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Making healthy food choices is challenging for many people. Individuals differ greatly in their ability to follow health goals in the face of
temptation, but it is unclear what underlies such differences. Using voxel-based morphometry, we investigated in healthy humans (i.e.,
men and women) the links between structural variation in gray matter volume and individuals’ level of success in shifting toward
healthier food choices. We combined MRI and choice data into a joint dataset by pooling across three independent studies that used a task
prompting participants to explicitly focus on the healthiness of food items before making their food choices. Within this dataset, we found
that individual differences in gray matter volume in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex
(dlPFC) predicted regulatory success. We extended and confirmed these initial findings by predicting regulatory success out of sample
and across tasks in a second dataset requiring participants to apply a different regulation strategy that entailed distancing from cravings
for unhealthy, appetitive foods. Our findings suggest that neuroanatomical markers in the vmPFC and dlPFC generalized to different
forms of dietary regulation strategies across participant groups. They provide novel evidence that structural differences in neuroanatomy
of two key regions for valuation and its control, the vmPFC and dlPFC, predict an individual’s ability to exert control in dietary choices.
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Introduction
Humans have a remarkable capacity to use various cognitive reg-
ulation strategies to attain desired goals and to exercise self-
control (Kober et al., 2010). Self-control dilemmas are often

characterized by a trade-off between an immediate, tempting re-
ward and a delayed, more abstract one (McClure et al., 2004;
Kable and Glimcher, 2007; Hare et al., 2009, 2011; Li et al., 2013;
e.g., eat a piece of tasty chocolate cake now or forgo the pleasure
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Significance Statement

Dieting involves regulating food choices to eat healthier foods and fewer unhealthy foods. People differ dramatically in their ability
to achieve or maintain this regulation, but it is unclear why. Here, we show that individuals with more gray matter volume in the
dorsolateral and ventromedial prefrontal cortex are better at exercising dietary self-control. This relationship was observed across
four different studies examining two different forms of dietary self-regulation, suggesting that neuroanatomical differences in the
ventromedial prefrontal cortex and dorsolateral prefrontal cortex may represent a general marker for self-control abilities. These
results identify candidate neuroanatomical markers for dieting success and failure, and suggest potential targets for therapies
aimed at preventing or treating obesity and related eating disorders.
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to achieve better health and a longer life in the future). Such
decisions about diet, exercise, and other reward-guided behav-
iors all have consequential long-term effects on health and well-
being. However, many people struggle to consistently stick to
their diets, exercise, and save for retirement. A key challenge for
promoting healthy, adaptive decision-making is understanding
what underlies individual differences in self-control success
(Tangney et al., 2004; Saarni et al., 2006; Pietiläinen et al., 2012;
Holmes et al., 2016).

Recent work in cognitive neuroscience has investigated this
question by examining how individual differences in functional
brain activity during regulation tasks can be linked to differences
in self-control abilities. For example, trait measures of self-
control correlated with both the ability to regulate negative
emotions and enhanced functional connectivity between the
amygdala and dorsolateral prefrontal cortex (dlPFC; Paschke et
al., 2016). Other studies have linked the desire for immediate
reward to attenuated functional connectivity between cognitive
control and reward-related brain regions such as the anterior
prefrontal cortex and nucleus accumbens (Diekhof and Gruber,
2010; Diekhof et al., 2012; van den Bos et al., 2014; Moreno-
Lopez et al., 2016). These findings are in line with work associat-
ing self-control abilities with connectivity of resting-state brain
networks. For example, self-control when making trade-offs be-
tween smaller, sooner monetary rewards and larger, later ones
was linked to enhanced resting-state connectivity between neural
pathways underpinning reward processing and cognitive regula-
tion processes (Li et al., 2013).

Although associations between functional activation and
self-control are tantalizing, it is unclear whether individual dif-
ferences in success are driven by momentary fluctuations in
motivation or attention, or by more stable, potentially neuroana-
tomical, differences in the mechanisms of choice. Initial support
for a neuroanatomical basis comes from studies linking individ-
ual differences in structural connectivity between reward-related
and cognitive control areas to behavioral differences in impa-

tience for receiving monetary rewards (Peper et al., 2013; van den
Bos et al., 2014). The goal of the current study was to further test
this idea by investigating (1) whether differences in neuroanat-
omy predict an individual’s ability to regulate healthier dietary
choices, and, if so, (2) whether such differences depend on the
type of regulatory strategy or are generalizable across different strat-
egies promoting healthier choices and participant populations.

To answer these questions, we used voxel-based morphome-
try (VBM) to determine whether and where neuroanatomical
differences predict regulatory success during dietary decisions
that involve explicitly focusing on health goals. First, we aggre-
gated data from three independent studies (i.e., dataset 1), all
using a similar task that prompted participants to regulate their
dietary decision processes by focusing on the healthiness of foods.
Because subjective experience and behavior can be modified by
using distinct strategies with distinct consequences (Gross,
1998), we then tested whether the same neuroanatomical varia-
tion underlies regulatory success for a different regulation strat-
egy. We addressed this second question by examining structural
predictors of regulatory success in a fully independent fourth
study (i.e., dataset 2): participants in this study were not told to
focus specifically on health attributes, but were instead encour-
aged to use a self-selected strategy to distance themselves from
and reduce cravings for tasty but unhealthy foods (Hutcherson et
al., 2012).

