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Abstract: In this work, we recall the concept of contractive dynamics and its natural
extension to the notion of differential dissipativity/passivity via the use of the so-called
prolonged (or extended) system dynamics, obtained by lifting the system to the tangent
bundle of the underlying manifold. The new concept of dissipative differential Hamiltonian
dynamics is proposed providing a weaker notion of contractive dynamical system. Furthermore,
the differential Hamiltonian notion is extended to the definition of differentially passive
port-Hamiltonian system. We describe explicit conditions to exploit the ‘natural’ differential
Hamiltonian function as differential storage function for the port-Hamiltonian system dynamics.

Keywords: Contractive systems, differential passivity, port-Hamiltonian systems, dissipative
Hamiltonian systems, dissipative differential Hamiltonian system

1. INTRODUCTION

Since Dissipativity was introduced by J.C. Willems in
Willems (1972) is has played a relevant role in systems
theory, in particular in the analysis of open and inter-
connected systems, as it generalizes the concept of Lya-
punov function to system interfacing the surrounding en-
vironment, as described in Willems (2007). It also gives
the foundations to dissipativity-based nonlinear control
designs, see e.g. van der Schaft (2000), Sepulchre et al.
(2012), and Brogliato et al. (2007). A particular case of
dissipativity is the concept of passivity. On the latter, a
special class of nonlinear physical systems has been built,
i.e., port-Hamiltonian systems.
The port-Hamiltonian approach to modeling and control of
complex physical systems is a well-established framework,
and it started/pioneered with the work by Maschke and
van der Schaft (1993), van der Schaft and Maschke (1995),
see also Duindam et al. (2009); van der Schaft (2000);
van der Schaft et al. (2014) for a general overview of
the topic including also control techniques. A particular
feature of port-Hamiltonian Systems is that of describing
all the main physical properties of the system under con-
sideration, such as energy dissipation, passivity, and power
conservation laws. Moreover, the formalism is particularly
well suited for the interconnection of physical systems,
preserving the passivity, stability, and structure in a larger
Port-Hamiltonian system, Cervera et al. (2007).
Concurrently to the introduction of the dissipativity con-
cept, the first results of contraction theory can be found
in Demidovich (1967) and Willems (1970), and they are
based on a constant Euclidean metric, see also Pavlov
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et al. (2005). The contraction approach was born as a
tool to study and describe the stability of nonlinear sys-
tems as a counterpart of Lyapunov approach, see Forni
and Sepulchre (2013a). Only later on, in Lohmiller and
Slotine (1998) the theory has been extended to nonlinear
state dependent metric, while further developments can
be found in Angeli (2002); Forni and Sepulchre (2013a);
Andrieu et al. (2016).

A strictly related concept to contraction theory is that of
differential dissipativity, introduced for the first time in
Forni and Sepulchre (2013b). As the contraction theory
gives tools for studying the neighborhood of autonomous
systems trajectories, analogously the notion of differential
dissipativity can be employed as a tool to study the
variational input-output-state behavior. The concept has
then been specialized to differential passivity in Forni et al.
(2013) and described in a geometric and coordinate-free
framework in van der Schaft (2013). See Reyes-Báez et al.
(2018) for an application to control flexible-joints robots.

In the context of port-Hamiltonian systems, some results
on contraction theory are available but only for the case of
constant metric, see Yaghmaei and Yazdanpanah (2017);
Barabanov et al. (2019); Yaghmaei and Yazdanpanah
(2023), and recently a new concept of incremental stabil-
ity has been introduced on Dirac structure in Camlibel
and van der Schaft (2013, 2022). To the best of the au-
thors’ knowledge, none of the works on contractive port-
Hamiltonian systems consider a nonlinear state-dependent
metric, nor exploit the knowledge of the available Hamilto-
nian function. Additionally, there is no work on differential
passivity in the context of port-Hamiltonian systems.

The aim of this work is to introduce the concept of
dissipative differential Hamiltonian system, resulting in



a weaker notion of contractive system. We then cast
the contraction theory and differential passivity in the
framework of port-Hamiltonian systems.

The paper is structured as follows. In section Sec. 2,
we recall the concepts of dissipative, passive, and port-
Hamiltonian systems. We also introduce in Sec. 3, the
variational and prolonged systems to describe the concepts
of contractive systems in Sec. 4 and differential dissipativ-
ity and passivity in Sec. 5. Then in Section 6, we provide
our main result by introducing the definition of (dissipa-
tive) differential Hamiltonian system and extending it to
the concept of differential passivity for port-Hamiltonian
systems. We then provide an example in Sec. 7, before
summarizing the paper content in Sec. 8.

