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Abstract
This work considers a repeated principal-agent
bandit game, where the principal can only
interact with her environment through the agent.
The principal and the agent have misaligned
objectives and the choice of action is only left to
the agent. However, the principal can influence
the agent’s decisions by offering incentives which
add up to his rewards. The principal aims to
iteratively learn an incentive policy to maximize
her own total utility. This framework extends
usual bandit problems and is motivated by several
practical applications, such as healthcare or
ecological taxation, where traditionally used
mechanism design theories often overlook the
learning aspect of the problem. We present
nearly optimal (with respect to a horizon T )
learning algorithms for the principal’s regret in
both multi-armed and linear contextual settings.
Finally, we support our theoretical guarantees
through numerical experiments.

1 Introduction
Decision-making under uncertainty is a ubiquitous feature
of real-world applications of machine learning, arising in
domains as diverse as recommendation systems (Li et al.,
2010), healthcare (Yu et al., 2021), and agriculture (Evans
et al., 2017). Multi-armed bandits provide a classical
point of departure for decision-making under uncertainty
in these settings (Thompson, 1933; Woodroofe, 1979;
Lattimore & Szepesvári, 2020; Slivkins et al., 2019). The
basic bandit solution involves an agent who learns which
decisions yield high rewards via repeated experimentation.
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Real-world decision-making problems, however, often
present challenges that are not addressed in this simple
optimization framework. These include the challenge of
scarcity when there are multiple decision-makers, issues
of misaligned objectives, and problems arising from
information asymmetries and signaling. The economics
literature addresses these issues through the design of
game-theoretic mechanisms, including auctions and
contracts (see, e.g., Myerson, 1989; Laffont & Martimort,
2009), aiming to achieve favorable outcomes despite agents’
self-interest and limited information set. Unfortunately,
the economics literature tends to neglect the learning
aspect of the problem, often assuming that preferences, or
distributions on preferences, are known a priori. Our work
focuses on the blend of mechanism design and learning. We
study a principal-agent model with information asymmetry
and we develop a learning framework in which the principal
aims to uncover the true preferences of the agent while
optimizing her own gains.

Building on the work of Dogan et al. (2023a;b), we consider
a repeated game between a principal and an agent, where,
at each round, the principal proposes an incentive transfer
associated with any action. The agent greedily chooses
the action that maximizes the sum of his expected reward
and the incentive. The goal of the principal is to learn an
incentive policy which maximizes her own utility over time,
taking into account both the rewards that she reaps and the
costly incentives that she offers.

Our contributions are as follows:

• We present the Incentivized Principal-Agent
Algorithm (IPA) framework, which comprises two steps.
First, IPA estimates the minimal level of incentive needed
to make the agent select any desired action. Subsequently,
forming an upper estimate of these incentives, IPA uses
a regret-minimization algorithm in a black-box fashion.
The overall algorithm achieves both nearly optimal
distribution-free and instance-dependent regret bounds.

• We extend IPA to the linear contextual bandit setting
(see, e.g., Abe & Long, 1999; Auer, 2002; Dani et al.,
2008), significantly broadening its applicability in
various applications. Here Contextual IPA achieves
a O(d

√
T log(T )) regret bound. We emphasize that

Contextual IPA is the first known algorithm for
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incentivized learning in a contextual setting. Moreover
it matches, up to logarithmic factors, the minimax lower
bound Ω(d

√
T ) for the easier problem of stochastic linear

bandits (Rusmevichientong & Tsitsiklis, 2010).

2 Related Work
While classical work on bandit problems and reinforcement
learning has predominantly focused on single-agent
scenarios, many emerging applications require considering
multiple agents. Recent literature has accordingly begun to
study frameworks for learning in multi-agent multi-armed
bandit settings (see, e.g., Boursier & Perchet, 2022).

Mansour et al. (2020) discuss how a social planner can
simultaneously learn and influence self-interested agents’
decisions through Bayesian-Incentive Compatible (BIC)
recommendations. The rationale behind this notion is
that a BIC recommendation guarantees to each agent a
maximal reward given the past, at any step. The social
planner objective is to design BIC recommendations that
maximize the global welfare. Mansour et al. (2020) propose
an algorithm for solving this problem in both multi-armed
and contextual bandit settings. Notably, their work turns
any black-box bandit algorithm into a BIC algorithm. For
this problem, Sellke & Slivkins (2021) show that Thompson
sampling can be made BIC, with a sufficient number of
initial observations. Hu et al. (2022) extend this work to the
combinatorial bandits problem.

Another line of work due to Banihashem et al. (2023) and
Simchowitz & Slivkins (2023) studies how a principal can
provide recommendations to agents so that they explore all
reachable states in a Markov Decision Process (MDP). To
this end, the principal supplies the agents with a modified
history, with the modifications carefully chosen to retain
the agents’ trust. This line of work is closely related to the
online Bayesian persuasion literature (see, e.g., Castiglioni
et al., 2020), which dates to the seminal work of Kamenica
& Gentzkow (2011). Online Bayesian persuasion consists
of the principal sequentially influencing agents’ decision
with signals in her own interest.

In these works, the information asymmetry favors the
principal, so that the principal can influence the agent’s
decision at little or no cost. In our problem, the agent instead
has perfect knowledge of the problem parameters and his
action can only be influenced through utility transfers.

Ben-Porat et al. (2023) study a principal and an agent
sharing a common Markov Decision Process (MDP) with
different reward functions. Similarly to our setting, at each
step the action is chosen by an agent with full knowledge
of the game. The objective of the principal is to minimize
her cumulative regret under a constraint on the incentive
budget. Despite extending our setup to MDPs, Ben-Porat

et al. (2023) do not consider uncertainty in the principal’s
side, turning the game into an optimization problem.

Related issues arise in the study of dynamic pricing
(Den Boer, 2015; Javanmard & Nazerzadeh, 2019; Mao
et al., 2018; Golrezaei et al., 2023). Our work diverges
from dynamic pricing in that in our case the principal not
only faces uncertainty with respect to the agent’s utility, but
also with respect to her own utility.

Some works study similar principal-agent games but with
a specific focus on the achievable optimality of the contract
Cohen et al. (2022) or a specific stochastic model for the
agent’s behavior Conitzer & Garera (2006).

Finally, our study is inspired by the work of Dogan et al.
(2023b) to explore the principal’s learning mechanism
within a principal-agent setting. They propose an ε-Greedy
algorithm with suboptimal regret guarantees. In particular,
it suffers an exponential dependence in the number of
actions. In contrast, we provide both distribution free and
instance-dependent regret bounds that nearly match the
known lower bounds. Also, we extend our approach to the
non-trivial contextual case. Finally, Dogan et al. (2023a)
extend (Dogan et al., 2023b), taking into account presence
of uncertainty on the agent’s side.

3 Multi-Armed Principal-Agent Learning
Setup. We consider a repeated principal-agent game. A
contextual version of the game is introduced in Section 4.
The action set for the agent (or set of arms) is fixed to be
A := [K] = {1, . . . ,K},K ∈ N⋆. We assume that the
agent’s rewards, s = (s1, . . . , sK) ∈ RK

+ , are deterministic
and that they are known to the agent and unknown to the
principal.

For each action a ∈ [K], the rewards of the principal are
given by a random, i.i.d. sequence (Xa(t))t∈[T ], where
Xa(t) ∼ νa and νa is the arm distribution. The distributions
{νa}Ka=1 are unknown to the principal and are learned as a
consequence of the following principal-agent interaction.

At each round t ∈ [T ], where T is the game horizon, the
principal proposes an incentive π(t) ∈ R+ associated with
an action at ∈ [K]. The agent then greedily chooses action
At maximizing his utility:

At ∈ argmaxa∈[K]{sa + 1at
(a)π(t)} , (1)

breaking ties arbitrarily.1 The principal then observes the
arm At selected by the agent, as well as her reward given
by XAt(t). The utility of the principal on the round is given
by XAt(t)− 1at(At)π(t). For any a ∈ [K], the principal’s

1Note that the related works (Ben-Porat et al., 2023;
Simchowitz & Slivkins, 2023) assume a tie-breaking in favor of
the principal, an assumption that we do not need here.
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mean reward is θa := E[Xa(t)]. See Table 1 in Appendix A
for a summary of the main definitions used in this section.

The sequence of incentives (at, π(t))t∈[T ] defines a
sequence of actions (At)t∈[T ] chosen by the agent. The goal
of the principal is to maximize her total utility. On a single
round, she thus aims at proposing an optimal incentive πopt

on an arm aopt ∈ [K], which solves

maximize
∫
xνa(dx)− π over π ∈ R+, a ∈ [K]

such that a ∈ argmaxa′∈[K]{sa′ + 1a(a
′)π} .

(2)

This is consistent with the conventional framework for
utility in bandit problems, where we subtract the cost of
incentives to the principal. Here, the principal’s influence
is exerted solely through the strategic use of incentives,
carefully designed to guide the agent’s behavior. We define
µ⋆ :=

∫
xνaopt(dx)− πopt. Maximizing the total utility of

the principal over T rounds is equivalent to minimizing the
expected regret, defined as

R(T ) := T µ⋆ −
T∑

t=1

E[XAt
(t)− 1at

(At)π(t)] . (3)

Remark. In the prior work of Dogan et al. (2023b),
incentives were defined as a vector of size K, where the
incentivize associated with an action a ∈ [K] was denoted
πa. In our setting, since the goal of the principal is to make
sure that the agent picks one prescribed action, it is enough
to consider a restricted family of the form πa = 1at

(a)π(t),
where (at, π(t)) are incentives in the sense defined above.

We make the following assumption.

H1. For any a ∈ [K], sa ∈ [0, 1].

Neither the distributions νa nor the preferences of the agent
are known to the principal. Another difficulty arises from
designing the magnitude of the incentive π(t): if it is too
small, the agent might not choose the arm at proposed by
the principal whereas using an overly large amount leads
the principal to overpay, decreasing her utility.

This trade-off also arises in dynamic pricing, where sellers
must strike a balance between attractive pricing and
profitability. For discussion of the results in that literature,
see the comprehensive overview by Den Boer (2015). In
addition, there are links between dynamic pricing and bandit
problems (see, e.g., Javanmard & Nazerzadeh, 2019; Cai
et al., 2023).

Optimal incentives. Before introducing IPA, we
highlight a pivotal observation. For any given round t ⩾ 1,
action a ∈ [K] and ε > 0, the principal can entice the agent
to choose a by offering an incentive, π⋆,ε

a ∈ R+, defined as:

π⋆,ε
a = max

a′∈[K]
sa′ − sa + ε . (4)

With this incentive, it holds that for any a′ ∈ [K], a′ ̸= a:

sa′ < sa + π⋆,ε
a ,

which ensures that the agent chooses At = a, given that
action a yields a superior reward. Consequently, π⋆

a :=
limε→0 π

⋆,ε
a = maxa′∈[K] sa′ − sa represents the infimal

incentive necessary to make arm a the agent’s selection.
Assuming s is known to the principal, then using π⋆,ε

a for
any ε > 0 across all arms a ∈ [K], will provide an expected
reward of θa − π⋆

a per arm, which can be found using a
standard bandit algorithm. Lemma 1 allows us to define the
regret in a more convenient way.

Lemma 1. For any T ∈ N, the regret of any algorithm on
our problem instance can be written as

R(T ) = T max
a∈[K]

{θa + sa − max
a′∈[K]

sa′}

− E

[
T∑

t=1

{θAt − 1at(At)π(t)}

]
.

