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Abstract 

In the present study, acousto-vibration analysis of 2D fluid-filled cavities/tanks having flat and curved 

flexible walls is made using a trigonometric function based shear deformable theory and the Helmholtz wave 

model for fluid domain. The governing equation formed here is solved through higher-order finite element 

approach. The walls are modeled by C1 continuous 3-noded beam element and the fluid is idealized using an eight-

noded quadrilateral element. Structural and coupled frequencies are evaluated for fluid-filled cavities with 

rigid/flexible vertical walls along with flat/curved beam on top. The sound pressure level is also predicted in the 

fluid domain due to a steady-state mechanical harmonic load on the top of the cavity.  This investigation is 

conducted for metallic cavities and then extended to graphene platelets reinforced cavity. The effect of degree of 

fluid-structure coupling is examined assuming different fluid domains. Considering a wide range of cavity 

geometry and material parameters such as thickness ratio, curved beam angle, graded porosity and graphene 

platelets, porosity coefficient, loading of GPL, fluid medium, a comprehensive investigation is depicted to 

highlight their impacts on vibro-acoustic nature of fluid-filled cavities. It is observed that the dynamic 

characteristics of rigid and flexible wall cavities are significantly different from each other. 

 

Keywords: Flexible walls cavity; Fluid-structure interaction; Structure and coupled frequencies; Sound pressure 

level; Air and water domains, GPLs reinforcement 
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1. Introduction: 

In recent years, researchers have constantly focused on the development of efficient structures in absorbing 

the vibrational sound produced from the fluid flow over the flexible structures. Another class of fluid-structure 

interaction system comprising of elastic walls and an enclosed fluid cavity finds applications in construction, 

automobile, marine, aerospace, nuclear and several other industries. Furthermore, with the introduction of light-

weight materials in these applications, the amplitude of vibration could go up due to weight reduction, and, in turn, 

would lead to more pressure variation and high noise level within the enclosed cavity. Several studies have been 

carried out considering either an open cavity with vibrating sidewalls or a closed cavity having a vibrating top wall. 

For an optimal design of a fluid storage cavity and fuselage, there is an increased interest among researchers to get 

better insights into the dynamic behavior of fluid-filled flexible cavities with curved walls through modeling and 

simulation. In view of this, the literature review is mainly made limiting the studies pertaining to the cavities and 

tanks containing fluid.  

Initial studies of vibro-acoustic behavior of fluid-filled structural systems were focused on assuming tanks 

with flat and straight boundaries. Gladwell and Zimmermann [1] formulated a general procedure by introducing the 

matrix displacement approach for analyzing the acousto-structural vibration of a rectangular cavity with rigid walls 

having plate/ membrane on top.  Later, Gladwell [2] established the governing equilibrium equations for the 

dynamic analysis of damped acousto-structural systems and also addressed the radiation problem using the 

developed formulation.  Craggs [3] presented the dynamic response of a room-window system excited by the sonic 

boom using the plate-acoustic finite element procedure.  Petyt et al. [4] developed an isoparametric element with 

20 nodes to examine the irregular cavity shapes for the acoustic modes and experimentally validated. Wolf [5] 

presented the application of the modal synthesis approach to investigate the dynamic characteristics of acoustic-

structural systems considering different types of vehicle’s compartments. Master plan associated with the 

systematic theory and experiments to predict the interior acoustic characteristics of the vehicle was discussed in the 

work of Dowell [6]. Olson and Bathe [7] predicted the fluid-structure cavity frequencies using finite element 

formulation using displacement-based fluid elements whereas Sandberg and Göransson [8] introduced a symmetric 

finite element formulation to observe the vibro-acoustic behavior of coupled fluid-structure systems with rigid 
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walls by using a 2D quadratic element for the fluid domain and also a 2D interface element at the fluid-structure 

boundary. Later, Sandberg [9] outlined the modal based analysis for an unsymmetric fluid-structure system by 

extending the displacement formulation for structure and pressure/displacement potential for the fluid [8]. Alvelid 

[10] employed the harmonic balance method to predict the nonlinear fluid-structure interaction behavior in the 

fuselage of an aircraft. Scarpa and Curti [11] carried out a parametric study on coupled frequencies of a closed 

cavity system using the finite element method whereas Ding and Chen [12] made a symmetric finite element model 

to evaluate natural frequencies of a closed acoustic cavity with a top vibrating wall and compared the same with 

experimental results. Xiang and Huang [13] brought together a combined analytical-numerical method involving 

the transfer matrix approach to investigate sound radiation of a 2D fluid-structure interaction system under 

harmonic excitation.  Harari [14] surveyed the use of finite elements to investigate the acoustic response of 

structures under harmonic excitations and also brought out the challenges dealing with the wave dynamics at short 

wavelength.  Bermúdez et al. [15] discussed different numerical methods employed to perform elasto-acoustic 

analysis in time-domain and also proposed the displacement formulation to study the interface acoustic damping 

material.  Sandberg et al. [16] illustrated the calculation of fluid-structure coupled frequencies of a 2-D acoustic 

cavity with a top vibrating wall and assuming rigid walls using typical in-house software routines. Jeong [17] 

carried out free vibration studies of a partially filled tank having different boundary conditions using the Rayleigh-

Ritz method. Jeong and Kim [18] developed an analytical model to investigate the free vibration behavior of a 

fluid-filled U-shaped rectangular cavity with a flexible bottom. Hernández et al. [19] analyzed the vibro-acoustic 

control of acoustic cavity-beam interface system using finite element methodology. Hesse et al. [20] studied the 

sound radiation control of rectangular and cylindrical cavities considering the fluid-structure interaction using an 

analytical approach. Dinachandra and Sethuraman [21] carried out coupled fluid-structure vibration characteristics 

of different types of a two-dimensional fluid cavity coupled with a beam and rigid walls employing isogeometric 

analysis coupled with rational B-splines. Jhung and Kang [22] predicted the natural frequencies and modeshapes of 

partially filled rectangular fluid tanks. Bean and Yi [23] presented a mixed finite element procedure for analyzing 

the coupled structure-acoustic system.  It may be opined here that most of the analyses associated with the fluid-

filled square/rectangular tanks involved assuming rigid vertical walls and flat flexible top surface. In two-

dimensional finite element analysis of the fluid-filled tanks, the top wall was modeled as a beam while the acoustic 
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cavity was represented using two-dimensional elements. Such study considering flexible curved walls that are of 

practical importance is scarce in the literature. 

Recently, graphene platelets (GPLs) reinforced functionally graded porous metals (FGPM) gained a lot of 

attention due to their superior mechanical properties with low specific weight. Several researchers demonstrated 

that the properties of FGPM can be tailored through the graded distribution of both porosity and GPL. These kinds 

of materials with smooth property variations have the potential to replace conventional metals and fiber-reinforced 

composite laminate materials used in several structural applications. As the objective of the present work is to 

study the effect of curved elastic wall on the dynamic behavior of fluid-filled tank and cavity, for the sake of 

brevity, some important work on curved beams carried out recently are discussed here. Zhang et al. [24] studied the 

vibro-acoustic coupled behavior of a composite plate-cavity system using Rayleigh-Ritz method.  Hosseini and 

Rahmani [25] used an analytical method to investigate the nonlocal effect on vibration frequencies of FG curved 

beams. Akbaş [26] investigated the influence of thermal load on frequencies of deep FG beams using FEM. 