Nomenclature: Given a real-valued function H : Rn → R,

we denote its gradient (in covector form) as
∂H

∂x
= ∂xH,

and for the sake of simplicity we write its column vector

form as ∇H(x) =
∂H

∂x

⊤

(x). Its Hessian will then be

written as ∇2H(x) =
∂

∂x
·
∂H

∂x

⊤

(x). For a matrix-valued

function J(x) ∈ Rn×n, x ∈ Rn, we consider, with some
abuse of notation, that its time derivative (or Lie derivative
with respect to the vector field ẋ = f(x), in this case

indicated as Lf(x)J(x)), to be written as J̇(x) =
∂J(x)

∂x
ẋ,

or, column-wise, we write J̇i(x) =
∂Ji

∂x
ẋ, where Ji(x) refers

to the i-th column of J(x) . When we evaluate J̇(x)∇H(x),

we write it in matrix form as J̇(x)∇H(x) =
∂H

∂x

∂⊤J

∂x
ẋ,

meaning that the resulting vector will have as i-th element

J̇i∇H =

(
ẋ⊤ ∂Ji

∂x
⊤
)⊤

∇H(x) =
∂H

∂x

∂⊤Ji

∂x
ẋ.

2. DISSIPATIVE AND PASSIVE SYSTEMS

Consider a nonlinear system, in the state space (local)
coordinates of a smooth manifold X , expressed by a model
of the form

Σ :

{
ẋ = f(x, u), x(0) = x0

y = h(x, u)

with the input value u ∈ U ⊆ Rm, the output values
y ∈ Y ⊆ Rp, and the system’s state x ∈ X ⊆ Rn, where
U ,Y, and X are the input, output, and state spaces. With
some abuse of notation U refers, for the sake of brevity of
exposition, also to the space of admissible inputs.

The definition of dissipative system for Σ, introduced in
Willems (1972), employs two real-valued functions, i.e.,
the supply rate denoted by s : U ×Y → R, and the storage
function S : X → R.
Definition 2.1. (Dissipation inequality). System Σ is said
to satisfy the dissipative inequality with respect to the
supply rate s and storage function S if

S(x(t2))− S(x(t1)) ≤
∫ t2

t1

s(u(t), y(t))dt (1)

for all t1, t2 ∈ R, with t2 ≥ t1 and all admissible input-
output-state trajectory (u(t), y(t), x(t)) ∈ U × Y × X .

To be more precise, the tuple (u(t), y(t), x(t)) should
belong to the behavior of Σ, see Willems (2007) for more
details.

The well-known and accepted interpretation of the dissipa-
tion inequality (1), is that (in general) not all the supplied
quantity (

∫
s dt) is stored (in S), and thus the amount that

is supplied but not stored is dissipated. This allows us to
introduce the definition of dissipative and cyclo-dissipative
systems.

Definition 2.2. (Cyclo-dissipative systems). A system Σ is
said to be cyclo-dissipative with respect to the supply rate
s : U ×Y → R if there exists a real-valued storage function
S : X → R such that the dissipation inequality (1) holds.

Definition 2.3. (Dissipative systems). A system Σ is said
to be dissipative with respect to the supply rate s : U ×
Y → R if it is cyclo-dissipative with a non-negative storage
function S : X → R≥0 satisfying the dissipation inequality
(1).

As described in Willems (2007), the notion of storage
function for dissipative systems is a generalization to open
systems of the concept of Lyapunov function for closed
systems.

A particular case of dissipative system is given when the
supply rate takes the form of an inner product between the
input and the output of the system, i.e., s(u, y) = y⊤u. We
then have the following definition.

Definition 2.4. ((Cyclo-)Passive system). A square (i.e.,
m = p) dynamical system Σ is said to be (cyclo-)passive
if it is (cyclo-) dissipative with respect to the supply rate
s(u, y) = y⊤u.