Warm up: fixed horizon solution and regret analysis.
IPA separates the problem of learning optimal incentives π⋆

a

for each action a—a problem that can be solved efficiently
via binary search (see Algorithm 3)—from estimation of the
principal’s expected reward (θa)a∈[K], which is achieved
using a standard multi-armed bandit algorithm. With a
known horizon T , the algorithm unfolds in two stages.
First, for each action a ∈ [K], the principal devotes NT :=
⌈log2 T ⌉ rounds of binary search per arm to estimate π⋆

a,
maintaining lower πa(NT ) and upper πa(NT ) bounds with
πa(NT ) ⩽ π⋆

a ⩽ πa(NT ). Denoting πa := πa(⌈log2 T ⌉)
for simplicity, we compute the estimate

π̂a := πa(⌈log2 T ⌉) + 1/T , (5)

where 1/T is added to avoid any tie-breaking situation. We
show formally in Lemma 8 that

π̂a − 2/T ⩽ π⋆
a < π̂a . (6)

In the second phase, IPA then employs an arbitrary multi-
armed bandit subroutine Alg in a black-box manner to learn
θ.

Bandit instance. For any distributions (ν̃a)a∈[K] and
sequence of i.i.d. random variables (Ya(t))t∈N⋆ , a ∈
[K], with Ya(t) ∼ ν̃a, we define the history Gt :=
(As, Us, YAs

(s))s⩽t where for any s ∈ N⋆, (Us)s∈N⋆ is
a family of independent uniform random variables on [0, 1]
allowing for randomization in the subroutine. Let Alg be a
bandit algorithm, i.e., Alg : (Ut,Gt−1) 7→ aRec

t . We define
the expected regret of Alg as

RAlg(T, ν̃) := T max
a∈[K]

EY∼ν̃ [Ya(1)]
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− EY∼ν̃

[
T∑

t=1

YAlg(Ut,Gt−1)(t)

]
.

After the binary search phase, for t > K⌈log2 T ⌉, the
principal plays Alg on her bandit instance driven by her own
mean rewards (θa)a∈[K] and the approximated incentives
(π̂a)a∈[K]. Alg will be fed with a shifted history, defined
for any t > K⌈log2 T ⌉ as

H̃t := (aRec
s , Us, XAs

(s)− π̂aRec
s

)s∈[K⌈log2 T⌉+1,t] , (7)

with aRec
t the action recommended by Alg at time t and

At the action pulled by the agent. At time t, IPA offers
the incentive π̂aRec

t
to the agent if he chooses action aRec

t .
Equation (6) ensures that this incentive makes aRec

t strictly
preferable to any other action for the agent and so aRec

t

is eventually played. As can be seen in (7), the shift of
each arm’s mean by π̂a is taken into account while Alg is
learning. We also define the shifted distribution ρTa for any
a ∈ [K] as the distribution of Xa(1)− π̂a.

Algorithm 1 IPA

1: Input: Set of actions A := [K], time horizon T ,
subroutine Alg

2: Compute H̃s := ∅ for any s ⩽ K⌈log2 T ⌉
3: for a ∈ [K] do
4: # See Algorithm 3
5: πa, πa = Binary Search(a, ⌈log2 T ⌉, 0, 1)
6: end for
7: For any action a ∈ [K], π̂a = πa + 1/T
8: for t = ⌈log2 T ⌉+ 1, . . . , T do
9: Sample Ut ∼ U(0, 1) and get a recommended action

by Alg, aRec
t = Alg(Ut, H̃t−1)

10: Offer an incentive π̂aRec
t

on action aRec
t and nothing

for any other action a′ ∈ [K], a′ ̸= a
11: Observe At, XAt

(t) and compute history H̃t =

(aRec
s , Us, XAs(s)− π̂aRec

s
)s∈[K⌈log2 T⌉+1,t]

12: end for

Theorem 1. IPA run with any multi-armed bandit
subroutine Alg has an overall regret R(T ) such that

R(T ) ⩽ 2 + (1 + max
a∈[K]

{θa} − min
a∈[K]

{θa})(1 +K log2 T )

+RAlg(T −K⌈log2 T ⌉, ρT ) ,

where RAlg stands for the regret induced by Alg on the
shifted vanilla multi-armed bandit problem ρT .

The proof is postponed to Appendix C.
Corollary 1. Assume the principal’s reward distribution νa
for any action a ∈ [K] is 1-subgaussian. Then, IPA run
with the bandit subroutine Alg = UCB has a regret bounded
for any T ∈ N as follows:

R(T ) ⩽ 3 + 3
∑

a∈[K],∆⋆
a>0

∆⋆
a

+ (1 + max
a∈[K]

{θa} − min
a∈[K]

{θa})(1 + 9K log2 T )

+ 8min

√
TK log T ;

∑
a∈[K],∆⋆

a>0

4 log T

∆⋆
a

 ,

where ∆⋆
a := maxa′∈[K]{θa′ + sa′} − (θa + sa) are the

reward gaps.

Note that any black-box algorithm, not necessarily UCB,
can be employed, yielding other concrete bounds in the
corollary. We recover the usual multi-armed UCB bounds
(both distribution-free and instance-dependent): this is
why IPA achieves the bound provided in Corollary 1.
For completeness, the UCB subroutine is given in
Appendix E.

4 Contextual Principal-Agent Learning
In this section, we study the same interaction between a
principal and an agent, but in a contextual setting (see, e.g.,
Abe & Long, 1999; Auer, 2002; Dani et al., 2008). We use
the simplified model of stochastic linear bandits for both the
agent and the principal. Consider a set of possible actions
in B(0, 1), where B(0, 1) stands for the unit closed ball
in Rd, and a family of zero-mean distributions indexed by
B(0, 1), (ν̃a)a∈B(0,1) such that for any a ∈ B(0, 1), t ∈
[T ], ηa(t) ∼ ν̃a. The principal’s reward is given by
the sequence {(Xa(t))a∈B(0,1) : t ∈ [T ]} of independent
random variables such that for any t ∈ [T ], a ∈ B(0, 1),

Xa(t) := ⟨θ⋆, a⟩+ ηa(t) ,

where θ⋆ is unknown to the principal. The agent’s reward
function is defined as a 7→ ⟨s⋆, a⟩, where s⋆ ∈ Rd is known
to the agent and unknown to the principal. With this notation,
the agent and the principal observe an action set At ⊆
B(0, 1), at each round t ⩾ 1. Note that this set is no longer
stationary. The precise timeline is as follows. At each round,
the principal proposes an incentive function, κ(t, ·) : At →
R+, associating any action a ∈ At ⊆ B(0, 1) with a transfer
of incentives κ(t, a) from the principal to the agent. The
principal chooses κ(t, ·) as a function with a finite support,
which makes it upper semi-continuous. The agent then
greedily chooses the action At as follows:

At ∈ argmaxa∈At
{⟨s⋆, a⟩+ κ(t, a)} , (8)

which is well-defined since κ(t, ·) is upper semi-continuous
and At satisfies the following assumption.

H 2. For any t ⩾ 1, At is closed, therefore compact.
Moreover, s⋆ ∈ B(0, 1) and θ⋆ ∈ B(0, 1).

The principal then observes the arm At selected by the
agent, as well as her incurred reward given by XAt(t). The
utility of the principal on the round is given by XAt(t) −

4
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κ(t, At). This defines, for a sequence of principal’s
incentive functions {κ(t, ·), t ∈ [T ]}, the sequence of
actions {At : t ∈ [T ]} chosen by the agent. The goal of
the principal is to maximize her total utility. On a single
round t, she thus aims at proposing an optimal incentive
function κ(t, ·) which solves

maximize ⟨θ⋆, a⟩ − κ(t, a) over κ(t, ·) : At → R+,

such that a ∈ argmaxa′∈At
{⟨s⋆, a′⟩+ κ(t, a′)} .

(9)

In addition, we define the optimal average reward at t as

µ⋆
t := sup

κ(t,·) : At→R+

{⟨θ⋆, a⟩ − κ(t, a)}

such that a ∈ argmaxa′∈At
{⟨s⋆, a′⟩+ κ(t, a′)} .

(10)

Maximizing the total utility of the principal over T rounds
is equivalent to minimizing the expected regret, defined as

R(T ) =

T∑
t=1

µ⋆
t − E

[
T∑

t=1

(XAt(t)− κ(t, At))

]
. (11)

Similarly to Lemma 1, the following result provides an
alternative definition for the regret.

Lemma 2. For any T ∈ N, the regret of any algorithm on
our contextual problem instance can be written as

R(T ) =

T∑
t=1

max
a∈At

{⟨θ⋆ + s⋆, a⟩ − max
a′∈At

⟨s⋆, a′⟩}

− E

[
T∑

t=1

(⟨θ⋆, At⟩ − κ(t, At))

]
.

The proof is deferred to Appendix D.

Design of the optimal incentives. At any round t ⩾ 1,
for the agent to necessarily choose action a ∈ At, the
principal can provide the agent with the incentive function
κ⋆,ε
a (t, a′) := 1a(a

′)π⋆,ε(t, a), where for any ε > 0,

π⋆,ε(t, a) := max
a′
t∈At

{⟨s⋆, a′t − a⟩+ ε} .

Lemma 10 in Appendix D guarantees that this choice of
κ⋆,ε
a gives At = a, where At is defined in (8). Define

aagt := argmaxa′∈At
⟨s⋆, a′⟩ ,

π⋆(t, a) := ⟨s⋆, aagt ⟩ − ⟨s⋆, a⟩ (12)

and κ⋆
a(t, a

′) := 1a(a
′)π⋆(t, a). As in the non-contextual

case, taking ε → 0 makes the incentive function κ⋆
a

the infimal function that makes the choice of a strictly
preferable to any other arm a′ ∈ At at time t.

Similarly to the multi-armed setting, we decompose the
problem into two distinct components. First, we aim to

estimate the agent’s reward a 7→ ⟨s⋆, a⟩ based on the
observation of agent’s selected actions given an appropriate
choice of incentives. As discussed below, this can be
achieved with a binary-search-like procedure. Second, once
this function is accurately estimated, the principal can use a
contextual bandit algorithm CtxAlg in a black-box manner
to minimize her own regret with the estimated incentive
function to determine the agent’s behavior.

Estimation of the agent’s reward. The approach that
we propose is based on a sequence of confidence sets
{St}t∈[T ] that satisfy s⋆ ∈ St for any t ∈ [T ]. We
construct the sequence (St)t∈[T ] recursively such that their
diameters decrease along the iterations. This is motivated
by Lemma 3 which allows us to control the estimation error
of π⋆ and relates it to the diameter of these sets. The proof
is postponed to Appendix D.

Lemma 3. For any t ∈ [T ] and closed subset S ⊂
B(0, 1) with s⋆ ∈ S, it holds, for any a ∈ At,
|maxs∈S,a′∈At

⟨s, a′ − a⟩ − π⋆(t, a)| ⩽ 2 diam(S,At)
where diam(S,At) := maxa′∈At

maxs1,s2∈S |⟨s1 −
s2, a

′⟩|.

In the light of Lemma 3, we thus aim to build confidence sets
St with decreasing diameters such that s⋆ ∈ St for any t. To
this end, the principal can offer an incentive function κ(t, ·)
concentrated on a single point a ∈ At as in the multi-armed
case: κ(t, a′) = π(t) · 1a(a

′) for π(t) ∈ R+. In this case,
the principal receives the agent’s choice as a feedback; by
(8), either At = at or At = argmaxa′∈At

⟨s⋆, a′⟩ = aagt .
In addition, At = at is equivalent to the fact that

⟨s⋆, aagt − at⟩ ⩽ π(t) .

