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Abstract—Validating the safety of automated systems is a
highly complex task that cannot be done effectively through
one validation methodology alone. As a result, current trends
recommend adopting a multi-pillar approach for the validation
of such systems. In this paper, we share our experience in
applying a combined safety approach for the safety evaluation of
an automated vehicle. The evaluation approach couples Model-
Driven Engineering paradigm and simulation for a detailed
assessment of critical scenarios. Based on a system model, we
perform analytical safety analysis to identify the critical failures
that may lead to undesired events. The analytical analysis is
complemented by extensive simulation experiments to assess finer
the impact of the identified malfunctions. The overall approach
builds upon a tool chain consisting of Physistem as a modeling
framework, Papyrus-Sophia for dysfunctional analysis support,
and Phisim as a simulation environment. We report on the
experiment results and discuss the advantages and limitations
that the proposed approach brings for the evaluation of safety-
critical automated systems.

Index Terms—safety validation, automated system, model-
driven engineering, simulation

I. INTRODUCTION

The work reported in this paper was developed in the
context of an industrial study to operate a fleet of autonomous
shuttles to transport daily about 8000 people on a private
company site large of 220 ha while guaranteeing operational
safety inspired by public transport recommendations. Prior to
enabling long-term operation, the operating limitations of the
shuttles must be studied. The absence of a normative and
regulatory framework as well as the absence of dedicated
and applicable operating safety requirements on the subject of
the autonomous shuttle delays the emergence of methodology
and processes aimed at demonstrating the safety of such
an autonomous transportation system. However, it is well-
recognized that validating the safety of automated systems is
a highly complex task that cannot be done effectively through
one validation methodology alone. As a result, current trends
recommend adopting a multi-pillar approach for the validation
of such systems [1]. In this paper, we reflect on the application
of a safety approach that couples Model-Driven Engineering
(MDE) paradigm and simulation for evaluating the safety of
an automated system.

Based on a model-based design of the system, we perform
analytical safety analysis to identify the potential failure chains
that may occur within the system and that may lead to unde-

sired events. The analytical analysis results were then used to
define advanced critical scenarios to assess through extensive
simulation experiments. The latter simulations aim to validate
finer and deeper the impact of the identified failures in real
operating conditions and define appropriate safety measures
for the safe operation of an autonomous shuttle. The overall
approach builds upon a tool chain consisting of Physistem
as a modeling framework, Papyrus-Sophia for dysfunctional
analysis support, and Phisim as a simulation environment.

The rest of the paper is organized as follows. Section II
presents the autonomous shuttle specification and depicts its
architectural modeling. Section III presents our approach for
safety validation of the automated vehicle and the accompa-
nying tool support. Section IV presents the application of the
model-based safety analysis method to the case study and the
limitations of such analytical analysis. Section V reports on
the simulation experiments. Section VI summarizes the lessons
learned on applying the proposed approach to the autonomous
vehicle case and the benefits that this approach brings for the
safety validation of automated systems.

II. CASE STUDY

A. System specification

The target of our study was a real industry-academy exper-
imentation of a fleet of autonomous shuttle deployment on a
sensitive site of 220 ha [2]. An autonomous shuttle has some
particularities that increase the severity of harm and damages
in case of an accident and make the autonomous shuttle
deployment critical. Among these particularities, one can cite
its usage scenario dimensions (high weight, high number
of passengers, etc.), the traveling conditions (passengers in
standing position, no use of handholds by passengers, etc.), the
prominent presence of fragile users ( elderly people, children,
handicapped persons, pregnant women, etc.), the limited safety
mechanisms ( lack of seat belts, absence of airbags, limited or
unreachable handholds, etc.). Besides, it is assumed that the
vehicle should achieve the highest level of autonomy according
to SAE J3016 [3] (L5: Full Automation); so, the human system
interactions (driver, passengers) in case of emergency are very
limited.

