutting faces,
extruding faces, translating grouped vertices and so on. During the
modeling process, the expert had to frequently change the views
or even switch to the four-view editing mode to operate and check
the constructed 3D roof. As a comparison, our method allows the
user to specify the roof topology in 2D with one simple operation,
i.e. clicking on the image to construct a primal or dual roof graph.
More importantly, it is hard to explicitly enforce the planarity of
the 3D roof faces using 3ds Max or SketchUp. For example, 3ds Max
allows to create a polygon from a set of non-coplanar 3D points.
Therefore, it relies on the user to adjust the vertex positions to
make the polygonal roof faces planar, which is extremely hard to
achieve even visually. See Fig. 22 for an example where we highlight
a non-planar polygon (colored red) w.r.t. a reference plane (colored
blue). Also as reported in Table 3, all the roofs constructed in 3ds
Max are not planar numerically. On the other hand, SketchUp does
not allow to construct a non-planar polygon. Therefore, to form a
rooftop from a set of non-coplanar vertices, a user need to manually
triangulate the rooftop. We show the constructed roofs by 3ds Max
and SketchUp in Fig. 33 and Fig. 34 in Appendix. In Table 3 we report
the ratio of polygonal faces in the constructed roof. We can see that
this ratio of the roofs constructed using SketchUp is significantly
lower than ourmethod or using 3dsMax due to the implicit planarity
constraint in SketchUp.

0 5 10 15 20
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1,000

# roof faces =5

0 10 20 30 40

# roof vertices =E

Fig. 25. Variations of our constructed dataset: we report the number of
faces and vertices on each of the 2539 constructed buildings via a histogram.
The number of faces ranges from 4 to 20, and the number of vertices on the
roofs ranges from 5 to 34.

SketchUp Ours

not connected

self-intersection

Another issue of roof modeling
using the commercial software
is that it heavily depends on the
user’s preference of how to spec-
ify roof topology. See the inset figure for an example, the roof con-
structed using SketchUp is visually consistent with the input image.
However, it would be more plausible to have the roof faces colored
in red being connected to the main roof body colored in blue. In
practice, it is typically preferable to avoid self-intersections as high-
lighted by the gray part. As a comparison, our proposal of using
a roof graph to describe roof topology is general and can result in
roofs with simpler topology. For example, as shown in Fig. 3, the
roofs constructed by our method have a smaller number of vertices
and faces. Please see the supplementary video for more examples.
We quantitatively measure the topological errors ("#err") of the

constructed roofs and report them in Table 3. Specifically, we mea-
sure how many non-planar faces in each roof constructed in 3ds
Max. In SketchUp, the expert hid some edges of the constructed
roofs as shown in Fig. 24. We can then use the “unwanted face com-
plexity” as a measure to evaluate the topological errors in SketchUp.
In summary, compared to the commercial software for roof model-
ing, our method is more efficient and simpler for novice users. The
roofs constructed using our method have a simpler topology while
the roof planarity and the visual consistency to the input image are
enforced.

6.2 Image-Building Paired Dataset
image polygon mesh point cloudWe created an image-building paired

dataset using our roof optimization
method, where a complete build-
ing is constructed by adding facade
planes along the roof outline and a base plane at the bottom. Specif-
ically, we created a dataset consisting of 2539 buildings paired with
the input aerial image and face labels (including roof faces, facade
faces, and base face). The annotations are cleaned automatically
by merging close-by vertices, removing duplicate or redundant
edges/vertices, and our method is then used for roof reconstruction.
See Fig. 5 for some example buildings and Fig. 25 for a summary
of the roof complexity including the number of roof vertices and
roof faces in this dataset. We believe this dataset can be helpful for
different visual computing tasks. Specifically, this is a mesh-image
paired dataset, which can be used for learning-based roof mesh

ACM Trans. Graph., Vol. 40, No. 6, Article 249. Publication date: December 2021.

Maks Ovsjanikov

Maks Ovsjanikov



249:12 • Jing Ren, Biao Zhang, Bojian Wu, Jianqiang Huang, Lubin Fan, Maks Ovsjanikov, and Peter Wonka

Fig. 26. Generated roof outlines with our auto-regressive model. We use
our model to generate a sequence of 2D vertices and connect the tail vertex
to the head by an orange line.