The information At = at or At = aagt can be used as binary
search feedback in the direction aagt − at, as follows. Given
a current confidence set St at time t it can be updated either
as St+1 = St ∩ {s : ⟨s, aagt − at⟩ ⩽ π(t)} if At = at or
St+1 = St ∩ {s : ⟨s, aagt − at⟩ ⩾ π(t)} otherwise.

However, since the action set At is non-stationary, we
cannot determine the action aagt by just observing the first
round. Consequently, the new set St+1 cannot be computed
as previously in the non-contextual setting. This makes the
single-point incentive functions not suited for an efficient
learning of s⋆ over the iterations. Instead, at any time t, we
seek for a form of binary-search feedback in the direction
a1t − at2 for any two arms a1t ̸= a2t ∈ At. As we will see,
this can be achieved by considering an incentive function κ
with support {a1t , a2t} ⊆ At.

Indeed, an important remark is that the amount of incentive
needed to make the agent play any particular action is
bounded under H2 since

max
a∈At

π⋆(t, a) = max
a∈At

⟨s∗, aagt − a⟩ ⩽ 2 , (13)
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this bound being known by the principal. For any a ∈
B(0, 1), this makes the incentive function a′ 7→ 3 · 1a(a

′)
sufficient to ensure At = a from (8). The value 3 in the
definition of the incentive function is chosen instead of 2 to
avoid an arbitrary tie-breaking.

Consequently, under the choice κ(t, a1t ) = 3, κ(t, a2t ) =
3+ π(t) for π(t) ⩾ 0 and κ(t, a′) = 0 for any other arm a′,
(13) guarantees that only a1t and a2t may be chosen by the
agent, helping the principal to update her confidence set St

in a known direction. Specifically for such an incentive κ,
the choice At = a1t reveals the following information on s⋆:

⟨s⋆, a1t − a2t ⟩ ⩾ π(t),

that permits the definition of a binary search-like feedback
in the direction a1t − a2t and thus allows us to update the
confidence set St following St+1 = St∩{s : ⟨s, a1t −a2t ⟩ ⩾
π(t)} if At = a1t or St+1 = St ∩ {s : ⟨s, a1t − a2t ⟩ ⩽ π(t)}
otherwise.

Binary search. This update turns our estimation of the
optimal incentives π⋆ into a multidimensional binary search
where the unknown quantity is the vector s⋆. At each
iteration t, a vector wt from the unit sphere is given. Then,
the algorithm has to guess the value of ⟨s⋆, wt⟩ using its
previous observations. Finally, an oracle reveals as feedback
whether the guess is above or below the true value ⟨s⋆, wt⟩,
and the algorithm updates its observation history. In our
case, wt := (a1t − a2t )/∥a1t − a2t∥ for a1t , a

2
t ∈ At and

the resulting feedback is given through the agent picking
either a1t or a2t . However, extending the binary search to the
multidimensional case is non-trivial for two reasons.

Direction of the multidimensional binary search. In the
contextual bandit setting, we cannot divide the horizon into
two successive phases. Indeed, the principal cannot choose
any binary search direction in Rd, since wt depends on
the action set At available at each iteration. For instance,
action sets At could be restricted to a small dimensional
subspace of Rd during the whole binary search procedure,
so that the principal can only get a good estimate of s⋆ in
this subspace. After this phase, received action sets could
be totally different (e.g., in the orthogonal subspace or the
whole of Rd) during the remainder of the game.

We solve the issue of constraint directions for the binary
search by running it in an adaptive way, depending on the
available action set at each time step and on the current
level of estimation on this set. More precisely, at iteration t,
the principal’s estimate of the true value ⟨s⋆, wt⟩ is ⟨ŝt, wt⟩,
where ŝt is defined as the centroid of St:

ŝt :=
1

Vol(St)

∫
St

xdx with Vol(St) =

∫
St

dx .

Whenever |⟨ŝt, wt⟩−⟨s⋆, wt⟩| < 1/T , the principal incurs a
negligible cost to incentivize the agent to choose her desired

action. Then, in this context, for any action a ∈ At that the
principal wants to play, she designs the incentive

π̂(t, a) := max
a′∈At

⟨ŝt, a′⟩ − ⟨ŝt, a⟩+ 2/T

κ̂a(t, a
′) = 1a(a

′)π̂(t, a) for any a′ ∈ At .

To control the precision of the estimation π̂(t, a) of π⋆(t, a)
for any a ∈ At, Lemma 4 shows that it is sufficient to
consider the event Et, defined as

Et :=
{

max
a1
t ̸=a2

t∈At

diam

(
St,

a1t − a2t
∥a1t − a2t∥

)
<

1

T

}
, (14)

where we recall the definition of the projected diameter:
diam(St, x) := maxs1,s2∈St

|⟨s1 − s2, x⟩| for any x ∈ Rd.
When Et is false, the principal does not have a good
characterization of the incentive function that she needs to
provide and thus Contextual IPA runs a multidimensional
binary search step, which is explained in the paragraph
below. Otherwise, Contextual IPA runs a contextual
bandit subroutine CtxAlg in a black-box manner on her
bandit instance driven by the principal’s own mean rewards
⟨θ⋆, a⟩ and the approximated incentives π̂(t, a) for any
a ∈ At. Lemma 4 guarantees that these approximations
are upper estimates of π⋆(t, a). The principal proposes an
incentive function κ̂aRec

t
depending on the estimate to make

the agent select the action aRec
t recommended by the bandit

subroutine. Again, we do not impose any assumption on the
tie-breaking, which can be arbitrary.

Lemma 4. Consider t ∈ [T ], At ⊆ B(0, 1), St ⊆ B(0, 1)
such that Et defined in (14) is true. Then for any action
a ∈ At, we have: π⋆(t, a) < κ̂a(t, a) ⩽ π⋆(t, a) + 4/T .

A corollary of Lemma 4 is that running Contextual IPA,
under Et, At = aRec

t .

Issue of the diameter reduction. We illustrate the
challenge of the multidimensional constrained binary search
on a very simple problem. At time t, we can only run a
binary search step in one of the directions wt = a− a′ for
a, a′ ∈ At. Suppose that we have two directions of interest,
v1, v2 in Rd, such that we aim to decrease the diameter of St

in the direction of v1 or v2. Even if we divide the diameter
of St in two in a direction wt, which is always possible, this
does not necessarily imply that the diameter of St would
reduce along any direction vi, as illustrated on Figure 1.

An early attempt to tackle this multidimensional binary
search problem with adversarial directions was presented by
Cohen et al. (2020), who used ellipsoid methods. Here, we
use the recent strategy proposed by Lobel et al. (2018) and
their Projected Volume subroutine, which is described
further in Appendix E.

Non-stationarity of the reward shift. For any rewards
{(Ya(t))a∈At : t ∈ [T ]}, we define the history as

6
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S0
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2
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Figure 1: Illustration of a case where the volume S0 is cut
along a direction w1 to give a new confidence set S1; while
the diameter is not reduced along the directions v1 nor v2.

Gt := (As, As, Us, YAs
(s))s⩽t where (Us)s∈N is a

family of independent uniform random variables on [0, 1]
to allow randomization in the decision making. Let
CtxAlg be a linear contextual bandit algorithm, i.e.,
CtxAlg : (Ut,Gt−1,At) 7→ aRec

t ∈ At. When the principal
is not running a binary search step, i.e., when Et is true, she
plays the CtxAlg subroutine on her bandit instance. We
define a subset It of all the iterations during which CtxAlg

is run and a shifted history H̃t available at time t as

It := {s ∈ [t] such that Es is true} , (15)

and H̃t := (As, As, Us, XaRec
s

(s)− κ̂aRec
t

(s,As))s∈It .

In our setup, CtxAlg will be fed in a black-box manner
with this shifted history to issue recommendations aRec

t ,
CtxAlg : (Ut, H̃t−1,At) 7→ aRec

t . At time t, for an
action aRec

t recommended by CtxAlg, our meta-algorithm
Contextual IPA proposes an incentive designed so that
the agent eventually picks aRec

t (Lemma 4): At = aRec
t .

However, the last difference between the non-contextual
and contextual cases is that the shift between π̂(t, at) and
π⋆(t, at) is not constant anymore on bandit steps t ∈ IT .
This shift of rewards is interpreted as adversarial corruption
(Bubeck & Slivkins, 2012; Lykouris et al., 2018).

At each round, taking into account this shift, the optimal
average utility associated with action a ∈ At for the
principal is r⋆(t, a) := ⟨θ⋆, a⟩ − π⋆(t, a), while the
principal can only estimate a non-stationary expected
reward2 r⋆(t, a) + εcorrupt

t with the corruption level εcorrupt
t

defined as

εcorrupt
t := π⋆(t, At)− π̂(t, At) (16)

and εcorrupt
It

:= (εcorrupt
s )s∈It . In this setup, we can define a

corrupted regret as follows

Rcorrupt
CtxAlg(IT , ε

corrupt
IT

)

2Even if we were to feed the stochastic observations (XAs(s)−
π̂(t, As))s⩽t at time t, past algorithmic decisions would depend
on different observation distributions, making the direct use of
classical regret bounds of the bandit subroutine impossible.

= E

[∑
t∈IT

max
a∈At

r⋆(t, a)− r⋆(t, aRec
t )

]
, (17)

where aRec
t = CtxAlg(Ut, H̃t−1(ε

corrupt
It−1

),At) and
H̃t(ε

corrupt
It

) = (As, As, Us, r
⋆(s, aRec

s ) + ηaRec
s

(s) +

εcorrupt
s )s∈It . Then, we aim to minimize the corrupted regret

with CtxAlg, which is not possible using a naive linear
contextual bandit algorithm.

Algorithm 2 Contextual IPA

1: Input: horizon T , subroutine CtxAlg, δ̄ =
1/16T 2d(d+ 1)2

2: Initialize: H̃0 = V0 = ∅, S0 = {s ∈ Rd : ∥s∥ ⩽ 1}
3: for t = 1, . . . , T do
4: Observe available action set At

5: if Et is FALSE then
6: # Where Et is defined in (14)
7: St+1,Vt+1

8: = Projected Volume(T, δ̄,St,Vt, a
1
t , a

2
t )

9: else
10: Compute ŝt as the centroid of St

11: Sample Ut ∼ U(0, 1)
12: Get aRec

t = CtxAlg(Ut, H̃t,At)
13: Let π̂(t, aRec

t ) = max
a′∈At

⟨̂st, a′⟩ − ⟨ŝt, aRec
t ⟩+ 2

T

14: Propose incentive function κ̂aRec
t

(t, a) =

1aRec
t

(a) · π̂(t, aRec
t )

15: Observe At as defined in (8), XAt

16: Update H̃t with (At, At, Ut, XAt
− κ(t, At))

17: end if
18: end for

Regret analysis. We split the regret into three components,
each of them being bounded separately. One of these
components comes from the bias in the estimation of the
optimal incentives.Secondly, the principal incurs a cost due
to the iterations of CtxAlg on the corrupted bandit instance.
We use the results from He et al. (2022) with a known
corruption level to bound this term. Finally, the last term
follows from the multidimensional binary search steps used
to estimate s⋆. Lemma 5 allows us to bound the number of
such steps; see Appendix D for a proof which builds on the
work of Lobel et al. (2018).

Lemma 5. Consider Et defined by (14) with (St)t∈[T ]

defined by Contextual IPA. Then it holds almost surely
that ∑

t⩾1

1Ec
t
⩽ 192 · d log(dT ) ,

where Et is defined by (14).

Theorem 2. If Contextual IPA is run with any linear
contextual subroutine CtxAlg, then with the same constant
192 as in Lemma 5, the regret of Contextual IPA is

7
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bounded as

R(T ) ⩽ 2 +Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) + 1344 d log dT .

