
HAL Id: hal-04479810
https://hal.science/hal-04479810v1

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Delaunay Surface Elements for Mesh
Reconstruction

Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy Mitra, Maks
Ovsjanikov

To cite this version:
Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy Mitra, Maks Ovsjanikov.
Learning Delaunay Surface Elements for Mesh Reconstruction. 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Jun 2021, Nashville, France.
�10.1109/CVPR46437.2021.00009�. �hal-04479810�

https://hal.science/hal-04479810v1
https://hal.archives-ouvertes.fr


Learning Delaunay Surface Elements for Mesh Reconstruction

Marie-Julie Rakotosaona
LIX, Ecole Polytechnique, IP Paris

mrakotos@lix.polytechnique.fr

Paul Guerrero
Adobe Research

guerrero@adobe.com

Noam Aigerman
Adobe Research

aigerman@adobe.com

Niloy Mitra
UCL, Adobe Research

n.mitra@ucl.ac.uk

Maks Ovsjanikov
LIX, Ecole Polytechnique, IP Paris

maks@lix.polytechnique.fr

Abstract

We present a method for reconstructing triangle meshes
from point clouds. Existing learning-based methods for
mesh reconstruction mostly generate triangles individually,
making it hard to create manifold meshes. We leverage
the properties of 2D Delaunay triangulations to construct
a mesh from manifold surface elements. Our method first
estimates local geodesic neighborhoods around each point.
We then perform a 2D projection of these neighborhoods
using a learned logarithmic map. A Delaunay triangula-
tion in this 2D domain is guaranteed to produce a mani-
fold patch, which we call a Delaunay surface element. We
synchronize the local 2D projections of neighboring ele-
ments to maximize the manifoldness of the reconstructed
mesh. Our results show that we achieve better overall man-
ifoldness of our reconstructed meshes than current meth-
ods to reconstruct meshes with arbitrary topology. Our
code, data and pretrained models can be found online:
https://github.com/mrakotosaon/dse-meshing

1. Introduction
Surface reconstruction from a given set of points (e.g.,

a scan), has a long history in computational geometry and
computer vision [5, 39]. A version of the problem requires
triangulating a given point cloud to produce a watertight and
manifold surface. A key challenge is to handle different
sampling conditions while producing well-shaped triangles
and preserving the underlying shape features.

A good surface reconstruction algorithm should satisfy
the following requirements: (i) produce a connected, man-
ifold and watertight triangulation; (ii) require no case-
specific parameter tuning; (iii) preserve sharp features;
(iv) handle point sets with non-uniform distribution; and

PointTriNet IER Meshing ours

[42]

[35]

[42] [35]

Figure 1. We present a method for mesh reconstruction from point
clouds. We combine Delaunay triangulations with learned local
parameterizations to obtain a higher-quality mesh than the current
state-of-the-art. Bad (non-manifold) triangles are shown in red.
Our method is robust to uniformly (top) and non-uniformly (bot-
tom) sampled points.



(v) generalize to handle a variety of shapes.
A widely-used pipeline for surface reconstruction con-

sists in first computing an implicit surface representation
[31] and then extracting a triangulation using a volumet-
ric method such as Marching Cubes [36]. Methods in this
category often require additional information (e.g., oriented
normals), while, crucially, the resulting triangulations may
not preserve the original point set and can oversmooth sharp
features. On the other hand, methods from computational
geometry, e.g., alpha shapes [20], ball pivoting [6], etc., can
respect the original point set, come with theoretical guar-
antees and produce triangulations with desirable properties
(e.g., good angle distribution). These approaches, however,
typically require careful parameter selection and rely on
dense, uniformly sampled point sets.

More recently, learning-based approaches have been de-
veloped to extract a triangulation without case-specific pa-
rameter selection. Most of such techniques focus on ro-
bustly predicting a signed distance field or simply an oc-
cupancy map, from which a mesh is subsequently extracted
using volumetric triangulation [12, 23, 41]. Only two recent
methods [42, 35] produce a triangulation while respecting
the original point set, but they ignore the quality of the tri-
angles or have trouble reconstructing sharp features.

We present a method that combines the advantages of
classical methods with learning-based data priors. Our
method is based on blending together Delaunay surface el-
ements, which are defined by a 2D Delaunay triangulation
of a local neighborhood in the point set after projecting it to
a planar 2D domain. For this, we propose an approach that
predicts a local projection via learned logarithmic maps and
uses them to propose likely triangles using local Delaunay
triangulations. Figure 1 shows an example reconstructions
using our method. We evaluate our method on a benchmark
of diverse surface point sets, and provide a comparison with
both classical and learning-based methods to show the ad-
vantages of the proposed approach. Through these exten-
sive experiments, we demonstrate that our method gener-
alizes across diverse test sets, is more robust than classical
approaches, and produces higher-quality triangulations than
recent learning-based methods.