For our safety study, the system operating scenarios have to
relate to functional safety and have an interest in being simu-
lated for further validation. We focus then on specific scenarios



Fig. 1: Simplified functional architecture of an autonomous shuttle

that may lead to a collision or a trajectory deviation. The aim is
therefore to find the faults propagation paths within the system
architecture that may lead to such an undesired event. The
selected scenarios involve the Perception, the Localisation, the
Trajectography, the Navigation, i.e., V ehicle Guidance, and
the Motion control functions of the system. Depending on
the relative position of the shuttle (localization), the objects
detected (perception), the configuration of the road (trajectog-
raphy), the vehicle guidance function controls these 3 degrees
of freedom: The acceleration, the braking, and the steering,
i.e., the orientation of the wheels of the shuttle.

B. System Architecture

Figure 1 presents an excerpt of the system architecture. The
system architecture illustrates the logical functioning of the
system independently of how its implementation is carried out.
For simplicity and clarity, the depicted architecture comprises
3 sensors, but one may consider that each of them represents
a set of sensors:

• GPS provides the position of the shuttle
• CAMERA provides the objects detected in the scene

including their type
• LIDAR provides the objects detected in the scene includ-

ing their characteristics: envelope, speed, position of the
obstacle

The Perception relies upon LIDAR and Camera sensors,
and an ML/DL data fusion component [4] which aims to

increase accuracy by integrating different, sometimes redun-
dant data sources. These components structure a model of the
surrounding vehicle’s environment to enable object detection
as well as their type (obstacle, fence, pedestrian, cyclist,
car, etc.); infer the position, dynamics, and relative status
of such objects (standing, approaching, crossing, etc). The
Localisation relies upon LIDAR information as well. Both
Camera and LIDAR sensors enable also the detection of the
shuttle dynamics: speed, angular momentum, acceleration, etc.
The Trajectography component builds upon a relative GPS
allowing the vehicle to support satellite exchanges convey-
ing local and global positioning data. The Trajectography
component mainly enables cartography localization, trajectory
searching, and itinerary following. The V ehicle Guidance is
an AI-based component that interprets the scene and makes a
decision according to the Perception, Localisation, Trajectog-
raphy state, and additional safety and AI-based requirements.
This component computes the vehicle dynamics, e.g., speed,
acceleration, and momentum, thus settling the model of the
system itself. The computed vehicle dynamics are afterward
sent to the Braking Unit and Steering Unit components
for vehicle motion control actions, i.e., to move, to steer, to
brake, etc.



III. SAFETY VALIDATION FRAMEWORK FOR AUTOMATED
SYSTEMS

Our safety validation approach adopts a joint model-driven
analysis methodology and testing through simulation that is
aimed at ensuring the functional safety of the system while
enabling the specification of the safety criteria and thresholds
for guaranteeing safe operation. The methodology relies on
the PhiSystem tool for the modeling of the system [5], the
Papyrus-Sophia tool for the safety analysis, and Phisim tool
for the simulation [5].

First, we develop UML-based models of the shuttle ar-
chitecture in Physistem. PhiSystem is an industry-ready tool
based on the Papyrus [6] framework and the SysML standard.
PhiSystem leverages modeling capabilities to implement a top-
down approach for the design of CPS. The tool accounts for
multiple viewpoints to enable the definition of requirements,
system missions, as well as architecture (functional and physi-
cal) models. It provides a SysML model library of components
to represent the functional and physical units that enable
to specify the full multi-physics modelling of autonomous
systems based on the Bond-Graph method. Within the tool, we
define the shuttle architecture models at the system level, and
at the hardware and software level. This allows the definition
of finer-grained system properties and characteristics within
the modeling.

