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Time-aware uniformization of winning strategies
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Abstract. Two-player win/lose games of infinite duration are involved
in several disciplines including computer science and logic. If such a game
has deterministic winning strategies, one may ask how simple such strate-
gies can get. The answer may help with actual implementation, or to win
despite imperfect information, or to conceal sensitive information espe-
cially if the game is repeated.
Given a concurrent two-player win/lose game of infinite duration, this
article considers equivalence relations over histories of played actions.
A classical restriction used here is that equivalent histories have equal
length, hence time awareness. A sufficient condition is given such that
if a player has winning strategies, she has one that prescribes the same
action at equivalent histories, hence uniformization. The proof is fairly
constructive and preserves finiteness of strategy memory, and counterex-
amples show relative tightness of the result. Several corollaries follow for
games with states and colors.

Keywords: Two-player win/lose games · imperfect information · crite-
rion for existence of uniform winning strategies · finite memory.

1 Introduction

In this article, two-player win/lose games of infinite duration are games where
two players concurrently and deterministically choose one action each at every
of infinitely many rounds, and “in the end” exactly one player wins. Such games
(especially their simpler, turn-based variant) have been used in various fields
ranging from social sciences to computer science and logic, e.g. in automata
theory [5, 15] and in descriptive set theory [12].

Given such a game and a player, a fundamental question is whether she has
a winning strategy, i.e. a way to win regardless of her opponent’s actions. If the
answer is positive, a second fundamental question is whether she has a simple
winning strategy. More specifically, this article investigates the following strategy
uniformization problem: consider an equivalence relation ∼ over histories, i.e.
over sequences of played actions; if a player has a winning strategy, has she a
winning ∼-strategy, i.e. a strategy prescribing the same action after equivalent
histories? This problem is relevant to imperfect information games and beyond.

This article provides a sufficient condition on ∼ and on the winning condition
of a player such that, if she has a winning strategy, she has a winning ∼-strategy.
The sufficient condition involves time awareness of the player, but perfect recall
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(rephrased in Section 2) is not needed. On the one hand, examples show the
tightness of the sufficient condition in several directions; on the other hand,
further examples show that the sufficient condition is not strictly necessary.

The proof of the sufficient condition has several features. First, from any
winning strategy s, it derives a winning ∼-strategy s ◦ f . The map f takes as
input the true history of actions, and outputs a well-chosen virtual history of
equal length. Second, the derivation s 7→ s ◦ f is 1-Lipschitz continuous, i.e.,
reactive, as in reactive systems. (Not only the way of playing is reactive, but
also the synthesis of the ∼-strategy.) Third, computability of ∼ and finiteness
of the opponent action set make the derivation computable. As a consequence in
this restricted context, if the input strategy is computable, so is the uniformized
output strategy. Fourth, finite-memory implementability of the strategies is pre-
served, if the opponent action set is finite. Fifth, strengthening the sufficient
condition by assuming perfect recall makes the virtual-history map f definable
incrementally (i.e. by mere extension) as the history grows. This simplifies the
proofs and improves the memory bounds.

The weaker sufficient condition, i.e. when not assuming perfect recall, has
an important corollary about concurrent games with states and colors: if any
winning condition (e.g. not necessarily Borel) is defined via the colors, a player
who can win can do so by only taking the history of colors and the current state
into account, instead of the full history of actions. Finiteness of the memory is
also preserved, if the opponent action set is finite. Two additional corollaries
involve the energy winning condition or a class of winning conditions laying
between Büchi and Muller.

Both the weaker and the stronger sufficient conditions behave rather well
algebraically. In particular, they are closed under arbitrary intersections. This
yields a corollary involving the conjunction of the two aforementioned winning
conditions, i.e., energy and (sub)Muller.

Finding sufficient conditions for strategy uniformization may help reduce the
winning strategy search space; or help simplify the notion of strategy: instead of
expecting a precise history as an input, it may just expect an equivalence class,
e.g. expressed as a simpler trace.