2. Related Works
Computing a triangulation of a given point set is one of

the most fundamental problems in computational geometry,
computer vision, and related disciplines. We review meth-
ods most closely related to ours and refer to recent surveys
[32, 44, 5, 39] for a more in-depth discussion.

A commonly-used pipeline for surface reconstruc-
tion [29, 13] consists of computing the implicit surface rep-
resentation using, e.g., a signed distance function. A mesh
can then be extracted with standard methods such as Pois-
son surface reconstruction [31] combined with Marching

Cubes [36] or Dual Contouring [30]. Such approaches work
well in the presence of oriented normals and dense/uniform
point sets, but do not necessarily preserve the given points
in the final mesh and lead to over-smoothing or loss of de-
tails (see [5] for a detailed discussion).

We were inspired by classical methods based on Delau-
nay triangulations [8, 33, 9, 25, 17], alpha shapes [20] or
ball pivoting [6]. Such approaches can be shown to recover
the shape mesh topology [2] under certain sampling con-
ditions (an excellent overview of such approaches is pro-
vided in [16]). Unlike implicit-based methods, approaches
in this category, e.g., [6, 1, 10] typically preserve the input
point set. However, they can often fail to produce satisfac-
tory results for coarsely sampled shapes or in the presence
of complex geometric features. Another more robust, but
computationally more expensive, approach capable of fea-
ture preservation was introduced in [18], based on iterative
optimisation using optimal transport.

2.1. Learning for surface reconstruction

To address the challenges mentioned above, recent meth-
ods have aimed to learn surface reconstruction priors from
data. The majority of existing learning-based methods in
this area use a volumetric shape representation. For exam-
ple, meshes can be computed by predicting voxel grid occu-
pancy [24, 37] or via a differentiable variant of the marching
cubes [34], or more recently using generative models for ex-
plicit or implicit surface prediction [12, 23, 41, 38]. While
these methods can produce accurate results they solve a dif-
ferent problem to ours and do not compute a mesh over the
given point set. Instead, we focus on directly meshing a set
of input points, which provides better control over the fi-
nal shape and avoid over-smoothing, often associated with
implicit surface-based techniques.

Other methods have also aimed to compute a surface by
deforming a simple template while updating its connectiv-
ity [45, 40], fitting parameterized [26, 46] or mesh-aware
patches [3], performing local (e.g., convex) shape decom-
position. Majority of these schemes are restricted to partic-
ular shape topology or category and again do not necessarily
guarantee point set preservation.

2.2. Learning mesh connectivity

More directly, our work fits within the line of recent ef-
forts aimed explicitly at learning the mesh connectivity for a
given shape geometry. An early approach, Scan2Mesh [14]
developed a graph-based formulation to generate triangles
in a mesh. However, the method uses a costly volumetric
representation, does not aim to produce manifold meshes,
and specializes on particular shape categories.

Most closely related to ours are two very recent ap-
proaches aimed directly to address the point set triangu-
lation problem. The first method PointTriNet [42] works



Log MapGeodesic PatchEuclidean PatchInput Points Delaunay Surface Element

classification
network

projection
network

Delaunay
triangulation

f g

Figure 2. Overview of Delaunay Surface Element (DSE) generation. For any point pi in an input point cloud, we select the k-nearest
neighbors and extract the subset of points that are in the geodesic neighborhood of pi, using a learned classification network. A projection
network then estimates a log map projection of the points into a 2D embedding, where we can apply Delaunay Triangulation to get a DSE.

on point clouds and, similarly to ours, uses a local patch-
based network for predicting connectivity. However, this
technique processes triangles independently and only pro-
motes watertight and manifold structure through soft penal-
ties. The second method was presented in [35], and es-
timates local connectivity by predicting the ratio between
geodesic and Euclidean distances. This is a powerful sig-
nal, which is then fed into a non-learning based selection
procedure, which aims to finally output a coherent mesh.

In contrast to both of these approaches [42, 35], we for-
mulate the meshing problem as learning of (local) Delaunay
triangulations. Starting from the restricted Voronoi diagram
based formulation proposed in [10] we use data-driven pri-
ors to directly learn local projections to create local Delau-
nay patches. As a result, locally our network guarantees the
coherence of the computed mesh. As we demonstrate be-
low, learning Delaunay surface elements, both leads to bet-
ter shaped triangles (i.e., more desirable angle distribution)
and improves the overall manifold and watertight nature of
the computed triangle mesh.

