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Abstract

We introduce the first learning-based method for recov-

ering shapes from Laplacian spectra. Our model consists of

a cycle-consistent module that maps between learned latent

vectors of an auto-encoder and sequences of eigenvalues.

This module provides an efficient and effective linkage be-

tween Laplacian spectrum and geometry. Our data-driven

approach replaces the need for ad-hoc regularizers required

by prior methods, while providing more accurate results at

a fraction of the computational cost. Our learning model

applies without modifications across different dimensions

(2D and 3D shapes alike), representations (meshes, con-

tours and point clouds), as well as across different shape

classes, and admits arbitrary resolution of the input spec-

trum without affecting complexity. The increased flexibil-

ity allows us to address notoriously difficult tasks in 3D vi-

sion and geometry processing within a unified framework,

including shape generation from spectrum, mesh super-

resolution, shape exploration, style transfer, spectrum esti-

mation from point clouds, segmentation transfer and point-

to-point matching.

1. Introduction

Constructing compact encodings of geometric shapes

lies at the heart of 2D and 3D Computer Vision. While

earlier approaches have concentrated on handcrafted rep-

resentations, with the advent of geometric deep learning

[12, 31], data-driven learned feature encodings have gained

prominence. A desirable property in many applications,

such as shape exploration and synthesis, is to be able to re-

cover the shape from its (latent) encoding, and various auto-

encoder architectures have been designed to solve this prob-

lem [2, 30, 32, 20]. Despite significant progress in this area,

the structure of the latent vectors is arduous to control. For

pose target style target our result eigenvalues
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Figure 1. Our spectral reconstruction enables correspondence-free

style transfer. Given pose and style “donors” (left and middle

columns respectively), we synthesize a new shape with the pose

of the former and the style of the latter. The generation is driven

by a learning-based eigenvalues alignment (rightmost plots). Our

approach handles different resolutions (middle row) and represen-

tations (bottom row; the surface underlying the point cloud is for

visualization purposes only).

example, the dimensions of the latent vectors typically lack

a canonical ordering, while invariance to various geometric

deformations is often only learned by data augmentation or

complex constraints on the intermediate features.

At the same time, a classical approach in spectral geom-

etry is to encode a shape using the sequence of eigenvalues

(spectrum) of its Laplacian operator. This representation is

useful since: (1) it does not require any training, (2) it can

be computed on various data representations, such as point
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clouds or meshes, regardless of sampling density, (3) it en-

joys well-known theoretical properties such as a natural or-

dering of its elements and invariance to isometries, and (4)

as shown recently [19, 38], alignment of eigenvalues often

promotes near-isometries, which is useful in multiple tasks

such as non-rigid shape retrieval and matching problems.

Unfortunately, although encoding shapes via their Lapla-

cian spectra can be straightforward (at least for meshes), the

inverse problem of recovering the shape is very difficult. In-

deed, it is well-known that certain pairs of non-isometric

shapes can have the same spectrum, or in other words “one

cannot hear the shape of a drum” [21]. At the same time,

recent evidence suggests that such cases are pathological

and that in practice it might be possible to recover a shape

from its spectrum [19]. Nevertheless, existing approaches

[19], while able to deform a shape into another with a given

spectrum, can produce highly unrealistic shapes with strong

artifacts failing in a large number of cases.

In this paper, we combine the strengths of data-driven

auto-encoders with those of spectral methods. Our key idea

is to construct a single architecture capable of synthesizing

a shape from a learned latent code and from its Laplacian

eigenvalues. We show that by explicitly training networks

that aim to translate between the learned latent codes and

the spectral encoding, we can both recover a shape from

its eigenvalues and moreover endow the latent space with

certain desirable properties. Remarkably, our shape-from-

spectrum solution is extremely efficient since it requires a

single pass through a trained network, unlike expensive it-

erative optimization methods with ad-hoc regularizers [19].