Learned
Adjacency

Fig. 27. We can extract multiple valid dual graphs from the learned adja-
cency (top). We show the corresponding constructed roof on the bo�om.

detection. We also assign each polygon face in the building mesh
a label from the set of roof face, body face, or base face. We can
sample from the polygon mesh to obtain a point cloud as well (see
inset figure). This dataset also contains roofs with a larger range of
complexity. For example, in the following we discuss how to use
this dataset for roof synthesis from scratch.

6.3 Application 1: Roof Synthesis from Scratch

As discussed in Sec. 5, our roof modeling formulation can simplify
the roof synthesis problem. Specifically, we propose learning-based
techniques for roof topology synthesis, and then use our roof op-
timization method to enforce geometric planarity constraints. We
use the constructed dataset in Sec. 6.2 to train models on roof graph
generation, including a transformer for roof outline generation and
a graph neural network for face adjacency prediction. See Fig. 26
for some example roof outlines generated by our transformer. Our
graph neural network can predict the probability of adjacency for
face pairs, from which we can extract either a single dual graph
with highest probability (see Fig. 19) or multiple valid dual graphs
for roof construction as shown in Fig. 27. See the supplementary
materials and videos for more discussions and results.
We compare to a Variational Auto-Encoder (VAE) based genera-

tive model [Kingma and Welling 2014] for roof graph generation.
We used the trained VAE to synthesize 360 roof graphs, and only
119 of them are fully connected graphs while the remaining graphs
have up to 19 disconnected components. We then only focus on
fully connected cases for potentially valid roof graphs. Fig. 28 shows
some example roof graphs synthesized by the VAE-based model.
Even most of the fully connected roof graphs do not have a rea-
sonable topology. Among the few synthesized roofs that do have a
reasonable topology (e.g., the first and the last one) the geometry is
not valid and violates aesthetic constraints. We therefore conclude
that the task of constraint geometry generation is very difficult for
a VAE. This shows that our strategy of separating the continuous
constraints from the discrete constraints can simplify the problem
and make it easier for training a generative model to learn roof
topology.

Fig. 28. Synthesized roof graph via VAE. Synthesizing a valid roof di-
rectly can be hard since the model needs to take care of the discrete con-
straints and the continuous constraints at the same time.

6.4 Application 2: Interactive Roof Editing & Optimization

One of the biggest advantages of our roof construction method is its
flexibility. Specifically, the optimization based planarity formulation
makes it possible to incorporate different regularizers. Moreover, the
primal-dual roof graph representation can support different editing
operations. Therefore, our method can be used for interactive roof
editing and optimization. Specifically, a user can (1) modify/edit a
(valid) roof graph (either the primal or dual graph) (2) starting from
the modified roof graph, run our optimization method to obtain
a valid roof graph. The user can then go back to step (1) and edit
again. In this way, one can edit the roof graph until satisfied.

Our primal-dual roof graph representation can naturally support
different types of operations including moving a vertex or an edge,
snapping an edge, merging two faces, splitting a face, forcing two
faces to be adjacent, and so on. See Fig. 29 for an example. We can
see that our editing operations are expressive and our optimization-
based formulation is well suited for interactive editing since after
applying different operations the updated roof embedding does not
change too much from the previous embedding while staying valid.
As a comparison, the weighted straight skeleton, which allows

a user to change edge weights for roof editing, is not trivial or
efficient enough for interactive editing, since the change of the roof
structure is not continuous or easily predictable w.r.t. the change
of edge weights. See Fig. 30 for an example, where we compare
our interactive editing power to the weighted straight skeleton in
correcting topological errors. Our method can easily fix all the errors
while the weighted straight skeleton can only fix one out of four
topological errors. See Appendix D for more discussions.