Ganapathi and Polit [27] studied the dynamic behaviors of curved beams using an analytical method based on 

higher-order theory. Ebrahimi and Daman [28] analyzed the dynamic characteristics of curved FG porous beams 

under the influence of thermal stress using an analytical method. Ganapathi et al. [29] evaluated the natural 

frequencies of the curved beams using the finite element method based on the sine displacement model. Arefi et al. 

[30] investigated vibration frequencies of FG-GPL curved beams using an analytical method involving first-order 

shear deformation theory. Ganapathi et al. [31] examined the vibration behaviors of porous FG-GPL curved beam 

considering thickness stretch effect using an analytical approach. Anirudh et al. [32] performed a comprehensive 

study on porous FG-GPL curved beam using finite elements developed based on sine displacement model. 

Nicoletti [33] studied vibration frequencies of the curved beam using the analytical method.  Recently, Chandra et 

al. [34] carried out an analytical study on vibro-acoustic phenomenon on the baffled FG plate by shear deformable 

theory along with Rayleigh’s Integral methodology.  

From the above studies, it is viewed that the available research work on the dynamic behavior of fluid-

filled tanks/cavities is restricted to having an elastic flat top surface with rigid vertical walls and making use of 

isotropic materials, and to some limited investigation using fiber-reinforced composite materials. However, in most 
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practical cases, the sidewalls are also flexible and the top wall can be in the form of a curved surface. To the best 

authors’ knowledge, there is no work available in the literature pertaining to the dynamic characteristics of fluid-

filled cavity making use of FG-GPLs.  This has necessitated a comprehensive study on the structural dynamics of a 

fluid-filled cavity with flexible sidewalls and a curved top surface made of isotropic/FGMs for the optimal design.  

In this work, we analyze the effect of the flexible sidewalls and curved top wall on coupled frequencies and 

the vibro-acoustic response of a fluid-filled cavity made of isotropic/porous FG-GPL material. The structural model 

is represented by introducing a 3-noded C1 continuity higher-order beam finite element based on trigonometric 

function [31, 32] and the fluid in the cavity is idealized using an eight-noded 2D isoparametric element using 

Helmholtz wave equations [16]. The coupled equilibrium equations resulted in unsymmetric matrix forms are 

transformed into symmetric ones, and the eigenvalues/eigenvectors are extracted using the standard eigenvalue 

approach. The sound pressure level is also predicted at a certain point in the fluid domain for a steady-state 

mechanical harmonic point load on the beam. The model developed here is validated, wherever possible, against 

the solutions available in the literature and also using commercial finite element software. A detailed investigation 

is performed to check the effects of graded porosity and GPL, porosity co-efficient, loading of GPL, the beam 

angle on coupled frequencies and acoustic response of the fluid-filled cavity.  

Here, Section 2 presents the Formulation of consolidated properties; Section 3 outlines the Structural 

formulation and solution methodology; Section 4 deals with Beam Finite element procedure and acoustic fluid 

element in Section 5; validation is viewed in Section 6; Results and Discussion are highlighted in Section 7 and 

conclusions in Section 8. 

 

2. Formulation of consolidated material properties 

The side and top walls of the tanks shown in Fig. 1 are made of Graphene platelets (GPLs) reinforced 

porous metal foams. Porosity is assumed as closed-cells in graded with different patterns along the thickness and 

GPLs material properties are specified in terms of its geometric parameters and graded with different distribution 

patterns [31, 32]. Formulation of the material properties is briefly outlined here [35-39]. 
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2.1. Distribution of porosity  

The variation in material properties according to the grade distribution of porosity is specified as a function 

of thickness (z) as shown in Fig 2a. The density and Young’s modulus are defined as [39, 40] 

���� = ���1 − 
�����
  ;  ���� = ���1 − 
������                                             (1) 

where �� & �� are the density and Young’s modulus of the pure metal, respectively; em & ep are porosity coefficients 

associated with density and Young’s modulus respectively. ���� used to define symmetric, unsymmetric and 

uniform distribution patterns of porosity as shown in Fig. 2a is defined as 

���� = �  cos  � ���  �                   ��� ��  
!�"# $����"!� %"�!�"&!"�' cos ( ��)� + � + ,               ��� &'��  
!�"# $����"!� %"�!�"&!"�' �-                         ��� &'"���  $����"!� %"�!�"&!"�'            (2)   

The coefficient of porosity ep is given as 


� = 1 − �.)/�.0               (3) 

where, �10 & �1) are the higher and lower values associated with the elastic modulus of porous GPLs beams 

corresponding to a particular graded pattern.   

From Eq. (1), the modulus variation  ���� ��⁄  can be expressed using the density ratio (���� ��⁄  ) as [40, 41]  

4���4� =  5�6��� 678-.0)0⁄0.0)0 :).;
                   0.15 <  ���� ��⁄  < 1      (4)  

Substituting ���� ��⁄   and ���� ��⁄  from Eq. (1) into Eq. (4), a direct relationship between 
� and 
� is established 

as 


� = 0.0)0?0@(0@ABC���, DE.FG
C���                              (5)  

Similarly, Poisson’s ratio of the foam is defined as [41]  

H��� = 0.221
����� + Ĥ�0.342 �
�����
) − 1.21
����� + 1�                  (6) 

Here, the overall weight of the beam is kept as same for all three different types of graded porosity. The 

value of � 0 for uniform porosity case can be written as  
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�- = 0AB M1 − NDO P 6��� 67 Q�8-.0)0⁄O ERSO ER 0.0)0 T).;U        (7) 

Based on this, equivalent elastic properties of different types of porous GPL composites are obtained. Initially, the 

beam is assumed to be made of FG-GPL composite material and the effective Young’s modulus of the composite is 

obtained based on the Halpin-Tsai data model [35] whereas other properties such as �� and Ĥ are obtained based on 

the rule of mixtures as follows. 

�� = ;V W08XYBZZ [YBZZ \YBZ0@[YBZZ \YBZ ] �� + V̂ W08XYBZ_ [YBZ_ \YBZ0@[YBZZ \YBZ ] ��                                     (8a)  

��  = �`�ab̀ �a + ��b�                                              (8b) 
Ĥ  = H`�ab̀ �a + H�b�                                              (8c)  

where b� = 1 − b̀ �a . 
Vgpl & Vm, represent volume fractions of graphene platelets and metal matrix respectively; material properties with 

subscript ‘gpl’ are corresponding to graphene platelets, while subscript ‘m’ represents metal matrix. Geometric 

parameters of the GPL (c`�aa , c`�ae ) are specified as a function of thickness and aspect ratios; modulus ratios, f̀ �aa ,  
f`�ae  are defined as 

c`�aa = )aYBZgYBZ  ;  c`�ae = )eYBZgYBZ                               (9a)  

f`�aa = i4YBZ 4j⁄ k@0i4YBZ 4j⁄ k@XYBZZ  ;  f̀ �ae = i4YBZ 4j⁄ k@0i4YBZ 4j⁄ k8XYBZ_                               (9b) 

