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Abstract

We present a novel large-scale dataset and accompa-
nying machine learning models aimed at providing a de-
tailed understanding of the interplay between visual con-
tent, its emotional effect, and explanations for the latter in
language. In contrast to most existing annotation datasets
in computer vision, we focus on the affective experience
triggered by visual artworks and ask the annotators to in-
dicate the dominant emotion they feel for a given image
and, crucially, to also provide a grounded verbal explana-
tion for their emotion choice. As we demonstrate below, this
leads to a rich set of signals for both the objective content
and the affective impact of an image, creating associations
with abstract concepts (e.g., “freedom” or “love”), or ref-
erences that go beyond what is directly visible, including
visual similes and metaphors, or subjective references to
personal experiences. We focus on visual art (e.g., paint-
ings, artistic photographs) as it is a prime example of im-
agery created to elicit emotional responses from its viewers.
Our dataset, termed ArtEmis, contains 455K emotion attri-
butions and explanations from humans, on 80K artworks
from WikiArt. Building on this data, we train and demon-
strate a series of captioning systems capable of expressing
and explaining emotions from visual stimuli. Remarkably,
the captions produced by these systems often succeed in re-
flecting the semantic and abstract content of the image, go-
ing well beyond systems trained on existing datasets. The
collected dataset and developed methods are available at
https://artemisdataset.org.

1. Introduction
Emotions are among the most pervasive aspects of hu-

man experience. While emotions are not themselves lin-

guistic constructs, the most robust and permanent access
we have to them is through language [44]. In this work,
we focus on collecting and analyzing at scale language that
explains emotions generated by observing visual artworks.
Specifically, we seek to better understand the link between
the visual properties of an artwork, the possibly subjective
affective experience that it produces, and the way such emo-
tions are explained via language. Building on this data and
recent machine learning approaches, we also design and test
neural-based speakers that aim to emulate human emotional
responses to visual art and provide associated explanations.

Why visual art? We focus on visual artworks for two rea-
sons. First and foremost because art is often created with the
intent of provoking emotional reactions from its viewers. In
the words of Leo Tolstoy,“art is a human activity consisting
in that one human consciously hands on to others feelings
they have lived through, and that other people are infected
by these feelings, and also experience them” [55]. Second,
artworks, and abstract forms of art in particular, often defy
simple explanations and might not have a single, easily-
identifiable subject or label. Therefore, an affective re-
sponse may require a more detailed analysis integrating the
image content as well as its effect on the viewer. This is un-
like most natural images that are commonly labeled through
purely objective content-based labeling mechanisms captur-
ing the objects or actions they include [14, 13]. Instead, by
focusing on art, we aim to initiate a more nuanced percep-
tual image understanding which, downstream, can also be
applied to richer understanding of ordinary images.

We begin this effort by introducing a large-scale dataset
termed ArtEmis [Art Emotions] that associates human emo-
tions with artworks and contains explanations in natural lan-
guage of the rationale behind each triggered emotion.
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Something Else 
“The white bird stands out in the dark 
background giving a sense of hope.”

Sadness 
“This woman of higher  

status looks sad, like a bird 
 who lives in a golden cage.”

Awe 
“The woman’s ability to handle  

the bird so calmly inspires 
a sense  of bewilderment.”

Fear 
“This looks like a bird that has been  

injured and is bleeding taking a flight.”

Amusement 
“His mustache looks  

like a bird soaring  
through the clouds.”

Excitement 
“The brushstrokes of blues  

resemble an exotic  
bird that is nested in the ocean.”

Anger 
“The large black bird  

has stolen the life  
from the helpless rabbit.”

Contentment 
“The pale color palette of this painting is 

very relaxing. I can imagine myself sitting 
by the water listening to the birds.”

Figure 1. Examples of affective explanations mentioning the word ‘bird’. In ArtEmis the annotators expose a wide range of abstract
semantics and emotional states associated with the concept of a bird when attempting to explain their primary emotion (shown in boldface).
The exposed semantics include properties that are not directly visible: birds can be listened to, they fly, they can bring hope, but also can
be sad when they are in ‘golden cages’.