Our results indicate that neuroanatomical differences in spe-
cific value-related and cognitive control areas in the ventrome-
dial prefrontal cortex (vmPFC) and the dlPFC are generally
predictive of regulatory success across different strategies and
independent populations. They thus hold promise to serve as
neuroanatomical markers of the ability to exercise self-control
over dietary decisions.

Materials and Methods
Participants. The analyses included 123 healthy individuals (mean age,
29.97 � 0.96 years; 78 females, 45 males) from three different previously
published studies (Hare et al., 2011; Hutcherson et al., 2012; Tusche and
Hutcherson 2018) and one different unpublished studies. Research was
conducted in accordance with the Helsinki Declaration and was ap-
proved by the local ethics committee (for an overview, see Table 1). All
participants provided written and informed consent. Participants were
screened for the following standard fMRI inclusion criteria: right-
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Table 1. Study and dataset overview

Study Dataset Local ethics committee Scanner MPRAGE sequence N Age, years (SEM) Female/male, n Task condition DV Other ratings

1 1 California Institute of
Technology (Pasadena, CA)

3 T Trio
Siemens

TR � 1.5 s; TE � 3.05 ms;
176 sagittal slices;
256 � 256 matrix

13* 38.2 (12.8) 8/5 Health, natural,
taste

SV Health, taste

2 1 California Institute
of Technology

3 T Trio
Siemens

TR � 1.5 s; TE � 2.91 ms;
176 sagittal slices;
256 � 256 matrix

35 29 (0.9) 16/19 Health, natural,
taste

SV Health, taste

3 1 Comité de Protection des
Personnes, Ile-de-France VI,
INSERM approval #C07-28,
DGS approval #2007-0569,
ID-RCB approval #2007-
A01125-48CPP

3 T Verio
Siemens

TR � 2.3 s; TE � 2.98 ms;
176 sagittal slices;
240 � 256 matrix

43 24.8 (5.1) 43 Health, natural,
taste

SV Health, taste

4 2 California Institute
of Technology

3 T Trio
Siemens

TR � 1.5 s;
TE � 3.05 ms;
176 sagittal slices;
256 � 256 matrix

32 22 (3.3) 11/21 Distance, natural,
indulge

WTP Food liking

DV, Dependent variable; ID-RCB, Registration number of the study; DGS, Direction Générale de la Santé.

*Note that information on the gender and age for 20 of the original 33 participants in the study by Hare et al. (2011) was no longer available. Therefore, we included only the 13 participants from that study for whom we had all relevant
information for the data analysis.
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handedness, normal to corrected-to-normal vision, no history of substance
abuse or any neurological or psychiatric disorder, and no medication or
metallic devices. All participants were tested after 4 h of fasting.

Procedure. Participants took part in one of two different dietary
decision-making tasks that required them to use various strategies to
make healthier choices.

Regulation task 1: focusing on healthiness of foods (dataset 1). Dataset 1
included 91 participants pooled over three similar studies [study 1: N �
13 (Hare et al., 2011); study 2: N � 35 (Tusche and Hutcherson, 2018);
study 3: N � 43 (Schmidt et al., 2015); Table 1]. Participants decided
while in the fMRI scanner how much they would like to eat different food
items varying in tastiness and healthiness at the end of the experiment.
Participants made their choices under the following three different con-
ditions: being prompted to focus on the (1) tastiness condition (TC) or
(2) healthiness condition (HC) of the foods, or (3) with no dieting in-
struction [NC; i.e., making food choices as they naturally would, which
served as a baseline; Fig. 1a]. Participants always started with a baseline
block (NC) followed by a randomized taste or health block. The condi-
tions were randomized across blocks of 10 trials, and participants were
instructed to rate how much they wanted to eat a food item presented on
the screen relative to a constant default option chosen for each partici-
pant. To determine the weight participants placed on the tastiness and
healthiness of a food under different regulatory goals, participants also

indicated the perceived healthiness and tastiness of all presented foods
using a 4 point Likert scale (outside the scanner).

The tasks in studies 1, 2, and 3 were identical, with two exceptions.
First, studies 1 and 3 consisted of 18 blocks of 10 trials (i.e., 6 blocks per
condition of HC, TC, and NC), for a total of 180 trials. Study 2 consisted
of 27 blocks of 10 trials (i.e., nine blocks per condition of HC, TC, and
NC), for a total of 270 trials. Moreover, in study 2 the same food pictures
were presented once in each condition of HC, TC, and NC. Second,
studies 1 and 2 included both men and women. Study 3 included only
female participants, who served as lean control subjects in a large-scale
project aiming at the neural and behavioral underpinnings of dietary
decision-making in female obesity.