Second, we use the Sophia to support safety analysis and
assessment. Sophia is a model-based toolset integrated with the
Eclipse Papyrus framework [7]. Sophia uses Papyrus extension
mechanisms to support safety and reliability analyses like
Hazard Analysis and Risk Assessment (HARA), Failure Mode
and Effect Analysis (FMEA), Fault Tree Analysis (FTA),
etc. Sophia allows for conducting functional safety analyses
based on system models defined in UML, SysML, or de-
rived languages. Since both Physistem and Sophia rely on
Eclipse, Papyrus, and UML-based languages, it was possible
to integrate them into a unified framework. We were then
able to automatically apply Sophia’s methods on top of the
design models produced in Phisystem, with the benefit that
using the same model for design and safety analysis avoids
misinterpretations and reduces design time and cost.

In the third step, we use the Phisim tool to test through
simulation several critical scenarios issued from the Sophia
safety analysis results, to further validate the safety of the
automated system. Phisim is also a mature simulation-based
framework. PhiSim is a Simulink-based package that allows
the building of complex cyber-physical systems using sets
of reusable library elements, including ADAS (Advanced
Driver Assistance System) models for drivers, cars, and their
environment. The Massif framework1 is used as the bridge
connecting PhiSystem and PhiSim. Massif supports the repre-
sentation of Simulink models and libraries (such as PhiSim)
in the Eclipse Modeling Framework (EMF). It also features
a dedicated API that enables Java RMI-based communication

1Massif- MATLAB Simulink Integration Framework for Eclipse:
https://viatra.github.io/massif/

with a running Matlab instance. PhiSystem provides a SysML
model library of components to represent the functional and
physical units at the system level. It uses the UML pro-
file mechanism to extend SysML to model concepts in the
CPS domain. Through specific stereotype attributes, every
Physistem component is linked to a corresponding PhiSim
executable model, which is a Simulink block in the PhiSim
blockset at the simulation level. Automated tools process the
Phisystem models and generate corresponding Phisim models
- without any manual intervention required - in two sequen-
tial steps. First, a model-to-model transformation processes
the PhiSystem model and produces an intermediate (Massif)
model representing the Simulink/PhiSim equivalent model in
EMF format. Second, the intermediate model is processed by
a model-to-text transformation that produces a set of Matlab
scripts with construction commands. Once executed, these
scripts create the .slx model which simulation engineers can
work with. Model transformation and scripts execution are
automatically performed via the Java RMI framework, which
is perceived by designers as a single-step. To address model
synchronization issues, even PhiSystem and Phisim features
round-trip engineering capabilities to automatically maintain
consistency between their models, by incrementally updating
one model to reflect changes made to the other model. So,
Physistem and Phisim models can evolve concurrently.

IV. MODEL-BASED SAFETY ANALYSIS

The model-based safety analysis of our system is conducted
based on an architecture model as depicted in Figure 1. As
seen in the figure, the following naming convention rules were
followed:

• The name of the output ports is noted
[Signalname] [Destination]

• The name of the input ports is noted
[Source] [Signalname]

• In the case of the same signal used twice by the same
function, we add [Number] to differentiate the ports’
name

Only the perception component with its subsequent com-
ponents are analyzed in detail, the other components were
considered as black box.

For the analysis, we made the following assumptions:
• The vehicle is moving in a straight line
• Any detected obstacle is on his predefined route
• The vehicle mechanics are not faulty, i.e., we will not

look into the failures of the hydraulic or mechanical
circuits. We are mainly interested in potential failures
in the algorithms, vehicle sensors, and control/command
actuators.

A. Model safety annotation

Sophia defines analytical expressions associated with the
system components to model their failure behavior and the
possible propagation of failures through the system architec-
ture. The analytical expressions are dysfunctional equations
that show how a component failure can be caused by internal



Fig. 2: GPS and LIDAR Dysfunctional equations

TABLE I: Fusion component dysfunctional equation true table

Fenetre Camera 0 0 1 1 1
Fenetre LIDAR 0 1 0 1 1

Coherence Fenetre - - - 0 1
Fusion 0 1 1 0 1

failures of the component and/or possible deviations in the
component inputs. These equations are written in the output
ports of the components and therefore propagate via the
connectors to the other connected ports. Then the overall
failure behavior of the system is automatically computed from
the output deviation equations of the individual components.