The strategy uniformization problem is also relevant to protagonist-imperfect-
information games, where the protagonist cannot distinguish between equivalent
histories; and also to antagonist-imperfect-information games, where the protag-
onist wants to behave the same after as many histories as possible to conceal
information from her opponent or anyone (partially) observing her actions: in-
deed the opponent, though losing, could try to lose in as many ways as possible
over repeated plays of the game, to learn the full strategy of Player 1, i.e. her
capabilities. In connection with the latter, the longer version [11] of this arti-
cle studies the strategy maximal uniformization problem: if there is a winning
strategy, is there a maximal ∼ such that there is a winning ∼-strategy? A basic
result is proved (there but not here) and examples show its relative tightness.

Related works The distinction between perfect and imperfect information was
already studied in [16] for finite games. Related concepts were clarified in [9] by
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using terms such as information partition and perfect recall: this article is meant
for a slightly more general setting and thus may use different terminologies.

I am not aware of results similar to my sufficient condition for universal ex-
istence, but there is an extensive literature, starting around [18], that studies
related decision problems of existence: in some class of games, is the existence of
a uniform winning strategy decidable and how quickly? Some classes of games
come from strategy logic, introduced in [4] and connected to information im-
perfectness, e.g., in [2]. Some other classes come from dynamic epistemic logic,
introduced in [8] and connected to games, e.g., in [20] and to decision procedures,
e.g., in [14]. Among these works, some [13] have expressed the need for general
frameworks and results about uniform strategies; others [3] have studied subtle
differences between types of information imperfectness.

Imperfect information games have been also widely used in the field of secu-
rity, see e.g. the survey [19, Section 4.2]. The aforementioned strategy maximal
uniformization problem could be especially relevant in this context.

Structure of the article Section 2 presents the main results on the strategy
uniformization problem; Section 3 presents various corollaries about games with
states and colors; and Section 4 presents the tightness of the sufficient condition
in several directions. Proofs and additional sections can be found in [11].

2 Main definitions and results

The end of this section discusses many aspects of the forthcoming definitions
and results.

Definitions on game theory In this article, a two-player win/lose game is
a tuple 〈A,B,W 〉 where A and B are non-empty sets and W is a subset of
infinite sequences over A × B, i.e. W ⊆ (A × B)ω. Informally, Player 1 and
Player 2 concurrently choose one action in A and B, respectively, and repeat
this ω times. If the produced sequence is in W , Player 1 wins and Player 2 loses,
otherwise Player 2 wins and Player 1 loses. So W is called the winning condition
(of Player 1).

The histories are the finite sequences over A×B, denoted by (A×B)∗. The
opponent-histories are B∗. The runs and opponent-runs are their infinite
versions.

A Player 1 strategy is a function from B∗ to A. Informally, it tells Player 1
which action to choose depending on the opponent-histories, i.e. on how Player
2 has played so far.

The induced history function h : ((B∗ → A) × B∗) → (A × B)∗ expects
a Player 1 strategy and an opponent-history as inputs, and outputs a history.
It is defined inductively: h(s, ε) := ε and h(s, β · b) := h(s, β) · (s(β), b) for all
(β, b) ∈ B∗×B. Informally, h outputs the very sequence of pairs of actions that
are chosen if Player 1 follows the given strategy while Player 2 plays the given
opponent-history. Note that β 7→ h(s, β) preserves the length and the prefix
relation, i.e. ∀β, β′ ∈ B∗, |h(s, β)| = |β| ∧ (β v β′ ⇒ h(s, β) v h(s, β′)).
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The function h is extended to accept opponent-runs (in Bω) and then to
output runs: h(s,β) is the only run whose prefixes are the h(s,β≤n) for n ∈ N,
where β≤n is the prefix of β of length n. A Player 1 strategy s is a winning
strategy if h(s,β) ∈W for all β ∈ Bω.

Definitions on equivalence relations over histories Given a game 〈A,B,W 〉,
a strategy constraint (constraint for short) is an equivalence relation over
histories. Given a constraint ∼, a strategy s is said to be a ∼-strategy if
h(s, β) ∼ h(s, β′) ⇒ s(β) = s(β′) for all opponent-histories β, β′ ∈ B∗. In-
formally, a ∼-strategy behaves the same after equivalent histories that are com-
patible with s.

Useful predicates on constraints, denoted ∼, are defined below.