3. Method
We assume to be given an point set P ∈ RN×3 sampled

from a surface Ŝ. Our goal is to create a meshM = (P ′, T )
that approximates Ŝ, by choosing a new triangulation T
that triangulates a subset P ′ ⊂ P of the input point cloud.
It is easy to obtain a high-quality triangulation for any set
of points that lies in 2D, via Delaunay triangulation [15].
However, when the set of points lies in 3D, finding a tri-
angulation is a much harder problem. A simple solution
is to locally project points to an estimated tangent plane of
the surface, resulting in local 2D embeddings where we can
apply a Delaunay triangulation. However, this is problem-
atic near complex geometry, such as edges or thin structures
and is sensitive to an imperfect estimation of the tangent
plane. Logarithmic maps [19, 28], or log maps for short,
provide a systematic solution to this problem by providing
local geodesic charts of the ground truth surface that are
good local parameterizations of complex geometry.

The core idea of our method is therefore to combine De-
launay triangulations and learned log maps to create small

triangulated patches that we call Delaunay Surface Ele-
ments (DSEs). Each DSE approximates a small part of the
surface and is guaranteed to have a manifold triangulation.
Since neighboring log maps may disagree, especially in re-
gions of high curvature, we align them locally with non-
rigid transformations of the 2D parameterizations of each
DSE. DSEs enable us to maintain the good properties of De-
launay Triangulations, like manifoldness and high-quality
triangles, within a data-driven approach, that learns to ex-
tract local geodesic patches and parameterize them with a
the log map, thereby increasing robustness and reconstruc-
tion accuracy. Our approach proceeds in four steps (the first
two steps are illustrated in Figure 2):

1. For each point pi ∈ P , a network estimates a geodesic
ball, by extracting a 3D patch P i ∈ Rk×3 made up of
its k-geodesically-closest points.

2. For each 3D point patch P i, a second network approx-
imates the log map parameterization, to get a 2D em-
bedding of the patch, denoted U i ∈ Rk×2.

3. We improve the consistency of neighboring patches
by aligning their 2D embeddings, giving us improved
patch embeddings Û i, which we then use to compute
the Delaunay Surface Elements.

4. The Delaunay Surface Elements vote for candidate tri-
angles, which are then aggregated iteratively into a
mesh.

3.1. Constructing Local Embeddings

The first two steps in our method are aimed at creating
a patch P i around each point pi and a local 2D embedding
Ui of the points inside the patch. These two ingredients will
later be used to compute a 2D Delaunay triangulation that
defines a Delaunay Surface Element.

Geodesic patch construction Given the point pi and its
K nearest neighbors Qi, we train a network to find a subset
of k points from these neighbors that are geodesically clos-
est to pi on the ground truth surface. In our experiments, we
set K = 120 and k = 30. The network is trained to model



a function cj := fθ([q
i
j , d

i
j ] | Qi) that classifies each point

qij in Qi as being one of the k geodesically closest points if
cj = 1 or not if cj = 0. We concatenate the Euclidean dis-
tance dij to the center point as additional input. The network
is parameterized by θ, conditioned on the point set Qi, and
models a function from 3D position to classification value.
We train this network with an L2 loss ‖cj −σ(ĉj)‖2, where
ĉj is the ground classification and σ is the sigmoid func-
tion. To obtain a fixed number of k points, we select the
top-k points based on their predicted labels cij , giving the
(geodesic) patch P i.

Log map estimation We train a second network to com-
pute the log map coordinates of each point in P i, denoted
as U i ∈ Rk×2. The network is trained to model a func-
tion uij := gφ([p

i
j , d

i
j ] | P i), where φ denotes the network

parameters and pj are the 3D coordinates of a point in P i.
These coordinates are concatenated with the Euclidean dis-
tance dij to the center point. The network outputs the log
map coordinates uij in U i, consisting of the Euclidean co-
ordinates of the log map with an origin at the center point
of the patch. Like the classification network, this network
is conditioned on the input point set P i. We use the sum of
two losses: a loss that penalizes the difference to the ground
truth coordinates and one that penalizes only the radial com-
ponent of the coordinates, i.e. the geodesic distance to the
center. Since log map coordinates are defined only up to
a 2D rotation around the central point, we use the Kabsh
algorithm [7] to find a 2D rotation and/or reflection that op-
timally aligns the predicted log map and the ground truth
log map before computing the loss: ‖RU i − Û i‖22, where
Û i is the ground truth andR is the optimal rigid transforma-
tion computed by the Kabsh algorithm. Note that the Kabsh
algorithm is differentiable. Our second loss measures the
error in the radial component:

∑
j(‖uij‖2 − ‖ûij‖2)2. This

loss measures how well the network can recover geodesic
distances regardless of the orientation in the patch.