Furthermore, our trainable module acts as a proxy to differ-

entiable eigendecomposition, while encouraging geometric

consistency within the network. Overall, our key contribu-

tions can be summarized as follows:

• We propose the first learning-based model to robustly

recover shape from Laplacian spectra in a single pass;

• For the first time, we provide a bidirectional linkage

between learned 3D latent space and spectral geomet-

ric properties of 3D shapes;

• Our model is general, in that it applies with no modi-

fications to different classes even across different geo-

metric representations and dimensions and to data that

does not belong to the datasets used at training time;

• We showcase our approach in multiple applications

(e.g., Fig. 1), and show significant improvement over

the state of the art; see Fig. 2 for an example.

2. Related work

Spectral quantities and in particular the eigenvalues of

the Laplace-Beltrami operator provide an informative sum-

mary of the intrinsic geometry. For example, closed-form
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Figure 2. Comparison in estimating a shape from its Laplacian

spectrum between the state-of-the-art method [19] (middle) and

ours (right) for a mesh and a point cloud. The shapes recovered by

our method are significantly closer to the target.

estimates and analytical bounds for surface area, genus and

curvature in terms of the Laplacian eigenvalues have been

obtained [13]. Given these properties, spectral shape anal-

ysis has been exploited in many computer vision and com-

puter graphics tasks such as shape retrieval [41], descrip-

tion and matching [46, 3, 11, 33], mesh segmentation [40],

sampling [34] and compression [26] among many others.

Typically, the intrinsic properties of the shape are computed

from its explicit representation and are used to encode com-

pact geometric features invariant to isometric deformations.

Recently, several works have started to address the in-

verse problem: namely, recovering an extrinsic embedding

from the intrinsic encoding [9, 19]. This is closely related to

the fundamental theoretical question of “hearing the shape

of the drum” [25, 21]. Although counterexamples have been

proposed to show that in certain scenarios multiple shapes

might have the same spectrum, there is recent work that

proposes effective practical solutions to this problem. In

[9] the shape-from-operator method was proposed, aiming

at obtaining the extrinsic shape from a Laplacian matrix

where the 3D reconstruction was recovered after the esti-

mation of the Riemannian metric in terms of edge lengths.

In [18] the intrinsic and extrinsic relations of geometric ob-

jects have been extensively defined and evaluated from both

theoretical and practical aspects. The authors revised the

framework of functional shape differences [43] to account

of extrinsic structure extending the reconstruction task to

non-isometric shapes and models obtained from physical

simulation and animation. Several works have also been

proposed to recover shapes purely from Laplacian eigen-

values [15, 1, 35] or with mild additional information such

as excitation amplitude in the case of musical key design

[8]. Most closely related to ours in this area is the recent

isopectralization approach introduced in [19], that aims di-

rectly to estimate the 3D shape from the spectrum. This

approach works well in the vicinity of a good solution but

is both computationally expensive and, as we show below,

can quickly produce unrealistic instances, failing in a large

number of cases in 3D, as shown in Fig. 2 for two examples.



In this paper we contribute to this line of work, and pro-

pose to replace the heuristics used in previous methods such

as [19] with a purely data-driven approach for the first time.

Our key idea is to design a deep neural network, that both

constraints the space of solutions based on the set of shapes

given at training, and at the same time, allows us to solve

the isospectralization problem with a single forward pass,

thus avoiding expensive and error-prone optimization.

We note that a related idea has been recently proposed in

[24] via the so-called OperatorNet architecture. However,

that work is based on shape difference operators [43] and

as such requires a fixed source shape and functional maps

to each shape in the dataset to properly synthesize a shape.

Our approach is based on Laplacian eigenvalues alone and

thus is completely correspondence-free.

Our approach also builds upon the recent work on learn-

ing generative shape models. A range of techniques have

been proposed using the volumetric representations [47],

point cloud auto-encoders [4, 2], generative models based

on meshes and implicit functions [45, 22, 30, 28, 14], and

part structures [29, 32, 20, 48], among many others.

Although generative models, and in particular auto-

encoders, have shown impressive performance, the struc-

ture of the latent space is typically difficult to control or an-

alyze directly. To address this problem, some methods pro-

posed a disentanglement of the latent space [48, 4] to split

it in more semantic regions. Perhaps most closely related

to ours in this domain, is the work in [4], where the shape

spectrum is used to promote disentanglement of the latent

space intro intrinsic and extrinsic components, that can be

controlled separately. Nevertheless, the resulting network

does not allow to synthesize shapes from their spectra.