Regulation task 2: distancing oneself from cravings for unhealthy foods
(dataset 2). In a fourth study, 32 participants completed a different di-
etary self-control task (Hutcherson et al., 2012). In study 4, rather than
explicitly considering the healthiness of food items, participants were
instructed to distance themselves [distance condition (DC)] from food
cravings when contemplating highly palatable foods rich in calories (Fig.
1c). (In separate blocks, participants in this study also attempted to in-
dulge their cravings for palatable, unhealthy foods; given the focus of this
article on healthy food choices, these trials were not included in the
current analyses.) Participants were told to regulate their cravings by
applying any strategy they preferred. The task also had a baseline condi-
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Figure 1. Experimental design and behavioral results. a, Behavioral task dataset 1. Screenshots display successive events within one trial of each condition [i.e., health focus (i.e., HC), taste focus
(i.e., TC), and natural focus (i.e., NC) conditions] during the dietary decision-making task performed by the participants of dataset 1 with durations in seconds. Conditions were presented in blocks,
randomly intermixed. Each block started with an instruction to focus attention on the healthiness, taste, or natural preference. Next, a food item was displayed on the screen and participants had
to evaluate how much they would like to eat it by pressing buttons corresponding to “strong no,” “no,” “yes,” and “strong yes.” b, Behavioral results in dataset 1 (N �91). The bar graph depicts mean
� estimates for each regressor of Equation 1. The dotted red lines indicate the behavioral measures of interest: the weight of the healthiness (i.e., HR) and the tastiness (i.e., TR) on stimulus value
computation during the HC. c, Behavioral task dataset 2. Screenshots display successive events within one trial of each condition (i.e., DC, IC, and NC conditions) during the dietary decision-making
task performed by the participants of dataset 2 with durations in seconds. Conditions were presented in blocks, randomly intermixed. Each block started with an instruction to try to distance oneself
from food cravings, indulge in food cravings, or make decisions naturally. Next, a food item was displayed on the screen and participants had to evaluate how much they would be willing to pay for
the food item by pressing buttons corresponding to $0, $0.50, $1, $1.50, $2, and $2.50. d, Behavioral results in dataset 2 (N � 32). The bar graph depicts the mean stimulus value of food items in
each condition. The asterisks (*) indicate significance against zero at p � 0.05. Error bars indicate �intersubject SEM.
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tion in which participants were asked to make their dietary decisions
naturally, without any regulation instruction (i.e., NC). Fifty trials of
each of the three conditions were randomly intermixed, for a total of 150
trials. To make their decisions, participants were asked to use a 6 point
scale ($0, $0.50, $1, $1.50, $2, $2.50) to indicate their willingness to pay
(WTP) for the right to eat the food at the end of the experiment, rather
than being asked about how much they would like to eat it. Importantly,
participants rated all foods for subjective liking before entering the scan-
ner, on the same scale used for dataset 1. The high correlation between
prescan liking and in-scan bids for foods in the natural condition (aver-
age r � 0.72 � 0.19; p � 0.001) suggested that they measured similar
constructs.

To incentivize participants to choose according to their actual prefer-
ences, in all four studies participants had to eat one item at the end of the
experiment that was determined by a random draw of one trial. Food
pictures were presented on a computer screen in the form of high-
resolution pictures (72 dpi). Matlab and Psychophysics Toolbox exten-
sions were used for stimulus presentation and response recording.
Participants saw the stimuli via goggles or a head coil-based mirror and
indicated their responses using a response box system.

Behavioral analyses. All statistical tests were conducted with the Matlab
Statistical Toolbox (Matlab 2014a, MathWorks). In dataset 1, we mea-
sured regulatory success by combining the increase in weight given to
healthiness and the decrease in weight given to tastiness during the health
focus condition (i.e., HC), following the approach of Hare et al., 2011. To
this end, we fit a general linear model (GLM) to stimulus value (SV; i.e.,
participants’ ratings of how much they would like to eat a food item). The
behavioral GLM is described by Equation 1, as follows:

SV � �0 � �HCHC � �TCTC � �HRHR � �TRTR � �HC�HRHC � HR

� �HC�TRHC � TR � �TC�HRTC � HR � �TC�TRTC � TR � �

(1)

SV corresponded to the dependent variable, which was predicted by the
following regressors: HC, an indicator variable for a health focus condi-
tion block (dummy coded); TC, an indicator variable for the taste focus
condition block (dummy coded); and health rating (HR) and taste rating
(TR) for the trial-specific food item (assessed outside the scanner). This
GLM also included the following four interaction terms: health focus
condition by health rating (HC � HR); health focus condition by taste
rating (HC � TR); taste focus condition by health rating (TC � HR); and
taste focus condition by taste rating (TC � TR). Note that the TR and HR
regressors measure to what extent taste and health attributes of the food
stimuli influenced participants’ stimulus values during the baseline NC.
SV, TR, and HR regressors were scaled as �2 (strong no), �1 (no), 1
(yes), or 2 (strong yes). In contrast, the interaction terms (HC � HR,
HC � TR, TC � HR, and TC � TR) assessed how much change occurred
in the weight given to the taste and health attributes during the health or
taste focus conditions, respectively. The individual regression coeffi-
cients (i.e., � estimates) for each regressor were analyzed at the group
level using one-sample, two-tailed t tests.