Network architecture When approximating log maps
with a network, continuity is an important property. If the
estimated mapping from 3D space to the 2D log map param-
eterization is not continuous, the resulting Delaunay trian-
gulation may have flipped or intersecting triangles. We base
our architecture on FoldingNet [47] that produces continu-
ous mappings from an input to an output domain. Unlike the
original implementation, however, which maps from 2D to
3D, we want to map from 3D to 2D. Our experiments have
shown that this network architecture leads to more contin-
uous results than a PointNet-based architecture. We have
also found that it improves the performance of our classifi-
cation network, where we also adopt an architecture based
on FoldingNet. Since we train our network on individual

Log maps Rigid alignment Clustering Averaging

Figure 3. Log map alignment. To improve the consistency of log
maps, we align corresponding points in neighboring log maps with
rigid transformations. The resulting sets of corresponding points
are then clustered to remove outliers and averaged, giving us 2D
point embeddings that are more consistent with their neighbors.

patches, we can train on relatively small datasets, where
each shape provides a large number of patches as training
samples. More details on the architecture are provided in
the supplementary.

3.2. Combining Delaunay Surface Elements

At this point, we have a local 2D parameterization for
each patch. We could use these local parameterizations
to construct a triangulation of the patch by Delaunay-
triangulating it. However, each patch may be rather incon-
sistent with neighboring patches, in the sense that if two
patches P i, P j share three points a, b, c, the Delaunay tri-
angulation of U i may produce the triangle (a, b, c) while
the triangulation of U j may not, since the points are laid
out differently in each of the two parameterization. An ex-
ample is shown in Figure 4, right. Hence, the final pair of
steps is aimed at improving the consistency between the dif-
ferent patch parameterizations of neighboring DSEs before
combining all DSEs into the final mesh M .

Log map alignment In 2D, Delaunay triangulation are
guaranteed to produce a manifold triangulation. However,
we produce independent 2D parametrizations for each DSE.
Large differences in the parameterization of neighboring
DSEs may make their triangulations incompatible (i.e., the
union of their triangles may be non-manifold). In this step,
we locally align the log maps to one another to ensure better
consistency, without requiring the construction of a global
parameterization. Namely, a point pk ∈ P from the original
point cloud has an image in the log maps of each patch that
contains that point. We denote this set of all log map images
of point pk as Rk. We say U i, U j are neighbor patches if
they both have a point in the same Rk. Denote the image
of pk in the log map of each of the two patches as U i (pk),
U j (pk), respectively.

Our approach is illustrated in Figure 3. Considering the
patch U i, we align the neighboring patch U j to it, by tak-
ing all corresponding points and using the Kabsch algo-



triangle is member of three DSEs triangle is member of one DSE

Figure 4. Triangle membership count. Delaunay Surface Elements
are shown as colored triangles. Triangles that are part of exactly
three DSEs, like the dotted red triangle on the left, result in a man-
ifold triangulation. Triangles that are part of less than three DSEs,
like the triangle on the right, result in non-manifold triangulations.
We use this property to define a triangle confidence when selecting
triangles.

rithm to find the rigid motion that best aligns (in the least-
squares sense) the points based on their correspondences
U i (pk) ↔ U j (pk). Repeating this for all neighboring
patches aligns them all to U i. We then define the set Rik
to be the set of images of the point pk in the aligned log
maps and cluster Rik with DBSCAN [21]. The largest clus-
ter corresponds to the largest agreement between neighbor-
ing patches on the 2D coordinates uik of point pk in patch i.
We average all 2D coordinates in the cluster to update uik,
and weigh the average based on the distance of each point
in Rik to the center of its patch. Applying this process to all
2D coordinatesU i in each patch, we get a corrected log map
Û i for each patch, giving us DSEs that are more consistent
with the neighboring DSEs.

Delaunay triangulation Given a patch P i and its 2D pa-
rameterization Û i, we can compute a Delaunay Triangula-
tion on the 2D points uij . If Û i approximates the log map,
this gives us a manifold triangulation of the 3D patch that
locally approximates the ground truth surface Ŝ. We de-
fine a Delaunay Surface Element D := (P i, T i) as the set
of Delaunay triangles T i corresponding to the Voronoi cell
centered at pi. These triangles form an umbrella with pi as
its central point. We restrict our triangulation to triangles
that include the central point, as triangulations are increas-
ingly inconsistent with neighboring DSEs as the distance
from the central point increases.

Triangle selection Combining the triangles of all DSEs
yields a set of candidate triangles that we use in a final tri-
angle selection step to obtain a near-manifold mesh. We
base our selection criteria on our DSEs by observing that
a triangulation is manifold exactly if all triangles are part
of three DSEs (see Figure 4). Therefore, we divide our tri-
angles into three confidence bins. Triangles that appear in

Table 1. Quantitative results on the FAMOUSTHINGI testset. We
compare the percentage of non-watertight edges (NW), the Cham-
fer distance (CD) and normal reconstruction error in degrees (NR).