2.2. GPL grading    

The volume fraction of GPLs (b̀ �a) for different graded patterns as shown in Fig. 2b is stated as  

b̀ �a =
lmn
mo                                   b0p 51 − cos� ���  �:                 ��� ��  
!�"# qrs %"�!�"&!"�'              b)p 51 − cos (��)� + �+,:               ��� &'��  
!�"# $����"!� %"�!�"&!"�'    b;p                                              ��� &'"���  $����"!� %"�!�"&!"�'          

  (10)  

where the superscript j represents the type of grading of porosity. The weight fraction of GPL (t̀ �a) is defined as 

b̀ �a = uYBZuYBZ86YBZ/6vi0@uYBZk                         (11) 
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The maximum value bw in Eq. (10) is obtained based on Eqs. (10) and (11) along with the relative weights 

evaluated from Eq. (1) for the given porous FG-GPL case as 

P b̀ �a�1 − 
� ����
 %�� )R@� )R = uYBZuYBZ8i6YBZ 6j⁄ ki0@uYBZk  P �1 − 
� ����
  %�� )R@� )R        (12) 

 

3. Structural formulation and solution methodology 

 The sidewalls of the tanks are modeled as beams and the top wall is considered as curved beam defined in terms 

of length L, thickness h, radius of curvature R and beam included angle x, as depicted in Fig. 3a. Trigonometric 

sinusoidal shear deformation theory (SIN model) [42-44] is used to model the beam. 

The displacements as a function of space and time t considered are &0 along the length, and &; through beam 

thickness; they are defined as [42, 44] 

y &0�z, �, !� = (1 + �{, &-�z, !� − � |}-�z, !� + Γ��� �-�z, !�    &;�z, �, !� = |-�z, !�                                                                                                                              (13)  

where �- representing the shear strain in the transverse direction is given as: 

 �-�z, !� = ��z, !� + |}-�z, !� − 0{ &-�z, !�                                                                                           (14)  

The kinematics presumes three independent field variables in Eq. (13) as u0, w0 and �. They are the displacements 

associated with axial and transverse neutral axis respectively and � is the rotation of the cross-section. In Eq. (13) 

Γ��� = 0 for Euler Bernoulli beam; Γ��� = � for Timoshenko beam; Γ��� = �� sin ���  for SIN model. 

Strains obtained from the kinematic equations are  

��� = ������� � = �&-} + e�{ + � (���{ − |-}}, + Γ�z��-}Γ}����- �                                   (15)  

The relationship of strains with their connected stresses can be established using constitutive law as  

��� = �������� = ��00������ ����                    (16) 
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where �00 = 40@�E ;    ��� = q                                                   

For the material model considered here, the link between shear modulus G and Young’s modulus E is viewed as � = 2q�1 + H�.  

The generalized equations of motions for the dynamic problems can be developed in terms of displacement 

kinematics introducing Hamilton’s principle as 

0 = P ���� + �b − ��� %!�-                               (17)     

Here, ���,�b & �� represent potential energy, work done by externally applied load and kinetic energy 

respectively, and are introduced in the variational sense and also expressed as 

���δ�� = P P �����%�%zOE@OE
�- ;             (18a) 

b = − P $ �|-�-  %z                                          (18b)  

��δ�� = 0) P P ��&�0) + &� ;)OE@OE
�- � %z %�                                                      (18c) 

where δ� is the vector of global degrees of freedom (dof) and p is a transverse load applied on the surface of the 

beam. 

Introducing Eq. (18) into Eq. (15), the weak form can be written as 

− P �P ��&1�� ��&1� �� )R@� )R  %�  %z�- + P P ������ �00���� )R@� )R �%�%z + P P ������ ������� )R@� )R ��- %�%z =�- P ���&1�����
%z�-      (19)  

where �&1� is the displacement vector defined as 

�&1� = �¡�e���
���e�          (20a)  

Here, �¡�e���
 =51 � Γ 00 0 0 1:; ���e�� = 5&-   ���¢ − |-} �   �-   |-:; ���� = �0 p
  (20b)  

Eq. (19) can be further expanded as 

P ����e���− �e
����e��- %z + P ��%���- ��¤Q��%� dz=   P ����e���¦�%z�-      (21)  

where � �e
 = P �¡�e���
��� )R@� )R �¡�e���
%�       (22a)  
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            ��¤Q� = P �¡ε���
�� )R@� )R �00�¡ε���
%� +P �¡§������ )R@� )R ���� §̈���
%�    (22b)  

           �¦� = P �¡�e���
����� )R@� )R %�        (22c)  

            �¡ε� = �1    z   Γ   0
;       ©¡§ª = �0    0   0  Γ}
         (22d)  

The vector �%��containing the spatial derivatives of displacement variables associated with the strains ��� and 

��� is viewed as 

�d�� = 5(&-} + e�{ ,   (���¢ − |-}},  (|-}} + �} − ���¢ ,   �-:      (23)  

 

4.  Beam Finite element (local) formulation 

4.1 Geometry approximation  

The beam is divided into many elements with le as elemental length and the finite element procedure is carried out. 

Here, a 3-noded element (Fig.3b) with a local x-axis is employed. The coordinate z can be defined in terms of 

reduced coordinates « as 

z�«� = 08¬) ­A              (24)  

4.2 Approximations for displacements 

The kinematic relation indicated in Eq. (13) is approximated in terms of displacements corresponding to 

the neutral axis (&-,|-) and rotation (�) which are considered as primary variables. The shape functions having 

different orders for |- & � are used to tackle the shear locking effect. Hermitian shape functions are used for 

|- and quadrative interpolation functions are used for  �  as follows 

�|-� = �®�
�¯e�� ;  ��� = �®°�©¯°ª                (25) 

�®�
 = 50+ �«; − 3« + 2�    a±V �«; − «) − « + 1�   0+ �«; + 3« + 2�    a±V �«; + «) − « − 1�:           (26a)  

�®°� = 5¬�¬@0�)    ¬�¬80�)    1 − «):                            (26b) 
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Similarly, &- is represented by Hermite interpolation functions as �&-� = �®�
�¯���. Nodal degrees of freedom at 

the elemental level are represented as 

©¯��A ª� = 5&-�0�  &′-�0�  &-�)�  &′-�)�:; ©¯e�A ª� = 5|-�0�  |′-�0�  |-�)�  |′-�)�:; ©¯°A ª� = ���0�   ��)�   ��;��       (26c)  

Here the superscripts (1), (2), (3) over displacements and rotation denote the beam element node numbers (Fig. 3b). 

By combining the nodal vectors {¯��A }, {¯°A } & ©¯e�A ª, the elemental level complete nodal degrees of freedom for 

the element {¯A} can be depicted as 

�¯A�� = 5&-�0�  &′- �0�  |-�0�  |-} �0�  ��0�  ��;�  &-�)�  &-} �)� |-�)�  |′-�)�  ��)� :              (27)  

The vectors {��e} and {%} associated with Eq. (20) and Eq. (23) are represented as 

���e� = � �̈e
�¯A� ;  �%� = � ³̈
�¯A�                 (28)  

where both � �̈e
 and � ³̈
 are 4 × 11 matrices.  

