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Abstract

This paper proposes a learning-based framework for re-

constructing 3D shapes from functional operators, com-

pactly encoded as small-sized matrices. To this end we

introduce a novel neural architecture, called OperatorNet,

which takes as input a set of linear operators representing

a shape and produces its 3D embedding. We demonstrate

that this approach significantly outperforms previous purely

geometric methods for the same problem. Furthermore, we

introduce a novel functional operator, which encodes the ex-

trinsic or pose-dependent shape information, and thus com-

plements purely intrinsic pose-oblivious operators, such as

the classical Laplacian. Coupled with this novel operator,

our reconstruction network achieves very high reconstruc-

tion accuracy, even in the presence of incomplete informa-

tion about a shape, given a soft or functional map expressed

in a reduced basis. Finally, we demonstrate that the multi-

plicative functional algebra enjoyed by these operators can

be used to synthesize entirely new unseen shapes, in the con-

text of shape interpolation and shape analogy applications.

1. Introduction

Encoding and reconstructing 3D shapes is a fundamen-

tal problem in Computer Graphics, Computer Vision and

related fields. Unlike images, which enjoy a canonical rep-

resentation, 3D shapes are encoded through a large variety

of representations, such as point clouds, triangle meshes and

volumetric data, to name a few. Perhaps even more impor-

tantly, 3D shapes may undergo a diverse set of transforma-

tions, ranging from rigid motions to complex non-rigid and

articulated deformations, that impact these representations.

The representation issues have become even more

prominent with the recent advent of learning-based tech-

niques, leading to a number of solutions for learning di-

∗denotes equal contribution.

Figure 1. Shape interpolation via OperatorNet (top) and PointNet

autoencoder (bottom). Our interpolations are more smooth and

less distorted.

rectly on geometric 3D data [7]. This is challenging, as

point clouds and meshes lack the regular grid structure ex-

ploited by convolutional architectures. In particular, de-

vising representations that are well-adapted for both shape

analysis and especially shape synthesis remains difficult.

For example, several methods for shape interpolation have

been proposed by designing deep neural networks, includ-

ing auto-encoder architectures, and interpolating the latent

vectors learned by such networks [35, 1] . Unfortunately, it

is not clear if the latent vectors lie in a linear vector space,

and thus linear interpolation can lead to unrealistic interme-

diate shapes.

In this paper, we show that 3D shapes can not only be

compactly encoded as linear functional operators, using the

previously proposed shape difference operators [32], but

that this representation lends itself very naturally to learn-

ing, and allows us to recover the 3D shape information, us-

ing a novel neural network architecture which we call Op-

eratorNet. Our key observations are twofold: first we show

that since shape difference operators can be stored as canon-

ical matrices, for a given choice of basis, they enable the use
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of a convolutional neural network architecture for shape re-

covery. Second, we demonstrate that the functional algebra

that is naturally available on these operators can be used to

synthesize new shapes, in the context of shape interpolation

and shape analogy applications. We argue that because this

algebra is well-justified theoretically, it also leads to more

accurate results in practice, compared to commonly used

linear interpolation in the latent space (see Figure 1).

The shape difference operators introduced in [32], have

proved to be a powerful tool in shape analysis, by allowing

to characterize each shape in a collection as the “difference”

to some base geometry. These difference operators encode

precise information about how and where each shape differs

from the base, but also, due to their compact representa-

tion as small matrices, enable efficient exploration of global

variability within the collection. Inspired by the former per-

spectives, purely geometric approaches [5, 10] have been

proposed for shape reconstruction from shape differences.

Though theoretically well-justified, these approaches rely

on solving difficult non-linear optimization problems and

require strong regularization for accurate results, especially

when truncated bases are used.

Our OperatorNet, on the other hand, leverages the infor-

mation encoded at both the pairwise level and the collection

level by using the shape collection to guide the reconstruc-

tion. It is well-known that related shapes in a collection of-

ten concentrate near a low-dimensional manifold in shape

space [33, 19]. In light of this, the shape difference opera-

tors can help to both encode the geometry of the individual

shapes, but also help to learn the constrained space of real-

istic shapes, which is typically ignored by purely geometric

approaches. Finally, they also allow to encode differences

between shapes with different discretizations by relying on

functional maps, rather than, e.g., pointwise bijections.

In addition to demonstrating the representative power of

the shape differences in a learning framework, we also ex-

tend the original formulation in [32], which only involves

intrinsic (i.e., invariant to isometric transformations) shape

differences, with a novel extrinsic difference operator that

facilitates pose-dependent embedding recovery. Our for-

mulation is both simpler and robuster compared to previ-

ous approaches, e.g. [10], and, as we show below, can more

naturally be integrated in a unified learning framework.