Method NW (%) CD ∗1e−2 NR
ball pivoting 25.7 0.524 6.59

PointTriNet [42] 17.2 0.337 6.24
RVE [10] 9.2 0.344 15.71

IER meshing [35] 5.3 0.343 6.30
α-shapes 3% 2.5 0.939 28.50
α-shapes 5% 1.7 1.064 17.69

Ours 0.4 0.326 5.23

three different DSEs will be considered the most likely to
appear in a manifold triangulation. And triangles that ap-
pear only once are considered least likely. Finally, we use
the triangle selection process proposed in [35] to produce a
triangulation based on our priority queue.

4. Results

We evaluate our method by comparing the quality and
accuracy of our reconstructed meshes to the current state-
of-the-art.

Dataset Since our networks are trained on individual
patches, our method is able to train successfully from a
small training set of shapes. Each shape provides a large set
of patches as training samples. We create a dataset with a
total of 91 shapes chosen from Thingi10k [48] and the PCP-
Net [27] dataset, that we call FAMOUSTHINGI, since the
PCPNet dataset contains several shapes that are well-known
in the graphics and vision literature. Each shape is sam-
pled uniformly with 10k points. We compute ground truth
log maps at each point using the recent method by Sharp et
al. [43]. The training set contains 56 of these shapes and the
remaining shapes are used for evaluation. Example shapes
and more details are given in the supplementary.

4.1. Comparison to Baselines

We compare our method to recent state of the art learning
based methods for point-set triangulation, as well as to more
classical methods.

Ball pivoting [6] and α-shapes [20]. These two classic
techniques use the concept of rolling a ball on the surface to
deduce connectivity at points of contact. For ball-pivoting,
the ball radius is automatically guessed as the bounding box
diagonal divided by the square root of the vertex count. For
α-shapes, we report two different choices of the radius pa-
rameter α, as 3% and 5% of the bounding box diagonal.



α-Shapes (5%) Ball Pivoting RVE PointTriNet IER Meshing Ours

19.1% / 0.26 / 15.4

17.3% / 0.47 / 7.9

16.7% / 0.35 / 7.5

18.3% / 0.47 / 9.2

17.6% / 0.30 / 18.3

10.6% / 0.52 / 8.7

7.9% / 0.37 / 7.6

10.2% / 0.51 / 9.4

2.5% / 0.26 / 14.2

0.4% / 0.46 / 7.0

0.3% / 0.34 / 6.7

2.6% / 0.47 / 8.1

30.7% / 0.31 / 24.4

18.5% / 0.60 / 14.4

12.0% / 0.35 / 9.8

29.2% / 0.69 / 19.7

17.4% / 0.46 / 16.6

53.8% / 0.97 / 9.3

26.7% / 0.49 / 7.7

58.6% / 1.06 / 10.4

0.0% / 0.98 / 10.7

0.0% / 1.25 / 7.2

0.1% / 1.09 / 8.3

0.0% / 2.49 / 11.4

NW / CD (*1e-2) / NR NW / CD (*1e-2) / NR NW / CD (*1e-2) / NRNW / CD (*1e-2) / NRNW / CD (*1e-2) / NRNW / CD (*1e-2) / NR

Figure 5. Qualitative comparison. We compare four meshes reconstructed by our method to the results of five current methods. Non-
manifold triangles are marked in red and we show both the percentage of non-watertight edges (NW) and the Chamfer distance multiplied
by 100 (CD) below each shape. Note that classical non-data-driven methods struggle to separate thin surfaces and data-driven methods
have significantly more non-manifold triangles.

Restricted Voronoi estimation [10] (RVE) This method
is the closest existing baseline to our method. It estimates
Voronoi cells restricted to the surface by projecting local
patches to local tangent planes. Note that this method re-
quires normal information that we estimate from the input
point cloud.

PointTriNet [42] and IER meshing [35] We compare
our method to two recent learning based methods for tri-
angulating point clouds. We retrain PointTriNet on our
dataset. Intrinsic-Extrinsic Ratio Guidance Meshing (IER
meshing), however, needs a larger amount of data to train
and overfits on our dataset. Since it is not patch based, it
needs a larger variety of shapes to train. We use the pre-
trained model provided by the authors, that was trained the
larger ShapeNet dataset.

Metrics We compare to these methods using two metrics
for the mesh quality and two metrics for the mesh accuracy.
As mesh quality measures, we use the percentage of non-
watertight edges (NW) and the standard deviation (Aσ) of
triangle angles in the mesh. Note that due to the triangle
selection step, all the produced edges are manifold (have
one or two adjacent triangles) but the edges can be open.
An angle of 60 degrees corresponds to equilateral triangles,
while skinny triangles have more extreme angles.