Substituting Eq. (28) into Eq. (21), the beam element matrices using the local co-ordinates level can be 

written as 

�´A
©¯A� ª + ��A
�¯A� = ©�µAª + ��¶A�                 (29)  

Here, �´A
 refers to element mass matrix in a consistent way; [�A] is typical stiffness matrix based on the linear 

model; the vectors  ©�µAª, ��¶A� assume the contribution from traction force and other applied loads. These matrices 

and vectors are given as 

��A
 = P � ³̈
���¤Q�� ³̈
a- %z                  (30a)  

�´A
 = P � �̈e
�� ³³
� �̈e
a- %z                                                     (30b)  

©�µAª = P � �̈e
��¦�a- %z                  (30c)  

4.3 Description of Frame element 

The beam element defined in Section 4.2 is aligned with the x-axis.  For complex structures such as frames, various 

structural members can have arbitrary orientations, not aligned in the x-axis. In such cases, all the matrices and 
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vectors developed in the local coordinate system {z, �} as shown in Section 4.2 must be transformed into a global 

coordinate system {X, Z}. The angle between the two coordinate systems is denoted as c. An approach for 

transforming the elemental displacement vector �¯A� given in Eq. (27) can be developed using the transformation 

matrices associated with the beam coordinates and displacement vectors (local) as follows: 

�xz� = 5 #�� c �"' c−�"' c #�� c: �XZ� ;  �&-|-� = 5 #�� c �"' c−�"' c #�� c: ��-t-�           (31)  

The local degrees of freedom at ith node (i=1, 2, 3) given in Eq. (27) can be depicted by �¯Aaº»¼a�w and is 

conveniently redefined as 

�¯Aa�w = �&-, ½��½¾ , 0, |-, ½e�½¾ , 0, ���
         (32)  

While transforming from local to global coordinate system, some additional dof appear in a global sense. The 

associated new dof vector at the ith element node is denoted as �¯A `�w which is represented as 

�¯A `�w = �&-, ½��½¿ , ½��½À , |-, ½e�½¿ , ½e�½À , ���
        (33)  

The relation between local and global displacement vectors derived using Eq. (32) can be written as  

�¯Aa�w = �Á
w�¯A `�w               (34)  

Transformation matrix, �Á
w , is defined as : 

�Á
w=
ÂÃÃ
ÃÃÃ
Ä # 0 0 � 0 0 00 #) #� 0 #� �) 00 −#� �) 0 −�) #� 0−� 0 0 # 0 0 00 −#� −�) 0 #) #� 00 �) −#� 0 −#� #) 00 0 0 0 0 0 1

 
ÅÆÆ
ÆÆÆ
Ç
       (35)  

Here, the variables c and s are defined as c�� �c� and �"' �c�, respectively. 

Using Eqs. (34) and (35), the element matrices associated with the frame structure in the global coordinate system 

is addressed as  
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��`
A = �Á
���a
A�Á
; �´`
A = �Á
��´a
A�Á
; ��µ̀ �A = �Á
���¶̀ �A       (36)  

 

5.  Acoustic fluid finite element formulation 

5.1 Fluid domain formulation 

Acoustic fluid domain equation derived based on the compressible fluid has certain assumptions like fluid 

is inviscid, has small translation and irrotational motion etc. Thus, the governing equilibrium equation obtained is 

½E�½Eg − #-)È)$ = #-) ½ÉÊ½g            (37) 

where È) = Ë) Ëz0)⁄ + Ë) Ëz))⁄  . Here, p(t) is acoustic pressure, ¯µ�!� is added fluid mass and #- is the speed of 

sound, respectively. 

Following the finite element procedure based on weak formulation and then by introducing the pressure, 

p(t) in terms of the generic fluid element shape function Nf  and elemental nodal pressure vector pf i.e. p = ®µ� $µ,  

the governing equation (37) at elemental level derived in terms of fluid mass and stiffness matrices, and load 

vectors due to traction force and added mass is presented as 

� µ́A� �$µ�� + ��µA� �$µ� = ���A� + ��ÉA�         (38) 

where  

� µ́A� = P ®µ�®µ%bÌÊ ;             (39b) 

��µA� = #-) P �È®µ��È®µ %bÌÊ ;         (39c) 

���A� = #-) P ®µ�'µ�È$ %Í½ÌÊ ;          (39d) 

��ÉA� = #-) P ®µ� ½É½g %bÌÊ ;          (39e) 
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Here, the operator È = Ë Ëz0⁄ + Ë Ëz)⁄ ; subscripts f represents matrices and vectors associated with the fluid; nf  is 

the normal vector pointing outward from the fluid domain.  

A standard 8-noded isoparametric quadrilateral fluid element as depicted in Fig. 3c with one dof per node 

is considered. The shape functions and their derivatives of the fluid element are: 

®µ� = [ ®0 ®) ®; … … ®V]             (40a) 

where  

®0 = − 0+ �1 − «��1 − Ï��1 + « + Ï�; ®) = − 0+ �1 + «��1 − Ï��1 − « + Ï�; ®; = − 0+ �1 + «��1 + Ï��1 − « − Ï� 

®+ = − 0+ �1 − «��1 + Ï��1 + « − Ï�; ®^ = 0) �1 − «)��1 − Ï�; ®� = 0) �1 + «��1 − Ï)�; ®Ð = 0) �1 − «)��1 + Ï�  

®V = 0) �1 − «��1 − Ï)�   

∇®=Ò ½½�½½ÓÔ ®µ = � J��@0 Ò ½½¬½½ÖÔ ®µ              (40b) 

where J is the Jacobian matrix: 

5.2 Modeling of fluid-structure coupled system 

The fluid particles and elastic structure interact with each other at the boundary between the elastic and 

fluid domains (∂ΩÙÚ) along the normal direction to the boundary. The boundary force vector Eq. (39d) of the fluid 

domain �� , expressed in terms of structural acceleration is viewed as a simplified one at the finite element level as 

�� = −#-) P ®µ�'�È$ %Í½ÌÛÊ = −�-#-) P ®µ�'�®� %Í %��½ÌÛÊ  =−�-#-)Ü�%��     (41) 

where Ü� = P ®µ�'®� %Í½ÌÛÊ  is the spatial coupling matrix; n is the normal vector assumed as 

 n =nf = - ns; ns is the normal vector pointing outward from the structure. 

Similarly, the structural traction force vector �µ given in Eq. (30c) yielding coupling to the fluid medium is 

simplified as 
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�µ = P ®��' $ %Í ½ÌÛÊ =P ®��' ®µ %Í ½ÌÛÊ $µ= Ü$µ        (42) 

To arrive at the system of equations for the structure-acoustic problem, the element matrices presented in Eqs. (29), 

(38), (41) and (42) are transformed into global frame coordinates and then assembled. The final matrix form of 

equations is thus depicted as 

� ´� 0�-#-)Ü� µ́  Ý%��$µ� Þ + ��� −Ü0 �µ   �%�$µ  = �¡¶¡É           (43) 

Substituting global vectors attached with structural displacement, fluid pressure, body force/point load, and added 

fluid mass in terms of space and time as ds = %�111 eiωt, pf = $µ111 eiωt, Fb = ¡¶111 eiωt and Fq = ¡Éß  eiωt, in Eq. (43) leads to  

� ´� 0�-#-)Ü� µ́  �%�111$µ111  − à)  ��� −Ü0 �µ   �¡¶111 $µ111   = Ý¡¶111 ¡Éß  Þ                                                         (44) 

The coupled natural frequencies are obtained from Eq. (44) considering it as a typical eigenvalue problem 

neglecting the force vectors. The sound pressure response is obtained through the direct inverse of Eq. (44) for a 

given steady-state force/pressure induced in the fluid-filled cavity. The sound pressure level (SPL) in dB is 

calculated based on the definition, 20­�á0- ( �âjÛ)-∗0-Sä, %¨, where $å�� = æ$µ$̅µ 2⁄  and $̅ is the complex conjugate 

of the acoustic pressure $µ. 

