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Abstract  23 

Wheat is a major grain crop of the world that provides a stable food for human consumption. 24 

Large amounts of by-products /waste materials are produced after the harvesting and processing 25 

of wheat crop. Such materials can cause an environmental issue if not disposed of properly. 26 

Several studies have shown that wheat residues can be efficient precursors for adsorbents 27 

because of their availability, renewability, lignocellulosic composition, and surface active groups 28 

enriched structure. In the literature, there are few review articles that address wheat residues-29 

based adsorbents. For instance, the use of raw wheat straw and bran as adsorbents for heavy 30 

metals and wheat bran-based adsorbents against dyes. However, these reviews were specific in 31 

terms of adsorbate or adsorbent and did not provide detailed information about the modification, 32 

properties, and regeneration of these adsorbents. This article extensively reviews the utilization 33 

of wheat biomass/waste including straw, bran, husk, and stalk as precursors for raw or untreated, 34 

chemically treated, carbonaceous, and composite adsorbents against various environmental 35 

pollutants. The influences of inlet pollutant amount, adsorbent dose, pH, temperature, and time 36 

on the performance of adsorbents against pollutants were considered. The maximum uptakes, 37 

equilibrium time, and adsorption nature were identified from isotherms, kinetic, and 38 

thermodynamic studies. The highest adsorbed amounts of most tested contaminants were 448.20, 39 

322.58, and 578.13 mg/g for lead, chromium, and copper, 1374.6 and 1449.4 mg/g for methylene 40 

blue and malachite green, and 854.75, 179.21, and 107.77 mg/g for tetracycline, phosphate, and 41 

nitrate, respectively. For the studied adsorbate/adsorbent systems the adsorption mechanism and 42 

regeneration were also discussed. Significant results and future directions are finally presented. 43 

 44 

Keywords: Crop wastes, adsorption, contamination, characterization, regeneration   45 
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1. Introduction72 

Synthetic dyes, heavy metals, pesticides, pharmaceuticals, and other aquatic 73 

contaminants represent an environmental and health threat owing to their hazardous nature (Xiao 74 

et al., 2023). The primary source of these contaminants is the effluents from agro-industrial and 75 

municipal activates (Mo et al., 2018; Solangi et al., 2021). Thus, such pollutants need to be 76 

eliminated in order to protect water sources and to maintain water quality. For this purpose, 77 

several methods have been suggested such as adsorption, membrane separation, 78 

coagulation/flocculation, degradation, biological treatment, etc. (Rout et al., 2023). Among all 79 

other techniques, adsorption is regarded as one of the most straightforward, adaptable, efficient, 80 

insensitive to harmful substances, and commercially viable processes for treating wastewater 81 

(Rashid et al., 2021). 82 

Adsorption systems basically consist of adsorbents and adsorbates or pollutants. The 83 

selection of suitable adsorbents with favorable performances against pollutants is a significant 84 

step for efficient adsorption systems. Recently there is a focus on agricultural wastes as 85 

precursors for adsorbents owing to their availability, renewability, eco-friendly nature, and 86 

lignocellulosic composition (cellulose, hemicellulose, and lignin) (Othmani et al., 2022). 87 

Moreover, the utilization of such wastes in the adsorption field has many advantages in terms of 88 

producing cost-effective adsorbents relative to expensive commercial adsorbents like activated 89 

carbon and also solving the problem of agricultural waste disposal (Tokula et al., 2023). Many 90 

reviews have considered the utilization of agro-wastes such as bamboo (Kalderis et al., 2023), 91 

rice husk (Shamsollahi & Partovinia, 2019), corn (Ahmed et al., 2023), eucalyptus 92 

(Anastopoulos et al., 2022), peanut husk (Aryee et al., 2021), walnut shell (Albatrni et al., 2022), 93 
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rice straw (Foong et al., 2022), banana waste (Ahmad & Danish, 2018), and coconut residues 94 

(Ighalo et al., 2023; Khan et al., 2023; James & Yadav, 2021) as precursors for adsorbents.  95 

Wheat (Triticum aestivum L.) is the principal cereal crop that provides stable food for the 96 

majority of the world’s population. It is the second most widely grown grain after rice, thus it 97 

releases more agro-waste materials. Globally, wheat is cultivated on an area of 214 million ha. 98 