We emphasize that our results still hold with any contextual
linear bandit algorithm and that the overall regret is mostly
driven by the term Rcorrupt

CtxAlg: although the principal has to
solve simultaneously a pricing-like problem and a stochastic
bandit problem, she almost achieves linear bandit state-of-
the art regret.

The main difference between traditional and corrupted
rewards in the bandit setting lies in the fact that, in the
former case, rewards are typically assumed to be i.i.d.,
whereas in the latter case, they may be chosen adversarially.
An algorithm is robust to corruptions if it yields regret
guarantees for any possible reward corruption within a
specific budget. This kind of problem was first considered
by Bubeck & Slivkins (2012) and has been extensively
studied since (see, e.g., Kapoor et al., 2019). In our setting,
a bound for the corruption budget is available, thanks to
Lemma 6 below.

Lemma 6. Consider (Et)t∈[T ] defined by (14)
with (St)t∈[T ] defined by Contextual IPA. Let
IT and (εcorrupt

t )t∈[T ] as defined in (15) and
(16) and t ∈ [T ] such that Et is true. Then
|εcorrupt

t | ⩽ 4/T and
∑

t∈IT
|εcorrupt

t | := Ccorrupt ⩽ 4.

With standard bandit assumptions, we can then consider a
corruption robust algorithms, such as CW− OFUL from He
et al. (2022).

H 3. At each round t ⩾ 1, for any action a ∈
At, the principal’s reward Xa(t) is H̃t-conditionally
1-subgaussian, i.e., for any λ ∈ R, we have
E
[
eλ(Xa(t)−E[Xa(t)])|Ht−1

]
⩽ eλ

2/2.

Corollary 2. Suppose that H3 is true. If Algorithm 2 is
run with the subroutine CtxAlg := CW− OFUL proposed by
He et al. (2022), the regularization parameter λ = 1 and a
confidence level δ = 1/T , the following bound holds

R(T ) ⩽ 11 + 1344 d log(dT ) + CCtxAlgd
√
T log T,

with CCtxAlg being an universal constant.

As in the multi-armed setting, the obtained regret bounds
are comparable to the achievable best performance in the
standard bandit settings, where the principal does not need
to estimate the agent’s parameters s⋆.

5 Experiments
We illustrate our theoretical findings with experiments on
a toy example and compare IPA with the Principal’s
ε-Greedy algorithm of Dogan et al. (2023b). We also

compare with a UCB Oracle baseline that runs UCB on the
shifted bandit instance with arm means µa := θa − π⋆

a and
no principal-agent consideration. This baseline corresponds
to the case where the principal knows the agent’s reward
vector and therefore only has to consider a bandit algorithm.
Experimental details can be found in Appendix B. We
observe in Figure 2 that the Principal ε-Greedy Algorithm
from Dogan et al. (2023b) exhibits suboptimal performance.
Additionally, another issue arises from its computational
complexity, requiring an optimization step at every round.
In comparison, IPA yields a regret nearly equal to the one
of Oracle UCB, illustrating that the cost of estimating
the agent’s preferences, obtained from binary search, is
negligible for IPA.
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Figure 2: Cumulative regret for different algorithms on a 5
arms instance.

6 Lower Bounds
For the sake of clarity, we stick to the multi-armed case of
Section 3 in this section. A simple observation yields that

R(T ) ⩾ E

[
T∑

t=1

µ⋆ − µAt

]
,

where µa = θa − π⋆
a and µ⋆ = maxa∈[K] µa. Even if the

principal was to know the optimal incentives (π⋆
a)a∈[K], she

would still face a bandit instance with arm means µa. From
there, we can directly extend standard lower bounds from
the bandit literature to our setting (Lai & Robbins, 1985;
Burnetas & Katehakis, 1996).

Proposition 1. Let D be a class of distributions. Consider
the multi-armed case of Section 3 and a policy satisfying for
any instance ν ∈ DK and α > 0, R(T ) = o(Tα). Then,
for any ν ∈ DK ,

lim inf
T→∞

R(T )

log T
⩾

∑
a,µa<µ⋆

µ⋆ − µa

KLinf(νa − π⋆
a, µ

⋆,D)
,

where denoting by KL the Kullback-Leibler divergence,
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KLinf(ρ, µ
⋆,D)

:=inf{KL(ρ, ρ′) : ρ′ ∈ D ,

∫
xρ′(dx) > µ⋆} ,

The complete proof is postponed to Appendix F.
Proposition 1 states that IPA yields a nearly optimal regret.
Similar arguments can be made in the contextual setting.

7 Conclusion and Possible Extensions
This paper presents two novel algorithms called IPA and
Contextual IPA, tackling generalizations of both multi-
armed and contextual bandits that account for principal-
agent interactions. By decoupling the learning of the agent
and the estimation of the principal’s parameters, we are
able to obtain a nearly optimal algorithm, improving over
the previous work of Dogan et al. (2023b). Overall, we
obtain an efficient principal-agent bandit framework that
allows us to take into account an interaction between a
principal and an agent with misaligned interests in a bandit
environment. There are various possible extensions of our
work, among which considering strategic behaviors for
repeated interactions with a single agent or uncertainty on
the agent’s side.

Information rent. Again, we consider the multi-armed case
for the sake of clarity. We assumed that the agent is always
greedy and therefore chooses at time t an action following

At = argmaxa∈At
{sa + 1at

(a)π(t)} . (18)

However, nothing prevents the agent from lying and
choosing another action instead of At. The maximal total
welfare that can be extracted at each round is maxa∈A{sa+
θa}. In our setting, with a trustful agent, this reward was
shared between the two actors with an average reward
maxa′∈A sa′ for the agent and maxa∈A{sa + θa} −
maxa′∈A sa′ for the principal. However, as it is exposed
by Dogan et al. (2023b, Section 4), the agent could play
with a malicious policy and choose At as if he had different
(sa)a∈[K]. In that case, he can extract an individual reward
maxa∈A{sa + θa} −mina′∈A θa′ , while letting a reward
mina′∈[K] θa′ to the principal. In that case, the agent exloits
his information rent to increase his profits. Against such
adversarial and powerful agents, the principal cannot do
more than play and learn with the (sa)a∈[K] announced
by the agent. However, this situation is not an issue with
myopic agents who act greedily since each of them tries
to maximize his own instantaneous reward and eventually
select At from (18). This situation is encountered in many
applications, where each agent has a single round interaction
with the principal for the whole game.

Learning agents. A possible extension would be to
incorporate uncertainty on the agent’s side and consider
learning agents (see, e.g., Dogan et al., 2023a). However

again, when considering single round interactions with the
agents, each agent myopically maximizes his reward a
priori. Consequently, the agent policy is stationary and
would be driven by sa, the expected beliefs on the action
rewards. The single interaction model is already well
suited for numerous real world applications. In the case
of repeated interactions between the principal and a single
learning agent, it becomes much more complex, as this
agent can both learn his true rewards on the run while trying
to influence future actions of the principal with his own
choices. Restricting the agent’s policy to a specific set might
then be necessary, as done by Dogan et al. (2023a) with
Agent’s ε-Greedy strategy. The major learning difficulty
from the principal side would then come from the non-
stationarity of the agents decisions and could be handled
using non-stationary bandits algorithms (see, e.g., Gittins,
1979; Lattimore & Szepesvári, 2020).
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A Notation

A := [K] Set of possible arms.
T Horizon.

NT := log2 T Number of steps dedicated to the binary search on each arm in IPA.
at Arm on which the principal offers an incentive.
π(t) Amount of incentive offered by the principal on action at.
At Arm chosen by the agent, maximizing his utility, known by everyone.

sa + 1at
(a)π(t) Agent’s utility for action a.

νa Principal’s reward distribution for action a.
Xa(t)− 1at

(a)π(t) Principal’s utility for action a.
µa Principal’s expected utility for action a, using the optimal incentive π⋆

a.
µ⋆ Maximal expected utility for the principal.

θa := E[Xa(1)] Principal’s expected reward.
π⋆
a Infimum amount of incentives to be offered on action at = a to make

the agent choose it.
H̃ Shifted history used to feed Alg.

RAlg(T ) Regret of the subroutine Alg on a horizon T .
R(T ) Overall regret of IPA on a horizon T .

Table 1: Notations used in Section 3.

T Horizon.
B(0, 1) Unit ball in Rd, d ⩾ 1.

At ⊆ B(0, 1) Action set at time t among which the agent selects At.
π(t) Amount of incentive offered by the principal on some action.
ηa(t) Noise distribution of the principal’s reward associated with action a at time t.

r⋆(t, a) = ⟨θ⋆, a⟩+ ηa(t)− π⋆(t, a) Utility collected by the principal on action a at time t if the optimal amount of incentive is
used.

µ⋆
t Principal’s maximal expected utility at time t.

π⋆(t, a) Infimal amount of incentives to be offered on action a with κ(t, a′) = 1a(a
′)π⋆

a so that the
agent eventually chooses action a.

π̂(t, a) Principal’s estimation of π⋆(, a)
κ(t, ·) : B(0, 1) → R+ Incentive function, associating each action with some amount of incentives.

s⋆ ∈ B(0, 1) Agent’s true reward vector.
St ∋ s⋆ Principal’s confidence set for s⋆ at time t.

⟨s⋆, a⟩+ κ(t, a) Agent’s utility for action a.
aagt = argmaxa∈At

⟨s⋆, a⟩ Agent’s optimal action with null incentives at time t.
aRec
t Action recommended by CtxAlg at time t.

⟨θ⋆, a⟩+ ηa(t)− κ(t, a) Principal’s utility for action a.
µ⋆
t Maximal expected utility for the principal at time t.

εcorrupt
t = π⋆(t, a)− π̂(t, a) Shift between the optimal incentives and the estimated ones.

Ccorrupt Total corruption budget due to the shift between π̂(t, a) and π⋆(t, a) over the rounds.
Et Event being true if the diameter of St projected At is small than 1/T .
It Rounds up to time t during which Es, s ⩽ t is true.
H̃ Shifted history used to feed Alg.

RCtxAlg(T ) Regret of the subroutine CtxAlg on a horizon T .
R(T ) Overall regret of Contextual IPA on a horizon T .

Table 2: Notation used in Section 4.

12
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B Experimental details
We ran the experiments in Figure 2 for a horizon T = 10 000 on an average of 100 runs on a five arms bandit. We plotted
the standard error across the different runs. The expected rewards for the principal (θ) and the agent (s) are given in
Table 3. The principal’s rewards Xa(t) are drawn from an i.i.d. distribution Xa(t) ∼ N (θa, 1) for any a ∈ [K], t ∈ [T ].
We also run an oracle UCB instance with rewards following a Gaussian distribution N (µa, 1) where for any a ∈ [K],
µa := θa + sa −maxa′∈[K] sa′ , as if a UCB algorithm was run with the full knowledge of the optimal incentives and was
learning his own mean rewards (µ), taking into account these incentives. The mean rewards µ are also given in Table 3. We
observe that the additional exploration steps needed to learn the optimal incentives in IPA are not very costly compared to
the regret achieved by the UCB oracle.

For the Principal’s ε-Greedy algorithm, we use the hyperparameters α = 1 and m = 500. The hyperparameter m controls
the number of exploration steps. We ran the Principal’s ε-Greedy algorihtm on the same bandit setting for different
values m = 30,m = 100,m = 200,m = 300,m = 400,m = 500,m = 600,m = 800,m = 1000,m = 2000,m =
5000,m = 10 000. Below m = 500, the algorithm does not explore enough and incurs a linear regret on some runs,
consequenly yielding a poor mean regret, whereas above m = 500, the algorithm explores excessively, leading to a higher
regret due to overexploration. We ran the same experiments on longer horizons T = 100 000 and T = 1000 000 and the
algorithms exhibited the same behavior. In practice, the tuning of the ε-Greedy algorithm depends on the reward gaps and
is not common to use. This is why another advantage of IPA compared to the Principal’s ε-Greedy algorithm of
Dogan et al. (2023b) lies in the fact that it does not need any tuning of hyperparameters, leading to a better use in practice,
on potentially broader bandit instances.

s 0.64 0.99 0.73 0.61 0.59
θ 0.30 0.24 0.88 0.07 0.65
µ −0.05 0.24 0.62 −0.31 0.25

Table 3: Experimental parameters for Figure 2.