 

6. Validation Studies 

In order to investigate the influences of curvature, graded porosity and GPLs on Sound Pressure Level 

(SPL) of a fluid-filled cavity with vibrating flexible walls, a finite element computer program is developed based 

on the description given in Section 4 and 5. This program is firstly validated against the solutions of Dinachandra 

and Sethuraman [21] for free vibration frequencies and SPL of a rectangular air cavity with rigid sidewalls and a 

straight isotropic beam on top.  The dimensions and material properties of the cavity & fluid studied in Ref. [21] 

are Lx =10m; Ly = 4m; E=210 GPa; second moment of area of the beam =1.59 x 10-4 m4, mass per unit length = 50 

kg/m; density of air = 1.2 kg/m3; sonic velocity of air = 340 m/s. Based on progressive mesh refinement, 30x9 is 
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found to be adequate to model the cavity size considered here. Structural frequencies of the beam, frequencies of 

the fluid cavity and coupled frequencies calculated using the present work match well with the results reported in 

Ref. [21] as given in Table 1. The SPL obtained at the center of the fluid cavity for a steady-state mechanical 

harmonic point load (1N) excited at the center of the beam is also compared with the response presented in Ref. 

[21] as shown in Fig. 4 to validate the response calculation. 

Followed by this, natural frequencies and SPL response of the fluid cavity with isotropic flexible sidewalls 

and curved beam (x = 30°) on top are calculated based on the present approach and are compared with ANSYS 

results as presented in Fig 5.  Structural frequencies and coupled frequencies for a flexible fluid cavity-backed with 

curved beam (x = 30°) are obtained using the present approach match well with the results of ANSYS as seen in 

Table 2. The SPL is calculated at the center of the fluid cavity for the steady-state mechanical excitation applied at 

the center of the curved beam and some minor deviation in the response is noticed at higher forcing frequencies. 

The small amount of difference between the solutions depicted in Fig.5 and Table 2 is due to the difference in the 

structural theories and elements used for the present analysis and in ANSYS. A typical 2-noded 3D beam element 

with 3 dof per node is used in ANSYS while a 3-noded higher-order 2D beam element employed for the present 

analysis has 8 dof at the end nodes and 2 dof in the mid-node of the beam element, see for instance in Fig. 3b.        

 

7. Results and Discussion: 

Results of a detailed numerical investigation are obtained to analyze the effect of curvature angle of the 

beams, nature of porosity and GPL distributions and the effect of strong- and weak-fluid coupling on natural 

frequency versus SPL response of a flexible rectangular fluid cavity-backed with a curved beam on top are 

discussed in this Section. Results associated with an isotropic beam case are also presented as it is not readily 

available in the literature. Porosity and GPLs are graded in symmetric, unsymmetric and uniform patterns as shown 

in Fig. 2 in order to analyze the effects of functional grading of porosity and GPLs on the dynamic characteristics 

of a fluid-filled cavity. A rectangular cavity with Lx = 10m and Ly = 4m is considered for the detailed investigation.  
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7.1 Studies on the tank with metal walls 

 Before performing a detailed investigation on the vibro-acoustic response characteristics of the fluid-filled 

tank made of porous FG-GPL material, studies are carried out for an isotropic tank with metallic sidewalls. This is 

done to understand the influence of side flexural walls and the curved top wall on the response characteristics of the 

tank. It is assumed that the flexible wall has material properties: E = 210 GPa, Poisson’s ratio = 0.3, and density = 

2500 kg/m3. In order to analyze the influence of fluid-structure coupling effect air (ρ0=1.21 kg/m3; C0= 343 m/s) and 

water (ρ0=1000 kg/m3; C0= 1500 m/s) are considered as mediums. Free vibration frequencies of the air-filled cavity 

with metal sidewalls (rigid and flexible cases) with a straight beam on the top for two different L/h ratios 

(L/h=30,100) are given in Table 3. The effect of flexible sidewalls on both the structural and coupled frequencies is 

significant when compared with the rigid sidewalls case as seen in Table 3. The coupled frequency values are in 

general less as compared to the structural frequencies, irrespective of the sidewalls type and thickness ratio L/h but 

the difference between them is more for the rigid sidewalls case.  However, while comparing the fluid frequencies 

against the coupled frequency values, the difference is noticeably high in general for the flexible sidewalls case and 

more so for the thin case. It is further observed that, for the thick case cavity with side flexible walls, more modes 

of natural vibration occur for a given frequency range in comparison with the rigid sidewalls case due to the 

vibrating nature of all the walls. This is due to the added mass effect and fluid-structure coupling effect on the 

natural frequencies.  

The effect of curvature angle of top curved wall (x=00,150& 300) on the sound pressure level of the air-

filled cavity with rigid sidewalls is significant as seen in Fig. 6. From this Figure, one can observe that there is a 

shift in the peak amplitude associated with the fundamental frequency due to the curvature effect. There is an 

increase in the natural frequency because of the change in stiffness of the cavity due to the curvature effect. It is 

more so for L/h = 100 case compared to L/h=30 case. This is possibly attributed to higher enhancement of stiffness 

due to the curvature for the thin beam compared to the thick beam. Unlike rigid sidewalls case, the influence of 

curvature angles considered here on sound pressure level is not noticeably significant for the tank with flexible 

sidewalls as seen in Fig. 7. The shift in natural frequencies according to the curvature angle can be seen clearly in 

higher frequencies compared to the lower frequencies. This may be due to insignificant enhancement in overall 
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structural stiffness due to the increase in curvature angle for the tank with flexible sidewalls. The influence of the 

curvature angle of a curved beam on the sound pressure level of a water-filled tank with rigid and flexible sidewalls 

is shown in Fig. 8. A trend qualitatively similar to the tank with air cavity is observed for the tank with water cavity 

also. 

7.2 Studies on fluid tank with composite material walls 

The dimensions considered for the analysis of the fluid tank with metal walls are considered for this study 

also. For composite walls, the properties of GPLs are: Egpl = 1.01 TPa, Poisson’s ratio=0.186, Density=1062.5 

kg/m3. The length, width and thickness of GPLs are: lgpl =5nm, wgpl = 2.5nm and tgpl = 0.3nm respectively, [30]. 