2.1 Port-Hamitlonian systems

The concept of passive system is explicitly expressed by
the dynamics equation of a class of nonlinear systems, i.e.,
the so-called port-Hamiltonian systems. In particular, a
nonlinear system Σ is port-Hamiltonian when its dynami-
cal equation presents a predefined structure, of the form

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = g(x)⊤∇H(x)
(2)

where J : X → Rn×n is a skew-symmetric matrix that
describes the underlying Dirac structure (i.e., the energy
transfer between different physical domains), R : X →
Rn×n is a positive semi-definite matrix describing the
dissipative elements of the system, and H : X → R is
the Hamiltonian function associated to the system energy.
The particular structure of y defines an output that is
power-conjugated to the input u, i.e., their inner product
provides an equivalent power quantity. We said that the
passivity concept is explicitly expressed by the dynamics
of a port-Hamitlonian system (2) because, via the energy
balance, we retrieve the differential form of the dissipation
inequality (1), i.e.,

Ḣ = ∇H⊤(J −R)∇H +∇⊤Hgu ≤ y⊤u.

Thus the system dynamics explicitly satisfies the dissipa-
tion inequality of a passive system if H is lower bounded,
or of a cyclo-passive system otherwise.
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3. VARIATIONAL AND PROLONGED SYSTEM

As introduced in Crouch and van der Schaft (1987) and
exploited in Forni and Sepulchre (2013a), we show how
a system Σ, defined on the smooth manifold X , can be
extended/prolonged (or ‘lifted’ as mentioned in Forni and
Sepulchre (2013a)) to a system on the 2n-dimensional
tangent bundle T X of the manifold X , with 2m inputs
and 2p outputs.
Given an admissible input-output-state trajectory t 7→
(u, y, x) for Σ, the variational system along such a tra-
jectory is given by the following time-varying system

DΣ :


ξ̇ =

∂f

∂x
(x, u)ξ +

∂f

∂u
(x, u)ν

ζ =
∂h

∂x
(x, u)ξ +

∂h

∂u
(x, u)ν

with state ξ ∈ Rn, where ν = (ν1, . . . , νm) and ζ =
(ζ1, . . . , ζp) denote the inputs and the outputs of the varia-
tional system. As highlighted in van der Schaft (2013), the
terminology ‘variational’ system comes from considering
the infinitesimal variations of a family of input-output-
state trajectories of Σ, i.e., (u(t, ε), y(t, ε), x(t, ε)) param-
eterized by ε ∈ (−δ, δ), with x(t, 0) = x(t), u(t, 0) = u(t),
and y(t, 0) = y(t). Thus the infinitesimal variations

ξ(t) =
∂x

∂ε
(t, 0), ν(t) =

∂u

∂ε
(t, 0), ζ(t) =

∂y

∂ε
(t, 0),

satisfy the dynamical equations of DΣ. In other words, the
input-output-state variational trajectory (ν, ζ, ξ) describes
any ‘virtual displacement’ of the input-output-state trajec-
tory of Σ.
The prolonged system of Σ thus corresponds to the aug-
mented 2n-dimensional system on the tangent bundle T X
composed of Σ together with DΣ, i.e., the system dynam-
ics

T Σ :



ẋ = f(x, u), x(0) = x0

y = h(x, u)

ξ̇ =
∂f

∂x
(x, u)ξ +

∂f

∂u
(x, u)ν

ζ =
∂h

∂x
(x, u)ξ +

∂h

∂u
(x, u)ν.

Note that in the standard notation, as exploited e.g. in
van der Schaft (2013), ξ = δx, ν = δu, and ζ = δy.
Furthermore, in Forni and Sepulchre (2013a), in the case
of closed system, the variational state ξ = δx refers to
the tangent vector to the parameterized curve connecting
any two system trajectories. The infinitesimal variations
δx(t) on the state x(t) can also be interpreted as being a
generic ‘virtual displacement’ along any possible direction
on the tangent space TxX . However, if we specialize
such a direction to be the one of the ‘state velocity’,
i.e., we obtain the dynamics of ξ = ẋ, we describe the
time evolution of the vectorfield f(x, u). Where this time,
we can properly determine the initial conditions of the
variational system, i.e., ξ(0) = f(x0, u(0)). This choice of
the variational system direction, recalls and extends the
definition of Forward Contraction introduced in (Forni
and Sepulchre, 2013a, sec. III.C). In our opinion, it can
lead to different interpretations of the contraction theory
approach to determine the stability of equilibrium points
of nonlinear systems, which is however out of the scope of
this paper and thus postponed to a future work.