Wheat cultivation and processing generate large quantities of crop residue mainly include straw, 99 

bran, and husk (Mohite et al., 2022). Such wastes have been utilized as animal feed (Yafetto et 100 

al., 2023), fertilizer (Suresh et al., 2022), building materials (Jiang et al., 2023), source for 101 

nanocellulose (Trivedi et al., 2023) and polysaccharides (Hou et al., 2015), and raw materials for 102 

high value added products including bioethanol (Kumar & Prakash, 2023), sugar alcohol 103 

(Bhavana et al., 2023), biogas (Rani et al., 2022), etc. Wheat wastes have also been suggested as 104 

adsorbents against a variety of contaminants due to their preferred structure in terms of favorable 105 

lignocellulosic composition and functionality. 106 

There are very few review papers in the literature that discuss the use of wheat wastes- 107 

based adsorbents to purify water. For example, the elimination of heavy metal ions using raw 108 

wheat straw and wheat bran adsorbents (Farooq et al., 2010), and the use of wheat bran- based 109 

materials as adsorbents for dyes (Chung et al., 2022). However, these reviews were specific in 110 

terms of adsorbate or adsorbent and did not provide detailed information about the modification, 111 

characterization, and regeneration of these adsorbents. Thus, this article is an extensive review of 112 

recent data on the wheat residues-derived adsorbent/aquatic pollutant systems involving the raw 113 

and modified (chemically treated, carbonaceous, and composite) adsorbent forms, characteristics 114 

(pore properties, elemental composition, etc.), and adsorption performances. Isotherms, kinetics, 115 

thermodynamics, and mechanisms of studied adsorption systems which are useful to identify the 116 
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maximum adsorption capacity, equilibrium time, adsorption nature, and main interaction steps, 117 

respectively were also discussed. The common applied equations for isotherms, kinetics, 118 

thermodynamics, and error functions are presented in Table S1 (supplementary data). 119 

Regeneration ability and reutilize of the exhausted adsorbents were also addressed. 120 

2. Wheat residues-based adsorbents121 

Wheat (Triticum aestivum L.) belonging to the Poaceae family, is the second most 122 

frequently grown cereal grain behind rice for human consumption (Chung et al., 2022). This crop 123 

may be grown in Mediterranean, temperate, and subtropical climates due to its extensive genetic 124 

diversity. Global worldwide production of wheat has been reported as 778.6 million metric tons 125 

in 2021/2022 (Ammar et al., 2023). Large amounts of agricultural wastes are resulted from the 126 

growing and processing of wheat which primary consists of straw, husk, and bran. These wastes 127 

have many applications, for example wheat straw (stem, leaves, etc.) can be used as a soil 128 

fertilizer, animal feed, and construction material, and feedstocks in fermentation industry, pulp 129 

industry, and bioenergy generation such as bioethanol and biohydrogen (Khan & Mubeen, 2012). 130 

Wheat bran is a byproduct of milling that possess both non-food and food qualities. It is an 131 

excellent source of phenolic acids, dietary fiber, carotenoids, tocopherols, and enzyme synthesis 132 

(Chung et al., 2022). Wheat husk flour was applied as filler in thermoplastic polymers like 133 

polypropylene and high-density polyethylene in order to prepare their composites. Additionally, 134 

it was employed in the production of thermal insulation panels, achieving a high thermal 135 

insulation (Mohite et al., 2022). 136 

In general, wheat wastes are lignocellulosic materials including cellulose, hemicellulose, 137 

and lignin (Table 1), which consist of elements like C, H, N, and O. These materials possess 138 

active groups like hydroxyl, amino, and carboxyl groups with high coordination capacity. 139 
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Therefore, these wastes in their raw or modified forms have been widely applied as adsorbents 140 

for a variety of pollutant, as explained by the collected data of 115 papers (2010-2023) from 141 

Google Scholar and Scopus database. The data showed that the most utilized wheat residues are 142 

straw followed by bran, husk, and stalk, and the most applied wheat residues -based adsorbents 143 

are in the form of chemically modified and biochar followed by raw, activated carbon, 144 

composite, and hydrochar.  145 

Raw or unmodified wheat residues were directly applied as adsorbents against aquatic 146 

pollutants. In this regard, Chen et al. (2020a) investigated the composition and structure of wheat 147 

straw and its application as adsorbent for Cr(VI) and Cr(III) ions. The chemical composition of 148 

straw was 45.32% cellulose, 19.89% hemicellulose, and 12.49% lignin. The content of elements 149 

was C 42.69%, O 49.96%, N 6.32%, and H 1.03%. Brunauer-Emmett-Teller (BET) surface area, 150 

total pore volume, and average pore diameter were 12.576 m2/g, 0.030 cm3/g, and 3.045 nm, 151 

respectively. The Fourier transform infrared (FTIR) spectrum of straw showed the existence of a 152 

large number of surface active groups including –OH, N–H, C=O, C=C, C−O and C−H. Such 153 

groups might play a significant role in the adsorption process of metal ions. Wheat bran biomass 154 

with a specific surface area 5.7 m2/g was adopted as adsorbent for Cr(VI). The contents of acidic 155 

and basic functional groups were 0.43 and 0.06 mmol/g, respectively (Ogata et al., 2020). 156 