The effect of the porosity distribution pattern on the sound pressure level is analyzed first by considering the 

material without any reinforcement. The influence of three different porosity distribution pattern (cp=0.5) alone on 

the structural and coupled frequencies of the air-filled porous tank with flexible sidewalls and straight beam on top, 

in absence of GPLs, is given in Table 4. Higher frequency values are obtained for the symmetric porosity 

distribution compared to other types of porosity distribution patterns analyzed here. The coupled frequencies are 

always lower than the structural frequencies as already observed from the metal tank cases. As expected, the 

frequency values are lower than the pure metallic case. The effect of porosity distribution patterns on the sound 

pressure level response for the tank with a flat top wall and curved top wall is shown in Fig. 9. A minor variation in 

frequencies with respect to the distribution pattern is observed in the acoustic response curves. However, it is seen 

that, in general, the peak amplitude associated with walls having uniform porosity distribution is relatively less. A 

similar study to analyze the effect of GPL distribution patterns alone on the free vibration and acoustic response 

characteristics of tanks having flexible sidewalls and straight beam on top is considered. The change in natural 

frequencies with respect to the distribution patterns of GPLs is somewhat similar to that of porosity cases.  

However, the frequency values are higher than the pure isotropic case, see for instance Table 3. In addition to this, 

it is viewed that the change in natural frequencies with respect to the distribution pattern of GPLs (Wgpl=1%) is 

minor and a relatively higher value is obtained for the symmetric distribution case as seen in Table 5. Due to this, 

there is no significant change in acoustic response except at few frequencies as seen in Fig. 10. 
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The effect of curvature assuming different values (x =00,150& 300) and wt. % of GPL (Wgpl = 0.25% & 

1%) on natural frequencies of the air and water-filled porous tank with flexible sidewalls is given in Tables 6 and 7 

respectively. The sidewalls are made of composite material with symmetric porosity and symmetric GPL 

distribution. There is no specific trend in variation of natural frequencies with respect to curvature angle for both 

the wt.% of GPL assumed here. However, structural and coupled natural frequencies increase with an increase in 

wt.% of GPL as seen in Tables 6 and 7. The acoustic response of composite air cavities having rigid and flexible 

walls is examined in Figs. 11 and 12, respectively. It is seen from Fig. 11 that the increase in natural frequencies 

with an increase in wt.% of GPL is less and there is no noticeable shift in peak amplitudes with an increase in wt.% 

of GPL. The same variation in natural frequencies and sound pressure response with an increase in GPL content is 

observed for the flexible sidewalls case as seen in Fig.12. 

The influence of curvature angle on sound pressure of air cavity with porous GPL flexible sidewalls is 

shown in Fig. 13 for two values of L/h. From Fig. 13, it is seen there is a definite shift in peaks with an increase in 

curvature angle for only a few modes, for example, the fourth peak in Fig. 13 (a) and the fifth peak in Fig. 13(b). 

There is a notable reduction in natural frequencies with an increase in curvature angle for these peaks. A similar 

trend in sound pressure response variation with an increase in curvature angle is observed for the air-filled cavity 

with rigid sidewalls as seen in Fig. 14.  

The impact of curvature angle on the sound pressure of water cavity with porous GPL flexible sidewalls is 

shown in Fig. 15. There is no significant shift in peaks with increase in the curvature angle for the tank with a thick 

curved top beam as seen in Fig. 15(a). However, there is a shift in some of the peaks for the tank with a thin curved 

top beam as seen in Fig. 15 (b). The clear shift in peaks at some of the frequencies with an increase in curvature 

angle observed for the air-filled cavity is not seen in the water-filled cavity case. This indicates that the curvature 

angle of the top beam influences some frequencies when the density of the fluid medium is very less.  

A comparison of the sound pressure level of the tanks with rigid and flexible sidewalls is shown in Fig. 16. 

Due to the flexible sidewalls, more modes are excited in the case of the cavity with flexible sidewalls compared to 

the cavity with rigid sidewalls. Similarly, the resonant amplitude of most of the modes is high for the tank with 

rigid sidewalls. The influence of the nature of fluid medium on the SPL response is shown in Fig. 17. The SPL of 
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the water-filled cavity is significantly high compared to the air-filled cavity for the L/h = 30 case. However, there is 

no distinct difference in sound pressure level between the water and air-filled cavities for the L/h = 100 case. 

The influence of curvature angle on sound pressure contours of air cavity having rigid and flexible walls is 

shown in Fig. 18. The pressure contour is influenced by both the curvature and nature of walls. In general, the 

pressure levels associated with the cavities having flexible sidewalls is higher than the cavities with rigid sidewalls. 

The influence of porosity distribution on pressure contour plots of the air-filled cavity having flexible porous walls 

is not much significant as seen in Fig. 19. However, there is a small variation in the pressure contour with respect 

to the nature of GPLs grading patterns as seen in Fig. 20. 

8. Conclusions 

Vibro-acoustic characteristics of fluid-filled cavity/tank with flexible sidewalls and curved top wall are analyzed 

using the higher-order finite element procedure. The effect of rigid and flexible sidewalls, thickness ratio, strong 

(water) and weak (air) fluid coupling, the curvature of top wall on the structural, fluid and coupled natural 

frequencies and sound pressure level of metallic and porous GPL reinforced composite tanks is detailed here. The 

influence of graded patterns of porosity and GPL are also investigated. Based on this comprehensive study, it is 

pronounced here as follows: 

• The dynamic behavior of the acoustic cavity with rigid sidewalls is entirely different from the cavity with 

flexible sidewalls. 

• The curvature angle of the top beam influences the coupled frequencies of the tank and SPL of the fluid 

cavity. 

• Acoustic cavity having sidewalls made of porous GPLs with symmetric porosity and GPLs distribution 

enhances natural frequencies and sound pressure level. 

• Variation in natural frequencies with an increase in wt.% of GPLs considered here is marginal. 

• Pressure distribution inside the tank is significantly influenced by the curvature angle of the top wall and 

the vibrating nature of sidewalls. 
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• The difference between the structural and coupling frequency is high for the rigid sidewalls case whereas 

the frequency difference between fluid and coupled cases is more for the flexible sidewalls cavity. 

• The SPL of the water-filled cavity is in general high compared to that of an air-filled cavity. 

 

 

 

 

 

Data Availability 

We have used the generic data available in the existing literature and the results are generated using our in-house 

code. 
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Table1: Validation of natural frequencies (Hz) for air cavity with rigid boundaries and straight beam on top. 

 

 

 

 

 

 

 

 

 

 

Table 2: Validation of natural frequencies (Hz) for air cavity with flexible boundaries and curved beam (θ = 300) on top. 

Mode 

No. 

Structure Freq. (Hz) Coupled Freq. (Hz) 

Present ANSYS Error (%) Present ANSYS Error (%) 

1 14.8859 15.6563 4.920703 7.1234 7.8236 8.949844 

2 23.57689 24.7083 4.579069 14.749 15.1844 2.867417 

3 61.34079 62.9534 2.561593 20.431 20.3273 -0.51015 

4 113.1536 114.155 0.877228 23.129 24.2181 4.49705 

5 150.4364 150.882 0.29533 35.21 35.7449 1.496437 

6 162.9578 162.043 -0.56454 40.299 39.3076 -2.52216 

7 222.89178 224.886 0.886769 44.371 45.0418 1.489283 

8 312.91127 313.270 0.114511 52.995 52.2583 -1.40973 

 

 

 

 

 

 

 

 

 

 

 

 
Mode 
No. 

Present Ref. [21]  

Fluid 
Freq. 

Structural Freq. Coupled Freq. Structural 
Freq. 

Fluid 
Freq. 