We did not run Contextual IPA in a contextual bandit setting because it is quite tedious to implement, due to the use of the
Projected Volume subroutine from the work of Lobel et al. (2018). Even though they obtain an excellent regret bound,
the computations raise specific challenges. The first issue is the computation of the centroid which is known to be a #P-hard
problem (Rademacher, 2007). However, it can be solved through an approximation of the centroid, which is computable
in polynomial time (see, Bertsimas & Vempala, 2004, Lemma 5 and Theorem 12). A second issue is finding directions
along which the set St has a small diameter, which is needed to compute the set Vt. It is solved by Lobel et al. (2018) with
an ellipsoidal approximation E of St such that E ⊆ St ⊆ αE with α > 1, since such an ellipsoid can be computed in
polynomial time, (see, Grötschel et al., 2012, Corollary 4.6.9). Such a variation of the Projected Volume subroutine is
presented in the work of Lobel et al. (2018, Section 9.3). It is shown that one can achieve polynomial time computations
with still the same regret bound for the multidimensional binary search steps (Lobel et al., 2018, Theorem 9.4). This line of
work needs to be explored for implementing Contextual IPA in practice, which is feasible but still requires a significant
amount of work.

C Regret Bound for Non-Contextual Setting
Notations. We define πa(t) ∈ R+ as the upper estimate and πa(t) ∈ R+ as the lower estimate of π⋆

a after t rounds of binary
search on arm a. For any t ∈ [T ] and a ∈ [K], we define πmid

a (t) := (πa(t) + πa(t))/2. We define NT := ⌈log2 T ⌉ as the
number of binary search steps per arm and π̂a is the estimated incentive to make the agent choose action a after NT steps
of binary search: π̂a = πa(NT ) + 1/T . Since our problem is stationary, we write apr := argmaxa∈[K]{θa − π⋆

a} for the
optimal action that the principal could aim to play at each round.

Lemma 1. For any T ∈ N, the regret of any algorithm on our problem instance can be written as

R(T ) = T max
a∈[K]

{θa + sa − max
a′∈[K]

sa′}

− E

[
T∑

t=1

{θAt
− 1at

(At)π(t)}

]
.

13
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Proof of Lemma 1. Recall that the regret is defined in (3) as R(T ) := T µ⋆−
∑T

t=1 E[XAt
(t)− 1at

(At)π(t)], where µ⋆ =
supa∈[K],π∈R+

Eν [Xa(1)]−π , such that a ∈ argmaxa′∈[K]{sa′+π} . Note that we can write µ⋆ = supa∈[K],π∈R+
{θa−

1Ã(a, π)π}, where Ã := {(a, π) : sa + π ⩾ maxa′ sa′ + 1a(a
′)π}. First note that if (a, π) ∈ Ã, then sa − sa′ ⩾

−π for any a′ ∈ [K], which implies by definition of the optimal incentives (4) that π⋆
a ⩽ π. Consequently,

µ⋆ = max
a∈[K]

{Eν [Xaopt(1)]− π⋆
a} = max

a∈[K]
{θa − max

a′∈[K]
{sa′}+ sa} ,

hence our result about the regret.

Lemma 7. Assume H1 and that we run Algorithm 3 for an action a ∈ [K] and a number of binary searches NT ∈ N. Then,
for any t ∈ [NT ], 0 ⩽ πa(t) ⩽ πmid

a (t) ⩽ πa(t) ⩽ 1.

Proof. The proof is by induction on t ∈ [NT ]. For t = 0, it is defined by definition. Then suppose that it holds true for
t ⩾ 0. Note that line 6 in Algorithm 3 can be written as

πa(t+ 1) = 1a(At)π
mid
a (t) + (1− 1a(At))πa(t)

πa(t+ 1) = (1− 1a(At))π
mid
a (t) + 1a(At)πa(t) ,

(19)

which completes the proof by applying the induction hypothesis.

Lemma 8. Assume H1 and that we run Algorithm 3 for an action a ∈ [K] and a number of binary searches NT ∈ N. Then,
for any t ∈ [NT ],

π⋆
a ∈ [πa(t), πa(t)] and |πa(t)− πa(t)| ⩽ 1/2t .

Proof. The proof is by induction on t. The case t = 0 is trivial by the initialization of Algorithm 3 and H1.

Suppose that the statement holds for t. Note that 1({At = a}) = 1({πmid
a (t) ⩾ π⋆

a}), therefore using (19), we obtain by
using the induction hypothesis that

π⋆
a ∈ [πa(t+ 1), πa(t+ 1)] , πa(t+ 1)− πa(t+ 1) =

πa(t)− πa(t)

2
,

which completes the proof.

Proof of Theorem 1. Recall that Lemma 1 implies that

R(T ) = E

[
T∑

t=1

max
a∈[K]

{θa − π⋆
a} − (XAt(t)− 1at(At)π(t))

]
(20)

We decompose the regret between the K⌈log2 T ⌉ = KNT first steps during which we run the Binary Search
Subroutine and all the subsequent ones

R(T ) = (A) + (B)

(A) = E

K⌈log2 T⌉∑
t=1

max
a∈[K]

{θa − π⋆
a} − {XAt

(t)− 1at
(At)π(t)}


(B) = E

 T∑
t=K⌈log2 T⌉+1

max
a∈[K]

{θa − π⋆
a} − {XAt

(t)− 1at
(At)π(t)}

 .

We separate the analysis of the regret, bounding independently two terms in the right-hand side of the previous decomposition.
Since π(t) is always equal to πmid

a (t) for some t ∈ [NT ], a ∈ [K], during the binary search phase, we use Lemma 7 to
bound π(t) by 1 for any t ⩽ K⌈log2 T ⌉ in (A), giving

(A) = E

K⌈log2 T⌉∑
t=1

max
a∈[K]

{θa −XAt(t) + 1at(At)(t)π(t)− π⋆
apr}

 (21)
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⩽
K⌈log2 T⌉∑

t=1

(1 + max
a∈[K]

{θa} − min
a∈[K]

{θa}) ⩽ (1 + max
a∈[K]

{θa} − min
a∈[K]

{θa})K(1 + log2 T ) . (22)

At the end of the binary search phase and for all the subsequent rounds t > K⌈log2 T ⌉, Alg recommends an action aRec
t

and the principal proposes the incentive π(t) = π̂aRec
t

= πaRec
t

(⌈log2 T ⌉) + 1/T on action aRec
t to make the agent choose it.

Lemma 8 ensures that after ⌈log2 T ⌉ rounds of binary search on action a ∈ [K], we have

πa(⌈log2 T ⌉) ⩽ π⋆
a ⩽ πa(⌈log2 T ⌉) and πa(⌈log2 T ⌉)− πa(⌈log2 T ⌉) ⩽ 1/2⌈log2 T⌉ ⩽ 1/T .

Therefore,
π⋆
a < π̂a and π̂a − π⋆

a ⩽ 2/T .

For the agent, the utility associated with action aRec
t is saRec

t
+ π̂aRec

t
> saRec

t
+ π⋆

aRec
t

, which guarantees that he eventually

selects aRec
t at time t because of (1) and (4). It ensures that for any t > K⌈log2 T ⌉, At = aRec

t .

To compute these recommendations, Alg is fed at any time t ∈ N with the shifted history defined in (7): H̃t =
(aRec

s , Us, XaRec
s

(s) − π̂aRec
s

)s∈[K⌈log2 T⌉+1,t]. Recall that we defined the shifted distribution ρTa for any a ∈ [K] as
the distribution of Xa(1) − π̂a. For any t > K⌈log2 T ⌉, aRec

t = Alg(Ut, H̃t−1) and we define Ya(t) ∼ ρTa for any
t ∈ [K⌈log2 T ⌉+ 1, T ], a ∈ [K]. In this setup, the regret of Alg after τ subsequent steps is defined as

RAlg(τ, ρ
T ) = τ max

a∈[K]
EρT [Ya(K⌈log2 T ⌉+ 1)]− E

 K⌈log2 T⌉+τ∑
s=K⌈log2 T⌉+1

YAlg(Us,H̃s−1)
(s)

 .

Consequently, since at = aRec
t = At

(B) = E

 T∑
t=K⌈log2 T⌉+1

max
a∈[K]

{θa − π⋆
a} −

(
XaRec

t
(t)− π̂aRec

t

)
⩽ E

 T∑
t=K⌈log2 T⌉+1

max
a∈[K]

{
θa − π̂a − (XaRec

t
(t)− π̂aRec

t
)
}
+ max

a′∈[K]
{π̂a′ − π⋆

a′}


= E

 T∑
t=K⌈log2 T⌉+1

max
a∈[K]

{θa − π̂a} − (XaRec
t

(t)− π̂aRec
t

)

+ E

 T∑
t=K⌈log2 T⌉+1

max
a′∈[K]

{π̂a′ − π⋆
a′}


= (T −K⌈log2 T ⌉) max

a∈[K]
E[Ya(K⌈log2 T ⌉+ 1)]− E

 T∑
t=K⌈log2 T⌉+1

(XaRec
t

(t)− π̂aRec
t

)


+ (T −K⌈log2 T ⌉) max

a′∈[K]
{π̂a′ − π⋆

a′}

⩽ RAlg

(
T −K⌈log2 T ⌉, (ρTa )a∈[K]

)
+ 2.

Plugging (A) and (B) together finally gives a bound for the regret

R(T ) ⩽ 2 + (1 + max
a∈[K]

{θa} − min
a∈[K]

{θa})(1 +K log2 T ) +RAlg(T −K⌈log2 T ⌉, ρT ) .

Proof of Corollary 1. The case T ⩽ 9K is trivial. Assume then that T ⩾ 9K. Note that after ⌈log2 T ⌉ rounds of binary
search, π⋆

a ⩽ πa ⩽ π⋆
a + 1/T . We define ∆⋆

a := maxa′∈[K]{θa′ − π⋆
a′}− (θa − π⋆

a) = maxa′∈[K]{θa′ + sa′}− (θa + sa)

and ∆̃a := maxa′∈[K]{θa′ − π̂a′} − (θa − π̂a) = maxa′∈[K]{θa′ − πa′} − (θa − πa) using π̂a = πa + 1/T . Since
π⋆
a ⩽ πa ⩽ π⋆

a + 1/T , we have |∆⋆
a − ∆̃a| ⩽ 2/T .
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Using the results about UCB algorithm that can be found in (Lattimore & Szepesvári, 2020, Theorems 7.1 and 7.2), since
Alg is run in a black-box manner on a shifted bandit instance ρT for T −K⌈log2 T ⌉ rounds with reward gaps ∆̃a, we have

RAlg(T −K⌈log2 T ⌉, ρT ) ⩽ 3
∑
∆̃a>0

∆̃a

+ 8min

√
(T −K⌈log2 T ⌉)K log(T −K⌈log2 T ⌉) ;

∑
∆̃a>0

2 log(T −K⌈log2 T ⌉)
∆̃a


⩽ 3

∑
a∈[K],∆⋆

a>0

(
∆⋆

a +
2

T

)
+ 8min

√
TK log T ;

∑
a∈[K],∆̃>0

2 log T

∆̃a


⩽ 1 + 3

∑
a∈[K],∆⋆

a>0

∆⋆
a + 8min

√
TK log T ;

∑
a∈[K],∆̃a>0

2 log T

∆̃a

 , (23)

where the last line holds because of T ⩾ 9K > 6K.