For the failure modes identification, we focus on analyzing
two functional requirements of our autonomous shuttle. The
first requirement is to adopt a safe reaction in the presence
of an obstacle on its trajectory, e.g., decelerating, or braking.
The second requirement is to keep its trajectory.

1) sensors dysfunctional equations: Figure 2 presents the
dysfunctional equations for the GPS and the LIDAR compo-
nents. A GPS failure occurs if it catches less than 5 satellite
signals for more than 5 seconds. In addition, an internal GPS
failure is considered, i.e., a physical defect. A camera failure
occurs when the is not powered or because of an internal
failure. Similarly, the LIDAR fails when it is not powered
or because of an internal failure as well.

2) Perception dysfunctional equations: The perception
component comprises the Acquisition, Fusion, and Identifi-
cation subcomponents. All the components can experience
internal failures. We add in the acquisition what we call a
“range check”. For any data provided by the Camera or LIDAR
outside a defined range, the data is considered invalid leading
to the Acquisition failure.

The output from the fusion is valid, i.e., not in a
failed mode, whenever we had available at least the
LIDAR Fenetre__Lidar data or both the LIDAR
Fenetre__Lidar and camera Fenetre__Camera data
with some consistency between the two outputs (see Figure 3).
The Coherence__Fenetre variable represents the consis-
tency check between the envelope of the obstacle determined

Fig. 3: Fusion component dysfunctional equation

by the LIDAR and the ones determined by the Camera.
There is consistency if the surface difference between the
two envelopes is less than the maximum threshold. Table
I presents the True table that allows us to determine the
Coherence__Fenetre value.

The Identification component satisfies the equation:
Identification OK = Fusion OK && ACQ DistanceObs OK.

Hence, the Identification is not faulty if and only if we had
the Fusion output available (therefore consistent envelope of
the obstacle) and the distance and velocity of the obstacle
from the Acquisition component, which makes it possible to
determine its shape and its size.

3) Localisation and Trajectography dysfunctional equa-
tions: For simplicity, one manages to locate if the Lidar works
properly and if there is no internal fault in the localisation
component, e.g., software bug, or defective computer. In the
same way, The trajectography relies essentially on the GPS
and therefore on the correct functioning of the latter.

4) Vehicle guidance dysfunctional equation: The validity
of the steering, braking, and acceleration commands are de-
duced from the Localisation, Trajectrography, and Perception
dysfunctional equations, as shown in Figure 4.

B. Analysis results

The model-driven safety analysis makes it possible: 1/ to
capitalize on libraries of failure modes, Causes, effects, and



Fig. 4: Vehicle guidance component dysfunctional equation

risk reduction measures, 2/ to link automatically these safety
elements to the system architecture, and 3/ to automate the
criticality assessment. As an excerpt of the safety results, we
report below on how the sensors’ failures impact the safety of
the system.

The loss of the camera can be created by a loss of
power supply. This induces the output CAMERA OK = 0.
Through failure propagation, the ACQ Window Cam OK
signal becomes therefore faulty. However, at the system level,
the Camera failure does not affect the shuttle mission because
its output is considered together with the Lidar data - which
is assumed correct - in the failure propagation.

Lidar loss can result from power loss. This induces the
output signal LIDAR OK = 0. The following signals
therefore become faulty: ACQ Window Lidar OK,
ACQ SpeedObs OK, ACQ DistanceObs OK,
Fusion OK, Localisation OK, Identification OK.
At the system level, the Lidar loss does not affect steering
control but does affect brake and throttle control.

GPS loss can be caused by loss of signals
for more than 5 seconds or less than 5 satellites
detected. This induces GPS OK = 0. All the
following GPS-dependent signals therefore become
faulty: Traj Route OK, Traj Pos V eh OK,
Traj V it V eh OK, Traj Traj V eh OK.