For the purpose of our subsequent analyses, Equation 1 contains two
terms of interest that characterize how participants regulated their food
decisions to make healthier choices in the HC, as follows: (1) HC � HR,
which assessed how much more participants integrated the healthiness of
the food; and (2) HC � TR, which assessed how much the tastiness of the
food was inhibited during the food decision. Because these two measures
were highly correlated (r � 0.53, p � 0.001), we integrated them into an
overall regulatory success score that was then entered as a regressor in the
VBM analysis (i.e., Regulatory Successdataset1 � �HC�HR � �HC�TR).
The more positive this difference score is, the higher the regulatory suc-
cess of the participant.

The difference in SV (measured in this task as participants’ WTP)
between the natural condition and the distance condition was used as the
measure of regulatory success (Regulatory Successdataset2 � SVNC �
SVDC) for the 32 participants who took part in the second dietary
decision-making task (i.e., dataset 2). This approach is the same as that
originally used by Hutcherson et al. (2012). A positive score indicated

that participants successfully regulated their cravings and exercised self-
control because their SV for unhealthy foods was lower when they dis-
tanced themselves from their food cravings compared with their natural
responses. A paired, two-tailed t test was conducted to test for a signifi-
cant difference in SV between the distance and natural conditions.

MRI structural acquisition. Anatomical brain images were collected on
a 3 T Trio Siemens (studies 1, 2, and 4) or a 3 T Verio Siemens scanner
(study 3). Whole-brain high-resolution T1-weighted structural scans
(1 � 1 � 1 mm) were acquired for all 123 participants with an MPRAGE
sequence. Details of the sequences are described in Table 1.

MRI data preprocessing. Each participant’s anatomical image was seg-
mented into gray matter (GM) using the SPM12 [Wellcome Trust Center
for Neuroimaging, University College London, London, UK (http://
www.fil.ion.ucl.ac.uk/spm)] segmentation tool. Individual GM images
were then coregistered between participants using Diffeomorphic Ana-
tomical Registration through Exponentiated Lie Algebra (DARTEL).
Next, the registered images were normalized to the Montreal Neurolog-
ical Institute (MNI) stereotactic space using the DARTEL template, and
spatially smoothed using a Gaussian kernel with full-width at half-
maximum of 8 mm.

VBM analyses. All VBM analyses were performed using SPM12. Out-
of-sample predictions were conducted using the glmfit and glmval func-
tions from the Matlab Statistical Toolbox (Matlab 2014a, MathWorks).
We conducted GLM-based leave-one-subject-out (LOSO) predictive
analyses within dataset 1 as well as cross-study predictions between da-
tasets 1 and 2 to test whether individual differences in neuroanatomy
were linked to dietary self-control choices. Building on the fMRI litera-
ture, our a priori focus was on GM volume in the dlPFC and vmPFC, but
we also tested models including additional regions for completeness. The
details of the various analysis steps are given in the following paragraphs.

GM volume-based predictions of regulatory success within dataset 1. We
conducted an out-of-sample LOSO prediction analysis for all partici-
pants in dataset 1 using the GLM described in Equation 2, as follows:

GMVolume � �0 � �reg_success � �age � �gender � �scanner

� �study1 � �study2 � �study3 � �globalGM � � (2)

The � estimate (�reg_success) quantifying the relationship between the
change in regulatory success during the health focus condition [i.e.,
(�HC�HR � �HC�TR) from the behavioral regression (Eq. 1)] and vox-
elwise GM volume was our effect of interest. Note that regulatory success
is expected to increase with a positive value for �HC�HR or a negative
value for �HC�TR, so the subtraction (�HC�HR, �HC�TR) quantifies the
total increase in regulatory success. Voxels in which GM volume was
potentially predictive of regulatory success were identified by the con-
trast [�reg_success � 0]. To control for variance related to age, gender, MRI
scanner, study, and global GM volume, these factors were included in all
voxelwise linear regression models (following ANCOVA normalization).