To summarize, our contributions are as follows:

• We propose a learning-based pipeline to reconstruct

3D shapes from a set of difference operators.
• We propose a novel formulation of extrinsic shape

difference, which complements the intrinsic operators

formulated in [32].
• We demonstrate that by applying algebraic operations

on shape differences, we can synthesize new operators

and thus new shapes via OperatorNet, enabling shape

manipulations such as interpolation and analogy.

2. Related Work

Shape Reconstruction Our work is closely related to

shape reconstruction from intrinsic operators, which was re-

cently considered in [5, 10] where several advanced, purely

geometric optimization techniques have been proposed that

give satisfactory results in the presence of full information

[5] or under strong regularization [10]. These works have

also laid the theoretical foundation for shape recovery by

demonstrating that shape difference operators, in principle,

contain complete information necessary for recovering the

shape embedding (e.g. Propositions 2 and 4 in [10]). On the

other hand, these methods also highlight the practical chal-

lenges of reconstructing a shape without any knowledge of

the collection or “shape space” that it belongs to. In con-

trast, we show that by leveraging such information via a

learning-based approach, realistic 3D shapes can be recov-

ered efficiently from their shape difference representation,

and moreover that entirely new shapes can be synthesized

using the algebraic structure of difference operators, e.g.,

for shape interpolation.

Shape Representations for Learning. Our work is re-

lated to the recent techniques aimed at applying deep learn-

ing methods to shape analysis. One of the main challenges

is defining a meaningful notion on convolution, while en-

suring invariance to basic transformations, such as rotations

and translations. Several techniques have been proposed

based on e.g., Geometry Images [34], volumetric [22, 38],

point-based [28] and multi-view approaches [29], as well

as, very recently intrinsic techniques that adapt convolution

to curved surfaces [21, 6, 27] (see also [7] for an overview),

and even via toric covers [20], among many others.

Despite this tremendous progress in the last few years,

defining a shape representation that is compact, lends itself

naturally to learning, while being invariant to the desired

class of transformations (e.g., rigid motions) and not lim-

ited to a particular topology, remains a challenge. As we

show below, our representation is well-suited for learning

applications, and especially for encoding and recovering ge-

ometric structure information. We note that a recent work

that is closely related to ours is the characteristic shape dif-

ferences proposed in [14]. That work is primarily focused

on analyzing shape collections, rather than on shape synthe-

sis that we target.

Shape Space Exploring the structure of shape spaces has

a long and extensive research history. Classical PCA-based

models, e.g. [2, 13], and more recent shape space models,

adapted to specific shape classes such as humans [19] or

animals [39], or parametric model collections [33], all typi-

cally leverage the fact that the space of “realistic” shapes is

significantly smaller than the space of all possible embed-

dings. This has also recently been exploited in the context
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of learning-based shape synthesis applications for shape

completion [17], interpolation [3] and point cloud recon-

struction [1] among others. These techniques heavily lever-

age the recent proliferation of large data collections such

as DFAUST [4] and Shapenet [8] to name a few. At the

same time, it is not clear if, for example, the commonly

used linear interpolation of latent vectors is well-justified,

leading to unrealistic synthesized shapes. Instead, the shape

difference operators that we use satisfy a well-founded mul-

tiplicative algebra, which, as we show below, can be used to

create realistic synthetic shapes.

3. Preliminaries and Notations

Discretization of Shapes Throughout this paper, we as-

sume that a shape is given as a triangle mesh (V,F),
where V = {v1, v2, · · · , vn} is the vertex set, and F =
{(vi, vj , vk)|vi, vj , vk ∈ V} is the set of faces encoding the

connectivity information.

Laplace-Beltrami Operator To each shape S, we asso-

ciate a discretized Laplace-Beltrami operator, L := A−1W ,

using the standard cotangent weight scheme [23, 26],

where W is the cotangent weight (stiffness) matrix, and A
is the diagonal lumped area (mass) matrix. Furthermore,

we denote by Λ,Φ, respectively the diagonal matrix con-

taining the k smallest eigenvalues and the corresponding

eigenvectors of S, such that WΦ = AΦΛ. In particular,

the eigenvalues stored in Λ are non-negative and can be or-

dered as 0 = λ1 ≤ λ2 ≤ · · · . The columns of Φ are sorted

accordingly, and are orthonormal with respect to the area

matrix, i.e., ΦTAΦ = Ik×k, the k × k identity matrix. It

is well-known that Laplace-Beltrami eigenbasis provides a

multi-scale encoding of a shape [16], and allows to approx-

imate the space of functions via a subspace spanned by the

first few eigenvectors of Φ.