Coupled 
Freq. Classical SSDT Classical SSDT 

1 17.000 12.831 12.815 13.145 13.130 12.836 17.000 13.153 

2 34.000 51.265 51.017 16.953 16.952 51.346 34.000 16.953 

3 42.500 115.122 113.89 34.036 34.036 115.528 42.500 34.037 

5 51.000 317.824 308.85 44.806 44.770 320.915 51.000 44.815 

10 85.004 1237.06 1122.8 67.978 67.977 1283.973 85.001 67.978 



 

 

 

 

 

Table 3: Effect of nature of sidewall on natural frequencies (Hz) of air cavity with straight beam on top. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Variation in structural and coupled frequencies (Hz) with distribution pattern of porosity (ep=0.5) for air cavity with 

flexible boundaries and straight beam on top (L/h=100) 

 
Mode No. 

Symmetric Unsymmetric Uniform 

Structural Freq. Coupled Freq. Structural Freq. Coupled Freq. Structural Freq. Coupled Freq. 

1. 5.2951 4.8541 4.8116 4.5341 4.7974 4.5252 
2. 7.2272 5.2071 6.5653 4.7324 6.5483 4.7184 
3. 20.5886 9.9583 18.6866 9.6762 18.6570 9.6698 
4. 38.4354 18.3282 34.8562 17.1728 34.8353 17.1488 
5. 50.4249 21.3993 45.8064 20.6939 45.7085 20.6879 
6. 54.6164 34.9909 49.7202 33.7321 49.5332 33.7100 
7. 76.7877 37.1894 69.8249 34.8516 69.6404 34.8403 
8. 110.1110 44.4090 100.0217 44.2397 99.8860 44.2317 
9. 139.3916 48.4971 126.6218 44.8679 126.4588 44.7771 
10. 146.5419 48.7505 133.5274 48.4568 133.1441 48.4563 

 

 

 

 

 

 

 

 
Mode 
No. 

L/h=30 L/h=100 

Rigid Flexible Rigid Flexible 

Structural Fluid Coupled  Structural Coupled  Structural  Coupled  Structural  Coupled 

1. 13.8271 17.000 13.8752 17.5754 6.9920 4.1552 6.5568 5.3057 5.0340 

2. 55.0010 34.000 16.9928 23.9127 17.5020 16.6125 14.2562 7.2421 5.2329 

3. 122.6308 42.500 34.0077 67.6617 19.8214 37.3468 19.2199 20.6336 9.7007 

4. 215.3292 45.774 42.5672 125.1763 23.8615 66.3170 32.7812 38.5255 18.5269 

5. 331.3377 51.000 45.6619 163.0997 35.3512 103.4670 37.5841 50.5497 21.3490 

6. 458.2575 54.426 50.9522 172.1276 43.8660 148.7271 43.4149 54.7788 35.0573 

7. 468.6641 66.387 54.4297 241.7041 47.5583 202.0153 46.2614 77.0153 37.4829 

8. 625.2145 68.001 55.1006 340.0683 52.5561 263.2396 50.8601 110.4628 44.3030 

9. 798.9025 80.190 66.4243 381.4843 56.6397 332.2997 55.1755 139.8460 48.3509 

10. 916.5151 85.004 67.9980 430.8473 67.1533 409.0896 63.1761 147.2351 49.0696 



 

 

 

 

Table 5: Variation in structural and coupled frequencies with distribution pattern of GPLs (Wgpl=1%) for air cavity with 

flexible boundaries and straight beam on top (L/h=100). 

 
Mode. No. 

Symmetric Unsymmetric Uniform 

Structural Freq. Coupled Freq. Structural Freq. Coupled Freq. Structural Freq. Coupled Freq. 

1. 5.6859 5.2471 5.5598 5.1757 5.5396 5.1637 
2. 7.7610 5.6063 7.5894 5.4821 7.5615 5.4623 
3. 22.1114 9.9726 21.6171 9.8853 21.5435 9.8716 
4. 41.2833 19.0306 40.3487 18.8917 40.2244 18.8675 
5. 54.1663 22.2782 52.9582 21.9365 52.7789 21.8891 
6. 58.6901 35.1550 57.4144 35.1269 57.1946 35.1216 
7. 82.5153 40.0518 80.7055 39.1814 80.4117 39.0643 
8. 118.3457 44.3833 115.7155 44.3581 115.3344 44.3549 
9. 149.8238 48.3921 146.4772 48.3819 146.0139 48.3803 
10. 157.6786 51.1127 154.2650 50.5963 153.7294 50.5014 

 

 

 

Table 6: Natural frequencies (Hz) for air cavity with flexible walls with straight and curved beam on top with ep =0.5, L/h=30.

 
Wgpl 

(%) 

 
Mode No. 

ê = ë° ê = ìí° ê = îë° 
Structural 

Freq. 
Fluid 
Freq. 

Coupled 
Freq. 

Structural 
Freq, 

Fluid 
Freq. 

Coupled 
Freq. 

Structural 
Freq. 

Fluid 
Freq. 

Coupled 
Freq. 

 1. 17.8314 17.000 6.9893 17.1105 17.2634 7.0776 16.4697 17.4928 7.1755 
 2. 24.2440 34.000 17.7320 25.4288 34.0874 17.0495 26.0498 34.0149 16.4274 
 3. 68.5049 42.500 19.8469 68.3657 40.3235 20.0953 67.6021 38.5043 20.3403 
 4. 126.5007 45.774 24.1778 125.5540 44.4972 25.3216 124.2509 43.2850 25.9055 

0.25 5. 164.6166 51.000 35.3592 164.5385 51.1264 35.2660 164.8458 51.2708 34.9179 
 6. 168.8582 54.426 43.8844 174.6402 53.1087 41.7188 176.8321 52.0439 40.0770 
 7. 172.5921 66.387 47.5496 242.4422 65.1955 46.0489 241.4051 64.1448 44.6916 
 8. 242.3294 68.001 52.5564 337.6810 68.0614 52.8093 335.1142 68.0850 53.0261 
 9. 338.6908 80.190 56.6405 363.3239 79.0657 55.4284 366.4849 76.6100 54.4317 
 10. 

 
361.5236 85.004 67.5577 378.5392 80.6101 66.7133 425.7996 78.0326 65.7192 

 1. 18.7381 17.000 6.9909 17.9807 17.2634 7.0789 17.307 17.4928 7.1766 
 2. 25.4739 34.000 18.5687 26.7188 34.0874 17.8954 27.371 34.0149 17.2534 
 3. 71.9647 42.500 19.9165 71.8185 40.3235 20.1192 71.016 38.5043 20.3517 
 4. 132.8501 45.774 25.3912 131.8543 44.4972 26.5886 130.484 43.2850 27.1956 

1 5. 172.8401 51.000 35.3643 172.7602 51.1264 35.2761 173.084 51.2708 34.9369 
 6. 180.9973 54.426 43.8901 183.1627 53.1087 41.7260 185.478 52.0439 40.0839 
 7. 254.1386 66.387 47.5602 254.2604 65.1955 46.0581 253.175 64.1448 44.7001 
 8. 354.7458 68.001 52.5578 353.6898 68.0614 52.8107 351.007 68.0850 53.0276 
 9. 375.6240 80.190 56.6419 377.4283 79.0657 55.4298 380.631 76.6100 54.4331 
 10. 448.8696 85.004 68.1105 447.6508 80.6101 66.9928 445.381 78.0326 65.9712 

 

 

 

 



 

 

 

 

 

 

Table 7 : Natural frequencies for water cavity with flexible walls with straight and curved beam on top with ep =0.5, L/h=100 

 
Wgpl 

(%) 

 
Mode 
No. 