Extending the studies of these approaches, our work pro-

vides the first way to connect the learned latent space to the

spectral one, thus inheriting the benefits and providing the

versatility of moving across the two representations. This

allows our network to synthesize shapes from their spectra,

and also to relate shapes with very different input structure

(e.g., meshes and point clouds) across a vastness of sam-

pling densities, enabling several novel applications.

3. Background

We model shapes as connected 2-dimensional Rieman-

nian manifolds X embedded in R3, possibly with boundary

∂X , equipped with the standard metric. On each shape X
we consider its positive semi-definite Laplace-Beltrami op-

erator ∆X , generalizing the classical notion of Laplacian

from the Euclidean setting to curved surfaces.

Laplacian spectrum. ∆X admits an eigendecomposition

∆Xφi(x) = λiφi(x) x ∈ int(X ) (1)

〈∇φi(x), n̂(x)〉 = 0 x ∈ ∂X (2)

unknown
target

linear FEM cubic FEM

Figure 3. Reconstruction examples of our shape-from-spectrum

pipeline. We show the results obtained with two different in-

puts: the eigenvalues of the Laplacian discretized with linear FEM,

and those of the cubic FEM discretization. The heatmap encodes

point-wise reconstruction error, growing from white to dark red.

into eigenvalues {λi} and associated eigenfunctions {φi}
1.

The Laplacian eigenvalues of X (its spectrum) form

a discrete set, which is canonically ordered into a non-

decreasing sequence

Spec(X ) := {0 = λ0 < λ1 ≤ λ2 ≤ · · · } . (3)

In the special case where X is an interval in R, the eigen-

values λi correspond to the (squares of) oscillation frequen-

cies of Fourier basis functions φi. This provides us with a

connection to classical Fourier analysis, and with a natural

notion of hierarchy induced by the ordering of the eigen-

values. In the light of this analogy, in practice, one is usu-

ally interested in a limited bandwidth consisting of the first

k > 1 eigenvalues; typical values in geometry processing

applications range from k = 30 to 100.

Furthermore, the spectrum is isometry-invariant, i.e., it

does not change with deformations of the shape that pre-

serve geodesic distances (e.g., changes in pose).

Discretization. In the discrete setting, we represent shapes

as triangle meshes X = (V, T ) with n vertices V and m

triangular faces T ; depending on the application, we will

also consider unorganized point clouds. Vertex coordinates

in both cases are represented by a matrix X ∈ Rn×3.

The Laplace-Beltrami operator ∆X is discretized as a

n × n matrix via the finite element method (FEM) [16].

In the simplest setting (i.e., linear finite elements), this

discretization corresponds to the cotangent Laplacian [36];

however, in this paper we use cubic FEM (see e.g. [40, Sec.

4.1] for a clear treatment), since it yields a more accurate

discretization as shown in Fig. 3. Differently from [19, 38],

this comes at virtually no additional cost for our pipeline,

as we show in the sequel. On point clouds, ∆X can be dis-

cretized using the approach described in [17, 10].

4. Method

Our main contribution is a deep learning model for re-

covering shapes from Laplacian eigenvalues. Our model

1Similarly to [19] we use homogeneous Neumann boundary condi-

tions; see Eq. (2), where n̂(x) denotes the outward normal to the boundary.
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Figure 4. Our network model. The input shape X and its Lapla-

cian spectrum Spec(X ) are passed, respectively, through an AE

enforcing X ≈ X̃ , and an invertible module (π, ρ) mapping the

eigenvalue sequence to a latent vector v. The two branches are

trained simultaneously, forcing v to be updated accordingly. The

trained model allows to recover the shape purely from its eigen-

values via the composition D(π(Spec(X ))) ≈ X .

operates in an end-to-end fashion: given a spectrum as in-

put, it directly yields a shape with a single forward pass,

thus avoiding expensive test-time optimization.

Motivation. Our rationale lies in

the observation that shape seman-

tics can be learned from the data,

rather than by relying upon the definition of ad-hoc regular-

izers [19], often resulting in unrealistic reconstructions. For

example, a sheet of paper can be isometrically crumpled or

folded into a plane (see inset figure). Since both embed-

dings have the same eigenvalues, the desirable reconstruc-

tion must be imposed as a prior. By taking a data-driven ap-

proach, we make our method aware of the “space of realistic

shapes”, yielding both a dramatic improvement in accuracy

and efficiency, and enabling new interactive applications.