We now analyse the sum
∑

a∈[K],∆̃>0 2 log T/∆̃a and consider two cases: either there exists ã ∈ [K] such that ∆⋆
ã ⩽ 4/T

or not.

First case: if there exists ã ∈ [K] such that ∆⋆
ã ⩽ 4/T , since T > 9K, we have for such an action ã: 2 log T/∆⋆

ã ⩾
T log T/2 >

√
TK log T as well as ∆̃ã ⩽ ∆⋆

ã + 2/T ⩽ 6/T which is equivalent to 2 log T/∆̃ã ⩾ T log T/3 ⩾√
TK log T . Consequently,

min

√
TK log T ;

∑
a∈[K],∆̃a>0

2 log T

∆̃a

 =
√
TK log T = min

√
TK log T ;

∑
a∈[K],∆⋆

a>0

2 log T

∆⋆
a

 . (24)

Second case: for any a ∈ [K],∆⋆
a > 4/T . Therefore ∆̃a ⩾ ∆⋆

a − 2/T > ∆⋆
a −∆⋆

a/2 = ∆⋆
a/2. Consequently

RAlg(T −K⌈log2 T ⌉, ρT ) ⩽ 1 + 3
∑

a∈[K],∆⋆
a>0

∆⋆
a + 8min

√
TK log T ;

∑
a∈[K],∆⋆

a>0

2 log T

∆̃a


⩽ 1 + 3

∑
a∈[K],∆⋆

a>0

∆⋆
a + 8min

√
TK log T ;

∑
a∈[K],∆⋆

a>0

4 log T

∆⋆
a

 . (25)

Finally, combining (24) and (25) in (23) completes the proof.

D Regret Bound for the Contextual Setting

For the whole section, we define âagt := argmaxa∈At
⟨ŝt, a⟩ and recall that aagt = argmaxa∈At

⟨s⋆, a⟩.

D.1 Technical lemmas

Lemma 2. For any T ∈ N, the regret of any algorithm on our contextual problem instance can be written as

R(T ) =

T∑
t=1

max
a∈At

{⟨θ⋆ + s⋆, a⟩ − max
a′∈At

⟨s⋆, a′⟩}

− E

[
T∑

t=1

(⟨θ⋆, At⟩ − κ(t, At))

]
.

Proof of Lemma 2. Recall that the regret is defined in (11) as R(T ) =
∑T

t=1 µ
⋆
t − E

[∑T
t=1(XAt

(t)− κ(t, At))
]
, where

µ⋆
t := supκ(t,·) : Rd→R+

{⟨θ⋆, a⟩ − κ(t, a)} such that a ∈ argmaxa′∈At
{⟨s⋆, a′⟩ + κ(t, a′)}. Note that we can write
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µ⋆
t = supa∈At,π∈R+

{⟨θ⋆, a⟩ − 1Ãt
(a, π)π} where Ãt := {(a, π) : ⟨s⋆, a⟩+ π ⩾ maxa′∈At

⟨s⋆, a′⟩+ 1a(a
′)π}. First note

that if (a, π) ∈ Ãt, then ⟨s⋆, a− a′⟩ ⩾ −π for any a′ ∈ At, which implies by definition of the optimal incentives (12) that
π⋆(t, a) ⩽ π. Consequently

µ⋆
t = max

a∈At

{⟨θ⋆, a⟩ − π⋆(t, a)} = max
a∈At

{⟨θ⋆, a⟩ − max
a′∈At

{⟨s⋆, a′⟩}+ ⟨s⋆, a⟩} ,

hence our result about the regret.

Lemma 3. For any t ∈ [T ] and closed subset S ⊂ B(0, 1) with s⋆ ∈ S, it holds, for any a ∈ At, |maxs∈S,a′∈At⟨s, a′ −
a⟩ − π⋆(t, a)| ⩽ 2 diam(S,At) where diam(S,At) := maxa′∈At

maxs1,s2∈S |⟨s1 − s2, a
′⟩|.

Proof of Lemma 3. For any t ∈ [T ],S ∈ B(0, 1) with s⋆ ∈ S, At ∈ B(0, 1) and a ∈ At, recall that we defined aagt =
argmaxa′∈At

⟨s⋆, a′⟩ and π⋆(t, a) = ⟨s⋆, aagt ⟩ − ⟨s⋆, a⟩. Consequently, defining for any s ∈ S, ast := argmaxa′∈At
⟨s, a′⟩

(the compactness of both S and At as well as the continuity of the applications that we consider guarantee the existence of
such an argmax), we have, since ⟨s⋆, aagt ⟩ ⩾ ⟨s⋆, ast⟩ for any s ∈ S and associated ast,

max
s∈S,a′∈At

⟨s, a′ − a⟩ − π⋆(t, a) = max
s∈S

max
a′∈At

{⟨s, a′ − a⟩ − ⟨s⋆, aagt − a⟩}

= max
s∈S

{⟨s, ast − a⟩ − ⟨s⋆, aagt − a⟩}

⩽ max
s∈S

{⟨s, ast − a⟩ − ⟨s⋆, ast − a⟩}

⩽ max
s∈S

|⟨s− s⋆, ast⟩|+max
s∈S

|⟨s− s⋆, a⟩|

⩽ 2 diam(S,At) .

Similarly, we have

π⋆(t, a)− max
s∈S,a′∈At

⟨s, a′ − a⟩ ⩽ ⟨s⋆, aagt − a⟩ −max
s∈S

⟨s, aagt − a⟩

⩽ max
s∈S

|⟨s⋆ − s, aagt ⟩|+max
s∈S

|⟨s⋆ − s, a⟩|

⩽ 2 diam(S,At) ,

and the proof follows.

Lemma 4. Consider t ∈ [T ], At ⊆ B(0, 1), St ⊆ B(0, 1) such that Et defined in (14) is true. Then for any action a ∈ At,
we have: π⋆(t, a) < κ̂a(t, a) ⩽ π⋆(t, a) + 4/T .

Proof. The proof is similar to the proof of Lemma 3. Consider t ⩾ 1, At ⊆ B(0, 1), St ⊆ B(0, 1) such that Et holds,
at ∈ At. Then 1/T > maxa1

t ̸=a2
t∈At

diam
(
St, (a

1
t − a2t )/∥a1t − a2t∥

)
. Recall that we defined aagt = argmaxa∈At

⟨s⋆, a⟩
and âagt = argmaxa∈At

⟨̂st, a⟩, π⋆(t, at) = ⟨s⋆, aagt ⟩ − ⟨s⋆, at⟩ and π̂(t, at) = ⟨ŝt, âagt ⟩ − ⟨ŝt, at⟩+ 2/T , giving

π̂(t, at) ⩾ ⟨̂st, aagt ⟩ − ⟨ŝt, at⟩+ 2/T .

Therefore, under Et, it holds

π̂(t, at)− π⋆(t, at) ⩾ ⟨ŝt, aagt ⟩ − ⟨ŝt, at⟩+
2

T
− ⟨s⋆, aagt ⟩+ ⟨s⋆, at⟩

= ⟨ŝt − s⋆, aagt − at⟩+
2

T

> −diam

(
St,

aagt − at
∥aagt − at∥

)
∥aagt − at∥︸ ︷︷ ︸

⩽2

+2 max
a1
t ̸=a2

t∈At

diam

(
St,

a1t − a2t
∥a1t − a2t∥

)
⩾ 0 . (26)

Similarly, since ⟨s⋆, aagt ⟩ ⩾ ⟨s⋆, âagt ⟩, under Et, we have

π̂(t, at)− π⋆(t, at) = ⟨ŝt, âagt − at⟩+
2

T
− ⟨s⋆, aagt − at⟩

17
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⩽ ⟨ŝt, âagt − at⟩ − ⟨s⋆, âagt − at⟩+
2

T
= ⟨̂st − s⋆, âagt − at⟩+

2

T

⩽ ∥âagt − a∥ · diam
(
St,

âagt − at
∥âagt − at∥

)
+

2

T
⩽

4

T
. (27)

Combining (26) and (27) with the definition of κ̂, we obtain the result.

Lemma 9. Let t ∈ [T ] such that Et does not hold. Then Vol(ΠV⊥
t
St) ⩾ δ̄2d/d2d, where δ̄ = 1/16T 2d(d+ 1)2 and Vt is

defined in (31).

Proof. Since Et does not hold, there exists a direction u ∈ At ⊆ B(0, 1) such that diam(St, u) ⩾ 1/T ⩾ δ̄. For any
u ∈ V⊥

t ,diam(St, u) ⩾ δ̄. Lemma 6.3 of Lobel et al. (2018, Section 6) guarantees that ΠV⊥
t
(St) contains a k-dimensional

ball of radius δ̄/k, where k := dim(V⊥
t ). Therefore, Vol(ΠV⊥

t
(St)) ⩾ δ̄kπk/2/kkΓ(k/2 + 1), where Γ stands for

Euler’s Gamma function (Smith & Vamanamurthy, 1989). Therefore, we have by definition of Euler’s Gamma function:
Vol(ΠV⊥

t
(St)) ⩾ δ̄kπk/2/kkkk ⩾ δ̄2d/d2d.

Lemma 5. Consider Et defined by (14) with (St)t∈[T ] defined by Contextual IPA. Then it holds almost surely that∑
t⩾1

1Ec
t
⩽ 192 · d log(dT ) ,

where Et is defined by (14).

Proof of Lemma 5. This proof follows the same line as the proof of the main theorem of Lobel et al. (2018, Section 7). Let
t ∈ [T ] such that Et does not hold. We define wt as

wt := argmax

{
diam

(
St,

a1t − a2t
∥a1t − a2t∥

)
:

a1t − a2t
∥a1t − a2t∥

such that a1t ̸= a2t ∈ At

}
, (28)

where St is defined in (30). Our goal is to bound the number of steps for which the diameter of St in the direction wt is
strictly superior to 1/T . Define

bt := 1{diam(Cyl(St,V
⊥
t ), wt) ⩾ 1/T} ,

where Vt is defined in (31). Let ΠE denote the orthogonal projection onto the subspace E ⊂ Rd and Vol(ΠES) = µE(ΠES),
where µE is the Lebesgue measure of ΠES , well-defined for ΠES being a convex body. Setting δ̄ = T−2/16d(d+ 1)2, we
can apply the projected Grünbaum lemma of Lobel et al. (2018, Lemma 7.1) to obtain that

Vol(ΠV⊥
t
St+1) ⩽

(
1− e−2

)bt
Vol(ΠV⊥

t
St) .

By definition of Vt in (31), we have for any u ∈ Vt, diam(St, u) ⩾ δ̄. Therefore, by definition of St+1 in (30), the
directional Grünbaum Theorem (Lobel et al., 2018, Theorem 5.3) guarantees that we have: diam(St+1, u) ⩾ δ̄/(d+ 1).
Note that for St being a convex body, Lemma 11 ensures that St+1 remains a convex body.

If Jt+1 = 0, where Jt is defined in (32), then V⊥
t+1 = V⊥

t , and we have Vol(ΠV⊥
t+1

St+1) = Vol(ΠV⊥
t
St+1).