6.5 Additional Justification of Our Formulation

ℎ = 20 ℎ = 50 ℎ = 100

Adjustable roof height. As dis-
cussed in Eq. (3), we optimize for a
valid 3D roof embedding by mini-
mizing the planarity energy w.r.t. a
hard constraint such that a randomly selected roof vertex should
have fixed height (I-axis value) ℎ. This can help to avoid degenerate
solutions where all the roof vertices have zero height, which leads to
valid roofs with zero planarity error. In the inset figure we show that
this parameter ℎ is not critical and we can set it to an arbitrary value
to obtain valid 3D roofs. Additionally, this design choice can also
benefit the interactive roof editing where a user can tune the roof
height ℎ during the construction. In our experiments, we usually
set ℎ =

√
(/2, where ( is the roof area.
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(a) Straight Skeleton (b) snap edge 41 (c) snap edge 42 (d) merge edges 43, 44 (e) merge faces 54, 55 (f) Results
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Input
Outline

51

52

41

53

4252

43

44

54
55
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Fig. 29. The roof constructed from the straight skeleton can be undesirable or unrealistic as shown in (a). Moreover, the straight skeleton formulation only
supports a limited set of edits. As a comparison, our optimization-based formulation supports different types of edits (b-e). In (f), we show that a�er a set of
edits to the result from the straight skeleton, we can obtain a more realistic roof. For (b-e), Top: we visualize the edits made to the roof graph and we show a
zoom-in version on the le� to highlight the region of interest. Middle: we show the valid 2D embedding a�er editing using our method and we color the roof
edges in red to highlight the roof structure. Bo�om: we show the corresponding constructed planar roofs with a zoomed-in version of the regions with changes.

Input Image Straight Skeleton Weighted Straight Skeleton Ours
(a)

(c)

(b)

(d)

Fig. 30. The roofs constructed using straight skeleton can be different from the input image. For example, the highlighted region with a zoom-in view of (a)
and (b) contains errors; region (b) and (c) contains extremely short edges which are unlikely to exist in reality; region (d) has inconsistent vertex positions. We
can consider using the weighted straight skeleton to fix these issues by changing the weight for each outline edge. However, changing the edge weights is
not trivial and the user could only solve the vertex inconsistency in (d), while the other structural errors in (a,b,c) are mediated, but not fully resolved. As a
comparison, our operations for interactive editing are explicitly defined on the roof graph and are much easier to apply. Our method successfully fixes all the
errors and obtains a consistent roof.

err < 10−9 err < 10−9

Usefulness of spectral embedding.

Taking the 2D spectral embedding as
initialization can help to avoid self-
intersections for roof constructions
from a dual graph. In the inset figure,
we show the roofs optimized from zero
embedding (left) and our spectral em-
bedding (right). Both roofs are valid with planarity error ("err")
smaller than 10−9. However, the roof shown on the right is more
plausible with no self-intersections. In Fig. 31, we show more results
of our roof optimization algorithm from a dual graph. On top we
show the 2D spectral embedding as the initialization, in the middle
we show the optimized valid 2D embedding, and at the bottom we
show the corresponding reconstructed roofs (buildings).

6.6 Implementation & Runtime

We implemented the roof optimization methods (including spec-
tral embedding and planarity optimizations) in MATLAB and used
the build-in function "fmincon" with Quasi-Newton solver for op-
timization. We designed a web-based GUI with two modes for col-
lecting user inputs of primal-dual roof graph specification for the
application of roof reconstruction from images. The roof synthesis
application is implemented using Pytorch [Paszke et al. 2019].
In Table 4 and Table 5, we report the roof complexity and com-

putation time of our method for each roof in Fig. 20 and Fig. 31

Table 4. Runtime of roof construction from primal graph. For each of
the examples in Fig. 20, we report the time for annotating the vertices CE
and faces C5 in the image for roof reconstruction by the user. C> reports the
runtime in seconds of our roof optimization algorithm. Cours = CE + C5 + C>
shows the total amount of time for the roof reconstruction of our method.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

=E 22 24 25 25 27 27 32 33 33 33 34 35 36 39 39 51

=5 12 17 14 14 15 16 17 20 18 20 18 21 19 22 21 38

CE 27.6 36.6 39.3 29.4 31.4 25.5 43.9 40.8 43.5 49.8 49.9 52.5 50.9 55.5 58.3 66.6

C5 61.4 77.7 112 67.9 82.2 66.5 106 102 109 116 97.3 104 126 143 118 214

C> 0.42 1.20 0.73 0.55 0.61 0.89 0.94 2.23 1.47 1.05 0.72 1.58 1.24 1.34 2.52 3.59

Cours 89.4 115 153 97.9 114 92.9 151 145 155 167 148 158 179 199 178 284

respectively. We can see that our algorithms, both 2D spectral em-
bedding and planarity optimization, are efficient and robust w.r.t.
various roof outlines with different complexity.