Latent space connections. Our key idea is to construct an

auto-encoder (AE) neural network architecture, augmented

by explicitly modeling the connections between the latent

space of the AE and the Laplacian spectrum of the input

shape; see Fig. 4 for an illustration of our learning model.

Loosely speaking, our approach can be seen as imple-

menting a coupling between two latent spaces: a learned

one that operates on the shape embedding X , and the one

provided by the eigenvalues Spec(X ). In the former case,

the encoder E is trainable, whereas the mapping X →
Spec(X ) is provided via the eigen-decomposition and fixed

a priori. Finally, we introduce the two coupling mappings

π, ρ, trained with a bidirectional loss, to both enable com-

munication across the latent spaces and to tune the learned

space by endowing it with structure contained in Spec(X ).

Target Ours NN
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Figure 5. Shape reconstruction from eigenvalues using our ap-

proach on different representations (i.e. 2D contours, 3D meshes

and point clouds). The eigenvalues of the shapes on the left are

given to our network, which outputs the shapes in the middle. For

each representation, the eigenvalues are computed on the appropri-

ate Laplacian discretization as per Sec. 3. The NN column shows

the nearest-neighbor solution sought in the training set.

We phrase our overall training loss as follows:

ℓ = ℓX + αℓλ , with (4)

ℓX =
1

n
‖D(E(X))−X‖2

F
(5)

ℓλ =
1

k
(‖π(λ)− E(X)‖22 + ‖ρ(E(X))− λ‖22) (6)

where λ is a vector containing the first k eigenvalues in

Spec(X ), X is the matrix of point coordinates, E is the en-

coder, D is the decoder (Fig. 4), ‖·‖F denotes the Frobenius

norm, and α = 10−4 controls the relative strengths of the

reconstruction loss ℓX and the spectral term ℓλ. The blocks

D, E, π, and ρ are learnable and parametrized by a neural

network (see the supplementary material for implementa-

tion details). Eq. (6) enforces ρ ≈ π−1; in other words, π

and ρ form a translation block between the latent vector and

the spectral encoding of the shape.

At test time, we recover a shape from the spectrum Spec
simply via the composition D(π(Spec)) (Section 5). For

additional applications we refer to Section 6.

Shape representation. We consider two different settings:

triangle meshes in point-to-point correspondence at train-

ing time (typical in graphics and geometry processing), and

unorganized point clouds without a consistent vertex label-

ing (typical in 3D computer vision).

Autoencoder architecture. Our model can be built with

potentially any autoencoder. In our applications we chose

relatively simple ones to deal with meshes and unorganized



full res 1000 500 200

Ours 1.61 1.62 1.71 2.13

Ours without ρ 1.89 1.82 2.06 2.42

NN 4.45 4.63 4.01 2.65

Cosmo et al. [19] − 16.4 7.11 4.08

Table 1. Shape-from-spectrum reconstruction comparisons with

NN (nearest neighbors between spectra) and the state of the art

[19]; we report average error over 100 shapes of an unseen subject

from COMA [39]. Best results are obtained with our full pipeline.

‘−’ denotes out of memory; all errors must be rescaled by 10−5.

point clouds, although more powerful generative methods

would be equally possible. The latent space dimension is

fixed to 30 (the same as k). We refer to the supplementary

material for details about the architecture, both in the case

of meshes and point clouds.

Remark. Our architecture takes Spec(X ) as an input, i.e.,

the eigenvalues are not computed at training time. By learn-

ing an invertible mapping to the latent space, we avoid ex-

pensive backpropagation steps through the spectral decom-

position of the Laplacian ∆X . In this sense, the mapping ρ

acts as an efficient proxy to differentiable eigendecomposi-

tion, which we exploit in several applications below.

Since eigenvalue computation is only incurred as an of-

fline cost, it can be performed with arbitrary accuracy (we

use cubic FEM, see Fig. 3) without sacrificing efficiency.