With a GPS loss, the shuttle is no longer able to correctly
calculate steering, braking, and acceleration commands.

C. Limitations

The main limitation of the model-based safety analysis
method is the nature of the dysfunctional equations. They
are only composed of boolean and numerical operators. Thus,
they rely on the unique assumption that the system and
the components are correctly functioning or not functioning.
However, in the real world, the system can experience more
complex breakdowns, e.g., intermittent, erratic, etc. failure)
with more or less significant degradations, of variable du-
rations. In addition, the analysis does not consider multiple

cascading failures, e.g., both Camera and Lidar being lost
simultaneously, nor other systems functionalities that may
compensate, to some extent, some other failures occurrence
within the system. For example, in case of a GPS loss, one
could consider that the position of the vehicle and its speed can
be estimated for some duration via the inertial measurement
unit (IMU) and a precise map until the GPS information is
available back. This is typically a benefit that the simulation
can bring into the safety validation. In simulation, not only we
can assess corner and critical scenarios that will be difficult to
perform in a real environment, but it helps also confirm design-
based safety analysis results as well as evaluate scenario
variants, e.g., where the signal from a sensor can be valid only
for 75% of the time, to determine the maximum interruption
time of a signal before generating a malfunction. In addition,
the simulator makes it possible to assess the effect of risk
reduction measures, for example, to enable to simulate more
or less strong braking, with potentially a delay compared to
the expected braking time.

V. SIMULATION EXPERIMENTS

The goal of our simulation experiments is to further evaluate
the quality of service and functional safety, based on the
analytical analysis outcomes. Looking at the assumptions set
in the preamble of the analytical analysis (see Section IV),
many safety-relevant cases have not been considered, e.g., any
mechanical failure, the obstacle speed, the route geometry, the
impact of environmental factors (rain, sun, snow, etc.). In ad-
dition to being able to test degraded cases more precisely, the
simulation will allow us to test cases that would take a longer
time to analyze analytically, as they would have required to
model in detail all functions and flows contributing to this
case, all the organic components contributing to this case, and
to be able to write dysfunctional equations closer to reality
more complex than boolean equations. All this modeling is
easily carried out in the Phisim tool which therefore gives the
possibility of discovering edge effects.



Fig. 5: (a) Perception flaw parameters definition, (b) Simulation period parameters

In our simulations, the ego vehicle satisfies the following
characteristics:

• Mass: 1800 kg
• Maximum power: 90 kW
• Max torque: 220 Nm
• Max Acceleration = 2 m/s²
• Max Deceleration = -5 m/s²
• maximum speed = 15 km/h

We mainly focus the simulation experiments on perception
and localisation flaws. Figure 5 (a) presents the main parame-
ters that describe a perception flaw. R sensor and D FreeZone
are variables that depend on the vehicle’s speed. At a speed
of 15 Km/h, the R sensor = 50 m and the D FreeZone =
12 m. In the case of the perception default, the R Sensor= 0
m, which means that the other object is no longer detected.
With this default, we consider two main accident scenarios:
a collision with a pedestrian, and an ahead collision with a
preceding vehicle traveling the same route as the ego. For the
localisation flaw, we consider the trajectory path deviation as
undesired behavior. In all scenarios, The ego vehicle starts at
zero speed.

A. Pedestrian collision scenario

The simulated scenario is about a collision with a pedes-
trian. A pedestrian goes back and forth across the ego vehicle
route. It completes its journey in 10 seconds, i.e., at a speed of
1 m/s. At the scenario start, the pedestrian is located at 180m
of the ego. The pass success criteria for the scenario is that the
ego vehicle does not hit the pedestrian. We assume that the
pedestrian continues to walk regardless of the behavior of the
vehicle, so we only consider frontal collisions between vehicle
and pedestrian as a failure of the scenario.