1. Time awareness: ρ ∼ ρ′ ⇒ |ρ| = |ρ′|, where |ρ| is the length of the se-
quence/word ρ.

2. : ρ ∼ ρ′ ⇒ ρρ′′ ∼ ρ′ρ′′.
3. Perfect recall: (ρ ∼ ρ′ ∧ |ρ| = |ρ′|) ⇒ ∀n ≤ |ρ|, ρ≤n ∼ ρ′≤n
4. Weak W -closedness: ∀ρ,ρ′ ∈ (A×B)ω, (∀n ∈ N,ρ≤n ∼ ρ′≤n)⇒ (ρ ∈ W ⇔

ρ′ ∈W )
5. Strong W -closedness: ∀ρ,ρ′ ∈ (A×B)ω,

(∀n ∈ N,∃γ ∈ (A×B)∗,ρ≤nγ ∼ ρ′≤n+|γ|)⇒ (ρ ∈W ⇒ ρ′ ∈W )

Note that the first three predicates above constrain only (the information avail-
able to) the strategies, while the last two constrain also the winning condition.

Definitions on automata theory The automata in this article have the classical
form (Σ,Q, q0, δ) where q0 ∈ Q and δ : Q × Σ → Q, possibly with additional
accepting states F ⊆ Q in the definition. The state space Q may be infinite,
though. The transition function is lifted in two ways by induction. First, to
compute the current state after reading a word: δ+(ε) := q0 and δ+(ua) :=
δ(δ+(u), a) for all (u, a) ∈ Σ∗ × Σ. Second, to compute the sequence of visited
states while reading a word: δ++(ε) := q0 and δ++(ua) = δ++(u)δ+(ua). Note
that |δ++(u)| = |u| for all u ∈ Σ∗.

Given a game 〈A,B,W 〉, a memory-aware implementation of a strategy
s is a tuple (M,m0, σ, µ, ) where M is a (in)finite set (the memory), m0 ∈ M
(the initial memory state), σ : M → A (the choice of action depending on the
memory state), and µ : M×B →M (the memory update), such that s = σ◦µ+,
where µ+ : B∗ → M (the “cumulative” memory update) is defined inductively:
µ+(ε) := m0 and µ+(βb) = µ(µ+(β), b) for all (β, b) ∈ B∗ × B. If M is finite, s
is said to be a finite-memory strategy.

Word pairing: for all n ∈ N, for all u, v ∈ Σn, let u‖v := (u1, v1) . . . (un, vn) ∈
(Σ2)n.

A time-aware constraint is 2-tape-recognizable using memory states Q, if
there is an automaton ((A×B)2, Q, q0, F, δ) such that u ∼ v iff δ+(u‖v) ∈ F . (It
implies q0 = δ+(ε‖ε) ∈ F .) If moreover Q is finite, the constraint is said to be
2-tape-regular. Recognition of relations by several tapes was studied in, e.g.,
[17]. Note that 2-tape regularity of ∼ was called indistinguishability-based in [3].
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Main results Let us recall additional notions first. Two functions of domain
Σ∗ that coincide on inputs of length less than n but differ for some input of
length n are said to be at distance 1

2n . In this context, a map from strategies to
strategies (or to B∗ → B∗) is said to be 1-Lipschitz continuous if from any input
strategy that is partially defined for opponent-histories of length up to n, one
can partially infer the output strategy for opponent-histories of length up to n.

Theorem 1. Consider a game 〈A,B,W 〉 and a constraint ∼ that is time-aware
and closed by adding a suffix. The two results below are independent.

1. Stronger assumptions and conclusions: If ∼ is also perfectly recalling
and weakly W -closed, there exists a map f : (B∗ → A) → (B∗ → B∗)
satisfying the following.
(a) For all s : B∗ → A let fs denote f(s); we have s◦fs is a ∼-strategy, and

s ◦ fs is winning if s is winning.
(b) The map f is 1-Lipschitz continuous.
(c) For all s the map fs preserves the length and the prefix relation.
(d) The map s 7→ s ◦ fs is 1-Lipschitz continuous.
(e) If B is finite and ∼ is computable, f is also computable; and as a con-

sequence, so is s ◦ fs for all computable s.
(f) If s has a memory-aware implementation using memory states M , and

if ∼ is 2-tape recognizable by an automaton with accepting states F , then
s◦fs has a memory-aware implementation using memory states M ×F .