Moreover, wheat husk was used as adsorbent for congo red dye. The FTIR spectrum indicated 157 

that different functional groups were appeared on the wheat husk surface including the hydroxyl 158 

and amides groups (–OH and –NH) as well as C–O, C=O, C–H, etc. (Sabah & Alwared, 2019).   159 

Chemically modified wheat wastes were adopted as adsorbents with enhanced 160 

performance against a variety of pollutants. Several agents such as amines, alkalis, organic acids, 161 

surfactants, iron oxides, etc. were applied for this purpose. The improvement in performance can 162 
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be attributed to the enhancement of functionality by introducing additional groups or enhancing 163 

of the extent of original existing groups alone or with the development of porosity. Amino 164 

modifications can increase the content of nitrogen and the extent of N–H group. In this regard, 165 

wheat straw was modified by ethylenediamine/triethylamine and the nitrogen content was 166 

increased significantly from 0.35% to 6.20%. This result suggested that large amounts of amine 167 

groups grafted in treated straw. The performance against phosphate was 38.3 times that of raw 168 

one (Xu et al., 2011a). Alkali, organic acids, and surfactants can enhance the extent of O–H, C–169 

O, and C–H groups, respectively. Accordingly, the performance of NaOH treated wheat straw 170 

adsorbent against Cu(II) was 92.7% relative to 45.2% on raw straw (Guo et al., 2016). Moreover, 171 

the performance of acetic acid modified wheat bran against Pb(II) was 87.72% relative to 172 

56.32% on unmodified bran (Xing et al., 2013), and that of cationic surfactant, hexadecyl 173 

trimethyl ammonium bromide (CTAB) modified wheat straw against congo red was 46.3 mg/g 174 

relative to 23.0 mg/g on raw (Zhang et al., 2014a). On the other hand, magnetic modification can 175 

introduce an additional Fe–O group and also can improve the surface area. It was found that the 176 

surface area of raw and Fe3O4 treated wheat straws were 22.3 and 57.5 m2/g, respectively 177 

(Pirbazari et al., 2014). Tian et al. (2011) showed that for Fe3O4 modified wheat straw, the 178 

increase in iron concentration from 0.1 to 0.5M enhanced adsorption performance from 0.760 to 179 

3.898 mg/g for As(III) and from 4.018 to 8.062 mg/g for As(V). Combining two or more 180 

chemicals was also adopted for the modification purpose. For instance, Sodkouieh et al. (2023) 181 

modified the wheat straw by NaOH/monochloroacetic acid. The alkali modification step could 182 

dissolve the hemicellulose and lignin, and improved the straw reactivity against acid 183 

modification. FTIR spectra of alkali/acid modified straw exhibited more intense carboxyl group 184 

(Fig. 1) which favored the attraction of methylene blue cationic molecules.  185 
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Biochars were also prepared from wheat wastes and applied as adsorbents. According to 186 

the collected data, wheat straw-derived biochar had a developed porous structure with the highest 187 

BET surface area. In particular, it showed a large surface area of 343.56 m2/g, total pore volume 188 

of  0.222 cm3/g, and average pore width of 2.549 nm at the pyrolysis conditions of 800 °C, 10 189 

°C/min for 1 h under 50 mL/min N2 flow (Wang et al., 2023a). In addition, a large specific 190 

surface area of 260.9 m2/g was reported for biochar derived from wheat bran by pyrolysis at 800 191 

°C for 2 h (Ogata et al., 2018). The literature also included other wheat residues such as husk 192 