Functional Maps The functional map framework was in-

troduced in [24] primarily as an alternative representation of

maps across shapes. In our context, given two shapes S0, S1

and a point-wise map T from S1 to S0, we can express the

functional map C01 from S0 to S1, as follows:

C01 = Φ
T
1 A1Π01Φ0. (1)

Here, A1 is the area matrix of S1, and Π01 is a binary ma-

trix satisfying Π01(p, q) = 1 if T (p) = q and 0 otherwise.

Note that C01 is a k1 × k0 matrix, where k1, k0 is the num-

ber of basis functions chosen on S1 and S0. This matrix

allows to transport functions as follows: if f is a function

on S0 expressed as a vector of coefficients a, s.t. f = Φ0a,

then C01a is the vector of coefficients of the corresponding

function on S1, expressed in the basis of Φ1.

In general, not every functional map matrix arises from a

point-wise map, and the former might include, for example,

soft correspondences, which map a point to a probability

density function. All of the tools that we develop below can

accommodate such general maps. This is a key advantage

of our approach, as it does not rely on all shapes having the

same number of points, and only requires the knowledge

of functional map matrices, which can be computed using

existing techniques [25, 18].

Intrinsic Shape Difference Operators Finally, to repre-

sent shapes themselves, we use the notion of shape differ-

ence operators proposed in [32]. Within our setting, they

can be summarized as follows: given a base shape S0, an

arbitrary shape Si and a functional map C0i between them,

let K0 (resp. Ki) be a positive semi-definite matrix, which

defines some inner product for functions on S0 (resp. Si)

expressed in the corresponding bases. Thus, for a pair of

functions f, g on S0 expressed as vectors of coefficients

a,b, we have < f, g >= a
T
K0b.

Note that these two inner products K0,Ki are not com-

parable, since they are expressed in different bases. Fortu-

nately, the functional map C0i plays a role of basis synchro-

nizer. Thus, a shape difference operator, which captures the

difference between S0 and Si is given simply as:

D
K
0i = K

+
0 (C

T
0iKiC0i), (2)

where + is the Moore-Penrose pseudo-inverse.

The original work [32] considered two intrinsic inner

products, which using the notation above, can be expressed

as: K
L2

= Id, and K
H1

= Λ. These inner products, in

turn lead to the following shape differences operators:

Area-based (L2): D
A
0i =C

T
0iC0i, (3)

Conformal (H1): D
C
0i =Λ+

0 C
T
0iΛiC0i, (4)

These shape difference operators have several key prop-

erties. First, they allow to represent an arbitrary shape Si, as

a pair of matrices of size k0 × k0, independent of the num-

ber of points, by requiring only a functional map between

the base shape S0 and Si. Thus, the size of this represen-

tation can be controlled by choosing an appropriate value

of k0 which allows to gain multi-scale information about

the geometry of Si, from the point of view of S0. Second,

and perhaps more importantly, these matrices are invariant

to rigid (and indeed any intrinsic isometry) transformation

of S0 or Si. Finally, previous works [10] have shown that

shape differences in principle contain complete information

about the intrinsic geometry of a shape. As we show below

these properties naturally enable the use of learning appli-

cations for shape recovery.

Functoriality of Shape Differences Another useful prop-

erty of the shape difference operators is functoriality, shown
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Figure 2. Illustration of shape analogy.

in [32], and which we exploit in our shape synthesis appli-

cations in Section 7. Given shape differences D0i,D0j of

shapes Si and Sj with respect to a base shape S0, functorial-

ity allows to compute the difference Dij , without functional

maps between Si and Sj . Namely (see Prop. 4.2.4 in [9]):

Dij = C0iD
+
0iD0jC

−1
0i (5)

Intuitively, this means that shape differences naturally sat-

isfy the multiplicative algebra: D0iDij = D0j , up to a

change of basis ensured by C0i.

This property can be used for shape analogies: given

shapes SA, SB and SC , find SX such that SX relates to SC

in the same way as SB relates to SA (see the illustration

in Figure 2). This can be solved by looking for a shape

X that satisfies: C
+
0CDCXC0C = C

+
0ADABC0A. In our

application, we first create an appropriate D0X and then use

our network to synthesize the corresponding shape.