Otherwise, let i ∈ [Jt+1 − 1] and v ∈ V
(i),⊥
t such that V(i+1)

t = V
(i)
t ∪ {v}. We have V

(i),⊥
t ∩ span(v)⊥ = {x ∈

V
(i),⊥
t : vTx = 0} ⊆ V

(i+1),⊥
t ⊆ V

(i),⊥
t and dim(V

(i+1),⊥
t ) = dim(V

(i),⊥
t ) − 1. Then, applying the Cylindrification

Lemma from Lobel et al. (2018, Lemma 6.1) we obtain

Vol(Π
V

(i+1),⊥
t

St+1) ⩽
d(d+ 1)2

δ̄
Vol(Π

V
(i),⊥
t

St+1) .

If Jt+1 = r, the volume can blow up by at most
(
d(d+ 1)2/δ̄

)r
. In particular, since the initial volume is bounded by

Vol(B(0, 1)) ⩽ 8π2/15 ⩽ 6 (Smith & Vamanamurthy, 1989), then by Lemma 9, we obtain: δ̄2d/d2d ⩽ Vol(ΠLt
St) ⩽

6 ·
(
d(d+ 1)2/δ̄

)d · (1− 1/e2
)∑T

t=1 bt . Therefore, applying the logarithm function, we obtain

T∑
t=1

bt ⩽ −1/ log(1− e−2)(log 6 + 2d log(16) + 5d log(d) + 6d log(d+ 1) + 4d log(T )) ,
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giving, since −1/ log(1 − e−2) < 16:
∑T

t=1 1{diam(Cyl(St, Lt), wt) ⩾ 1/T} ⩽ 192d log(dT ). Therefore, lemma 12
ensures that diam(St, wt) ⩽ diam(Cyl(St,V

⊥
t ), wt) and we get

T∑
t=1

1

{
max
s∈St

|⟨s, wt⟩| ⩾ 1/T

}
⩽ 192 d log(dT ) ,

which concludes the proof by definition of wt in (28) and Et in (14).

Lemma 6. Consider (Et)t∈[T ] defined by (14) with (St)t∈[T ] defined by Contextual IPA. Let IT and (εcorrupt
t )t∈[T ] as

defined in (15) and (16) and t ∈ [T ] such that Et is true. Then |εcorrupt
t | ⩽ 4/T and

∑
t∈IT

|εcorrupt
t | := Ccorrupt ⩽ 4.

Proof of Lemma 6. Consider t ∈ IT , a ∈ At: by (15), Et is true. Consider εcorrupt
t as defined in (16)

Using Lemma 4 gives |εcorrupt
t | ⩽ 4/T , and summing over all the iterations t ∈ IT , since |IT | ⩽ T , we have∑

t∈It
|εcorrupt

t | ⩽ 4 · 1/T · |IT | ⩽ 4.

Lemma 10. For any t ∈ [T ], ε > 0 and action a ∈ At, set π⋆,ε(t, a) := maxaag
t ∈At

⟨s⋆, aagt ⟩ − ⟨s⋆, a⟩+ ε, and define the
incentive function κ⋆,ε

a (t, a′) = 1a(a
′)π⋆,ε(t, a) for any a′ ∈ At. Then At = a, where At is defined by (8).

Proof of Lemma 10. Note that for any a′ ∈ At, a
′ ̸= a, ⟨s⋆, a′⟩ + κ⋆,ε

a (t, a′) < ⟨s⋆, a⟩ + κ⋆,ε
a (t, a) and, as a result,

At = a.

D.2 Proof of Theorem 2

Proof of Theorem 2. Denote for any t ∈ [T ], aprt := argmaxa∈At
{⟨θ⋆, a⟩ − π⋆(t, a)} = argmaxa∈At

⟨θ⋆ + s⋆, a⟩, aagt :=
argmaxa∈At

⟨s⋆, a⟩ and âagt = argmaxa∈At
⟨ŝt, a⟩. Note that if Et holds, for any a1t , a

2
t ∈ At, a

1
t ̸= a2t , H2 gives that if

diam

(
St,

a1t − a2t
∥a1t − a2t∥

)
<

1

T
, then max

s∈St

⟨s, a1t − a2t ⟩ = max
s∈St

〈
s,

a1t − a2t
∥a1t − a2t∥

〉
∥a1t − a2t∥︸ ︷︷ ︸

⩽2

< 2 · 1
T

,

and therefore diam
(
St, a

1
t − a2t

)
< 2/T .

If Et does not hold, the incentive function proposed in Algorithm 5 is given by κ(t, a) = 3 · 1a1
t
(a) + (3 + ⟨̂st, a1t − a2t ⟩) ·

1a2
t
(a). Therefore: κ(t, a1t ) = 3, κ(t, a2t ) = 3 + ⟨̂st, a1t − a2t ⟩ ⩽ 5. When Et holds, the incentive function proposed in

Contextual IPA is defined as κ(t, a) = 1aRec
t

(a)π̂(t, aRec
t ) ⩽ 2.

For any t ∈ [T ], we define the instantaneous regret regt at t as

regt := µ⋆
t − (XAt

(t)− κ(t, At)) ,

where µ⋆
t is defined in (10) and we decompose the regret into two terms, making use of the Cauchy-Schwarz inequality as

well as H2 to obtain

R(T ) = E

[
T∑

t=1

1{Et}regt +

T∑
t=1

1{Ec
t }regt

]

⩽ E

[
T∑

t=1

1{Et}regt

]
+ E

[
T∑

t=1

1{Ec
t }(max

a∈At

⟨θ⋆ + s⋆, a⟩ − max
a′∈At

⟨s⋆, a′⟩ − ⟨θ⋆, At⟩+ κ(t, At))

]

⩽ E

[
T∑

t=1

1{Et}regt

]
+ E

 T∑
t=1

1{Ec
t }(max

a∈At

{⟨θ⋆, a⟩︸ ︷︷ ︸
⩽1

+ ⟨s⋆, a− aagt ⟩}︸ ︷︷ ︸
⩽0

−⟨θ⋆, At⟩︸ ︷︷ ︸
⩽1

+κ(t, At))︸ ︷︷ ︸
⩽5


⩽ E

[
T∑

t=1

1{Et}regt

]
+ 7E

[
T∑

t=1

1{Ec
t }

]
.
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Using Lemma 5, we can bound the second term

E

[
T∑

t=1

1{Ec
t }

]
⩽ 192d log(dT ) .

Now we bound the first term. Working on steps t such that Et is true with incentive function κ̂aRec
t

(t, ·) = 1aRec
t

(·)π̂(t, aRec
t ),

Lemma 4 guarantees that At = aRec
t , and we have

E

[
T∑

t=1

1{Et}regt

]

= E

[
T∑

t=1

1{Et}

(
max
a∈At

{⟨θ⋆ + s⋆, a⟩ − max
a′∈At

⟨s⋆, a′⟩} −
{
⟨θ⋆, aRec

t ⟩ −
(
⟨̂st, âagt ⟩ − ⟨ŝt, aRec

t ⟩+ 2

T

)})]

= E

[
T∑

t=1

1{Et}
(
⟨θ⋆, aprt ⟩+ ⟨s⋆, aprt ⟩ − ⟨s⋆, aagt ⟩ − ⟨θ⋆, aRec

t ⟩+ ⟨̂st, âagt ⟩ − ⟨ŝt, aRec
t ⟩

)
+

T∑
t=1

1{Et}
2

T

]

⩽ E

[
T∑

t=1

1{Et}
(
⟨θ⋆, aprt ⟩+ ⟨s⋆, aprt ⟩ − ⟨s⋆, aagt ⟩ − ⟨θ⋆, aRec

t ⟩
)]

+ 2T
1

T

+ E

[
T∑

t=1

1{Et}
(
−⟨s⋆, aRec

t ⟩+ ⟨s⋆, aagt ⟩+ ⟨̂st, âagt ⟩ − ⟨ŝt, aRec
t ⟩+ ⟨s⋆, aRec

t ⟩ − ⟨s⋆, aagt ⟩
)]

= E

[
T∑

t=1

1{Et}
(
⟨θ⋆, aprt ⟩+ ⟨s⋆, aprt ⟩ − ⟨s⋆, aagt ⟩ − ⟨θ⋆, aRec

t ⟩ − ⟨s⋆, aRec
t ⟩+ ⟨s⋆, aagt ⟩

)]

+ E

[
T∑

t=1

1{Et}
(
⟨ŝt, âagt ⟩+ ⟨s⋆ − ŝt, a

Rec
t ⟩ − ⟨s⋆, aagt ⟩

)]
+ 2 .

Since ⟨s⋆, aagt ⟩ ⩾ ⟨s⋆, âagt ⟩, we have −⟨s⋆, aagt ⟩ ⩽ −⟨s⋆, âagt ⟩. Therefore

E

[
T∑

t=1

1{Et}
(
⟨̂st, âagt ⟩+ ⟨s⋆ − ŝt, a

Rec
t ⟩ − ⟨s⋆, aagt ⟩

)]

⩽ E

[
T∑

t=1

1{Et}
(
⟨ŝt, âagt ⟩+ ⟨s⋆ − ŝt, a

Rec
t ⟩ − ⟨s⋆, âagt ⟩

)]

= E

[
T∑

t=1

1{Et}
(
⟨s⋆ − ŝt, a

Rec
t ⟩ − ⟨s⋆ − ŝt, â

ag
t ⟩

)]

= E

[
T∑

t=1

1{Et}
(
⟨s⋆ − ŝt, a

Rec
t − âagt ⟩

)]

⩽
T∑

t=1

1{Et}1{aRec
t ̸= âagt } ∥aRec

t − âagt ∥︸ ︷︷ ︸
⩽2

diam

(
St,

aRec
t − âagt

∥aRec
t − âagt ∥

)
< 2T · 1

T
= 2 ,

and plugging this inequality gives

E

[
T∑

t=1

1{Et}regt

]
⩽ E

[
T∑

t=1

1{Et}
(
⟨θ⋆ + s⋆, aprt ⟩ − ⟨s⋆, aagt ⟩ − ⟨θ⋆ + s⋆, aRec

t ⟩+ ⟨s⋆, aagt ⟩
)]

+ 4

= E

[∑
t∈IT

max
a∈At

{⟨θ⋆ + s⋆, a⟩ − max
a′∈At

⟨s⋆, a′⟩}

]
− E

[∑
t∈IT

⟨θ⋆ + s⋆, aRec
t ⟩ − max

a∈At

⟨s⋆, a⟩

]
+ 4

= Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) + 4 ,
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where Rcorrupt
Contextual IPA is defined in (17) with π⋆(t, a) = maxa′∈At

⟨s⋆, a′⟩ − ⟨s, a⟩. Plugging all the terms together gives the
following upper-bound for the regret:

R(T ) ⩽ 1344 d log(dT ) + 4 +Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) .

Proof of Corollary 2. Here, Lemma 6 guarantees that Ccorrupt = 4. With the setup of He et al. (2022), we take L = 1, S =

1, R = 1, and α =
√
d/4.

Choose λ = 1 as a regularization parameter and δ = 1/T as a confidence level. Using CW− OFUL proposed in He et al.
(2022) as a subroutine robust to corruption in the stochastic linear case, since our subroutine is fed with the same reward r′

as in their model while Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) is defined compared to the true reward r, we can use the result provided in He
et al. (2022, Theorem 4.2) to bound Rcorrupt

CtxAlg(IT , ε
corrupt
IT

) with probability 1− 1/T and use the fact that our instantaneous
regret is always bounded by 7 as it is shown in the proof of Theorem 2 to get in expectation for some universal constant
B > 0

Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) ⩽ (1− δ)B

2d
√
T log

(
1 + T

δ

)
+

√
dλT

√
log(1 + T ) + 4d

√
log

(
1 + T

δ

)3
+ 7Tδ

⩽

(
1− 1

T

)
B

2d
√
T log

(
1 + T

1
T

)
+
√
dT

√
log

(
1 + T

1
T

)
+ 4d

√
log

(
1 + T

1
T

)3
+ 7T

1

T

⩽

(
1− 1

T

)
B
(
2d

√
T log

(
T + T 2

)
+

√
dT

√
log(T + T 2) + 4d

(
log

(
T + T 2

)) 3
2

)
+ 7 ,

therefore, since Ccorrupt ⩽ 4, there exists a constant CCtxAlg such that

Rcorrupt
CtxAlg(IT , ε

corrupt
IT

) ⩽ 7 + CCtxAlgd
√
T log T .