Novelty of ArtEmis. Our dataset is novel as it concerns
an underexplored problem in computer vision: the forma-
tion of linguistic affective explanations grounded on visual
stimuli. Specifically, ArtEmis exposes moods, feelings,
personal attitudes, but also abstract concepts like freedom
or love, grounded over a wide variety of complex visual
stimuli (see Section 3.2). The annotators typically explain
and link visual attributes to psychological interpretations
e.g., ‘her youthful face accentuates her innocence’, high-
light peculiarities of displayed subjects, e.g., ‘her neck is
too long, this seems unnatural’; and include imaginative or
metaphorical descriptions of objects that do not directly ap-
pear in the image but may relate to the subject’s experience;
‘it reminds me of my grandmother’ or ‘it looks like blood’
(over 20% of our corpus contains such similes).

Subjectivity of responses. Unlike existing captioning
datasets, ArtEmis welcomes the subjective and personal an-
gle that an emotional explanation (in the form of a caption)
might have. Even a single person can have a range of emo-
tional reactions to a given stimulus [41, 50, 10, 51] and, as
shown in Fig. 2, this is amplified across different annota-
tors. The subjectivity and rich semantic content distinguish
ArtEmis from, e.g., the widely used COCO dataset [14].
Figure 1 shows different images from ArtEmis with cap-

tions including the word bird, where the imaginative and
metaphorical nature of ArtEmis is apparent (e.g., ‘bird gives
hope’ and ‘life as a caged bird’). Interestingly, despite this
phenomenon, as we show later (Section 3.2), (1) there is of-
ten substantial agreement among annotators regarding their
dominant emotional reactions, and (2) our collected expla-
nations are often pragmatic – i.e., they also contain refer-
ences to visual elements present in the image (see Section
3.3).

Difficulty of emotional explanations. There is debate
within the neuroscience community on whether human
emotions are innate, generated by patterns of neural activity,
or learned [53, 4, 8, 9]. There may be intrinsic difficulties
with producing emotion explanations in language – thus the
task can be challenging for annotators in ways that tradi-
tional image captioning is not. Our approach is informed
by significant research that argues for the central role of
language in capturing and even helping to form emotions
[36], including the Theory of Constructed Emotions [6, 7]
by Lisa Feldman Barrett. Nevertheless, this debate suggests
that caution is needed when comparing, under various stan-
dard metrics, ArtEmis with other captioning datasets.

Affective neural speakers. To further demonstrate the
potential of ArtEmis, we experimented with building a
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Figure 2. Examples of different emotional reactions for the
same stimulus. The emotions experienced (in bold font) for the
shown painting vary across annotators and are reasonably justified
(next to each emotion, the annotator’s explanation is given). We
note that 61% of all annotated artworks have at least one positive
and one negative emotional reaction. See Section 3.2 for details.

number of neural speakers, using deep learning language
generation techniques trained on our dataset. The best of
our speakers often produce well-grounded affective expla-
nations, respond to abstract visual stimuli, and fare reason-
ably well in emotional Turing tests (Section 6).
In summary, we make the following key contributions:

• We introduce ArtEmis, a large scale dataset of emo-
tional reactions to visual artwork coupled with expla-
nations of these emotions in language (Section 3).

• We show how the collected corpus contains utter-
ances that are significantly more affective, abstract,
and rich with metaphors and similes, compared to ex-
isting datasets (Sections 3.1-3.2).

• Using ArtEmis, we develop machine learning mod-
els for dominant emotion prediction from images or
text, and neural speakers that can produce plausible
grounded emotion explanations (Sections 4 and 6).

2. Background and related work
Emotion classification. Following previous studies [39,
62, 67, 48], we adopt throughout this work the same dis-
crete set of eight categorical emotion states. Concretely,
we consider: anger, disgust, fear, and sadness as negative

emotions, and amusement, awe, contentment, and excite-
ment as positive emotions. The four negative emotions are
considered universal and basic (as proposed by Ekman in
[22]) and have been shown to capture well the discrete emo-
tions of the International Affective Picture System [11]. The
four positive emotions are finer grained versions of happi-
ness [21]. We note that while awe can be associated with a
negative state, following previous works ([41, 48]), we treat
awe as a positive emotion in our analyses.