4. CONTRACTION THEORY

Before discussing differential dissipative systems, we need
to introduce the notion of contractive system.
The contraction theory approach was first introduced in
books such as Demidovich (1967) and Willems (1970) (see
also Pavlov et al. (2004)), and extended in Lohmiller and
Slotine (1998); Forni and Sepulchre (2013a); Andrieu et al.
(2016). It plays a crucial role in studying the stability
and/or the attractiveness of invariant manifolds for nonlin-
ear autonomous systems. In particular, one can determine
the exponential convergence property by studying the
properties of the variational dynamics. More specifically,
this attractiveness property is equivalent to the existence
of a positive definite quadratic form (called Lyapunov-
Finsler metric in Forni and Sepulchre (2013a)) which is
decreasing along the flow of the autonomous prolonged
dynamics T Σ.

Definition 4.1. (Contractive system). An autonomous sys-
tem ẋ = f(x) on a smooth manifold X , is said to be
contractive if there exists a C1 function P : X → Rn×n,
two strictly positive real numbers p and p such that P has
a Lie derivative along the vectorfield f , i.e., Lf(x)P (x),
and it satisfies

pI ≤ P (x) ≤ pI,

Lf(x)P (x)+P (x)
∂f

∂x
(x) +

∂f

∂x

⊤

(x) < 0, ∀x ∈ X .

A strictly related and independent concept is the one of
incremental stability, that is the exponential attractiveness
between any two trajectories of a system dynamics.

Definition 4.2. An autonomous system ẋ = f(x) is said
to be globally exponentially incrementally stable, if there
exist two strictly positive real numbers k and α such that
any two trajectories x1(t) and x2(t), originated in x01 and
x02, for all (x01, x02) ∈ X × X , we have

|x1(t)− x2(t)| ≤ k|x01 − x02| exp(−αt),∀t ≥ 0.

It has been shown in (Andrieu et al., 2016, Prop. 1) that if
the vectorfield f(x) is globally Lypschitz with bounded
second derivative, the two concepts of contractive and
incrementally stable systems are equivalent. Additionally,
they are both equivalent, see (Andrieu et al., 2016, Prop.
1), to the global exponential attractiveness of the manifold
E = {(x, ξ) : ξ = 0} for the prolonged systems of ẋ = f(x),
i.e.,

ẋ = f(x), ξ̇ =
∂f

∂x
(x)ξ.

A motivation: By the characterization we gave to the
virtual state ξ in the previous section, i.e., considering
ξ = ẋ, we can additionally conclude that the manifold E ,
as introduced in (Andrieu et al., 2016, Property P2), is the
set of all equilibrium points of the autonomous system ẋ =
f(x). As a consequence, because the contraction property
is assumed to hold globally in Andrieu et al. (2016), we can
conclude that there is a single stable equilibrium point, i.e.,
E = {(x̄, 0)} where x̄ is such that f(x̄) = 0.

5. DIFFERENTIAL DISSIPATIVITY AND PASSIVITY

The theory of differential dissipativity was first developed
in Forni and Sepulchre (2013b) in which the authors
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introduce the concept of differential storage function S :
T X → R and of differential supply rate σ : T U ×
T Y → R, so to ‘lift’ the standard dissipativity notion to
the tangent bundle. We recall the definitions of differential
dissipativity, differential passivity, respectively, given in
Forni and Sepulchre (2013b) and Forni et al. (2013),
here extended to the weaker notion of differential cyclo-
dissipativy and cyclo-passivity.

Definition 5.1. (Diff. (cyclo-) dissipative system). The dy-
namical system Σ is said to be differentially (cyclo-) dissi-
pative with respect to the differential supply rate σ : T U×
T Y×T X → R if there exists a differential storage function
(S : T X → R) S : T X → R≥0 such that

S(x(t1), ξ(t1))− S(x(t0), ξ(t0)) ≤∫ t1

t0

σ(x(t), u(t), ν(t), y(t), ζ(t))dt (3)

for all t1, t0 ∈ R, t1 ≥ t0, and for any admissible input-
output-state trajectory of T Σ, i.e., (u, ν, y, ζ, x, ξ) ∈ T U ×
T Y × T X .

By exploiting the assumption that S ∈ C1, (3) is equiva-
lent to

Ṡ(x(t), ξ(t)) ≤ σ(x(t), u(t), ν(t), y(t), ζ(t)) (4)

along the flow of T Σ.