7 CONCLUSION, LIMITATION & FUTURE WORK

We proposed an optimization-based roof construction method that
first designs a primal or dual roof graph as input and then optimizes
the geometry to output a planar 3D polygonal roof. Our formula-
tion is flexible and can be adapted easily to different settings such
as incorporating user-specified regularizers. Our method has two
practical applications, interactive roof editing and roof synthesis
from scratch. Our method of roof reconstruction is more expres-
sive than the straight-skeleton based methods, and is much easier
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Fig. 31. Roof construction from dual graph. Top: the initial 2D spectral embedding. Middle: the valid 2D embedding of each roof obtained by minimizing
the planarity. Bo�om: the constructed planar roof meshes.

Table 5. Runtime of roof construction from dual graph. For the 16
example roofs shown in Fig. 31, we report the complexity of each roof,
including the number of vertices (=E ) and faces (=5 ) in the roof. We also
report the runtime in seconds for the 2D embedding via the spectral method
(C1) and 3D embedding via optimization w.r.t. the planarity and aesthetic
constraints (C2).

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

=E 12 12 13 13 14 17 17 17 18 18 18 21 22 22 26 30

=5 8 8 8 8 8 10 10 10 10 10 10 12 12 12 14 16

C1 0.04 0.03 0.03 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.08 0.06 0.08 0.09

C2 0.20 0.17 0.26 0.24 0.29 0.41 0.39 0.37 0.43 0.44 0.45 0.60 0.80 0.69 1.90 1.15

for novice users to use than commercial software. We also use our
method to construct a image-building paired dataset with 2539 roof
meshes, that can be helpful for different visual computing tasks.
Although our method can be used to model roofs with different
styles, including buildings with inner courtyards or vertical facades
inside the roof, and buildings with outline edges in different height
as shown in Fig. 4, it cannot directly handle curved roofs including
stadiums and skyscrapers. One possible solution is to approximate
curved roofs with planar sub-faces, which can be reconstructed
via our method as shown in Fig. 4 (a). Another limitation of our
work is that we do not model roof textures. While it would be in-
teresting to research a GAN for the generation of roof textures in
our framework, image synthesis is mainly orthogonal to the core
topics of our paper. Further, the interactive roof modeling is still
fairly slow so that it is hard to scale up the dataset construction
by another order of magnitude. For practical reasons, it might be
very important to investigate efficient combinations of automatic
and interactive reconstruction that would be time-saving without
increasing the error rate compared to a human only baseline. Finally,
we did not touch on automatic reconstruction in this paper. In future
work, we would like to investigate transformers using images for
cross attention following to the work of Dosovitskiy et al. [2021],
and investigate how to predict roof graphs from images directly
by using the image-mesh dataset we constructed. It would also be
interesting to study practical constraints for roof fabricability using
our optimization-based formulation, such as incorporating slope
requirements of roof faces during the construction, which can be
addressed by either hard or soft constraints.
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A PROOF OF REMARK 3.1

Recall Remark 3.1: The intersecting line of two adjacent 3D planar
faces with fixed outline edges, is either parallel to both outline edges,
or intersecting at the same point with the two outline edges. To
prove this, we only need to discuss two settings: (1) the outline
edges of the two adjacent 3D faces are parallel to each other (see
case (a) in Fig. 32); (2) the outline edges of the two adjacent faces
intersect with each other (see case (b) in Fig. 32).
For both cases in Fig. 32, we have two 3D planar faces 51,2,6,5