Finally plugging this term in the bound from Theorem 2 and integrating the 3 factor in constant B gives the result

R(T ) ⩽ 11 + 1344 d log(dT ) + CCtxAlgd
√
T log T .

E Algorithms

E.1 UCB subroutine

We present the Binary search subroutine and the UCB algorithm that we use as a subroutine in IPA as formulated in
Lattimore & Szepesvári (2020, Algorithm 3).

Algorithm 3 Binary Search Subroutine

1: Input: action a,NT

2: Initialize: πa(0), πa(0) = 0, 1
3: for t = 1, . . . , NT do
4: πmid

a (t− 1) =
πa(t−1)+πa(t−1)

2
5: Propose incentive πmid

a (t− 1) on arm a
6: If At−1 = a then πa(t) = πmid

a (t− 1) and πa(t) = πa(t− 1) else πa(t) = πmid
a (t) and πa(t) = πa(t− 1)

7: end for
8: Return πa(NT ), πa(NT )
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Algorithm 4 UCB Subroutine

1: Input: Set of arms K, horizon T
2: Initialize: For any arm a ∈ [K], set µ̂a := 0, Ta := 0
3: for 1 ⩽ t ⩽ K: do
4: Pull arm a = t
5: Update µ̂a = Xa(t), Ta(t) = 1
6: end for
7: for t ⩾ K + 1 do
8: Pull arm amax ∈ argmaxa∈[K]

{
µ̂a(t− 1) + 2

√
log T

Ta(t−1)

}
9: Update Ta(t) = Ta(t− 1) + 1, µ̂a(t) =

1
Ta(t)

(Ta(t− 1)µ̂a(t− 1) +Xa(t))

10: end for

E.2 Projected volume algorithm

We present the Projected volume algorithm from Lobel et al. (2018) that we use as a subroutine in Contextual IPA.
For any horizon T and 0 < δ̄ < T−2/(16d(d + 1)2), this algorithm defines recursively a sequence (St,Vt)t∈[T ] such
that (St)t∈[T ] is a sequence of decreasing subsets (for the inclusion) of B(0, 1) including s⋆ and (Vt)t∈[T ] is a sequence of
increasing sets of Rd containing orthogonal directions {vi}i∈[n] along which the principal has a good knowledge of ⟨s⋆, vi⟩.

The main ingredient in Lobel et al. (2018) allowing low regret is cylindrification. Given a compact convex set S ⊆ Rd,
V = {v1, . . . , vn}, and ΠV⊥(S) being the orthogonal projection of S onto V⊥, we define the cylindrification of S on V as

Cyl(S,V) := ΠL(S) + Πspan(v1)(S) + . . .+Πspan(vn)(S)

=

{
x+

n∑
i=1

yivi : x ∈ ΠL(S),min
s∈S

⟨s, vi⟩ ⩽ yi ⩽ max
s∈S

⟨s, vi⟩

}
.

At iteration t, given (St,Vt), we define the estimate ŝt of s⋆ as the centroid of Cyl(St,Vt):

ŝt :=
1

Vol(Cyl(St,Vt))

∫
Cyl(St,Vt)

xdx , (29)

Note that the iterative construction of St described below together with Lemma 11 guarantees that St is always a convex
body, making Vol(St) well-defined as the Lebesgue measure of St in dimension d and Vol(St) > 0. Combined with
Lemma 12, it guarantees that Vol(Cyl(St,Vt)) is well-defined, and Vol(Cyl(St,Vt)) > 0. Therefore, (29) is well-defined.

At iteration t, given (St,Vt) and two actions a1t , a
2
t ∈ At, recall that we defined wt as

wt := argmax

{
diam

(
St,

a1t − a2t
∥a1t − a2t∥

)
:

a1t − a2t
∥a1t − a2t∥

such that a1t ̸= a2t ∈ At

}
.

Then, the principal offers the incentive function κ(t, a) = 5 · 1a1
t
(a) + (5 + ⟨̂s, a1t − a2t ⟩) · 1a2

t
(a). Recall that κ(t, a) is

always bounded by 5 and that a1t , a
2
t are chosen such that ⟨̂st, a1t − a2t ⟩ ⩾ 0, ensuring that we either have At = a1t or

At = a2t .

If At = a1t , it means that ⟨s⋆, wt⟩ ⩾ 0 and we update St+1 = St ∩ {s|⟨s, wt⟩ ⩾ xt}. Otherwise, if At = a2t , it means that
⟨s⋆, wt⟩ ⩽ 0 and we update St+1 = St ∩ {s|⟨s, wt⟩ ⩽ xt}. This defines the subset St+1 such that s⋆ ∈ St+1:

St+1 = St ∩ (1a1
t
(At){s|⟨s, wt⟩ ⩾ xt}+ 1a2

t
(At){s|⟨s, wt⟩ ⩽ xt}) (30)

Regarding the subspace Vt+1, we consider Vt+1 = V
Jt+1

t+1 where (Vi
t+1)i∈N is defined as

V
(0
t+1) := Vt

V
(i+1)
t+1 :=

{
V

(i)
t+1 ∪ {v} if ∃ v ∈ (V

(i)
t+1)

⊥ : diam(St+1, v) ⩽ δ̄

V
(i)
t+1 otherwise

(31)
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Jt+1 := min{i : it does not exist v ∈ (V
(i)
t+1)

⊥ such that diam(St+1, v) ⩽ δ̄} , (32)

which exists since if it does not exist i such that it does not exist v ∈ (V
(i)
t+1)

⊥ such that diam(St+1, v) ⩾ δ̄, we would have
dim(span(V

(i+1)
t )) = dim(span(V

(i)
t )) + 1 for any i ∈ N, which would imply a contradiction.

In what follows, we provide technical results ensuring that St is a convex body for any t ∈ [T ] and St ⊆ Cyl(St,Vt), which
implies that Cyl(St,Vt) has non-empty interior.

Lemma 11. Let S be a convex body in Rd and s be a point in the interior of S: s ∈ S̊. Let G be the half-space defined by
G := {x ∈ Rd : ⟨h⋆, x⟩ ⩾ 0}, for some h⋆ ∈ Rd. Suppose that s ∈ G. Then S ∩ G is a convex body.

Proof. Note that we only need to show that S ∩ G has non-empty interior since the intersection of two compact convex sets
is compact and convex.

The only case that we consider is s ∈ H where H is the hyperplane defined by H := {x ∈ Rd : ⟨h⋆, x⟩ = 0}. The other case
simply follows from the fact that the intersection of two open sets is also open.

Since S is a convex body and s ∈ S̊, there exists a ball B(s, r) centered in s with r > 0, such that B(s, r) ⊆ S̊. For any
x ∈ B(s, r) ∩ G is equivalent to ⟨h⋆, x− s⟩ ⩾ 0 since ⟨h⋆, s⟩ = 0 and ∥x− s∥ ⩽ r.

Now we define y0 = s+ rh⋆/(2∥h⋆∥) and consider the ball B(y0, r/2). For any y ∈ B(y0, r/2), we can write y = y0 + ỹ
with ∥ỹ∥ ⩽ r/2. Using ⟨h⋆, s⟩ = 0, we have ∥y − s∥ ⩽ ∥y0 − s∥ + ∥ỹ∥ ⩽ r and ⟨h⋆, y⟩ = ⟨h⋆, y0⟩ + ⟨h⋆, ỹ⟩ with
⟨h⋆, y0⟩ = r/2 and ⟨h⋆, ỹ⟩ ⩾ −∥h⋆∥ · ∥ỹ∥ ⩾ −1 · r/2 = −r/2. Therefore ⟨h⋆, y⟩ ⩾ 0 and we obtain y ∈ B(s, r) ∩ G,
which gives B(y0, r/2) ⊆ B(s, r) ∩ G.

Lemma 12. Given a convex body S ⊆ Rd and a set of orthonormal vectors V = {v1, . . . , vn} ⊆ Rd, let ΠV⊥(S) be the
projection of S on the subspace V⊥ = {x ∈ Rd | ⟨x, vi⟩ = 0}. Define the cylindrification of S onto V as

Cyl(S,V) := ΠV⊥(S) + Πspan(v1)(S) + . . .+Πspan(vn)(S)

=

{
x+

n∑
i=1

yivi|x ∈ ΠL(S),min
s∈S

⟨s, vi⟩ ⩽ yi ⩽ max
s∈S

⟨s, vi⟩

}
.

Then it holds that S ⊆ Cyl(S,V).

Proof. Define ΠV⊥ as the orthogonal projector on V⊥. Then we have for any s ∈ S

s = ΠV⊥s+ (I −ΠV⊥)s ,

where (I−ΠV⊥) is an orthogonal projector on the space span({v1, . . . , vn}), thus (I−ΠV⊥)s =
∑n

i=1 yivi for yi = ⟨s, vi⟩.
This decomposition allows us to conclude.

F Lower Bound
Proof of Proposition 1. Suppose that the principal was to know (sa)a∈[K]. For any incentive π(t) offered on action at at
round t, the agent selects his action following (1): At = argmaxa∈[K] sa + 1at

(a)π(t). The principal’s expected reward is

θAt − 1at(At)π(t) ⩽ θAt − π⋆
At

= µa ,

by definition of π⋆
a := maxa′∈[K] sa′ − sa as the infimal amount of incentive to be offered on action a to make the agent

choose it. Consequently, we have

R(T ) = T µ⋆ −
T∑

t=1

E[θAt
− 1at

(At)π(t)]

⩾ E

[
T∑

t=1

µ⋆ − (θAt − π⋆
At
)

]
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Algorithm 5 Projected Volume

1: Input: T, δ̄,St such that diam(St) ⩾ δ̄,Vt, a1t , a
2
t

2: Compute Cyl(St,Vt) and its centroid ŝt, wt = (a1t − a2t )/∥a1t − a2t∥, xt = ⟨̂st, wt⟩, δ̄ ∈
(
0, 1/16d(d+ 1)2T 2

)
3: Propose an incentive function κ(t, a) = 5 · 1a1

t
(a) + (5 + ⟨ŝt, a1t − a2t ⟩) · 1a2

t
(a)

4: if At = a1t then
5: St+1 = St ∩ {s|⟨s, wt⟩ ⩾ xt}
6: else
7: St+1 = St ∩ {s|⟨s, wt⟩ ⩽ xt}
8: end if
9: Let Vt+1 = Vt

10: if ∃v ⊥ Vt+1 such that diam(St+1, v) ⩽ δ̄ then
11: add v to Vt

12: Repeat this step as many times as necessary
13: end if
14: Output: St+1,Vt+1.

⩾ E

[
T∑

t=1

µ⋆ − µAt

]
.

Assuming the principal knows (sa)a∈[K], observing Xa(t) is equivalent to observing Xa(t) − π⋆
a. Using the result of

Burnetas & Katehakis (1996) (see, e.g., Lattimore & Szepesvári, 2020, Theorem 16.2.), it then comes

lim inf
T→∞

R(T )

log T
⩾

∑
a,µa<µ⋆

µ⋆ − µa

KLinf(νa − π⋆
a, µ

⋆,D)
.
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