Deep learning, emotions, and art. Most existing works
in Computer Vision treat emotions as an image classifi-
cation problem, and build systems that try to deduce the
main/dominant emotion a given image will elicit [39, 62,
67, 33]. An interesting work linking paintings to textual de-
scriptions of their historical and social intricacies is given in
[24]. Also, the work of [30] attempts to make captions for
paintings in the prose of Shakespeare using language style
transfer. Last, the work of [59] introduces a large scale
dataset of artistic imagery with multiple attribute annota-
tions. Unlike these works, we focus on developing machine
learning tools for analyzing and generating explanations of
emotions as evoked by artworks.

Captioning models and data. There is a lot of work and
corresponding captioning datasets [64, 31, 54, 34, 40, 47]
that focus on different aspects of human cognition. For in-
stance COCO-captions [14] concern descriptions of com-
mon objects in natural images, the data of Monroe et al. [42]
include discriminative references for 2D monochromatic
colors, Achlioptas et al. [1, 2] collects discriminative ut-
terances for 3D objects, etc. There is correspondingly also
a large volume on deep-net based captioning approaches
[38, 40, 56, 66, 43, 65, 43]. The seminal works of [58, 29]
opened this path by capitalizing on advancements done in
deep recurrent networks (LSTMs [27]), along with other
classic ideas like training with Teacher Forcing [60]. Our
neural speakers build on these ‘standard’ techniques, and
ArtEmis adds a new dimension to image-based captioning
reflecting emotions.

Sentiment-driven captions. There exists significantly
less captioning work concerning sentiments (positive
vs. negative emotions). Radford and colleagues [49] discov-
ered that a single unit in recurrent language models trained
without sentiment labels, is automatically learning concepts
of sentiment; enabling sentiment-oriented manipulation by
fixing the sign of that unit. Other early work like Senti-
Cap [46] and follow-ups like [63], provided explicit sen-
timent supervision to enable sentiment-flavored language
generation grounded on real-world images. These studies
focus on the visual cues that are responsible for two emo-
tional reactions (positive and negative) and, most impor-
tantly, they do not produce emotion-explaining language.
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(c)(b)(a)
Figure 3. Key properties of ArtEmis. Histograms comparing ArtEmis to COCO-captions [14] along the axes of (a) Concreteness, (b)
Subjectivity, and (c) Sentiment. ArtEmis has significantly more abstract, subjective and sentimental language than COCO-captions.

3. ArtEmis dataset

The ArtEmis dataset is built on top of the publicly
available WikiArt1 dataset which contains 80,031 unique
and carefully curated artworks from 1,119 artists (as down-
loaded in 2015). The artworks cover 27 art-styles (ab-
stract, baroque, cubism, impressionism, etc.) and 45 genres
(cityscape, landscape, portrait, still life, etc.), constituting
a very diverse set of visual stimuli [52]. In ArtEmis we
annotated all artworks of WikiArt by asking at least 5 an-
notators per artwork to express their dominant emotional
reaction along with an explanation for their response.

Specifically, after observing an artwork, an annotator
was asked first to indicate their dominant reaction by se-
lecting among the eight emotions mentioned in Section 2,
or a ninth option, listed as ‘something-else’. This latter op-
tion allows the annotators to express emotions not explic-
itly listed, or to explain why they might not have had any
strong emotional reaction, e.g., why they felt indifferent to
the shown artwork. In all cases, after the first step, the an-
notator was asked to provide a detailed explanation for their
choice in free text that would include specific references to
visual elements in the artwork. See Figures 1, 2 for exam-
ples of collected annotations.

In total, we collected 454,684 explanatory utterances and
emotional responses. The resulting corpus contains 37,250
distinct words and it includes the explanations of 6,788 an-
notators who worked in aggregate 11,138 hours to build
it. The annotators were recruited via Amazon’s Mechani-
cal Turk (AMT) services. In what follows we analyze the
key characteristics of ArtEmis, while pointing the interested
reader to the Supplemental Material [3] for further details.

3.1. Linguistic analysis

Richness & diversity. The average length of the captions
of ArtEmis is 15.9 words which is significantly longer than
the average length of captions of many existing captioning
datasets as shown in Table 1. In the same table, we also
show results of analyzing ArtEmis in terms of the average

1https://www.wikiart.org/

number of nouns, pronouns, adjectives, verbs, and adposi-
tions. ArtEmis has a higher occurrence per caption for each
of these categories compared to many existing datasets, in-
dicating that our annotations use rich natural language in
connection to the artwork and the emotion they explain.
This fact becomes even more pronounced when we look at
unique, say adjectives, that are used to explain the reactions
to the same artwork among different annotators (Table 2).
In other words, besides being linguistically rich, the col-
lected explanations are also highly diverse.