Finally, the multiplicative property also suggests a way

of interpolation in the space of shape differences. Namely,

rather than using basic linear interpolation between D0i and

D0j , we interpolate on the Lie algebra of the Lie group of

shape differences, using the exponential map and its inverse,

which leads to:

D(t) = exp((1−t) log(D0i)+t log(D0j)), t ∈ [0, 1]. (6)

Here exp and log are matrix exponential and logarithm re-

spectively. Note that, around identity, the linearization pro-

vided by the Lie algebra is exact, and we have observed it

to produce very accurate results in general.

4. Extrinsic Shape Difference

In our (discrete) setting, with purely intrinsic informa-

tion one at the best can determine the edge lengths of

the mesh. Recovering the shape from its edge lengths,

while possible in certain simple scenarios, nevertheless of-

ten leads to ambiguities, as highlighted in [10]. To alleviate

such ambiguities, we propose to augment the existing intrin-

sic shape differences with a novel extrinsic shape difference

operator, and in turn boosts our reconstruction.

One basic approach to combine extrinsic information

with the multi-scale Laplace-Beltrami basis is to project

the 3D coordinate functions onto the basis, to obtain three

vectors of coefficients (one for each x, y, z coordinates):

Figure 3. From left to right: original shape with 1000 vertices, the

recovered embedding from G encoded in the leading k = 10, 60,

100 and 300 eigenbasis of the original shape.

f = Φ
+X , where X is the nV × 3 matrix of vertex coordi-

nates [16, 15]. Unfortunately representing a shape through

f , though being multi-scale and compact, is not rotationally

invariant, and does not provide information about intrinsic

geometry. For example, interpolation of coordinate vectors

can easily lead to loss of shape area.

Another option, which is more compatible with our ap-

proach and is rotationally invariant, is to encode the inner

products of coordinate functions on each shape using the

Gram matrix G = XXT . Expressing G in the correspond-

ing basis, and using Eq. (2) gives rise to a shape difference-

like representation of the coordinates. Indeed, the following

theorem (see proof in the supplementary materials) guaran-

tees that the resulting representation contains the same in-

formation, up to rotational invariance, as simply projecting

the coordinates onto the basis.

Theorem 1. Let G = Φ
TAXXTAΦ be the extrinsic inner

product encoded in Φ, then one can recover the projections

of the coordinate functions, X , on the subspace spanned by

Φ from G, up to a rigid transformation. In particular, when

Φ is a complete full basis, the recovery of X is exact.

As an illustration of Theorem 1, we show in Figure 3 the

embeddings recovered from G when the number of basis

functions in Φ ranges from 10 to 300.

However, the rank of the Gram matrix G of a shape is

at most 3, meaning that the majority of its eigenvalues are

zero. This turns out to be an issue in applications, where

gaining information about the local geometry of the shape is

important, for example in our shape analogies experiments.

To compensate for this rank deficiency, we make the ex-

trinsic inner product Laplacian-like:

ED(i, j) =

{

−E(i, j) if i 6= j,
∑

i 6=j E(i, j) i = j.
(7)

Where E(i, j) is ‖vi − vj‖
2A(i, i)A(j, j), i.e., the squared

Euclidean distance between points vi, vj on the shape,

weighted by the respective vertex area measures. Since ED

can be regarded as the Laplacian of a complete graph, all

but one of its eigenvalues are strictly positive.
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Figure 4. A pair of shapes are compared. The most area (resp.

extrinsic) distorted region is captured by the leading eigenfunction

of the area-based (resp. extrinsic) shape difference.

It is worth noting that the Gram matrix and the squared

Euclidean distance matrix are closely related and can be re-

covered from each other as is commonly done in the Multi-

Dimensional Scaling literature [11].

To summarize, given a base shape S0, another shape Si

and a functional map C0i we encode the extrinsic informa-

tion of Si from the point of view of S0 as follows:

D
E
i = (ΦT

0 E
D
0 Φ0)

+(CT
0iΦ

T
i E

D
i ΦiC0i). (8)

In Figure 4, we compute DA and D
E of the target shape

with respect to the base, and color code their respective

eigenfunctions associated with the largest eigenvalue on the

shapes to the right. As argued in [32] these functions cap-

ture the areas of highest distortion between the shapes, with

respect to the corresponding inner products. Note that the

eigenfunction of D
A captures the armpit where the local

area shrinks significantly, while that of D
E captures the

hand, where the pose changes are evident.

Note that in [10], the authors also propose a shape differ-

ence formulation for encoding extrinsic information, which

is defined on the shape offset using the surface normal in-

formation. However, their construction can lead to insta-

bilities, and moreover, it only gives information about local

distances, making it hard to recover large changes in pose.