and 53,4,5,6, where 51,2,6,5 has an outline edge (E1, E2) and 53,4,5,6 has
an outline edge (E3, E4). We know that (E1, E2) and (E3, E4) are two
outline edges that belong to the roof outline. Therefore, these two
edges are co-planar and belong to the plane 51,2,3,4. In case (a), we
have the outline edge (E1, E2) being parallel to (E3, E4). In case (b),
we have the outline edge (E1, E2) intersect with (E3, E4) at point
E0. We are supposed to show that, in case (a), the intersecting line
(E5, E6) = 51,2,6,5∩ 53,4,5,6 is parallel to (E1, E2) and (E3, E4); and show
that in case (b), the intersecting line (E5, E6) intersects with (E1, E2)
and (E3, E4) at point E0. We will give the simple proof as follows.
We prove that (E5, E6) // (E1, E2) in case (a) by contradiction. As-

sume (E5, E6) is not parallel to (E1, E2), i.e., (E5, E6) intersect with
(E1, E2) at some point G . We then have G ∈ (E1, E2) and G ∈ (E5, E6) ∈
53,4,5,6. Therefore, G = (E1, E2) ∩ 53,4,5,6, this is contradict to the fact
that (E1, E2) // 53,4,5,6 since (E1, E2) // (E3, E4) ∈ 53,4,5,6. Therefore, our
assumption does not hold. We then have (E5, E6) // (E1, E2) // (E3, E4).
We then prove that in case (b) we have E0 ∈ (E5, E6). We already

know that E0 = (E1, E2) ∩ (E3, E4). Therefore, E0 ∈ (E1, E2) ∈ 51,2,6,5

Fig. 33. Roofs constructed in 3ds Max. We highlight the roof faces that
are not planar in red.

Fig. 34. Roofs constructed in SketchUp.We highlight the roof faces that
are polygonal in red.

and E0 ∈ (E3, E4) ∈ 53,4,5,6. We then have E0 ∈ 51,2,6,5 ∩ 53,4,5,6 =

(E5, E6). This shows that the intersecting point E0 belongs to the edge
(E5, E6). I.e., the intersecting edge intersects with the two outline
edges at the same point. Note that the case (b) has a special case
that two outline edges (E1, E2) and (E1, E3) intersect with each other
at the same endpoint E1.

The sufficient condition can be similarly proved by contradiction.
�

B ALTERNATIVE PLANARITY METRICS

In our method, we propose to use the smallest eigenvalue of the
covariance matrix of the vertices in each face as planarity metric
(see Eq. (3)). There are other planarity metrics as well that could be
considered: (1) one simple alternative is to measure the determinant
of the covariance instead of the smallest eigenvalue; (2) to measure
the planarity of a a set of 3D points, we can first sample 3 points
to form a plane, and then measure the distance from the points to
the plane; (3) another commonly used planarity metric on quad
meshes [Jiang et al. 2015] is to measure the distance between two
diagonal lines in a quad. We can generalize this metric to general
polygon meshes as well. Specifically:

�det =
=5∑
8=1

det
(
Cov

(
-58

) )
, �proj =

=5∑
8=1

∑
G ∈58

dist
(
G, %58

)
, (5a,b)

�diag =
∑

8:58=(G81 , · · · ,G8? )

?−3∑
9=1

dist
(
;G8 9 ,G8 9+2 , ;G8 9+1 ,G8 9+3

)
(5c)

where in Eq. (5b), %58 is a plane formed by three sampled points
on face 58 , and dist(G, %) measures the projection distance from the
point G to the plane % ; dist(;1, ;2) in Eq. (5c) measures the distance
between two 3D lines ;1 and ;2, and in our case, they are two diagonal
lines connecting the vertices on the face.

In Fig. 35, we compare our planarity metric (Eq. (1)) to the three
alternatives discussed above: we start with the same initial em-
bedding (spectral initialization), use the same optimization solver
(Quasi-Newton), and terminate w.r.t. the same criteria. We report
the planarity error for each metric at different iterations in linear-
scale (on the left) and log-scale (on the right). We also visualize the
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Fig. 35. A comparison of different planarity metrics.

optimized roof on the left and report the runtime on the right. We
can see that, all these four planarity metrics are valid and lead to
planar 3D roofs at the end. Our choice of using the smallest eigen-
value of the covariance matrix has a much simpler form and can
converge faster measured by both the running time and the number
of iterations.