Sentiment analysis. In addition to being rich and diverse,
ArtEmis also contains language that is affective. We use
a rule-based sentiment analyzer (VADER [28]) to demon-
strate this. The analyzer assigns only 16.5% of ArtEmis to
the neutral sentiment, while for COCO-captions it assigns
77.4%. Figure 3 (c) shows the histogram of VADER’s es-
timated valences of sentimentality for the two datasets. Ab-
solute values closer to 0 indicate neutral sentiment.

Dataset Words Nouns Pronouns Adjectives Adpositions Verbs

ArtEmis 15.9 4.0 0.9 1.6 1.9 3.0
COCO Captions [14] 10.5 3.7 0.1 0.8 1.7 1.2
Conceptual Capt. [54] 9.6 3.8 0.2 0.9 1.6 1.1
Flickr30k Ent. [64] 12.3 4.2 0.2 1.1 1.9 1.8
Google Refexp [40] 8.4 3.0 0.1 1.0 1.2 0.8

Table 1. Richness of individual captions of ArtEmis vs. previous
works. We highlight the richness of captions as units and thus
show word counts averaged over individual captions.

Dataset Nouns Pronouns Adjectives Adpositions Verbs

ArtEmis 18.7 (3.4) 3.1 (0.6) 8.3 (1.5) 6.5 (1.2) 13.4 (2.4)
COCO Captions [14] 10.8 (2.2) 0.6 (0.1) 3.3 (0.7) 4.5 (0.9) 4.5 (0.9)
Conceptual Capt. [54] 3.8 (3.8) 0.2 (0.2) 0.9 (0.9) 1.6 (1.6) 1.1 (1.1)
Flickr30k Ent. [64] 12.9 (2.6) 0.8 (0.2) 4.0 (0.8) 4.9 (1.0) 6.4 (1.3)
Google Refexp [40] 7.8 (2.2) 0.4 (0.1) 2.8 (0.8) 2.9 (0.8) 2.3 (0.6)

Table 2. Diversity of captions per image of ArtEmis vs. previous
works. Shown are unique word counts for various parts-of-speech
averaged over individual images. To account for discrepancies in
the number of captions individual images have, we also include
the correspondingly normalized averages inside parentheses.
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Figure 4. Histogram of emotions captured in ArtEmis . Pos-
itive emotions occur significantly more often than negative emo-
tions (four left-most bars contain 62.0% of all responses vs. 5th-
8th bars contain 26.3%). The annotators use a non-listed emotion
(‘something-else’ category) 11.7% of the time.

3.2. Emotion-centric analysis.

In Figure 4 we present the histogram over the nine op-
tions that the users selected, across all collected annotations.
We remark that positive emotions are chosen significantly
more often than negative ones, while the “something-else”
option was selected 11.7%. Interestingly, 61% of artworks
have been annotated with at least one positive and one nega-
tive emotion simultaneously (this percent is 79% if we treat
something-else as a third emotion category). While this
result highlights the high degree of subjectivity w.r.t. the
emotional reactions an artwork might trigger, we also note
that that there is significant agreement among the annota-
tors w.r.t. the elicited emotions. Namely, 45.6% (36,534) of
the paintings have a strong majority among their annotators
who indicated the same fine-grained emotion.