5. Network Details

Problem Setup Our general goal is to develop a neural

network capable of recovering the coordinates of a shape,

given its representation as a set of shape difference matrices.

We therefore aim to solve the same problem considered in

[5, 10]. However, unlike these purely geometric methods,

we also leverage a collection of training shapes to learn and

constrain the reconstruction to the space of realistic shapes.

Thus, we assume that we are given a collection of shapes,

each represented by a set of shape difference operators with

respect to a fixed base shape. We also assume the pres-

ence of a point-wise map from the base shape to each of

the shapes in the collection, which allows us to compute the

Input shape diff. Coord. function

60x60x3
30x30x8

1024 1024

3*1000

Figure 5. OperatorNet architecture. The inputs of the network

are shape difference matrices considered as channels. It outputs

the coordinate functions of the shape. The first part (left) of the

network consists of a convolutional encoder while the second part

(right) is a fully-connected decoder built with dense layers.

“ground truth” embedding of each shape. We represent this

embedding as three coordinate functions on the shape. Our

goal then is to design a network, capable of converting the

input shape difference operators to the ground truth coordi-

nate functions.

At test time, we use this network to reconstruct a target

shape given only the shape difference operators with respect

to the base shape. Importantly, these shape difference oper-

ators only require the knowledge of a functional map from

the base shape, and can thus arise from shapes with differ-

ent discretizations, or can be synthesized directly for shape

analogies or interpolations applications.

Architecture To solve the problem above we developed

the OperatorNet architecture, which takes as input shape

difference matrices and outputs coordinate functions. Our

network has two modules: a shallow convolutional encoder

and a 3 layer dense decoder as shown in Figure 5.

The grid structure of shape differences is exploited by

the encoder through the use of convolutions. Note however

that translation invariance does not apply to these matrices.

After comparing multiple depths of encoders, we select

a shallow version as it performs the best in practice, imply-

ing that the shape difference representation already encodes

meaningful information efficiently. Moreover, as shown in

[10] the edge lengths of a mesh can be recovered from in-

trinsic shape differences through a series of least squares

problems, hinting that increasing the depth of the network

and thus the non-linearity might not be necessary with shape

differences.

On the other hand, the decoder is selected for its abil-

ity to transform the latent representation to coordinate func-

tions for reconstruction and synthesis tasks.

Datasets We train OperatorNet on two types of datasets:

humans and animals. For human shapes, our training

set consists of 9440 shapes sampled from the DFAUST

dataset [4] and 8000 from the SURREAL dataset [37],

which is generated with the model proposed in [19]. The
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DFAUST dataset contains scan of human characters subject

to a various of motions. On the other hand, the SURREAL

dataset injects more variability to the body types.

For animals, we use the parametric model proposed in

SMAL [39] to generate 1800 animals of 3 different species

– lions, dogs, and horses. The meshes of the humans (resp.

animals) are simplified to 1000 vertices (resp. 1769 ver-

tices).

Input Shape Differences We construct the input shape

differences using a truncated eigenbasis of dimension 60
on the base shape, and the full basis on the target one, in

all experiments, regardless of the number of vertices on the

shapes. The functional maps from the base to the targets are

induced by the identity maps, since our training shapes are

in 1-1 correspondence. This implies that each of the shapes

is represented by three 60 × 60 matrices, representing the

area-based, conformal and extrinsic shape differences re-

spectively. The independence among the shape differences

allows flexibility in selecting the combination of input shape

differences, in Section 6 we compare the performance of

several combinations, and present a more detailed ablation

study in the supplementary materials.

It is worth noting that recent learning-based shape

matching techniques enable efficient (functional) maps es-

timation. In particular, we use the unsupervised matching

method of [31] and evaluate OperatorNet trained with com-

puted shape differences in Section 6.

Loss Function OperatorNet reconstructs coordinate func-

tions of a given training shape. Our shape reconstruction

loss operates in two steps. First, we estimate the optimal

rigid transformation to align the ground truth point cloud

Xgt and the reconstructed point cloud Xrecon using the

Kabsch algorithm [36] with ground truth correspondences.

Secondly, we estimate the mean squared error between the

aligned reconstruction and the ground truth.

L(Xgt, Xrecon) =
1

nV

nV
∑

i=1

‖R(Xi
recon)−Xi

gt‖
2. (9)

Here R is the function that computes the optimal transfor-

mation between Xrecon and Xgt. We align the computed

reconstruction to the ground truth embedding, so that the

quality of the reconstructed point cloud is invariant to rigid

transformations. This is important since the shape differ-

ence operators are invariant to rigid motion of the shape, and

thus the network should not be penalized, for not recovering

the correct orientation. On the other hand, this loss function

is differentiable, since we use a closed-form expression of

RXgt
, given by the SVD, which enables back-propagation

in neural network training.