As a measure of the surface reconstruction accuracy, we
use the Chamfer Distance [4, 22] (CD) between a dense
point set PM sampled on the reconstructed surface and a



dense point set PŜ sampled on the ground truth surface:

CD(PM , PŜ) =
1

N

∑
pi∈PM

min
qj∈PŜ

‖pi − qj‖2 +

1

N

∑
qj∈PŜ

min
pi∈PM

‖qj − pi‖2

We also compare the normal reconstruction error (NR). At
each vertex of the mesh we measure the angle difference
in degrees between the ground truth normal and the normal
obtained from our reconstructed mesh.

Quantitative Comparison In Table 4, we show a quan-
titative comparison between our method and the baselines.
Our method yields lower chamfer distance, and less non-
manifold edges, showing we both better-approximate the
surface while at the same time outputting a triangulation
with far less non-manifold artifacts. Indeed, only the classic
technique of α-shapes manages to come close to our degree
of manifoldness, at the cost of lower accuracy, due to filling
in concave surface regions (see examples in Figure 5).

In Figure 7, we evaluate the quality of the generated tri-
angles by considering the histogram of triangle angles. The
standard deviation of each method is given next to its name.
Our method yields superior triangle quality to all learning-
based methods, and to all classic techniques except for ball-
pivoting, which achieves better triangle quality by sacrific-
ing manifoldness to a large degree.

Qualitative Comparison We show qualitative results in
Figure 5, on 4 meshes of our FAMOUSTHINGI dataset.
Non-manifold triangles are visualized in red, with the per-
centage of non-manifold triangles, as well as the Cham-
fer distance error, written beneath each result. The fig-
ure gives a very clear visual insight to the numbers from
Table 4: the classic techniques work in a non-adaptive
way which enables them to produce meshes with mostly-
manifold edges, but they cannot handle thin and tight struc-
tures, like the scaffolds of the tower. In contrast, the
learning-based methods are more local and can handle the
concavities in, e.g., the wheel, but fall short on produc-
ing manifold triangulations. Our method, combining the
robustness of classic Delaunay triangulation, with modern,
data-driven learning techniques, manages to produce trian-
gulations that both respect the original fine geometry and
have less non-manifoldness.

We show additional results on five shapes of the
ShapeNet dataset [11] in Figure 6. Compared to the two
data-driven methods PointTriNet and IER Meshing, we im-
prove upon the manifoldness, especially in regions with de-
tailed geometry and high curvature, like the edge of the ta-
ble, or the backrest of the chair. The results show a simi-
lar trend as in our FAMOUSTHINGI dataset. Note that IER

PointTriNet IER Meshing Ours

Figure 6. Qualitative comparison on ShapeNet [11]. We compare
with the two data-driven methods PointTriNet and IER Meshing
on five shapes taken from five different categories of the ShapeNet
dataset. Our approach results in more manifold meshes, especially
in detailed areas like the backrest of the chair.

meshing is trained on the ShapeNet dataset while Point-
TriNet and our method are trained on FAMOUSTHINGI
dataset, demonstrating the ability of our method to gener-
alize to unseen data. We show quantitative and qualitative
results on the ShapeNet dataset in the supplementary.

Limitations Finding a geometrically complex surface,
like on parts of the Eiffel tower in Figure 5, can be diffi-
cult. In such cases, the geodesic neighbors or logmap net-
works may misclassify/misplace some points. Moreover,
thin parts of a model are particularly challenging. We can
handle these cases better than existing works (Lego piece
of Figure 5, or the plane wing in Figure 6. More extreme
cases, like the leafs of a plant, would require training on a
dataset where these cases are more common.

Non uniform sampling We evaluate our method on non
uniformly sampled point clouds. In particular we sam-
ple points following a probability gradient along the y-axis
(horizontal). We observe in Figure 1 (bottom) that our
method performs better than other learning-based baselines.
Note that PointTriNet, IER Meshing and our method have
not been retrained on a non-uniformly sampled dataset. We
provide further evaluation on non uniformly sampled point
clouds in the supplementary.



Ball Pivoting
Ours
RVE
IER Meshing
PointTriNet
α-Shapes 3%
α-Shapes 5%

21.8
22.1
22.3
24.6
25.4
28.2
29.1

method

de
ns

ity

triangle angles 60° 160°0°

Figure 7. Distribution of triangle angles in the reconstructed
meshes. Our method produces better shaped triangles than all
other methods except for ball pivoting which sacrifices mesh man-
ifoldness. We show the angle variance next to each method.

Table 2. Ablation study over the components of our method. Log
map alignment, triangle selection as well as the the log map
parametrization improve manifoldness in the output meshes.