Idiosyncrasies of language use. We also explore the de-
gree to which ArtEmis contains language that is abstract
vs. concrete, subjective vs. objective, and estimate the ex-
tent to which annotators use similes and metaphors in their
explanations. For measuring the abstractness or concrete-
ness, we use the lexicon in Brysbaert et al. [12] which pro-
vides for 40,000 word lemmas a rating from 1 to 5 reflect-
ing their concreteness. For instance, banana and bagel are
maximally concrete/tangible objects, getting a score of 5,
but love and psyche are quite abstract (with scores 2.07 and
1.34, resp.). A random word of ArtEmis has 2.81 concrete-
ness while a random word of COCO has 3.55 (p-val signif-
icant, see Figure 3 (a)). In other words, ArtEmis contains
on average references to more abstract concepts. Next, to
measure the extent to which ArtEmis makes subjective lan-
guage usage, we apply the rule-based algorithm provided by
TextBlob [37] which estimates how subjective a sentence is
by providing a scalar value in [0,1]. E.g., ‘The painting is
red’ is considered a maximally objective utterance (scores
1), while ‘The painting is nice’, is maximally subjective
(scores 0). We show the resulting distribution of these es-
timates in Figure 3 (b). Last, we curated a list of lemmas
that suggest the use of similes with high probability (e.g.,
‘is like’, ‘looks like’, ‘reminds me of’). Such expressions
appear on 20.9% of our corpus and, as shown later, are also

successfully adopted by our neural-speakers.

3.3. Maturity, reasonableness & specificity.

Finally, we investigated the unique aspects of ArtEmis
by conducting three separate user studies. Specifically we
aim to understand: a) what is the emotional and cognitive
maturity required by someone to express a random ArtEmis
explanation?, b) how reasonable a human listener finds a
random ArtEmis explanation, even when they would not use
it to describe their own reaction?, and last, c) to what extent
the collected explanations can be used to distinguish one
artwork from another? We pose the first question to Turkers
in a binary (yes/no) form, by showing to them a randomly
chosen artwork and its accompanying explanation and ask-
ing them if this explanation requires emotional maturity
higher than that of a typical 4-year old. The answer for
1K utterances was ‘yes’ 76.6% of the time. Repeating the
same experiment with the COCO dataset, the answer was
positive significantly less (34.5%). For the second ques-
tion, we conducted an experiment driven by the question
“Do you think this is a realistic and reasonable emotional
response that could have been given by someone for this
image?”. We elaborate on the results in Supp. Mat.; in sum-
mary, 97.5% of the utterances were considered appropriate.
To answer the final question, we presented Turkers with one
piece of art coupled with one of its accompanying explana-
tions, and placed it next to two random artworks, side by
side and in random order. We asked Turkers to guess the
‘referred’ piece of art in the given explanation. The Turkers
succeeded in predicting the ‘target’ painting 94.7% of the
time in a total of 1K trials.

4. Neural methods
4.1. Auxiliary classification tasks

Before we present the neural speakers we introduce two
auxiliary classification problems and corresponding neural-
based solutions. First, we pose the problem of predicting
the emotion explained with a given textual explanation of
ArtEmis. This is a classic 9-way text classification problem
admitting standard solutions. In our implementations we
use cross-entropy-based optimization applied to an LSTM
text classifier trained from scratch, and also consider fine-
tuning to this task a pretrained BERT model [20].

Second, we pose the problem of predicting the ex-
pected distribution of emotional reactions, given an art-
work. To address this problem we fine-tune a ResNet-32
encoder [26] pretrained on ImageNet [18] by minimizing
the KL-divergence between its output and the empirical user
distributions of ArtEmis. Having access to these two clas-
sifiers, which we denote as Cemotion|text and Cemotion|image re-
spectively, is useful for our neural speakers as we can use
them to evaluate, and also, steer, the emotional content of
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their output (Sections 5 and 4.2). Of course, these two prob-
lems have also intrinsic value and we explore them in detail
in Section 6.

4.2. Affective neural speakers

Baseline with ANPs. In order to illustrate the impor-
tance of having an emotion-explanation-oriented dataset
like ArtEmis for building affective neural speakers; we bor-
row ideas from previous works [63, 46] and create a base-
line speaker that does not make any (substantial) use of
ArtEmis. Instead, and similar to what was done for the
baseline presented in [46], we first train a neural speaker
with the COCO-caption dataset and then we inject senti-
ment to its generated captions by adding to them appro-
priately chosen adjectives. Specifically we use the inter-
section of Adjective Noun Pairs (ANPs) between ArtEmis
and the ANPs of [46] (resulting in 1,177 ANPs, with
known positive and negative sentiment) and capitalize on
the Cemotion|image to decide what sentiment we want to em-
ulate. If the Cemotion|image is maximized by one of the four
positive emotion-classes of ArtEmis, we inject the adjec-
tive corresponding to the most frequent (per ArtEmis) pos-
itive ANP, to a randomly selected noun of the caption. If
the maximizer is negative, we use the corresponding ANP
with negative sentiment; last, we resolve the something-
else maximizers (<10%) by fair coin-flipping among the
two sentiments. We note that since we apply this speaker
to ArtEmis images and there is significant visual domain
gap between COCO and WikiArt, we fine-tune the neural-
speaker on a small-scale and separately collected (by us)
dataset with objective captions for 5,000 wikiArt paintings.
We stress that this new dataset was collected following the
AMT protocol used to build COCO-captions, i.e., asking
only for objective (not affective) descriptions of the main
objects, colors etc. present in an artwork.