2. Weaker assumptions (no perfect recall) and conclusions: If ∼ is
also strongly W -closed, there exists a self-map of the Player 1 strategies that
satisfies the following.
(a) It maps strategies to ∼-strategies, and winning strategies to winning

strategies.
(b) It is 1-Lipschitz continuous.
(c) If B is finite and ∼ is computable, the self-map is also computable.
Moreover, if ∼ is 2-tape recognizable using memory M∼, and if there is a
winning strategy with memory Ms, there is also a winning ∼-strategy using
memory P(Ms ×M∼).

Lemma 1 below shows that the five constraint predicates behave rather well
algebraically. It will be especially useful when handling Boolean combinations of
winning conditions.

Lemma 1. Let A, B, and I be non-empty sets. For all i ∈ I let Wi ⊆ (A×B)ω

and ∼i be a constraint over (A×B)∗. Let ∼ be another constraint.

1. If ∼i is time-aware (resp. closed by adding a suffix, resp. perfectly recalling)
for all i ∈ I, so is ∩i∈I ∼i.

2. If ∼i is weakly (strongly) Wi-closed for all i ∈ I, then ∩i∈I ∼i is weakly
(strongly) ∩i∈IWi-closed.

3. If ∼ is weakly (strongly) Wi-closed for all i ∈ I, then ∼ is weakly (strongly)
∪i∈IWi-closed.
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Comments on the definitions and results In the literature, Player 1 strategies
sometimes have type (A × B)∗ → A. In this article, they have type B∗ → A
instead. Both options would work here, but the latter is simpler.

In the literature, Player 1 winning strategies are often defined as strate-
gies winning against all Player 2 strategies. In this article, they win against all
opponent runs instead. Both options would work here, but the latter is simpler.

Consider a game 〈A,B,W 〉 and its sequentialized version where Player
1 plays first at each round. It is well-known and easy to show that a Player
1 strategy wins the concurrent version iff she wins the sequential version. I
have two reasons to use concurrent games here, though. First, the notation is
nicer for the purpose at hand. Second, concurrency does not rule out (semi-
)deterministic determinacy of interesting classes of games1 as in [1] and [10],
and using a sequentialized version of the main result to handle these concurrent
games would require cumbersome back-and-forth game sequentialization that
would depend on the winner. That being said, many examples in this article are,
morally, sequential/turn-based games.

Strong W -closedness is indeed stronger than weak W -closedness, as
proved in [11]. Besides these two properties, which relate ∼ and W , the other
predicates on ∼ alone are classical when dealing with information imperfectness,
possibly known under various names. For example, Closedness by adding a
suffix is sometimes called the no-learning property.

However strong the strong W -closedness may seem, it is strictly weaker
than the conjunction of perfect recall and weak W -closedness, as proved
in [11]. This justifies the attributes stronger/weaker assumptions in Theorem 1.
Note that the definition of strong W -closedness involves only the implication
ρ ∈W ⇒ ρ′ ∈W , as opposed to an equivalence.

The update functions of memory-aware implementations have type M×B →
M , so, informally, they observe only the memory internal state and the oppo-
nent’s action. In particular they do not observe for free any additional state of
some system.

The notion of 2-tape recognizability of equivalence relations is natural
indeed, but so is the following. An equivalence relation ∼ over Σ∗ is said to be
1-tape recognizable using memory Q if there exists an automaton (Σ,Q, q0, δ)
such that u ∼ v iff δ+(u) = δ+(v). In this case there are at most |Q| equiva-
lence classes. If Q is finite, ∼ is said to be 1-tape regular. When considering
time-aware constraints, 2-tape recognizability is strictly more general, as proved
in [11], and it yields more general results. A detailed account can be read in [3].

Here, the two notions of recognizability require nothing about the cardi-
nality of the state space: what matters is the (least) cardinality that suffices. The
intention is primarily to invoke the results with finite automata, but allowing for
infinite ones is done at no extra cost.

In the memory part of Theorem 1.1, the Cartesian product involves only
the accepting states F , but it only spares us one state: indeed, in a automaton

1 A class of games enjoys determinacy if all games therein are determined. A game is
(deterministically) determined if one player has a (deterministic) winning strategy.
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that is 2-tape recognizing a perfectly recalling ∼, the non-final states can be
safely merged into a trash state. In Theorem 1, however, the full M∼ is used
and followed by a powerset construction. So by Cantor’s theorem, the memory
bound in Theorem 1.2 increases strictly, despite finiteness assumption for B.