1) Simulation configuration: The intermittent perception
loss is configured as follows.

• Non-perception duration is 0.1 second, 0.3 second, 0.5
second, 1 second

• For each duration, we define the period so that this time
represents a % of time failure of 10% or 20% of the
simulation run (see Figure 5 (b)).

• The pedestrian’s departure time is variable, from 0 to 10
seconds with a step of 0.1 second.

TABLE II: Number of Collision following the non-perception
time and the perception failure duration

Duration NOK % NOK Nb Collision
0 0 3
0.1 20 6
0.3 20 8
0.5 20 13
1 20 20
0.1 10 5
0.3 10 8
0.5 10 13
1 10 18

Table II presents the simulation setting parameters. For a
vehicle/pedestrian configuration, we define 1 out of 4 possible
Perception Outage Time (NOK Time) and 1 out of 2 pos-
sible % of time without perception (%NOK). For a defined
configuration (i.e., a line’s table), 10 simulations are carried
out by shifting the time of failure. From the 10 trials, we
determine if the considered setting generates a collision (at
least one collision out of the 10 trials). The Nb collision
column counts the number of collisions obtained for the 100
vehicle/pedestrian configurations.

2) Results Analysis: Figure 6 presents different results
about the scenario. We are interested in some collision-related



Fig. 6: Collision with pedestrian results: (a) collision occurrence as a function of the position and speed of the ego-vehicle;
(b) braking distance as a function of the disturbance time during braking

indicators in the presence of an intermittent loss of perception,
e.g., the time-to-collision, the vehicle speed in the event of a
collision, the minimum speed during the journey, the relative
position when the ego is at its minimum speed (stop position),
the braking distance, and the non-braking time (during braking
operation).

Figure 6 (a) presents collision with pedestrian scenario
results based on the ego vehicle position and speed. In the
blue zone, the vehicle decelerates so as not to knock over
the pedestrian, but it does not need to stop. In the green
zone, The vehicle stops without colliding with the pedestrian.
In the red zone, The vehicle knocks the pedestrian over and
then stops. This represents 3% of cases, i.e., 3 car/pedestrian
configurations out of 100 simulation generates a collision. In
the orange zone, the pedestrian enters the vehicle perception
zone then the vehicle stops. We observe that the % of collision
increases rapidly as a function of the time of non-perception.
We also see that the frequency of failure occurrences does
not influence much on the number of collisions. This leads us
to reflect on the impact of non-perception on braking. Hence,
when the vehicle no longer has perception, it no longer detects
the pedestrian and re-accelerates during the braking phase.
This phenomenon has the effect of increasing the braking
distance and can cause a collision if the pedestrian is in front
of the vehicle.

Figure 6 (b) shows the braking distance as a function of the
disturbance time during braking. The red dots correspond to
tests where there was a collision. Depending on the vehicle
speed when the breakdown occurs, we obtain a +/- large brak-
ing distance: we travel more distance (at the same breakdown
time) if the breakdown occurs at 12 km/h than if it occurs at 5
km/h. The minimum braking distance is 1.8 m and can go up
to 6.2 m. This information can be taken into account to define

safety metrics. For example, if we define that the sensors can
have a maximum failure duration of 0.5 second, the vehicle
must brake a maximum of 4 m ahead of the pedestrian.

Overall, the loss of perception has a very significant impact
on the number of collisions, since the current detection strategy
fails to avoid collisions. For this experimentation, the simula-
tion allows complex calculations regarding the determination
of the braking distance threshold in case of disturbance.

B. Ahead vehicle collision scenario

The scenario is about the ego vehicle that follows another
vehicle moving at a fixed speed, at a distance of 25 meters
ahead. The defined success criteria for the scenario is that the
ego vehicle does not hit the car ahead during the occurrence
of an intermittent loss of perception. In a case of collision, the
distance between the 2 vehicles is calculated between the rear
of the vehicle to follow and the front of the ego vehicle.