The LOSO procedure was conducted as follows: we divided dataset 1
into 91 separate training sets (90 participants) and test sets (1 partici-
pant). For each training set, we computed the GLM described by Equa-
tion 2 above. We then created 91 sets of regions of interest (ROIs) from these
results using a voxelwise threshold of t � 2.64 (p � 0.005). Each set of
contiguous voxels was treated as a single ROI, and GM volume was averaged
over the voxels in each ROI. Next, we used these 91 sets of independently
defined ROI masks to calculate a predicted regulatory success measure for
each participant in dataset 1 using the GLMs in Equations 3 and 3all. These
GLMs differed in terms of whether they used only our a priori ROIs, dlPFC
and vmPFC, or all ROIs identified in a particular training set to predict
regulatory success in the left-out participant, as follows:

regulatory success � �0 � �dlPFC * GMdlPFC � �vmPFC * GMvmPFC

� � (3)

regulatory success � �0 � �dlPFC * GMdlPFC � �vmPFC * GMvmPFC

� �x * GMx � � �3all)
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In both GLMs, the subscripts dlFPC and vmPFC refer to the GM volume
from those two regions. We assigned anatomical labels based on the MNI
coordinates to each set of 91 ROIs, allowing us to identify the dlPFC and
vmPFC in each set. Both dlPFC and vmPFC ROIs were present in all 91
training sets. For Equation 3all, the subscript X refers to potential addi-
tional regressors for any additional ROIs present in that specific training
set.

Last, once we had obtained a predicted regulatory success value for
each participant from Equation 3 or 3all, we quantified the association
between predicted and observed regulatory success using Pearson’s
correlation and a permutation test, which involved estimating the distri-
bution of correlation coefficients by randomly resampling with replace-
ment 10,000 observations for observed and predicted regulatory success.

Predicting out-of-sample regulatory success at the participant and task
levels. We also tested whether regulatory success can be predicted in an
independent sample of participants (dataset 2, N � 32) performing a
different regulation task (i.e., regulation task 2). First, we computed the
average GM volume values for each participant in dataset 1 within
5-mm-radius spheres centered around the peak MNI coordinates found
within the dlPFC (MNI coordinates x, y, z (40, 40, 20)] and vmPFC [MNI
coordinates (9, 46, �15)] when estimating Equation 2 for the full partic-
ipant sample in dataset 1. Second, we computed the GLM in Equation 3
across all dataset 1 participants to estimate the relationship (i.e., � coef-
ficients �dlPFC and �vmPFC) between vmPFC and dlPFC GM volume and
regulatory success. Next, we tested whether regression weights estimated
for dataset 1 (�dlPFC � 6.68, �vmPFC � 6.92, �0 � 0.0002) could signifi-
cantly predict regulatory success on the separate behavioral task used in
dataset 2 when combined with the dlPFC and vmPFC GM volumes of
those participants. In other words, we used Equation 3 with the intercept
set to 0.0002 and GM volume � coefficients for dlPFC set to 6.68, and for
vmPFC to 6.92 to make predictions about regulatory success in dataset 2.
Last, we used Pearson’s correlation and the same permutation test that
was used for testing the results of Equations 3 and 3all in dataset 1 to
quantify the association between the predicted and observed levels of
regulatory success [SV(NC � DC)] in dataset 2.

Voxelwise correlations with regulatory success in dataset 2. To test the
relationship between GM volume and regulatory success within dataset
2, we conducted a voxelwise GLM analysis on these data using Equation
4, as follows:

GM volume � �0 � �reg_success � �age � �gender � �global GM � � (4)

This model mirrored the model in Equation 2 except that it omitted
study and scanner dummy regressors because all participants in the da-
taset were part of the same study and thus were scanned with the same
MRI scanner. Regulatory success in Equation 4 was defined as the differ-
ence in average SV during the NC compared with the DC (i.e., Regulatory
Successdataset2 � SVNC � SVDC). Once again, voxels in which GM vol-
ume was positively associated with regulatory success were identified by
the contrast (�reg_success � 0).

Results
Behavioral results
Regulatory success when focusing on healthiness during SV
computations in dataset 1
We quantified regulatory success in terms of how much partici-
pants adjusted the relative weights on healthiness and tastiness in
the health focus compared with the natural condition (i.e., the
HC � HR and HC � TR interaction terms shown in Fig. 1b). In
line with the previously reported results in the separate original
studies, the behavioral GLM described in Equation 1 showed
significant interactions between the weightings of the health and
taste attributes and the choice conditions in the joint set of 91
participants (Table 2).

These interaction terms capture different forms of regulatory
success. Health attributes were significantly more integrated into
SV computations in the health focus condition (�HC�HR � 0.39;
SEMHC�HR � 0.04; t(90) � 10.8; p � 0.001), indicating that more
weight was placed on the healthiness of the foods compared with
natural condition. Taste attributes of the foods were significantly
less integrated into SV computations in the health focus condi-
tion (�HC�TR � �0.25; SEMHC�TR � 0.03; t(90) � �7.74, p �
0.001), indicating that less weight was placed on the tastiness of
the foods compared with the natural condition. The changes in
the influence of taste (�HC�TR ) and healthiness (�HC�HR) on SV
between the HC and NC conditions were significantly correlated