Basic ArtEmis speakers. We experiment with two pop-
ular backbone architectures when designing neural speak-
ers trained on ArtEmis: the classic Show-Attend-Tell (SAT)
approach [61], which combines an image encoder with
a word/image attentive LSTM; and the recent line of
work of top-down, bottom-up meshed-memory transform-
ers (M2) [15], which replaces the recurrent units with trans-
former units and similarly to Andersen et al. [5] relies on
separately computed object-bounding-box detections (com-
puted using Faster R-CNN [25]). We also include a much
simpler baseline that uses ArtEmis: for a testing image we
find its nearest visual neighbor in the training set (using fea-
tures from a ResNet-32 pretrained on ImageNet) and output
one of the latter’s human ground-truth captions at random.

Emotion grounded speaker. We additionally tested neu-
ral speakers that make use of the emotion classifier, i.e.,
Cemotion|image. At training time, in addition to grounding

the a neural-speaker with the visual stimulus and apply-
ing teacher forcing with the captions of ArtEmis, we fur-
ther provide at each time step a feature (extracted via a
fully-connected layer) of the emotion-label in that particular
training example. This extra signal promotes the decoupling
of the emotion conveyed by the linguistic generation, from
the underlying image. In other words, this variant allows us
to independently set the emotion we wish to explain for a
given image. At inference time (to keep things fair) we de-
ploy first the Cemotion|image over the test artwork, and use the
output maximizing emotion, to first ground and then sample
the generation of this variant.

Details. To ensure a meaningful comparison between
neural speakers, we use the same image-encoders, learning-
rate schedules, LSTM hidden-dimensions, etc. across
all of them. When training with ArtEmis we use
an [85%,5%,10%] train-validation-test data split and do
model-selection (optimal epoch) according to the model
that minimizes the negative-log-likelihood on the validation
split. For the ANP baseline, we use the Karpathy splits [29]
to train the same (SAT) backbone network we used else-
where. When sampling a neural speaker, we keep the test
generation with the highest log-likelihood resulting from a
greedy beam-search with beam size of 5 and a soft-max
temperature of 0.3. An exception to the above (uniform) ex-
perimental protocol was made for the speakers trained with
Meshed Transformers. In this case we used the publicly
available implementation [16] with minimal adaptation.

5. Evaluation

In this section we describe the evaluation protocol we
follow to quantitatively compare our trained neural net-
works. First, for the auxiliary classification problems we
report the average attained accuracy per method. Second,
for the evaluation of the neural speakers we use three cate-
gories of metrics that assess different aspects of their qual-
ity. To measure the extent to which our generations are lin-
guistically similar to held-out ground-truth human captions,
we use various popular machine-based metrics: e.g., BLEU
1-4 [45], ROUGE-L [35], METEOR [19].

We highlight that CIDEr-D [57] which requires a gener-
ation to be semantically close to all human-annotations of
an artwork, is not a metric well-suited for ArtEmis, due to
the large diversity and inherent subjectivity of our dataset.
We also evaluate the novelty of the captions of our neural
speakers; here we report the average maximum length of the
longest common subsequence for a generation and (a sub-
sampled version) of all training utterances. The smaller this
metric is, the farther away one can assume that the genera-
tions are from the training data [23]. We also report the fast
to compute number (fraction) of unique generations made
over an input set of images. The third axis of evaluation
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concerns two unique properties of ArtEmis and affective
explanations in particular. First, we report the fraction of a
speaker’s productions that contain similes, i.e., generations
that have lemmas like ‘thinking of’, ‘looks like’ etc. This
fraction is a proxy for how often a neural speaker chooses to
utter metaphorical-like content. Secondly, by tapping on the
Cemotion|text , we can compute which emotion is most likely
explained by the generated utterance; this estimate allows
us to measure the extent to which the deduced emotion is
‘aligned’ with some ground-truth. Specifically, for test art-
works where the emotion annotations form a strong major-
ity, we define the emotional-alignment as the percent of the
grounded generations where the argmax(Cemotion|generation)
agrees to the emotion made by the majority.