1) Simulation configuration: Each simulation runs for 90
seconds during which the ego travels a distance of 2000
meters. We test the scenario with different vehicle speeds: at
5, 10, and 14 km/h. We also configure the non-perception
duration as: 0.1 second, 0.3 second, 0.5 second, 1 second,
2 seconds, and that the failure occurs 10, 20%, 40%, 50%,
and 80% of the simulation time. For each vehicle speed, we
perform 25 simulations, so 75 simulations in total.

2) Results Analysis: We are mainly interested in the fol-
lowing indicators: the occurrence of a collision, the minimum
distance between vehicles, and the average distance between
the vehicles.

Figure 7 presents 3 graphs that illustrate the minimum
distance between vehicles according to the time of non-
perception and the relative speed between vehicles, when the
ego vehicle is traveling at 14 km/h ( Figure 7 (a)), 10 km/h
(Figure 7 (b)) and 5 km/h (Figure 7 (c)), respectively. We



Fig. 7: Collision with ahead vehicle results

Fig. 8: Ahead vehicle collision results according to vehicle
speed and failure time and duration

observe that the loss of perception leads to an increase in
the speed of the vehicle to tend toward 15 km/h, its set
speed. This phenomenon is a consequence of reducing the
distance between vehicles. The distance tends to stabilize
around an average distance. We also observe that the greater
the frequency of the fault, the more the distance between the
vehicles decreases. When the distance between the vehicles
is small, the regulation uses emergency braking. This leads
to a rapid increase in the distance between vehicles. There is
not much impact between faults of 0.1 second and 0.5 second
duration. If the speed difference between the vehicles is low,
e.g., 1 km/h if the vehicle to follow is traveling at 14 km/h,
even a very significant fault, e.g., 2 seconds of breakdown
and 50% of the fault time does not have a major impact.
However, while the sensor is more often faulty, the minimum
and average distance are greater than the other fault (see
red box in Figure 7 (c)). This is explainable as the vehicle
continues to accelerate when perception is lost. When the
speed exceeds 5 km/h, the distance decreases because the
vehicle starts moving - as the distance between the vehicles is
quite large (> 3 m) - before the perception becomes back to
ready status. This configuration generates a longer acceleration
time and therefore a greater approach.

It is very difficult to end up with a collision in the con-
figuration settings. The speed cycle resulting from the failure
gives an average speed > 10 km/h, i.e., the speed of the car to
follow. The distance between the vehicles gradually decreases
until a collision occurs. As shown in Figure 8, to have the first
collisions, you must have a loss of perception for at least 70%

of the time. With this analysis, one can define a maximum lost
distance, e.g., 2 m, and deduce the type of perception defect
therefore a sensor performance.

In concluding observations, the current detection strategy
makes it possible to avoid the accident in very many cases.
The sensors must be very faulty to cause an accident. It may
therefore not be necessary to have high-performance sensors to
achieve this functionality. The scenario simulation makes also
it possible to identify interactions between the threshold for
using emergency braking and the threshold to set the vehicle
in motion.

C. Trajectory following scenario

The considered scenario is about the ego vehicle journey on
a predefined route trajectory. During a journey of 120 seconds,
the ego must experience a localization loss for 90 seconds.
One would like to check the impact of this failure on the
vehicle trajectory. Note that in case of localization loss, the
vehicle uses an inertial unit to calculate its position based
on longitudinal and lateral speeds which can also experience
calculation inaccuracies leading to Longitudinal drift and
lateral Drift. The simulation is considered as failed if there
is a crossing line with a gap > 2 m, i.e., a deviation from its
trajectory of more than 1 m over 50 m.

1) Simulation configuration: At the simulation start, the
vehicle is placed in the right place on the map. We configure
the simulation settings with lateral and longitudinal speed
gains from 0.9 to 1.1 in steps of 0.01 s; which yields 440
different simulations.