Remark 1. It is worth noticing that the definition of dissi-
pativity applied to the prolonged system T Σ is not equiv-
alent to differential passivity of Σ, because the variational
state ξ is not involved in the supply rate.

Following the standard definition of passivity introduced
above and lifted to the tangent bundle T X , we have the
following definition of differential passivity.

Definition 5.2. (Diff. (cyclo-) passivity). A square (i.e., m
= p) dynamical system Σ is differentially (cyclo-) passive
if it is differentially (cyclo-) dissipative with respect to the
differential supply rate σ(ν, ζ) = ζ⊤ν.

Equivalently, with the additional assumption S ∈ C1, the
differential passivity inequality can be written as

Ṡ(x(t), ξ(t)) ≤ ζ(t)⊤ν(t). (5)

It is worth noting the similarity (suggested by an anony-
mous reviewer) with the definition of strictly Krasovskii’s
passivity in (Kawano et al., 2023, Def. 3.1), that however
is a particular case of the differential passivity defined here
and in Forni et al. (2013).
In the remainder of the paper, we focus our attention
on the particular direction, on the tangent bundle, deter-
mined by the system vectorfield. In this case, the differen-
tial dissipativity notion earns a more concrete and tangible
meaning, where ξ(t) = ẋ(t), ν(t) = u̇(t), and ζ(t) = ẏ(t).

6. MAIN RESULT

The main result of this paper is twofold. We first show
an original way to apply and exploit the contraction
theory approach to dissipative Hamiltonian systems, i.e.,
closed port-Hamiltonian systems. We then extend this
concept to (open) port-Hamiltonian systems with the
related concept of differential passivity. Both results are
associated to the employment of the Hamiltonian’s Hessian
as contractive metric and to explicitly define a differential
storage function.

6.1 Contractive and dissipative Hamiltonian systems

A dissipative Hamiltonian system is the autonomous ver-
sion of a port-Hamitonian system (or a ‘closed’ port-
Hamiltonian system), and its dynamics on a manifold X
reads as

ẋ = (J(x)−R(x))∇H(x) := fH(x), x(0) = x0 (6)

where J(x) = −J(x)⊤ and R(x) = R(x)⊤ ≥ 0, with x ∈ X
and such a dynamics is related to a C2 real function H(x)
called the Hamiltonian of the system.
Here we introduce the notion of differential Hamiltonian
system, when the variational dynamics of (6) has again
the structure of a dissipative Hamiltonian system.

Definition 6.1. ((Diss.) Diff. Hamiltonian system). A dis-
sipative Hamiltonian system (6) on the smooth manifold
X , is said differentially Hamiltonian if there exists a ‘lifted’
Hamiltonian function H : T X → R, a skew symmetric
matrix J ′ : X → Rn×n and a symmetric matrix R′ : X →
Rn×n, such that the variational dynamics of (6) reads as

ξ̇ = (J ′(x)−R′(x))∇ξ H(x, ξ), ξ ∈ T X . (7)

Furthermore, we say that it is dissipative differentially
Hamiltonian, if additionallyH is lower bounded and Ḣ ≤ 0
along the flow of prolonged system (6)-(7).

We then provide the first result of the paper, concerning
the conditions to have dissipative differential Hamiltonian
systems.

Theorem 6.1. A dissipative Hamiltonian system (6) is
dissipative differentially Hamiltonian with respect to the
Hamiltonian function H(x, ξ) = 1

2ξ
⊤∇2H(x)ξ, if and only

if there exists a real q such that qI ≤ ∇2H, for all x ∈ X ,

and∇2H is everywhere locally invertible and for all x ∈ X ,

LfH∇2H(x)− 2∇2H(x)R′(x)∇2H(x) ≤ 0 (8)

where

R′ = R− sym

[
∂H

∂x

(
∂⊤J

∂x
−

∂⊤R

∂x

)
∇2H

−1
(x)

]
. (9)

Proof. We first show that under the assumption of every-
where locally invertibility of Hamiltonian Hessian∇2H(x),
any dissipative Hamiltonian system (6) is differentially
Hamiltonian with Hamiltonian function

H(x, ξ) =
1

2
ξ⊤∇2H(x)ξ.