Method NW (%) CD ∗1e−2 NR
Ours w/o align, select 22.51 0.326 7.26

Ours w/o select 10.98 0.348 6.86
Ours w/o log maps 1.18 0.334 5.93

Ours w/o align 1.07 0.325 5.19
Ours 0.40 0.326 5.22

4.2. Ablation study

We evaluate the impact of each step in our pipeline using
an ablation study, shown in Table 2. We remove one compo-
nent at a time and compute the percentage of non-watertight
edges (NW), Chamfer distance (CD) and normal recon-
struction error (NR) as described before. We first remove
the alignment of the logmaps of the delaunay triangulation,
which results in a slight degradation manifoldness. Next,
we evaluate the efficacy of our triangle selection process
by instead creating a mesh from all triangles in our Delau-
nay Surface Elements. This results in a significant drop in
manifoldness of the triangulation, since we do not achieve
perfect alignment of our logmaps. Dropping both the align-
ment and the selection results in a much more significant
decrease in manifoldness than just removing the selection –
this hints that the alignment is indeed producing more con-
sistent local DSE’s. Lastly, we replace the log maps with
simple 2D projections, to get the local patch parameteri-
zation along the approximated normal vector. Please note
that we still use the learned geodesic neighborhood. Man-
ifoldness deteriorates as well, showing the necessity of our

specific parameterization method. In particular, the 2D pro-
jection parametrization performs poorly for complex shapes
such as the Eiffel tower (NW: 5.59% (w/o logmaps), 2.48%
(Ours)) or Trilego (NW: 5.59% (w/o logmaps) NW: 1.64%
(Ours)) shapes. Note that the Chamfer distance is not sig-
nificantly increased by the removal of any component from
our pipeline, as our method’s locality prevents strong errors
in the surface location by design, due to considering only
the learned geodesic neighborhoods of the surface.

5. Conclusion

We presented Delaunay Surface Elements for robust sur-
face reconstruction from points sets. In the process, we
combine the best of two worlds: 2D Delaunay triangulation
from classical computational geometry which comes with
guarantee about mesh quality and manifoldness; and local
logmaps learned using networks, followed by synchoniza-
tion to get local data-driven 2D projection domains to han-
dle non-planar regions. We demonstrated that the method
can be trained with very limited training data and produces
near-manifold triangulations that respect the original point
set and have a higher mesh quality than the state-of-the-art.

In the proposed method, the final mesh extraction is done
via a non-differentiable growing approach. In the future,
it would be interesting to also learn the triangle selection
via a network. This could enable a truly end-to-end opti-
mization and allow us to optimize for context-specific point
distributions accounting for data-priors (e.g., sharp edges)
and scanner characteristics. Another direction would be to
consider weighted Delaunay triangulations that provide ad-
ditional freedom to local triangulations.

6. Acknowledgements

Parts of this work were supported by an Adobe intern-
ship, the KAUST OSR Award No. CRG-2017-3426, the
ERC Starting Grant No. 758800 (EXPROTEA) and the
ANR AI Chair AIGRETTE.

References
[1] Nina Amenta and Marshall Bern. Surface reconstruction

by voronoi filtering. Discrete & Computational Geometry,
22(4):481–504, 1999. 2

[2] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A
new voronoi-based surface reconstruction algorithm. Proc.
SIGGRAPH, pages 415–421, 1998. 2

[3] Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen.
Meshlet priors for 3d mesh reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2849–2858, 2020. 2

[4] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C.
Wolf. Parametric correspondence and chamfer matching:
Two new techniques for image matching. In Proceedings of



the 5th International Joint Conference on Artificial Intelli-
gence - Volume 2, IJCAI’77, pages 659–663, San Francisco,
CA, USA, 1977. Morgan Kaufmann Publishers Inc. 6

[5] Matthew Berger, Andrea Tagliasacchi, Lee M Seversky,
Pierre Alliez, Gael Guennebaud, Joshua A Levine, Andrei
Sharf, and Claudio T Silva. A survey of surface reconstruc-
tion from point clouds. In Computer Graphics Forum, vol-
ume 36, pages 301–329. Wiley Online Library, 2017. 1, 2

[6] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,
Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-
rithm for surface reconstruction. IEEE transactions on vi-
sualization and computer graphics, 5(4):349–359, 1999. 2,
5

[7] KP Horn Berthold and P Horn. Closed-form solution of ab-
solute orientation using unit quaternions. Journal of the op-
tical society of America, 4(4):629–642, 1987. 4

[8] Jean-Daniel Boissonnat. Geometric structures for three-
dimensional shape representation. ACM Transactions on
Graphics (TOG), 3(4):266–286, 1984. 2

[9] Jean-Daniel Boissonnat and Steve Oudot. Provably good
sampling and meshing of surfaces. Graphical Models,
67(5):405–451, 2005. 2

[10] Dobrina Boltcheva and Bruno Lévy. Surface reconstruction
by computing restricted voronoi cells in parallel. Computer-
Aided Design, 90:123–134, 2017. 2, 3, 5, 6