Figure 6. Qualitative comparison of our method and the baselines.

6. Evaluation

In this section, we provide both qualitative and quantita-

tive evaluations of the results from OperatorNet, and com-

pare them to the geometric baselines.

Evaluation Metrics We denote by Sgt and Srecon the

ground-truth and the reconstructed meshes respectively. We

let dR = L(Xgt, Xrecon), where L is the rotationally-

invariant distance defined in Eq. (9) and X is the vertex

set of S. Since OperatorNet is trained with the loss de-

fined in Eq. (9), we introduce the following new metrics for

a comprehensive, unbiased evaluation and comparison: (1)

dV = |V (Sgt) − V (Srecon)|/V (Sgt), i.e., the relative er-

ror of mesh volumes; (3) dE = mean(i,j)|l
gt
ij − lrecon

ij |/l
gt
ij ,

where lij is the length of edge (i, j).

Baselines Two major baselines are considered: (1) the in-

trinsic reconstruction method from [5], in which we evalu-

ate with the ‘Shape-from-Laplacian’ option and use the full

basis in both the base shape and the target shape; (2) the

reconstruction method from [10], where the authors con-

struct offset surfaces that also capture extrinsic geometry.

Moreover, this method also provides a purely intrinsic re-

construction version. We evaluate both cases with the same

basis truncation as our input. Beyond that, we also consider

the nearest neighbor retrieval from the training set with re-

spect to distances between shape difference matrices.

Test Data We use 800 shapes from the DFAUST dataset

as the test set, which contains 10 sub-collections (character

+ action sequence, each consisting of 80 shapes) that are

isolated from the training/validation set. For the efficiency
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of baseline evaluation, we further sample 5 shapes via fur-

thest point sampling regarding the pair-wise Hausdorff dis-

tance from each of the sub-collection, resulting in a set of

50 shapes that covers significant variability in both styles

and poses in the test set.

Qualitative Results We demonstrate the reconstructed

shapes from OperatorNet and the aforementioned baselines

in Figure 6, where the red shape in each row is the ground

truth target shape. The base shape in this experiment (also

the base shape we compute shape differences on) is shown

in Figure 4, which is in the rest pose. The geometric

baselines in general perform worse under significant pose

changes from the base (see the top two rows in Figure 6),

but give relatively more stable results when the difference

is mainly in the shape style (see the bottom row).

Our method, on the other hand, produces consistently

good reconstructions in all cases. Note also that, as ex-

pected, OperatorNet using all 3 types of shape differences

gives both the best quantitative and qualitative results. We

provide more reconstruction examples in the supplemen-

tary materials highlighting the generalization power of our

method.

Quantitative Results We report all the quantitative met-

rics defined above in Table 1. First, we observe that Oper-

atorNet using both intrinsic and extrinsic shape differences

achieves the lowest reconstruction error, while the purely

extrinsic version is the second best. Secondly, Operator-

Net trained on shape differences from computed functional

maps achieves competing performances, showing that our

method is efficient even in the absence of ground truth bi-

jective correspondences. Lastly, all the versions of Opera-

torNet significantly outperform the baselines.

Regarding the volume and edge recovery accuracy, either

complete or intrinsic-only versions of OperatorNet achieve

second to the best result. We remark that since the near-

est neighbor search in general retrieves the right body type,

therefore the volume is well-recovered. On the other hand,

since the full Laplacian is provided as input for the Shape-

from-Laplacian baseline, it is expected to preserve intrinsic

information.

Reconstructions of Shapes with Different Discretiza-

tions Lastly, we show that our approach is capable of en-

coding differences between shapes with different discretiza-

tions. In Figure 7, we compute the functional maps from the

fine meshes (top row, with 5k vertices) by projecting them

to a lower resolution base mesh with 1k vertices. We then

reconstruct them with OperatorNet trained on lower resolu-

tion shapes. This, on the other hand, is extremely difficult

for purely geometric methods. In the supplementary ma-

terials we provide examples of reconstructions in the same

setting using the method of [10], and reconstructions with

OperatorNet trained with shapes having 2k vertices.