Table 2. Multiple regression results on SV in dataset 1

Intercept HR TR HC TC HC � HR TC � HR HC � TR TC � TR

Study 1
Coeff �0.01 0.14 0.61 �0.20 �0.01 0.24 �0.06 �0.20 0.05
STE 0.07 0.04 0.05 0.06 0.04 0.05 0.03 0.06 0.03
t �0.12 3.88 13.25 �3.36 �0.17 4.93 �2.02 �3.67 1.59
Z �1.32 3.27 7.50 �2.86 �1.11 4.02 �1.61 �3.12 1.16
p 0.9061 0.0005 0.0000 0.0021 0.8656 0.0000 0.0532 0.0009 0.1231

Study 2
Coeff 0.24 �0.06 0.26 �0.28 0.08 0.28 �0.06 �0.19 0.01
STE 0.08 0.03 0.03 0.07 0.03 0.04 0.02 0.03 0.02
t 2.93 �2.28 9.36 �3.83 2.32 6.54 �2.89 �5.68 0.34
Z 2.51 �1.90 6.43 �3.27 1.94 5.09 �2.47 �4.58 0.64
p 0.0060 0.0287 0.0000 0.0005 0.0264 0.0000 0.0067 0.0000 0.7387

Study 3
Coeff �0.13 0.06 0.28 �0.16 0.11 0.26 �0.04 �0.20 �0.04
STE 0.07 0.03 0.04 0.06 0.04 0.04 0.03 0.05 0.04
t �1.75 1.96 7.70 �2.50 2.52 6.67 �1.25 �4.38 �0.96
Z �1.35 1.58 5.87 �2.13 2.15 5.22 �0.78 �3.75 �0.41
p 0.0878 0.0571 0.0000 0.0165 0.0159 0.0000 0.2190 0.0001 0.3406

All 3 studies
Coeff 0.06 0.02 0.36 �0.24 0.08 0.39 �0.06 �0.25 0.00
STE 0.05 0.03 0.03 0.04 0.02 0.04 0.02 0.03 0.02
t 1.18 0.75 12.95 �5.57 3.30 10.88 �2.91 �7.74 0.16
Z 0.70 0.11 8.13 �5.01 2.99 8.13 �2.60 �6.62 1.14
p 0.2408 0.4543 0.0000 0.0000 0.0014 0.0000 0.0047 0.0000 0.8735

The table depicts results from Equation 1 fitted to SV for each of the three studies of dataset 1 separately and for all three studies taken together. The two interactions HC � HR and HC � TR were the main regressors of interest and were
used to calculate a combined regulatory success measure. STE, standard error of the coefficient estimate.
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across subjects (r � 0.53, p � 0.001). Although our primary
interest is in the differences between HC and NC conditions, we
note that there was a significant TC � HR interaction (�TC�HR �
�0.06; SEMTC�HR � 0.02; t(90) � �2.91, p � 0.005) as well, such
that participants were less sensitive to the healthiness of foods in
the TC condition. There was no significant TC � TR interaction.

Regulatory success during SV computation using distancing
strategies in dataset 2
Here we briefly restate the behavioral results for participants
from dataset 2. These results are the same as those originally
reported in the study by Hutcherson et al. (2012), but are re-
peated here for the reader’s convenience. Participants in dataset 2
showed significantly higher SV values in the indulge condition
(IC; meanIc_zscored � 0.25, SEMIC_zscored � 0.04) versus the nat-
ural condition (t(31) � 6.22, p � 0.001; 95% CI, 0.17– 0.33). In
contrast, they showed significantly lower SV in the distancing
condition (mean SVDC_zscored � �0.25, SEMDC_zscored � 0.04)
compared with the natural condition (mean SVNC_zscored �
�0.002, SEMNC_zscored � 0.02; t(31) � �6.69; 95% CI, �0.32 to
�0.17; p � 0.001; Fig. 1d). We used this difference in SV between
the distancing and the natural control conditions as the measure
of regulatory success for our further analyses in this article.

VBM results
Anatomical predictors of regulatory success when focusing
on healthiness
We were able to significantly predict regulatory success in dataset
1 using GM volume in independently defined dlPFC and vmPFC
ROIs and regression weights in a leave-one-subject-out proce-

dure. When basing the prediction of regulatory success on infor-
mation from dlPFC and vmPFC alone, there was a significant
positive association between predicted and observed regulatory
success (Pearson’s r � 0.25, p � 0.02; 95% CI due to chance,
�0.17 to 0.17; Fig. 2a). In contrast, when using all regions that
were correlated with regulatory success in a given training set to
predict regulatory success in the test set, there was no significant
correlation (Pearson’s r � �0.16, p � 0.11; 95% CI due to
chance, �0.17 to 0.17; Fig. 2a). The generalization failure of
models trained using the GM volume from additional brain re-
gions indicates that these models may be overfitting to the train-
ing set. Our results are in line with fMRI studies that have
frequently reported the recruitment of the vmPFC and the dlPFC
in dietary choices made under both regulatory goals and unreg-
ulated conditions (Plassmann et al., 2007, 2010; Hare et al., 2009,
2011; Hutcherson et al., 2012; Harris et al., 2013; van der Laan et
al., 2014). In light of these results, we focused on these two re-
gions when attempting to predict regulatory success across choice
paradigms using neuroanatomy.