Generally speaking, 1-Lipschitz continuous functions from infinite words
to infinite words correspond to (real-time) reactive systems; continuous func-
tions correspond to reactive systems with unbounded delay; and computable
functions to reactive systems with unbounded delay that can be implemented
via Turing machines. Therefore both 1-Lipschitz continuity and computabilty
are desirable over continuity (and both imply continuity).

In Theorem 1.1, the derived ∼-strategy is of the form s ◦ fs, i.e. it is essen-
tially the original s fed with modified inputs, which are called virtual opponent-
histories. Theorem 1.1b means that it suffices to know s for opponent-history
inputs up to some length to infer the corresponding virtual history map fs for
inputs up to the same length. Theorem 1.1c means that for each fixed s, the vir-
tual opponent-history is extended incrementally as the opponent-history grows.
The assertations 1b and 1c do not imply one another a priori, but that they both
hold implies Theorem 1.1d indeed; and Theorem 1.1d means that one can start
synthesizing a ∼-strategy and playing accordingly on inputs up to length n al-
ready when knowing s on inputs up to length n. This process is even computable
in the setting of Theorem 1.1e.

In Theorem 1.2, the derived ∼-strategy has a very similar form, but the fs no
longer preserves the prefix relation since the perfect recall assumption is dropped.
As a consequence, the virtual opponent-history can no longer be extended in-
crementally: backtracking is necessary. Thus there is no results that correspond
to Theorems 1.1b and 1.1c, yet one retains both 1-Lipschitz continuity of the
self-map and its computability under suitable assumptions: Theorems 1.2b and
1.2c correspond to Theorems 1.1d and 1.1e, respectively.

In Lemma 1, constraints intersection makes sense since the intersection
of equivalence relations is again an equivalence relation. This is false for unions;
furthermore, taking the equivalence relation generated by a union of equivalence
relations would not preserve weak or strong W -closedness.

3 Application to concurrent games with states and colors

It is sometimes convenient, for intuition and succinctness, to define a winning
condition not as a subset of the runs, but in several steps via states and colors.
Given the current state, a pair of actions chosen by the players produces a color
and determines the next state, and so on. The winning condition is then defined
in terms of infinite sequences of colors.

Definition 1. An initialized arena is a tuple 〈A,B,Q, q0, δ, C, col〉 such that

– A and B are non-empty sets (of actions of Player 1 and Player 2),
– Q is a non-empty set (of states),
– q0 ∈ Q (is the initial state),
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– δ : Q×A×B → Q (is the state update function).
– C is a non-empty set (of colors),
– col : Q×A×B → C (is a coloring function).

Providing an arena with some W ⊆ Cω (a winning condition for Player 1) defines
a game.

In such a game, a triple in Q × A × B is informally called an edge because it
leads to a(nother) state via the udpate function δ. Between two states there are
|A× B| edges. Note that the colors are on the edges rather than on the states.
This is generally more succinct and it is strictly more expressive in the following
sense: in an arena with finite Q, infinite A or B, and colors on the edges, infinite
runs may involve infinitely many colors. However, it would never be the case if
colors were on the states.

The coloring function col is naturally extended to finite and infinite sequences
over A × B. By induction, col++(ε) := ε, and col++(a, b) := col(q0, a, b), and
col++(ρ(a, b)) := col++(ρ)col(δ+(ρ), a, b). Then col∞(ρ) is the unique sequence
in Cω such that col++(ρ≤n) is a prefix of col∞(ρ) for all n ∈ N. Note that

|col++(ρ)| = |ρ| for all ρ ∈ (A×B)∗.
The histories, strategies, and winning strategies of the game with states and

colors are then defined as these of 〈A,B, (col∞)−1[W ]〉, which is a game as
defined in Section 2. Conversely, a game 〈A,B,W 〉 may be seen as a game with
states and colors 〈A,B,Q, q0, δ, C, col,W 〉 where C = A×B, and Q = {q0}, and
col(q0, a, b) = (a, b) for all (a, b) ∈ A×B.

Recall that the update functions of memory-aware implementations have type
M × B → M , so they do not observe the states in Q for free. This difference
with what is customary in some communities is harmless in terms of finiteness
of the strategy memory, though.