5. Results

In this section we report the results on our core applica-

tion of shape from spectrum recovery.

To evaluate our method, we trained our model on 1,853

3D shapes from the COMA dataset [39] of human faces;

100 shapes of an unseen subject are used for the test set. We

repeated this test at four different mesh resolutions: ∼4K

(full resolution), 1K, 500 and 200 vertices respectively. For

each resolution, we independently compute the Laplacian

spectrum and use these spectra to recover the shape.

Comparison. We compared our method in terms of re-

construction accuracy to the state-of-the-art isospectraliza-

tion method of Cosmo et al. [19], as well as to a nearest-

neighbors baseline, consisting in picking the shape of the

training set with the closest spectrum to the target one. In

addition, we trained two separate architectures (with and

without the ρ block) and compared them. The test without

this network component is an ablation study we carry out to

validate the importance of the invertible module connecting

the spectral encoding to the learned latent codes.

The quantitative results are reported in Table 1 as the

mean squared error between the reconstructed shape and

the ground-truth. Figures 2 and 5 further show qualitative

comparisons with the different baselines involving differ-

pose target style target our result eigenvalues

style pose 3.7 our 0.56

style pose 0.9 our 0.65

style pose 1.4 our 0.76

10 20 30

style pose 1.6 our 0.41

Figure 6. Examples of style transfer. The target style (middle) is

applied to the target pose (left) by solving problem (7) and then de-

coding the resulting latent vector (right). For each example we also

report the corresponding eigenvalue alignment (rightmost plots).

The black dotted line is the image of ρ. The numbers in the legend

denote the distance from the target “style” spectrum to the source

pose and to our generated shape; a small number suggests near-

isometry between the generated shape and the style target.

ent shape representations. In Fig. 5, for the sake of illus-

tration, similarly to [19, 38], we also include 2D contours,

discretized as regular cycle graphs.

As the results suggest, the ρ block both contributes to

reduce the reconstruction error, and to enable novel ap-

plications (see in Sec. 6). Note that our method achieves

a significant improvement over nearest neighbors in terms

of accuracy, and an order of magnitude improvement over

isospectralization. Also, the latter approach consists in an

expensive optimization which requires hours to run, while

our method is instantaneous at test time.

Spectral bandwidth has a direct effect on reconstruc-

tion accuracy, since increasing this number brings more

high-frequency detail into the representation. Following

[19, 38, 42], in all our experiments we use k = 30. In

the supplementary material we report results for different k.



Input: low resolution shapes

Interpolation of latent vectors

Figure 7. Latent space interpolation of four low-resolution shapes

with different connectivity (top row, unseen at training). The spec-

tra of the input shapes are mapped via π to the latent space, where

they are bilinearly interpolated and then decoded to R
3. The re-

constructions of the input are depicted at the corners of the grid.

6. Additional applications

Our general model enables several additional applica-

tions, by exploiting the connection between spectral proper-

ties and shape generation. Due to the limited space, we col-

lect in the supplementary materials the details of the training

and test sets and the parameters used in our experiments.

6.1. Style transfer

As shown in Fig. 1, we can use our trained network to

transfer the style of a shape Xstyle to another shape Xpose

having both a different style and pose. This is done by a

search in the latent space, phrased as:

min
v

‖Spec(Xstyle)−ρ(v)‖22 + w‖v−E(Xpose)‖
2
2 (7)

Here, the first term seeks a latent vector whose associ-

ated spectrum aligns with the eigenvalues of Xstyle; in other

words, we regard style as an intrinsic property of the shape,

and exploit the fact that the Laplacian spectrum is invari-

ant to pose deformations. The second term keeps the la-

tent vector close to that of the input pose (we initialize with

vinit = E(Xpose)). We solve the optimization problem by

back-propagating the gradient of the cost function of Eq. (7)

with respect to v through ρ. The sought shape is then given

by a forward pass on the resulting minimizer. In Fig. 6, we

input shape
low-pass

modification
band-pass

modification

10 20 30

eigenvalues

Figure 8. Exploring the space of shapes in real time via manip-

ulation of the spectrum. The low-pass modification (middle) de-

creases the first 12 eigenvalues of the input shape; the band-pass

modification (right) amplifies the last 12 eigenvalues. The damp-

ing of low eigenvalues leads to more pronounced geometric fea-

tures (e.g. longer legs and snout), while amplification of mid-range

eigenvalues affects the high-frequency details (e.g. the ears and

fingers); see the supplementary video for a wall-clock demo.