Anatomical markers of regulatory success across regulation
strategies and populations
Next, we tested whether the neuroanatomical correlates of regu-
latory success identified in regulation task 1 and dataset 1 could
be used to make predictions about regulatory success in a sepa-
rate set of individuals attempting to engage self-regulation in a
different type of food choice paradigm (i.e., regulation task 2). In
other words, we sought to test how predictive and generalizable
the associations between dlPFC and vmPFC GM volume and
self-regulation were (Fig. 2b). Thus, we computed � weights

a

Dataset 1 (N=91) Regulatory success = HRxHC-TRxHC
Dataset 2 (N=32) Regulatory success = SV(NC-DC)
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Figure 2. Neuroanatomical markers of regulatory success in dataset 1 and dataset 2. a, Correlation between predicted and observed regulatory success for out-of-sample participants of dataset
1 when considering all clusters (left: Pearson’s r ��0.16, p � 0.11) or only vmPFC and dlPFC clusters (right: Pearson’s r � 0.25, p � 0.02). Dots correspond to participants. b, Correlation between
predicted and observed regulatory success for out-of-sample participants of dataset 2 when considering only the weights of the vmPFC and dlPFC clusters identified in dataset 1. c, GM volume in the
dlPFC and vmPFC significantly correlated with overall regulatory success score (i.e., �HC�HR ��HC�TR) of dataset 1 (N � 91, illustrated in red) and of dataset 2 (i.e., SV(NC�DC), N � 32, illustrated
in yellow). Significant voxels are displayed for visualization purposes at a whole-brain threshold of p � 0.005 uncorrected. Statistical parametric maps are superimposed on the average structural
brain image of each sample, respectively.
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quantifying the association between dlPFC (�dlPFC � 6.68) and
vmPFC (�vmPFC � 6.92) GM volumes (�0 � 0.0002) and the
regulatory success measure obtained in dataset 1 (i.e., Eq. 3); and
then we used these weights together with the GM volumes mea-
sured in these regions for participants in dataset 2 to predict
regulatory success in dataset 2. We found that there was a signif-
icant correlation between GM-predicted and observed regulatory
success (Fig. 2b; Pearson’s r � 0.35, p � 0.04; 95% CI of correla-
tions due to chance, �0.29 to 0.29), indicating that the combina-
tion of dlPFC and vmPFC GM volumes can be used to generate
significant out-of-sample predictions of regulatory success in dif-
ferent tasks. For robustness, we checked whether the dlPFC and
vmPFC separately predicted out-of-sample regulatory success by
correlating predicted regulatory success calculated based on the �
weight and GM volume of each of the two ROIs, respectively. The
Pearson correlations between predicted and observed regulatory
success were r � 0.28 and p � 0.11 for the dlPFC, and r � 0.34
and p � 0.06 for the vmPFC. Fisher’s r-to-z transformation did
not detect any significant differences between the two correla-
tions (z � �0.34; p � 0.73, two-tailed).

Whole-brain, voxelwise regression analyses
We also ran exploratory whole-brain, voxelwise VBM analyses
across all participants within both datasets 1 and 2 separately. No
regions survived correction for multiple comparisons in either
dataset (Tables 3, 4). For illustrative purposes, in Figure 2c we
plot voxels in which GM volume correlated with regulatory suc-
cess in the respective tasks for datasets 1 and 2.

Discussion
Making healthy food choices is often a challenge in everyday life,
and people vary in their ability to choose healthy over tasty foods
on the menu, even when they have the explicit goal of eating
healthily. This article provides new evidence that regulatory suc-
cess in healthy eating is related, in part, to individual differences
in brain anatomy in both the vmPFC and dlPFC. Importantly,
this relationship generalizes across different groups and regula-
tory strategies. These findings suggest that both brain regions
contribute broadly to the regulation of valuation processes in the
context of dietary decision-making and its control.

Implications for dietary decision-making and self-control
Our findings are relevant for current neuroeconomic theories of
dietary self-control. Some research in this area suggests that the
vmPFC and the dlPFC may represent distinct value systems bi-
ased to respond to either immediate hedonistic rewards or de-
layed, more abstract rewards (McClure et al., 2004; Hutcherson
et al., 2012). Other research (Hare et al., 2009) suggests a more
cooperative relationship, in which the dlPFC modulates compu-
tations in the vmPFC to weight different attributes according to
current behavioral goals. Consistent with both theoretical ac-
counts, our results suggest a key role of the vmPFC and the dlPFC
for dietary self-control on an anatomical level.