C OPTIMIZE FOR A VALID 2D EMBEDDING

We can construct a 3D roof by optimizing for a valid 2D embedding
according to Remark 3.1, then lifting up the valid 2D embedding
to obtain a valid 3D roof. Specifically, we can obtain a valid 2D
embedding s-R by:

min
s-R

∑
4∈Eroof

vad(4) (6)

where Eroof is the set of roof edges, and vad(4) is a validity measure-
ment defined on the edge 4 = (G1, G2) based on Remark 3.1. Specifi-
cally, assume the adjacent faces of the edge 4 have the outline edges
41 and 42 respectively. If 41 is parallel to 42, then the edge 4 is valid if
4 is parallel to 41 as well. In this case, we have vad(4) = 1 − 〈®4, ®41〉2.
If 41 is not parallel to 42, and the two edges intersect at the point
G , then this point G should be on the edge 4 as well, i.e., G1 − G is
parallel to G2 − G . In this case, vad(4) = 1 −

〈 G1−G
‖G1−G ‖ ,

G2−G
‖G2−G ‖

〉2 (here
G1, G2, G are corresponding 2D positions).

D INTERACTIVE ROOF EDITING & OPTIMIZATION

Our roof modeling method can be user for interactive roof recon-
struction: (1) modify/edit a valid roof graph � or its dual �D (2)
starting from the modified roof graph, run our optimization method
to obtain a valid roof graph. We then go back to step (1) and edit
again. In this way, we can edit the roof graph until we get a desir-
able one or the final valid roof graph is consistent with the input
image. In the following, we first discuss some commonly used edit-
ing operations that are supported in step (1). We then discuss how
to efficiently solve step (2) by only optimizing the position of the
vertices in the smallest affected region.

Editing Operations. Our primal-dual roof graph formulation al-
lows us to design editing operations to modify the roof graph or its
dual directly:

• Move a vertex. We can modify the position of the selected vertex
by an input 3D translation vector.

• Move an edge. We can modify the positions of the endpoint
vertices of the selected edge by an input 3D translation vector.

• Snap an edge. We can snap an edge bymerging its two endpoints
into a single vertex.

• Merge two faces. For two faces that are adjacent to each other,
we can merge them into a single face by removing the shared
edge and reordering the vertices in the two faces.

(a) (b) (c) (d)

~2

~1
G

G̃

~1

~̃1

~2

~̃2
~̃2

G̃

~̃1

Fig. 36. The smallest affected region. (a) For a valid embedding of a roof
graph, we change the position of the red vertex from G to sG . (b) We then
need to modify the position of the right blue vertex from ~1 to s~1 such that
the line (sG, s~1) intersecting with the two outline edges at the same point.
(c) Similarly, we need to modify the position of the le� blue vertex such that
the intersecting line is parallel to the corresponding outline edges. (d) We
then get a valid 2D embedding again a�er the change of G . Therefore, the
smallest affected region of G is {~1, ~2 }.

• Split a face. We can also split a face into two by adding an extra
edge to connect two non-adjacent vertices in the selected face.

• Force two faces to be adjacent. For two non-adjacent faces that
are connected by an edge, we can force the two faces be adjacent.

Smallest affected region. After applying some editing operations,
we get the modified roof graph �mod with updated roof embedding
-mod, which is no longer valid.We need to run our roof optimization
to enforce planarity constraint. Instead of rerunning our algorithm
to update all vertex positions, we only need to update a small set of
vertices (called "smallest affected region") to make the embedding
valid again. Specifically, if we edit the position of some vertices in a
valid embedding, we can detect the smallest group of vertices in the
roof graph that need to be updated to satisfy the planarity constraint
again by updating this group of vertices only. We therefore call this
group of vertices the smallest affected region % (G) of the modified
vertex G . Fig. 36 illustrates how to detect the smallest affected region
by investigating the validity of each roof vertex in the 2D embedding
using Remark 3.1.
Then, we only need to minimize the planarity energy in this

restricted region % (G):
minGR ∈% (G)

∑=5

8=1 f1

(
Cov

(
-58

) )
(7)

The adoption of the smallest affected region has two main ad-
vantages for interactive editing: 1) less runtime of updating the
positions of a smaller set of vertices instead of the complete vertex
set. 2) more coherent embedding after the modification, which is
more friendly for the users.
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