The above metrics are algorithmic, i.e., they do not in-
volve direct human judgement, which is regarded as the
golden standard for quality assessment [17, 32] of synthetic
captions. The discrepancy between machine and human-
based evaluations can be exacerbated in a dataset with sub-
jective and affective components like ArtEmis. To ad-
dress this, we evaluate ArtEmis-trained basic and emotion-
grounded speaker variants, via user studies that emulate a
Turing test; i.e., they assess the extent to which the synthetic
captions can be ‘confused’ as being made by humans.

6. Experimental results

Estimating emotion from text or images alone. We
found experimentally that predicting the fine-grained emo-
tion explained in ArtEmis data is a difficult task (see ex-
amples where both humans and machines fail in Table 3).
In a small-scale study with experts (authors of this paper),
humans could infer the explained emotion from the text
alone 61.2% accurately (in 500 trials). Interestingly, the
neural networks of Section 4.1 attained 63.3% and 64.8%
(LSTM, BERT respectively) on the entire test split used
by the neural-speakers (39,850 utterances). Crucially, both
humans and neural-nets failed gracefully in their predic-
tions and most confusion happened among subclasses of
the same, positive or negative category (we include confu-
sion matrices in the Supp. Mat.). For instance, if we bi-
narize the predictions made on the 9-way problem and the
ground-truth labels into positive vs. negative emotion sen-
timent (ignoring the something-else class); the experts, the
LSTM-based, and the BERT-based models, guess correctly
85.9%, 89.4%, 91.5% of the time, respectively.

Since we train our image classifiers to predict a distri-
bution of emotions, we select the maximizer of their output
and compare it with the ‘dominant’ emotion of the test im-
ages for which the emotion distribution is unimodal with
a mode covering more than 50% of the mass (38.1% of
the split). The attained accuracy for this sub-population is
60.2%.

ArtEmis Utterance Guess GT

“The scene reminds me of a perfect Contentment (H) Awesummer day.”
“This looks like me when I don’t want to Something-Else (M) Amusementget out of bed on Monday morning.”

“A proper mourning scene, and the Sadness (H) Contentmentmood is fitting.”

Table 3. Examples showcasing the difficulty of emotion-
deduction from text. The first two examples’ interpretation de-
pends highly on personal experience (first & middle row). The
third example uses language that is emotionally subtle. (H):
human-guess, (M): neural-net guess, GT: ground-truth.

Neural speakers. In Table 4 we report the machine-
induced metrics described in Section 5. First, we observe
that on metrics that measure the linguistic similarity to held-
out utterances (BLEU, METEOR, etc.) our speakers fare
noticeably worse as compared to how these architectures
fare when trained and tested with objective datasets like
COCO-captions; e.g., BLEU-1 with SOTA [15] is 82.0.
This is expected given the analysis of Section 3 that shows
how ArtEmis is a significantly more diverse and subjective
dataset. Second, there is a noticeable difference in all met-
rics in favor of the four models trained with ArtEmis (de-
noted as Basic or Grounded) against the simpler baselines
that do not. This implies that we cannot simply reproduce
ArtEmis with ANP injection on objective data. It further
demonstrates how even among similar images the annota-
tions can be widely different, limiting the Nearest-Neighbor
(NN) performance. Third, on the emotion-alignment metric
the emotion-grounded variants fare significantly better than
their non-grounded version. These variants also produce a
percent of similes closer to the ground-truth’s percentage of
20.9. However, as seen by the Longest Common Subse-
quence (denoted as LCS) and the fraction of unique gener-
ations these variants also tend to create less novel captions.

Qualitative results of the emotion-grounded SAT speaker
are shown in Figure 5. As seen in Figure 5 this speaker can
create pragmatic explanations that can include visual analo-
gies, or nuanced associations in support of the grounding
emotion. More examples, including typical failure cases
and generations from other variants, are provided in the
Supplemental Material.