We thus compute the variational system of (6), i.e., by
defining ξ = ẋ, we write its dynamics

ξ̇ =
(
J̇(x)− Ṙ(x)

)
∇H(x) + (J(x)−R(x)) ∇̇H(x)

=
∂H

∂x

[
∂⊤J

∂x
−

∂⊤R

∂x

]
ξ + (J(x)−R(x))∇2H(x)ξ

= (J ′(x)−R′(x))∇2H(x)ξ,

where R′ is as defined in (9) and

J ′ = J − skew

[
∂H

∂x

(
∂⊤J

∂x
−

∂⊤R

∂x

)
∇2H

−1
(x)

]
.

We now show that the time derivative of H(x, ξ) =
1
2ξ

⊤∇2H(x)ξ is nonpositive under condition (8), since it
is given by

Ḣ =
1

2
ξ⊤

(
LfH∇2H

)
ξ − ξ⊤∇2HR′(x)∇2Hξ
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thus condition (8) provides the necessary and sufficient to

guarantee Ḣ ≤ 0 along the prolonged system. □
From the above theorem, one can notice that every dissipa-
tive Hamiltonian system (6) is differentially Hamiltonian
with a ‘natural’ Hamiltonian functionH(x, ξ), but in order
to be also dissipative, the structure matrix must satisfy the
additional requirement (8).
In the remainder of this subsection, we link the introduced
definition of dissipative differential Hamiltonian system to
the notion of contractive dynamics. In order to do so, we
exploit the Hessian of the Hamiltonian function H as a
metric of contraction, and we thus introduce the following
assumption.

Assumption 1. There exist positive real values q and q,
such that

qI ≤ ∇2H ≤ qI, ∀x ∈ X .

Then the following corollary is immediate.

Corollary 1. System (6) is contractive on X with metric
∇2H(x) under Assumption 1 1 , if and only if it is dissi-
pative differentially Hamiltonian and (8) holds with strict
inequality for all x ∈ X .

The sufficient part of the proof is just an application of
Theorem 6.1, while the necessary part comes from the
definition of Contractive systems, we thus omit the proof
of this corollary.

6.2 Differential Passivity for port-Hamiltonian systems

When talking about passivity we need to consider the
inputs and outputs interfaces with the environment, such
as the input-output ports in the port-Hamiltonian system
dynamics (2). We extend this dynamics to obtain the
prolonged system on the tangent bundle T X ,

ẋ = (J(x)−R(x))∇H(x) + g(x)u := fH,u(x),

y = g(x)⊤∇H(x), x(0) = x0

ξ̇ = (J ′(x)−R′(x))∇2H(x)ξ + ġ(x)u+ g(x)u̇,

ξ(0) = (J(x0)−R(x0))∇H(x0) + g(x0)u(0),

ẏ = ġ(x)⊤∇H(x) + g(x)⊤∇2H(x)ξ.

(10)

To describe the differential passivity properties of (2), we
focus our attention on the variational dynamics, i.e., the
differential Hamiltonian system with the additional input
vectorfield (g(x)u) variation, extended with the variation
of the output terms as given in ẏ. We then have the
following conditions to guarantee differential passivity for
(2) with storage function H(x, ξ) = 1

2ξ
⊤∇2H(x)ξ.

Theorem 6.2. Consider the port-Hamiltonian system (2)
on the smooth manifold X . It is differentially passive with
storage function H : T X → R, H(x, ξ) = 1

2ξ
⊤∇2H(x)ξ,

if and only if the input matrix g(x) is constant and the
following inequality 2 holds for all x ∈ X

LfH,u
∇2H(x)− 2∇2HR′(x)∇2H ≤ 0. (11)

Proof. To prove passivity with storage function H(x, ξ) =
1
2ξ

⊤∇2H(x)ξ, one can first notice that the variational
dynamics with input-output-state trajectory (u̇, ẏ, ξ) has
a port-Hamiltonian structure with Hamiltonian function

1 See the properties of the P in the definition of contractive system.
2 Or equivalently one can check LfH,u

∇2H(x)−1 + 2R′(x) ≥ 0.

H(x, ξ) = 1
2ξ

⊤∇2H(x)ξ and input-output conjugate pair
if and only if ġ(x) = 0. However, to guarantee differential
passivity, a sufficient condition is that the equivalent dif-
ferential Hamitlonian system is dissipative, i.e., inequality
(11) holds, so that

Ḣ =
1

2
ξ⊤

[
LfH,u

∇2H(x)− 2∇2HR′(x)∇2H
]
ξ+

+ ξ⊤∇2H(x)g(x)u̇ ≤ ẏ⊤u̇.