show four examples (others can be found in the supplemen-

tary material). We emphasize here that the style is purely

encoded in the input eigenvalues, therefore it does not rely

on the test shapes being in point-to-point correspondence

with the training set. This leads to the following:

Property 1 Our method can be used in a correspondence-

free scenario. By taking eigenvalues as input, it enables ap-

plications that traditionally require a correspondence, but

side-steps this requirement.

This observation was also mentioned in other spectrum-

based approaches [19, 38]. However, the data-driven nature

of our method makes it more robust, efficient and accurate,

therefore greatly improving its practical utility.

6.2. Shape exploration

The results of Sec. 6.1 suggest that eigenvalues can be

used to drive the exploration of the AE’s latent space to-

ward a desired direction. Another possibility is to regard

the eigenvalues themselves as a parametric model for isom-

etry classes, and explore the “space of spectra” as is typ-

ically done with latent spaces. Our bi-directional coupling

between spectra and latent codes makes this exploration fea-

sible, as remarked by the following property:

Property 2 Latent space connections provide both a means

for controlling the latent space, and vice-versa, enable ex-

ploration of the space of Laplacian spectra.

Since eigenvalues change continuously with the mani-

fold metric [5], a small variation in the spectrum will give

rise to a small change in the geometry. We can visualize

such variations in shape directly, by first deforming a given

spectrum (e.g., by a simple linear interpolation between two

spectra) to obtain the new eigenvalue sequence µ, and then

directly computing D(π(µ)).
In Fig. 7 we show a related experiment. Here we

train the network on 4,430 animal meshes generated with
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Figure 9. Mesh super-resolution for inputs at decreasing resolution

(top row, left to right). Our method fits closely the original input

shapes (top left), while other approaches either predict the wrong

pose (NN baseline) or generate an unrealistic shape (Cosmo et al.).

the SMAL parametric model following the official proto-

col [50]. Given four low-resolution shapes Xi as input, we

first compute their spectra Spec(Xi), map these to the la-

tent space via π(Spec(Xi)), perform a bilinear interpola-

tion of the resulting latent vectors, and finally reconstruct

the corresponding shapes. Finally, in Fig. 8 we show an

example of interactive spectrum-driven shape exploration.

Given a shape and its Laplacian eigenvalues as input, we

navigate the space of shapes by directly modifying differ-

ent frequency bands with the aid of a simple user interface.

The modified spectra are then decoded by our network in

real time. The interactive nature of this application is en-

abled by the efficiency of our shape from spectrum recovery

(obtained in a single forward pass) and would not be possi-

ble with previous methods [19] that rely on costly test-time

optimization. We refer to the accompanying video and the

supplementary materials for additional illustrations.

6.3. Superresolution

A key feature that emerges from the experiment in Fig. 7

is the perfect reconstruction of the low-resolution shapes

once their eigenvalues are mapped to the latent space via π.

This brings us to a fundamental property of our approach:

Property 3 Since eigenvalues are largely insensitive to

mesh resolution and sampling, so is our trained network.

This fact is especially evident when using cubic FEM

discretization, as we do in all our tests, since it more closely

approximates the continuous setting and is thus much less

affected by the surface discretization.

Remark. It is worth mentioning that existing methods can

employ cubic FEM as well; however, this soon becomes

prohibitively expensive due to the differentiation of spectral

decomposition required by their optimizations [19, 38].

These properties allow us to use our network for the task

of mesh super-resolution. Given a low-resolution mesh as

input, our aim is to recover a higher resolution counterpart

of it. Furthermore, while the input mesh has arbitrary reso-

lution and is unknown to the network (and a correspondence

with the training models is not given), an additional desider-

atum is for the new shape to be in dense point-to-point cor-

respondence with models from the training set. We do so in

a single shot, by predicting the decoded shape as:

Xhires = D(π(Spec(Xlowres))) . (8)

This simple approach exploits the resolution-independent

geometric information encoded in the spectrum along with

the power of a data-driven generative model.