Turing test. For our last experiment, we performed a
user study taking the form of a Turing Test deployed in
AMT. First, we use a neural-speaker to make one expla-
nation for a test artwork and couple it with a randomly cho-
sen ground-truth for the same stimulus. Next, we show to
a user the two utterances in text, along with the artwork,
and ask them to make a multiple choice among 4 options.
These were to indicate either that one utterance was more
likely than the other as being made by a human explain-
ing their emotional reaction; or, to indicate that both (or
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Sadness 
“the woman looks like she is in  

pain and is suffering”

Fear 
“the sky looks like it is boiling fire” 

Disgust 
“the man 's body is contorted and  

the body parts are very pronounced”

Contentment 
“the green trees and grass makes 

me feel calm and meditative”

Something Else 
“I feel confused because i do not 

know what this is”

Awe 
“the mountain looks like it is floating in the water”

Excitement 
“the colors are bright and bold and 

the lines are very dynamic”

Amusement 
“the way the face is drawn is 

funny”

Figure 5. Examples of a neural speaker productions on unseen artworks. The produced explanations reflect a variety of dominant
emotional-responses (shown above each utterance in bold font). The top row shows examples where the deduced grounding emotion was
positive; the bottom row shows three examples where the deduced emotion was negative and an example from the something-else category.
Remarkably, the neural speaker can produce pragmatic explanations that include visual analogies: looks like it is floating, like it is boiling
fire, and nuanced explanations of affect: calm and meditative, pain and suffering. Examples sampled from the SAT-based variant.

none) were likely made by a human. We deploy this ex-
periment with 500 artworks, and repeat it separately for the
basic and the emotion-grounded (SAT) speakers. Encour-
agingly, 50.3% of the time the users signaled that the ut-
terances of the emotion-grounded speaker were on-par with
the human groundtruth (20.6%, were selected as the more
human-like of the pair, and 29.7% scored a tie). Further-
more, this variant also achieved significantly better results
than the basic speaker, which surpassed or tied to the hu-
man annotations 40% of the time (16.3% with a win and
and 23.7% as a tie). To explain this differential, we hypoth-
esize that grounding with the most likely emotion steered
the better-performing variant to create more commonplace
explanations which thus were harder to discriminate as non-
human plausible.

7. Conclusion

Human cognition has a strong affective component that
has been relatively undeveloped in AI systems. Language
that explains emotions generated at the sight of a visual
stimulus gives us a way to analyze how image content is
related to affect, enabling learning that can lead to agents
emulating human emotional responses through data-driven
approaches. In this paper, we take the first step in this direc-
tion through: (1) the release of the ArtEmis dataset that fo-

metric NN ANP M2(Basic/Grounded) SAT (Basic/Grounded)
BLEU-1 0.364 0.396 0.507 / 0.511 0.536 / 0.520
BLEU-2 0.139 0.134 0.282 / 0.282 0.290 / 0.280
BLEU-3 0.054 0.042 0.159 / 0.154 0.155 / 0.146
BLEU-4 0.022 0.014 0.095 / 0.090 0.087 / 0.079
METEOR 0.102 0.088 0.140 / 0.137 0.142 / 0.134
ROUGE-L 0.210 0.202 0.280 / 0.286 0.297 / 0.294
max-LCS 7.513 6.299 8.286 / 8.141 7.955 / 7.632
Unique-fraction 0.960 0.730 0.250 / 0.230 0.480 / 0.460
Emo-Alignment 0.327 0.406 0.410 / 0.521 0.406 / 0.519
Similes-fraction 0.200 0.001 0.709 / 0.437 0.481 / 0.268

Table 4. Neural speaker machine-based evaluations. NN: Near-
est Neighbor baseline, ANP: baseline-with-injected sentiments,
M2: Meshed Transformer, SAT: Show-Attend-Tell. The Basic
models use for grounding only the underlying image, while the
Grounded variants also input an emotion-label.

cuses on linguistic explanations for affective responses trig-
gered by visual artworks with abundant emotion-provoking
content; and (2) a demonstration of neural speakers that can
express emotions and provide associated explanations. The
ability to deal computationally with images’ emotional at-
tributes opens an exciting new direction in human-computer
communication and interaction.
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