ê = ë° ê = ìí° ê = îë° 
Structural 

Freq. 
Fluid 
Freq. 

Coupled 
Freq. 

Structural 
Freq. 

Fluid 
Freq. 

Coupled 
Freq. 

Structural 
Freq. 

Fluid 
Freq. 

Coupled 
Freq. 

 1. 5.3895 75.0000 2.7679 5.1709 76.1624 2.7034 4.9768 77.1744 1.0235 
 2. 7.3560 150.000 4.4563 7.7159 150.385 4.3027 7.9047 150.065 2.6430 
 3. 20.9554 187.501 5.8396 20.9119 177.897 5.8430 20.6794 169.872 4.2086 
 4. 39.1197 201.945 9.0820 38.8388 196.311 9.1050 38.4448 190.963 5.8570 

0.25 5. 51.3221 225.001 12.7407 51.2826 225.557 12.6898 51.3729 226.194 9.1964 
 6. 55.5863 240.1188 19.7144 56.0941 234.3034 19.7709 56.6589 229.6056 12.7204 
 7. 78.1516 292.8868 22.9609 78.1561 287.6272 23.1783 77.8039 282.9921 19.9683 
 8. 112.0652 300.0063 28.4607 111.7393 300.2712 28.5726 110.9148 300.3751 23.6366 
 9. 141.8651 353.7808 34.9805 141.7392 348.8193 35.1668 141.7154 337.9854 28.9872 
 10. 

 
149.1267 375.0193 44.3788 149.7429 355.6329 45.0476 150.9027 344.2615 35.6987 

 1. 5.6648 75.0000 1.0218 5.4350 76.1624 1.0433 5.2310 77.1744 1.0705 
 2. 77.7316 150.0002 2.8951 8.1099 150.3859 2.8276 8.3084 150.0658 2.7643 
 3. 22.0251 187.5019 4.6593 21.9793 177.8979 4.4987 21.7350 169.8723 4.4003 
 4. 41.1155 201.9455 6.1070 40.8202 196.3114 6.1105 40.4061 190.9632 6.1250 
1 5. 53.9392 225.0015 9.5016 53.8977 225.5577 9.5259 53.9926 226.1947 9.6219 
 6. 58.4152 240.1188 13.3262 58.9494 234.3034 13.2728 59.5433 229.6056 13.3047 
 7. 82.1296 292.8868 20.6140 82.1345 287.6272 20.6733 81.7644 282.9921 20.8797 
 8. 117.7654 300.0063 23.9945 117.4228 300.2712 24.2216 116.5561 300.3751 24.7004 
 9. 149.0799 353.7808 29.7644 148.9475 348.8193 29.8820 148.9221 337.9854 30.3165 
 10. 156.6655 375.0193 36.5901 157.3154 355.6329 36.7838 158.5369 344.2615 37.3386 
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Fig. 1:  Schematic representation of a curved beam simply supported on the acoustic cavity.   



 

 

 

 

 

 

 

 

 

 

  

Fig. 2: Distribution pattern for porosity and GPLs through the thickness  



 

 

 

 

 

a) 

b) c) 

Fig. 3: a) Geometrical parameters of curved beam; b) Beam local element with the degrees of freedom; c) Isoparametric 8 noded 

fluid element. 



 

 

 

Fig 4: Comparison of variation of frequency vs SPL response for air cavity with rigid walls with Ref. [21] for straight beam on top.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Comparison of present (SSDT) model with ANSYS for an isotropic air cavity with flexible walls and curved beam on top         � x = 30°). 



 

 

Fig 6: Influence of curvature angle on sound pressure response for isotropic air cavity with rigid walls: a) L/h=30; b) L/h=100. 



 

 

Fig 7: Influence of curvature angle on sound pressure response for isotropic air cavity with flexible walls a) L/h=30; b) L/h=100. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Effect of different boundaries on sound pressure response for isotropic water cavity for L/h=30 with different curvatures. a) rigid 

and b) flexible boundaries. 

b) Flexible 

a) Rigid 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Variation in sound pressure response for air cavity for various porosity distributions (ep =0.5) for different curvatures 

with flexible boundaries at L/h=100. a) x = 0°; b) x = 30° 
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Fig. 10: Variation in sound pressure response for air cavity for various GPLs distributions (Wgpl=1%) for different curvatures 

with flexible boundaries at L/h=100. a) x = 0°; b) x = 30° 

S
o

u
n

d
 P

re
ss

u
re

 L
e

v
e

l,
 

S
o

u
n

d
 P

re
ss

u
re

 L
e

v
e

l,
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11: Variation in sound pressure response with different Wgpl and curvature angles for air cavity with rigid boundaries (ep =0.5) 

i)L/h=30; ii) L/h=100. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12: Variation in sound pressure response with different Wgpl and curvature angles for air cavity with flexible boundaries (ep =0.5) 

i)L/h=30; ii) L/h=100. 



 

 

Fig. 13: Variation of sound pressure response with curvature angles for air cavity with Wgpl= 1% and ep =0.5 for flexible boundaries. 

i)L/h=30; ii) L/h=100. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Variation of sound pressure response with curvature angles for air cavity with Wgpl= 1% and ep =0.5 for rigid boundaries. 

i)L/h=30; ii) L/h=100. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Variation of sound pressure response for water cavity with curvature angles with Wgpl=1% and ep =0.5 for flexible boundaries. 

i)L/h=30; ii) L/h=100 



 

 

 Fig 16: Sound pressure response for curved beam (θ =300) with Wgpl=0.5% and ep =0.5 for air cavity with two different type of 

boundary. a) L/h=30 b) L/h=100   



 

 

Fig 17: Variation of sound pressure response in different mediums for curved beam (θ =300) with Wgpl=0.5% and ep =0.5. a) L/h=30 b) 

L/h=100 .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 18: Contour plots for air cavity with i) rigid walls and ii) flexible walls coupled with isotropic beam at respective frequencies 

(L/h=30) for various top beams. a) x = 0°; é�x = 15°; #�x = 30°         
c) 

b) 

a) 

ii) Flexible Walls 
Freq.=14 Hz Freq.=24.0 Hz 

Freq.=28 Hz Freq.=25.0 Hz 

Freq.=26.5 Hz Freq.=25.5 Hz 

i)  Rigid Walls 



 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 19 Contour plots for air cavity with flexible boundary condition for various porosity distribution pattern (ep =0.5) with x = 30° and  

L/h=100. a) Symmetric ; b) Unsymmetric ; c) Uniform porosity distribution.  
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Fig: 20 Contour plots for air cavity with flexible boundary condition for various GPLs distribution pattern (Wgpl=1%) with x = 30° and  

L/h=100. a) Symmetric ; b) Unsymmetric ; c) Uniform GPLs distribution.  

c) 

Freq.=6 Hz 

a) 

Freq.=6 Hz 

b) 

Freq.=6 Hz 