Table 1. Quantitative evaluation of shape reconstruction (dR is at

the scale of 10−4).

dR dV dE

Op.Net (Int+Ext) 1.11 0.014 0.045

Op.Net (Int) 2.41 0.013 0.046

Op.Net (Ext) 1.25 0.017 0.046

Op.Net (Comp)(Ext) 3.86 0.021 0.052

Op.Net (Comp)(Int+Ext) 6.22 0.022 0.053

SfL [5] 48.8 0.081 0.012
FuncChar [10](Int) 65.1 0.356 0.118

FuncChar [10] (Int+Ext) 28.4 0.028 0.110

NN 25.5 0.005 0.043

Figure 7. Top row: input shapes with different number of vertices

than that of the base shape; Bottom row: reconstructions via Op-

eratorNet.

7. Applications

In this section, we present all of our results using Opera-

torNet trained with all 3 types of shape differences.

Shape Interpolation Given two shapes, we first interpo-

late their shape differences using the formulation in Eq.(8),

and then synthesize intermediate shapes by inferring the in-

terpolated shape differences with OperatorNet.

We compare our method against nearest neighbor re-

trieval and PointNet autoencoder. PointNet autoencoder is

trained with the encoder architecture from [28] and with our

decoder. Two versions of PointNet are trained: one autoen-

coder with spatial transformers and one without. Since the

autoencoder without spatial transformers performs better in

our experiments, we select it for the comparisons. Nearest

neighbor interpolation retrieves the nearest neighbor of the

interpolated shape differences in the training set and uses

the corresponding embedding. As expected, (see the sec-

ond row of Figure 9), nearest neighbor interpolation is less

continuous.

As shown in Figure 1, our method produces smooth in-

terpolations, without significant local area distortions com-

pared to PointNet. Similarly, in Figure 9, we observe that

the interpolation via PointNet suffers from local distortion

on the arms. In contrast, interpolation using OperatorNet

is continuous and respects the structure and constraints of

the body, suggesting that shape differences efficiently en-
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Figure 8. Shape interpolation from a tiger (left) to a horse (right) using OperatorNet trained on animals dataset.

Figure 9. Shape interpolation between two humans. Note that

PointNet autoencoder produces shapes with local area distortion,

while the interpolation from nearest neighbor (NN) retrieval is not

continuous.

code the shape structure. We provide further comparisons

to other baselines including [30, 3, 12] and to linear interpo-

lation of shape differences in the supplementary materials.

We also train OperatorNet on the animals dataset as de-

scribed in Section 5 and show in Figure 8 an interpolation

from a tiger to a horse.

Shape Analogy Our second application is to construct se-

mantically meaningful new shapes based on shape analo-

gies. Given shapes SA, SB , SC , our goal is to construct a

new shape SX , such that SC relates to SX as SA to SB .

Following the discussion in Section 3, the functoriality

of shape differences allows an explicit and mathematically

meaningful way of constructing the shape difference of SX ,

given that of SA, SB and SC . Namely, DX = DCD
+
ADB .

Then, with our OperatorNet, we reconstruct the embedding

of the unknown SX by feeding DX to the network.

We compare our results to that of the PointNet autoen-

coder. In the latter, we reconstruct SX by decoding the la-

tent code obtained by lX = lC − lA + lB , where lA is the

latent code of shape SA (and similarly for SB , SC).

In Figure 10, we show a set of shape analogies obtained

via OperatorNet and PointNet autoencoder. It is evident that

our results are both more natural and intuitive. We also refer

Figure 10. Transferring gender via shape analogies: SA and SB

are a fixed pair of human shapes with similar poses and styles, but

of different genders. We generate SX , which is supposed to be a

“female” version of the varying SC . Our analogies are semanti-

cally meaningful, while PointNet can produce suboptimal results

(see the red dotted boxes for the discrepancies).

the readers to the supplementary materials for more exam-

ples of analogies.

8. Conclusion & Future Work

In this paper we have introduced a novel learning-based

technique for recovering shapes from their difference oper-

ators. Our key observation is that shape differences, stored

as compact matrices lend themselves naturally to learning

and allow to both recover the underlying shape space in a

collection and encode the geometry of individual shapes.

We also introduce a novel extrinsic shape difference oper-

ator and show its utility for shape reconstruction and other

applications such as shape interpolation and analogies.

Currently our approach is only well-adapted to shapes

represented as triangle meshes. Thus, in the future we plan

to extend this framework to both learn the optimal inner

products from data, and adapt our pipeline to other shape

representations, such as point clouds or triangle soups.
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Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. In Advances in

Neural Information Processing Systems, pages 3189–3197,

2016. 2

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017. 1, 2

[8] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich

3d model repository. CoRR, abs/1512.03012, 2015. 3

[9] Etienne Corman. Functional representation of deformable

surfaces for geometry processing. PhD thesis, 2016. PhD

thesis. 4

[10] Etienne Corman, Justin Solomon, Mirela Ben-Chen,

Leonidas Guibas, and Maks Ovsjanikov. Functional char-

acterization of intrinsic and extrinsic geometry. ACM Trans.