A universal result for concurrent games Corollary 1 below considers games with
states and colors. Corollary 1.1 (resp. 1.2) is a corollary of Theorem 1.1 (resp.
Theorem 1.2). It says that if there is a winning strategy, there is also one that
behaves the same after histories of pairs of actions that yield the same sequence
of states (resp. the same current state) and the same sequence of colors. Note
that no assumption is made on the winning condition in Corollary 1: it need not
be even Borel.

Corollary 1. Consider a game with states and colors G = 〈A,B,Q, q0, δ, C, col,W 〉
where Player 1 has a winning strategy s. The two results below are independent.

1. Then Player 1 has a winning strategy s′ (obtained in a Lipschitz manner from
s) that satisfies the following for all β, β′ ∈ B∗.

δ++◦h(s′, β) = δ++◦h(s′, β′)∧ col++◦h(s′, β) = col++◦h(s′, β′) ⇒ s′(β) = s′(β′)

Furthermore, if s can be implemented via memory space M , so can s′; and
if B is finite and ∼ is computable, s′ is obtained in a computable manner
from s.
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2. Then Player 1 has a winning strategy s′ (obtained in a Lipschitz manner from
s) that satisfies the following for all β, β′ ∈ B∗.

δ+◦h(s′, β) = δ+◦h(s′, β′)∧ col++◦h(s′, β) = col++◦h(s′, β′) ⇒ s′(β) = s′(β′)

Furthermore, if s can be implemented via memory M , then s′ can be imple-
mented via memory size 2|M |(|Q|

2+1); and if B is finite and ∼ is computable,
s′ is obtained in a computable manner from s.

On the one hand, Corollary 1 exemplifies the benefit of dropping the perfect recall
assumption to obtain winning strategies that are significantly more uniform. On
the other hand, it exemplifies the memory cost of doing so, which corresponds
to the proof-theoretic complexification from Theorem 1.1 to Theorem 1.2, as is
discussed in [11].

To prove Corollary 1.2 directly, a natural idea is to “copy-paste”, i.e., rewrite
the strategy at equivalent histories. If done finitely many times, it is easy to
prove that the derived strategy is still winning, but things become tricky if done
infinitely many times, as it should.

Note that in Corollary 1, assumptions and conclusions apply to both players:
indeed, since no assumption is made on W , its complement satisfies all assump-
tions, too.

A consequence of Corollary 1 is that one could define state-color strategies as
functions in (Q∗ × C∗) → A or even (Q × C∗) → A, while preserving existence
of winning strategies. How much one would benefit from doing so depends on
the context.

In the remainder of this section, only the weaker sufficient condition, i.e.,
Theorem 1.2 is invoked instead of Theorem 1.1.

Between Büchi and Muller In Corollary 1 the exact sequence of colors mattered,
but in some cases from formal methods, the winning condition is invariant under
shuffling of the color sequence. Corollary 2 below provides an example where
Theorem 1 applies (but only to Player 1).

Corollary 2. Consider a game with states and colors G = 〈A,B,Q, q0, δ, C, col,W 〉
with finite Q and C, and where W is defined as follows: let (Ci)i∈I be subsets of
C, and let γ ∈ W if there exists i ∈ I such that all colors in Ci occur infinitely
often in γ.

If Player 1 has a winning strategy, she has a finite-memory one that behaves
the same if the current state and the multiset of seen colors are the same.

Note that the games defined in Corollary 2 constitute a subclass of the con-
current Muller games, where finite-memory strategies suffice [7], and a superclass
of the concurrent Büchi games, where positional (aka memoryless) strategies suf-
fice. In this intermediate class from Corollary 2, however, positional strategies
are not sufficient: indeed, consider the three-state one-player game in Figure 1
where q1 and q2 must be visited infinitely often. As far as I know, Corollary 2 is
not a corollary of well-known results, although the complement of the winning
condition therein can be expressed by a generalised Büchi automaton.
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q1 q0

start

q2

Fig. 1.

Energy games The energy winning condition relates to real-valued colors. It
requires that at every finite prefix of a run, the sum of the colors seen so far is non-
negative. More formally, ∀ρ ∈ (A×B)ω, ρ ∈W ⇔ ∀n ∈ N, 0 ≤

∑
col++(ρ≤n).