2) Results Analysis: As simulation indicators, we look into
the maximum deviation from the route with an acceptable
deviation threshold of 2 m from the intended path; and the
maximal drift with an acceptable threshold of 1 m for 50 m,
i.e., a tolerable drift of 0.02 m/m at maximum.

Figure 9 presents some results of the simulation runs. As
seen in Figure 9 (a), the yaw rate error generates a drift in
the trajectory. The error in the longitudinal speed generates
an anticipation of turns. The failure impact is greater during
right-angle turns. This is due to the angle of curvature (greater
yaw rate) but also to the fact that it happens after a long time
of failure which enables accumulated speed errors. while in
straight and curve lines - that appears at the beginning of the
journey - the problem has just occurred so the errors have not



Fig. 9: Trajectory deviation from Localisation Loss: Deviation and drift as a function of lateral and longitudinal drift

accumulated too much and generate a low drift. Figure 9 (b) let
us observe that for a drift error < 0,02, an error on longitudinal
speed has more impact than on lateral speed. Figure 9 (c) lets
us observe that there is very little configuration left to avoid
exceeding a 2m gap within the journey. The impact on the gap
is very similar to a fault on the longitudinal or lateral speed
for such a long fault zone.

Overall, such experiments make it possible to better under-
stand the behavior of the vehicle according to the quality of
the inertial unit. The failure time duration and the angles of
curvature are also to be taken into account, i.e., the integration
of errors and higher yaw rate. The longitudinal error will tend
to anticipate or delay taking a bend into account. The lateral
error will tend to cause the vehicle to deviate from its lane
with little influence in turns.

VI. LESSONS LEARNED

This paper presents our experience in applying model-
based safety analysis methodology and extensive simulations
to validate the performance and safety of an automated vehicle.
The validation approach is built upon a seamlessly integrated
tool chain of 3 different industry-ready frameworks for sys-
tem modeling, safety modeling and analysis, and simulation:
Phisystem, Papyrus-Sophia, and Phisim. While the model-
based safety method helps us identify critical failure propa-
gation paths in the system design, we have seen that, solely,
it is not sufficient to validate precisely the quality of service
of the system as it shows limitations in addressing complex
failures, combinations of failures, or the dynamic evolution of
the failures within the system.

Simulations are initially seen as a means of completing
the later validation and testing. In addition to enable testing
cases that would not be possible to do in a real case, e.g.,
running over a pedestrian; or expensive to analyze analytically,
as they would have required to model in detail all functions,
organic components and flows within the system, and to write
dysfunctional equations closer to reality more complex than
boolean equations, it also enable to assess more precisely
complex and continuous-based scenarios. Hence, for example,
while the analytical analysis lets us identify that a localization
loss, i.e., a GPS loss, is highly critical because the shuttle
will no longer be able to correctly calculate steering, braking,

and acceleration commands, the simulation experiments let us
estimate that this failure may not be so critical - depending
on the loss duration period - since the shuttle can rely on
the IMU for the trajectory following. Similarly, we identified
during the safety analysis that the perception function failure
(both Camera and Lidar) is a critical scenario that may lead to
collisions. During the simulation, we notice However that it is
the time of non-perception that increases rapidly the number of
collisions rather than the frequency of the failure occurrences.
So, simulation also proves to be especially useful for better
framing the specifications by integrating dynamic aspects that
are not easy to anticipate in analytical reasoning. Besides,
simulation implicitly takes into account some external factors
that are hard to qualify/quantify in the analytical analysis, but
that may influence indirectly the system’s safety and perfor-
mance, e.g., weather conditions, route layout, objects speed,
etc. It further enables the identification of trends and influences
on the overall behavior of the vehicle on a large number of
configurations to adjust safety metrics, e.g., minimum time to
collision, minimum safety distance, etc. depending on the type
of disturbance and the operational context.
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