Graph., 36(2):14:1–14:17, Mar. 2017. 2, 3, 4, 5, 6, 7

[11] Trevor F. Cox and M.A.A. Cox. Multidimensional Scaling,

Second Edition. Chapman and Hall/CRC, 2 edition, 2000. 5

[12] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan

Russell, and Mathieu Aubry. 3d-coded : 3d correspondences

by deep deformation. In ECCV, 2018. 8

[13] Nils Hasler, Carsten Stoll, Martin Sunkel, Bodo Rosenhahn,

and H-P Seidel. A statistical model of human pose and body

shape. In Computer graphics forum, volume 28, pages 337–

346. Wiley Online Library, 2009. 2

[14] Ruqi Huang, Panos Achlioptas, Leonidas Guibas, and Maks

Ovsjanikov. Limit Shapes - A Tool for Understanding Shape

Differences and Variability in 3D Model Collections. Com-

puter Graphics Forum, 2019. 2

[15] Artiom Kovnatsky, Michael M Bronstein, Alexander M

Bronstein, Klaus Glashoff, and Ron Kimmel. Coupled quasi-

harmonic bases. In Computer Graphics Forum, volume 32,

pages 439–448. Wiley Online Library, 2013. 4

[16] Bruno Levy. Laplace-beltrami eigenfunctions towards an

algorithm that ”understands” geometry. In IEEE Interna-

tional Conference on Shape Modeling and Applications 2006

(SMI’06), pages 13–13, June 2006. 3, 4

[17] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph convo-

lutional autoencoders. In Proc. CVPR, pages 1886–1895,

2018. 3

[18] Or Litany, Tal Remez, Emanuele Rodolà, Alex Bronstein,
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Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas,

Frederic Chazal, and Alex Bronstein. Computing and pro-

cessing correspondences with functional maps. In ACM SIG-

GRAPH 2017 Courses, 2017. 3

[26] Ulrich Pinkall and Konrad Polthier. Computing Discrete

Minimal Surfaces and their Conjugates. Experimental math-

ematics, 2(1):15–36, 1993. 3

[27] Adrien Poulenard and Maks Ovsjanikov. Multi-directional

geodesic neural networks via equivariant convolution. ACM

Trans. Graph. (Proc. SIGGRAPH Asia), 37(6):236:1–

236:14, 2018. 2

[28] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and

Leonidas J. Guibas. Pointnet: deep learning on point sets for

3d classification and segmentation. CoRR, abs/1612.00593,

2016. 2, 7

[29] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classification on 3d data. In Proc.

CVPR, pages 5648–5656, 2016. 2

8596

Maks Ovsjanikov



[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. CoRR, abs/1706.02413, 2017. 8

[31] Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovs-

janikov. Unsupervised deep learning for structured shape

matching. CoRR, abs/1812.03794, 2018. 6

[32] Raif M. Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela

Ben-Chen, Frédéric Chazal, and Leonidas Guibas. Map-

based exploration of intrinsic shape differences and variabil-

ity. ACM Transactions on Graphics (TOG), 32(4):1, 2013.

1, 2, 3, 4, 5

[33] Adriana Schulz, Ariel Shamir, Ilya Baran, David I. W. Levin,

Pitchaya Sitthi-Amorn, and Wojciech Matusik. Retrieval on

parametric shape collections. ACM Trans. Graph., 36(4),

Jan. 2017. 2

[34] Ayan Sinha, Jing Bai, and Karthik Ramani. Deep learning 3d

shape surfaces using geometry images. In European Confer-

ence on Computer Vision, pages 223–240. Springer, 2016.

2

[35] Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ra-

mani. Surfnet: Generating 3d shape surfaces using deep

residual networks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017. 1

[36] Arun K. Somani, Thomas S. Huang, and Steven D. Blostein.

Least-squares fitting of two 3-d point sets. IEEE Transac-

tions on pattern analysis and machine intelligence, (5):698–

700, 1987. 6

[37] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In CVPR, 2017. 5

[38] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics (TOG), 36(4):72, 2017. 2

[39] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and

Michael J. Black. 3D menagerie: Modeling the 3D shape

and pose of animals. In CVPR, July 2017. 2, 6

8597

Maks Ovsjanikov