Corollary 3 is weaker than the well-known positional determinacy of turn-
based energy games, but its proof will be reused in that of Corollary 4.

Corollary 3. In an energy game G = 〈A,B,Q, q0, δ,R, col,W 〉, if Player 1 has
a winning strategy, she has one that behaves the same if the current time, state,
and energy level are the same.

Conjunction of winning conditions Corollary 4 below strengthens Corollary 2
(finite-memory aside) by considering the conjunction of the original Muller con-
dition and the energy condition, which works out by Lemma 1.2.

Corollary 4. Consider a game with states and colors G = 〈A,B,Q, q0, δ, C ×
R, col,W 〉 with finite Q and C and where W ⊆ (C×R)ω is defined as follows: let
(Ci)i∈I be subsets of C, and let γ ∈ W if there exists i ∈ I such that all colors
in Ci occur infinitely often in π1(γ) (the sequence of the first components) and
if the energy level (on the second component) remains non-negative throughout
the run, i.e.

∑
π2 ◦ col++(γ≤n) for all n ∈ N.

If Player 1 has a winning strategy, she has one that behaves the same if the
current state, the multiset of seen colors, and the energy level are the same.

The diversity of the above corollaries which follow rather easily from Theo-
rem 1, especially Theorem 1.2, should suggest its potential range of application.

4 Tightness results

This section shows tightness results for Theorem 1. Dropping perfect recall fal-
sifies Theorem 1.1. Dropping either time awareness or closedness by adding a
suffix falsifies Theorem 1.2. Despite this relative tightness, the end of the section
shows well-known examples that are not captured by Theorem 1.2.

Given a game with a Player 1 winning strategy, given a constraint ∼, if there
are no Player 1 winning ∼-strategies, then ∼ is said to be harmful. Otherwise it
is said to be harmless.

Below, Proposition 1.1 shows that perfect recall cannot be simply dropped
in Theorem 1.1. Proposition 1.2 shows that time awareness cannot be simply
dropped in Theorem 1.2. Proposition 1.3 shows that the assumption of closedness
by adding a suffix cannot be simply dropped in Theorem 1.2.
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Proposition 1. 1. There exist a game 〈{0, 1}, {0, 1},W 〉 and a constraint that
is time-aware, closed by adding a suffix, weakly W -closed, and yet harmful.

2. There exist a game 〈{0, 1}, {0},W 〉 and a constraint that is closed by adding
a suffix, strongly W -closed, and yet harmful.

3. There exist a game 〈{0, 1}, {0, 1},W 〉 and a constraint that is time-aware,
strongly W -closed, and yet harmful.

Limitations and opportunity for meaningful generalizations Despite its relative
tightness, Theorem 1 does not imply all known results that can be seen as in-
stances of strategy uniformization problems, so there is room for meaningful
generalizations. E.g., due to time awareness requirement, Theorem 1 does not
imply positional determinacy of parity games [5, 15], where two histories are
equivalent if they lead to the same state. Nor does it imply countable compact-
ness of first-order logic [6], which is also an instance of a uniformization problem:
Let (ϕn)n∈N be first-order formulas, and define a turn-based game: Spoiler plays
only at the first round by choosing m ∈ N. Then Verifier gradually builds a
countable structure over the signature of (ϕn)n∈N. More specifically, at every
round she either chooses the value of a variable, or the output value of a func-
tion at a given input value, or the Boolean value of a relation for a given pair
of values. Only countably many pieces of information are needed to define the
structure, and one can fix an order (independent of m) in which they are pro-
vided. Verifier wins if the structure she has defined is a model of ∧0≤k≤mϕk.
Let all histories of equal length be ∼-equivalent. Compactness says that if each
∧0≤k≤mϕk has a model, so does ∧0≤kϕk. Said otherwise, if Verifier has a win-
ning strategy, she has a winning ∼-strategy, i.e. independent of Spoiler’s first
move. This ∼ satisfies all the conditions of Theorem 1.1 but weak W -closedness:
the premise (∀n ∈ N,ρ≤n ∼ ρ′≤n) holds by universality, but the conclusion
(ρ ∈ W ⇔ ρ′ ∈ W ) is false since a model for ∧0≤k≤mϕk need not be a model
for ∧0≤k≤m+1ϕk.
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