This proves the sufficient part.
To obtain the necessary part we find conditions to satisfy

Ḣ ≤ ẏ⊤u̇

for all admissible (x, ξ, u, u̇, y, ẏ) ∈ T X ×T U×T Y. Where
the Lie derivative of H(x, ξ) along the prolonged dynamics
reads as

Ḣ =
1

2
ξ⊤

[
LfH,u

∇2H(x)− 2∇2HR′(x)∇2H
]
ξ+

+ ξ⊤∇2H(x)g(x)u̇+ ξ⊤∇2H(x)ġ(x)u

=
1

2
ξ⊤

[
LfH,u

∇2H(x)− 2∇2HR′(x)∇2H
]
ξ+

+ ẏ⊤u̇+∇H(x)⊤ġ(x)u̇+ ξ⊤∇2H(x)ġ(x)u

that is

1

2
ξ⊤

[
LfH,u

∇2H(x)− 2∇2HR′(x)∇2H
]
ξ+

+∇H(x)⊤ġ(x)u̇+ ξ⊤∇2H(x)ġ(x)u ≤ 0

must hold for all admissible (x, ξ, u, u̇), this implies that
ġ(x) = 0 and that inequality (11) hold. Thus proving the
theorem. □
With this approach, we let the differential Hamiltonian
H(x, ξ) = 1

2ξ
⊤∇2H(x)ξ play the role of a ‘natural’ differ-

ential storage function, denoted by S in the previous sec-
tions, under appropriate conditions. We refer to this prop-
erty to be a ‘differential’ passivity-preservation, since the
role of H, in the differential framework, is the analogous
of the standard role played by the system Hamiltonian
H for passivity in standard port-Hamiltonian systems.
Moreover, when we compare our result to the conditions
in (van der Schaft, 2013, eq. (16)), we notice that our
conditions are in a sense weaker because we do not require
the storage function S to have a zero Lie derivative along
the complete lift of the input vectorfield g(x). On the
other hand, some limitations on the input class might be
considered so to satisfy the inequality (11). However, when
the Hessian of H is constant, such a condition is easier to
satisfy as shown in the following illustrative example.

7. EXAMPLE

We consider the dynamics of a nonlinear (in the resistor
part) RL-circuit. The port-Hamiltonian dynamics with

Hamiltonian function H(ϕ) = ϕ2

2L reads

ϕ̇ = −R

(
ϕ

L

)
1

L
ϕ+ u, y =

1

L
ϕ, R(i) = i4

with ϕ being the magnetic flux of the inductor and u
being the voltage input applied to the R-L series. Thus
the variational dynamics read as

ξ̇ = −
[
∂R

∂i

(
ϕ

L

)
ϕ

L
+R

(
ϕ

L

)]
ξ

L
+ u̇, ẏ =

1

L
ξ.
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In this particular case, we have ġ = 0 and ˙∇2H = 0,
implying that inequality (11) is always satisfied, because
R′(x) ≥ 0 for all x ∈ R, i.e.,
∂R

∂i

(
ϕ

L

)
ϕ

L
+R

(
ϕ

L

)
= 4

(
ϕ

L

)3
ϕ

L
+

(
ϕ

L

)4

= 5

(
ϕ

L

)4

≥ 0.

Hence, the system is passive and differentially passive with
differential storage function S = H = H(ξ).

8. CONCLUSIONS

In this paper, we introduce the concepts of contractive
system for autonomous dynamics and variational dynam-
ics for open dynamical systems. The latter allows us to
describe the prolonged dynamics, lifting the system state
space to its tangent bundle. Furthermore, such a prolonged
(or extended) dynamics allows us to define the concept
of differential dissipative system and in particular of dif-
ferential passive system. We then recast the concept of
contractive systems into that of dissipative Hamiltonian
systems, thus providing the weaker notion of dissipative
differential Hamiltonian systems; and we apply the dif-
ferential passivity definition to the prolonged dynamics
of port-Hamiltonian system. We thus provide necessary
and sufficient conditions to exploit the knowledge of the
system Hamiltonian Hessian, to define a ‘natural’ differen-
tial storage function to describe the differential passivity
properties of the system. This is analogous to exploiting
the system Hamiltonian as storage function to describe
the passivity of the system property in the standard port-
Hamiltonian framework.
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