Limitations and open questions
Our work has several limitations. First, our results do not speak to
the question of whether the vmPFC and the dlPFC play differen-
tiable or similar roles in regulatory success. Understanding their
specific roles and their interactions is important because of an
ongoing debate in the literature regarding different models of
self-control: Do they represent two independent sources of value
(McClure et al., 2004; Hutcherson et al., 2012), or does the dlPFC
play only an indirect role in choice by modulating value signals

within the vmPFC (Hare et al., 2009, 2011)? Our results are fully
consistent with both models, because dlPFC gray matter volume
could either contribute an independent value input to choice
processes or provide enhanced capacity to modulate vmPFC
value signals. Further work will be needed to tease apart the com-
mon and distinct roles the dlPFC and the vmPFC play in regula-
tory success.

For example, approaches using patients with localized lesions
in these brain areas or methods that temporarily inhibit or excite
brain activity in these regions will be particularly important.
Evidence for a causal role of both regions in human decision-
making already exists. For example, transcranial magnetic stim-
ulation of the dlPFC produces clear alterations in choice
behavior, both in the context of foods (Camus et al., 2009) and in
the context of intertemporal decision-making (Figner et al.,
2010). Although this latter result is not directly related to healthy
decision-making, intertemporal considerations may still play an
important role in food choice, which involves trade-offs between
the immediately rewarding taste and the longer-term benefits of
healthiness in dietary choices. Causal evidence for the role of the
vmPFC in dietary and monetary intertemporal choices comes
from lesion studies (Sellitto et al., 2010; Camille et al., 2011; Jo et
al., 2013; Peters and D’Esposito, 2016). Together then, our results
and the results of lesion studies confirm a critical role for both the
vmPFC and the dlPFC, but future research investigating their
potentially dissociable roles is needed.

Another important question raised by our results is how gen-
eralizable the role of individual differences in dlPFC and vmPFC
neuroanatomy is beyond the realm of dietary choices. For exam-
ple, do dlPFC and vmPFC gray matter volumes also predict self-
control success for financial decisions when considering saving

Table 3. VBM results in N � 91 participants (dataset 1): Positive effect of
regulatory success

Region BA x y z Peak z-score

dlPFC 46 40 40 20 3.74
dmPFC 6 15 18 57 3.70

18 25 60 3.20
STG 22 60 2 0 3.22
mPFC 10 4 64 0 3.08
vmPFC 25/11 9 46 �15 2.99

This table reports the peak coordinates and z-score values for the VBM analysis detailed in Equation 2 across the full
sample of 91 participants in dataset 1. All peaks surpassing a voxelwise threshold of p � 0.001 uncorrected are
reported for completeness, but only the dlPFC and vmPFC ROIs were used to predict regulatory success across
samples. Note that this table is provided as an overview of the results of Equation 2 when fit to dataset 1 and the
locations of the dlPFC and vmPFC ROIs used to predict regulatory success in dataset 2, but is not the basis of any
statistical inferences in this manuscript. The x, y, and z coordinates correspond to the MNI space. STG, Superior
temporal gyrus; mPFC, medial prefrontal cortex.

Table 4. VBM results in N � 32 participants (dataset 2): positive effect of
regulatory success

Region BA x y z Peak z-score

dlPFC 46/10 42 43 15 4.25
ACC 32/9 �12 40 18 4.06

14 40 2 3.37
dACC 0 18 36 3.28
PCG 4 55 �9 45 4.03

6 55 �3 12 3.42
vmPFC 25 10 34 �15 3.70

11 2 26 �8 3.18
AG 39 44 �56 21 3.43

This table was obtained by a VBM analysis with a combined regulatory success as a predictor variable of GM volume
(Eq. 4) using a whole-brain threshold of p � 0.001 uncorrected. The x, y, and z coordinates correspond to the MNI
space. ACC, Anterior cingulate cortex; dACC, dorsal anterior cingulate cortex; PCG, precentral gyrus; AG, angular
gyrus.
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for the future instead of consuming now? There is evidence indi-
cating that individual differences in dlPFC neuroanatomy are
related to regulating the intake of addictive substances (Holmes
et al., 2016), suggesting a broad and generalizable role for the
dlPFC.

Conclusion
Our findings extend previous work by highlighting the impor-
tance of individual differences in the neuroanatomy of the dlPFC
and the vmPFC for dietary decision-making and its control. They
imply that individual differences in the dlPFC and vmPFC anat-
omy could be combined with existing assays and measures such
as choice, fMRI, or questionnaire data to better estimate an indi-
vidual’s likelihood of success in regulating dietary choices. Our
results suggest that regulatory success may result not only from
momentary fluctuations in motivation and attention, but also
from a more stable variation in neuroanatomy.

Yet the brain and its anatomy are also subject to plasticity in
response to new situations, life styles, diseases, and environmen-
tal constraints (Merzenich et al., 2013). An exciting avenue going
forward will be to explore whether self-control training or bio-
feedback methods could harness neural plasticity to yield long-
lasting changes in self-regulatory capacity. Our results suggest
that the dlPFC and vmPFC may represent key targets for inter-
ventions that alter disadvantageous dietary choices in at-risk
populations (e.g., those with obesity or eating disorders).
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