In Fig. 9 we show a comparison with nearest-neighbors

between eigenvalues (among shapes in the training set),

and the isospectralization method of Cosmo et al. [19].

Our solution closely reproduces the high-resolution target.

Isospectralization correctly aligns the eigenvalues, but it re-

covers unrealistic shapes due to ineffective regularization.

This phenomenon highlights the following

Property 4 Our data-driven approach replaces ad-hoc

regularizers, that are difficult to model axiomatically, with

realistic priors learned from examples.

This is especially important for deformable objects;

shapes falling into the same isometry class are often hard

to disambiguate without using geometric priors.

6.4. Estimating point cloud spectra

As an additional experiment, we show how our network

can directly predict Laplacian eigenvalues for unorganized

point clouds. This task is particularly challenging due to the

lack of a structure in the point set, and existing approaches

such as [17, 6] often fail at approximating the eigenvalues

of the underlying surface accurately. The difficulty is even

more pronounced when the point sets are irregularly sam-

pled, as we empirically show here. In our case, estimation

of the spectrum boils down to the single forward pass:

S̃pec(X ) = ρ(E(X )) . (9)

To address this task we train our network by feeding un-

organized point clouds as input, together with the spectra

computed from the corresponding meshes (which are avail-

able at training time). As described in the supplementary

materials, for this setting we use a PointNet [37] encoder
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Figure 11. On the left, quantitative evaluation of matching [27]

between 100 pairs of animals. On the right, the qualitative com-

parison on texture and segmentation transfer.

and a fully connected decoder, and we replace the recon-

struction loss of Eq. (5) with the Chamfer distance. This ap-

plication highlights the generality of our model, which can

accommodate different representations of geometric data.

We consider two types of point clouds: (1) with simi-

lar point density and regularity as in the training set (shown

in the supplementary materials), and (2) with randomized

non-uniform sampling. We compare the spectrum estimated

via ρ(E(X )) to axiomatic methods [17, 6], and to the NN

baseline (applied in the latent space); see Fig. 10. The

qualitative results are obtained by training on SMAL [50]

(left), COMA [39] (middle) and ShapeNet watertight [23]

(right). To highlight its generalization capability, the net-

work trained on COMA is tested on point clouds from the

FLAME dataset, while on ShapeNet we consider 4 differ-

ent classes (airplanes, boats, screens and chairs). We com-

pute the cumulative error curves of the distance between the

eigenvalues from the meshes corresponding to the test point

clouds. The mean error across all test sets is also reported in

the legend. Our method leads to a significant improvement

over the closest state-of-the-art baseline [6].

6.5. Matching from spectrum

Finally, we compute dense correspondences between

shape pairs using only their spectra. These are fed into our

network; since the output points are naturally ordered by

the decoder, we exploit this to establish a sparse correspon-

dence. In the case of meshes, we extend it to a dense one

by using the functional maps framework [33]. In the case

of point clouds, we can propagate a semantic segmentation

using nearest neighbors. We perform a quantitative evalu-

ation on SMAL [50], testing on 100 non-isometric pairs of

animals from different classes. Two applications that ben-

efit from our approach are texture and segmentation trans-

fer; we tested them respectively on animals and segmented

ShapeNet [49]. The comparison baseline consists of 100

iterations of ICP [7] to rigidly align the two shapes fol-

lowed by nearest-neighbor assignment as correspondence.

See Fig. 11 and the supplementary for further details.

7. Conclusions

We introduced the first data-driven method for shape

generation from Laplacian spectra. Our approach consists

in enriching a standard AE with a pair of cycle-consistent

maps, associating ordered sequences of eigenvalues to la-

tent codes and vice-versa. This explicit coupling brings

forth key advantages of spectral methods to generative mod-

els, enabling novel applications and a significant improve-

ment over existing approaches. Our limitations are shared

with other spectral methods in the computation of a robust

Laplacian discretization. Adopting the recent approach [44]

for such borderline cases is a promising possibility. Fur-

ther, while the Laplacian is a classical choice due to its

Fourier-like properties, spectra of other operators with dif-

ferent properties may lead to other promising applications.
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