[11] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 7

[12] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5939–5948, 2019. 2

[13] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, Proc. SIGGRAPH, pages 303–312,
1996. 2

[14] Angela Dai and Matthias Nießner. Scan2mesh: From un-
structured range scans to 3d meshes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 5574–5583, 2019. 2

[15] Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk,
7(793-800):1–2, 1934. 3

[16] Tamal K Dey. Curve and surface reconstruction: algorithms
with mathematical analysis, volume 23. Cambridge Univer-
sity Press, 2006. 2

[17] Tamal K Dey, Joachim Giesen, and James Hudson. Delaunay
based shape reconstruction from large data. In Proceedings
IEEE 2001 Symposium on Parallel and Large-Data Visual-
ization and Graphics (Cat. No. 01EX520), pages 19–146.
IEEE, 2001. 2

[18] Julie Digne, David Cohen-Steiner, Pierre Alliez, Fernando
De Goes, and Mathieu Desbrun. Feature-preserving sur-
face reconstruction and simplification from defect-laden

point sets. Journal of mathematical imaging and vision,
48(2):369–382, 2014. 2

[19] Manfredo P Do Carmo. Differential geometry of curves and
surfaces: revised and updated second edition. Courier Dover
Publications, 2016. 3

[20] Herbert Edelsbrunner and Ernst P Mücke. Three-
dimensional alpha shapes. ACM Transactions on Graphics
(TOG), 13(1):43–72, 1994. 2, 5

[21] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96, pages
226–231, 1996. 5

[22] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 6

[23] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. arXiv
preprint arXiv:1904.06447, 2019. 2

[24] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. arXiv preprint arXiv:1906.02739, 2019. 2

[25] Meenakshisundaram Gopi, Shankar Krishnan, and Cláudio T
Silva. Surface reconstruction based on lower dimensional
localized delaunay triangulation. In Computer Graphics
Forum, volume 19, pages 467–478. Wiley Online Library,
2000. 2

[26] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 2

[27] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and
Niloy J Mitra. Pcpnet learning local shape properties from
raw point clouds. In Computer Graphics Forum, volume 37,
pages 75–85. Wiley Online Library, 2018. 5

[28] Philipp Herholz and Marc Alexa. Efficient computation of
smoothed exponential maps. In Computer Graphics Forum,
volume 38, pages 79–90. Wiley Online Library, 2019. 3

[29] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDon-
ald, and Werner Stuetzle. Surface reconstruction from unor-
ganized points, volume 26. ACM, 1992. 2

[30] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual
contouring of hermite data. In Proceedings of the 29th an-
nual conference on Computer graphics and interactive tech-
niques, pages 339–346, 2002. 2

[31] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics symposium on Geometry processing,
volume 7, 2006. 2

[32] Alireza Khatamian and Hamid R Arabnia. Survey on 3d sur-
face reconstruction. Journal of Information Processing Sys-
tems, 12(3), 2016. 2

[33] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F O’Brien. Spectral surface reconstruction from noisy
point clouds. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 11–
21. ACM, 2004. 2



[34] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2916–2925, 2018. 2

[35] Minghua Liu, Xiaoshuai Zhang, and Hao Su. Meshing
point clouds with predicted intrinsic-extrinsic ratio guidance.
arXiv preprint arXiv:2007.09267, 2020. 1, 2, 3, 5, 6

[36] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 2

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019. 2

[38] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W
Battaglia. Polygen: An autoregressive generative model of
3d meshes. arXiv preprint arXiv:2002.10880, 2020. 2

[39] Timothy S Newman and Hong Yi. A survey of the marching
cubes algorithm. Computers & Graphics, 30(5):854–879,
2006. 1, 2

[40] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and
Kui Jia. Deep mesh reconstruction from single rgb images
via topology modification networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages
9964–9973, 2019. 2

[41] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019. 2

[42] Nicholas Sharp and Maks Ovsjanikov. Pointtrinet:
Learned triangulation of 3d point sets. arXiv preprint
arXiv:2005.02138, 2020. 1, 2, 3, 5, 6

[43] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. The
vector heat method. ACM Trans. Graph., 38(3), 2019. 5

[44] Jonathan Shewchuk, Tamal K Dey, and Siu-Wing Cheng.
Delaunay mesh generation. Chapman and Hall/CRC, 2016.
2

[45] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52–67,
2018. 2

[46] Francis Williams, Teseo Schneider, Claudio Silva, Denis
Zorin, Joan Bruna, and Daniele Panozzo. Deep geomet-
ric prior for surface reconstruction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 10130–10139, 2019. 2

[47] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018. 4

[48] Qingnan Zhou and Alec Jacobson. Thingi10k: A
dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016. 5