(Yuan et al., 2023) and stalk (Liu et al., 2022a) as precursors for biochars with maximum 193 

reported BET surface areas of 46.5 and 158.98 m2/g, respectively. 194 

Wheat wastes were also adopted as precursors for activated carbon (AC) using different 195 

preparation methods. Activation by chemicals was the most widely applied method for the 196 

preparation of AC from wheat wastes, as indicated from the collected data. Furthermore, several 197 

chemicals like KOH, ZnCl2, NaOH, H3PO4, etc. were used for the activation purpose. Among 198 

these agents, ZnCl2 was efficiently adopted for preparation of AC. In this regard, ZnCl2 199 

activation of pre-carbonized wheat straw at 3:1 alkali to pre-carbonized straw mass ratio, 800 °C 200 

under N2 flow for 2 h produced AC with the highest BET surface area of 2944 m2/g and total 201 

pore volume of 1.33 cm3/g. The magnitude of 2944 m2/g was 5.7 times greater than that of wheat 202 

straw biochar. This outcome was due to the etching role of ZnCl2 towards biochar which resulted 203 

in the formation of more micropores. The removal efficiencies of biochar and AC against 204 

bisphenol A were 60.51% and 98.45%, respectively (Shi et al., 2022a). Moreover, KOH was 205 

widely applied and exhibited a highest surface area of 1164 m2/g for wheat straw AC at the 206 

activation conditions of 1:1 KOH to straw weight ratio, 800 °C, 1 h, and 10 °C/min (Alrowais et 207 

al., 2023). The scanning electron microscope (SEM) image confirmed that KOH activation of 208 
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wheat straw biochar presented a well-developed porous structure (Fig. 2) with a large surface 209 

area and more binding sites for Cr(VI) (Jamil et al., 2023). Other agents were adopted for 210 

production of ACs from wheat residues. The reported surface areas were 2532 m2/g and 1123 211 

m2/g for wheat bran/NaOH AC (Zhang et al., 2020a) and wheat straw/H3PO4 AC (Shou & Qiu, 212 

2016), respectively. Physical activation of wheat straw with steam produced AC with a surface 213 

area of 316 m2/g (Kwak et al., 2019).  214 

The literature also involved wheat wastes-based composites and hydrochars as 215 

adsorbents. For example, wheat bran-titanium dioxide (TiO2) composite adsorbent for selenium 216 

(Li et al., 2021), wheat straw biochar/biomass fly ash composite adsorbent for methylene blue 217 

(Li et al., 2023), and montmorillonite-wheat straw biochar composite adsorbent for norfloxacin 218 

(Zhang et al., 2018a). The performance of latter composite against norfloxacin was 2.29–2.60 219 

times that of biochar alone, and montmorillonite alone had lower performance of 0.244–2.553 220 

mg/g. Kohzadi et al. (2023) used Fe-modified hydrochar obtained from wheat straw as adsorbent 221 

against the dye Rhodamine B with a best performance of 91%. Hydrochar was prepared at 200 222 

°C for 6 h and modified with 0.1 M FeCl3 solution. BET specific surface area, total pores 223 

volume, and pore width were 52.74 m2/g, 0.3337 cm3/g, and 25.31 nm for Fe-modified 224 

hydrochar relative to 9.40 m2/g, 0.0346 cm3/g, and 14.73 nm for pristine hydrochar, and 1.22 225 

m2/g, 0.0021 cm3/g, and 6.86 nm for raw wheat straw. The FTIR spectrum of wheat straw, 226 

original hydrochar and Fe-treated hydrochar showed O-H, C-O, C=C, and C-H groups. Fe-O 227 

group was only being seen in Fe-modified hydrochar. Nzediegwu et al. (2021) applied wheat 228 

straw-based hydrochar prepared at 180 °C, 240 °C and 300 °C for 4 h with 5 °C/min heating rate 229 

as adsorbent for lead (II). Specific surface area was 4.1-4.5 m2/g; elemental composition was C 230 
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61.1-68.9%, H 4.6-4.0%, N 0.9-1.2%, and O 28.0-18.6%. The highest performance was reported 231 

at 180 °C with 4.5 m2/g, 5.4% ash, pH 5.4, C 61.1%, H 4.6%, N 0.9%, and O 28.0%.  232 

Thus, raw wheat residues with a favorable lignocellulosic content and excellent 233 

functionality are widely applied as adsorbents. Moreover, the performance of these adsorbents 234 

can be further improved by the development of their structure. The development involves the 235 

enhancement of functionality alone or with the porosity. The developed wheat residues can be in 236 

the form of chemically modified, biochar, activated carbon, hydrochar, and composite. From the 237 

collected data, the largest surface areas for biochar and activated carbon derived from wheat 238 

residues are reported as 343.56 and 2944 m2/g, respectively.  239 

3. Adsorption of synthetic dyes  240 

Dyes are coloured materials utilized in textile, cosmetic, pharmaceutical, rubber, plastic, 241 

leather, printing, paper, and food industries to change or improve the colour of a substance 242 

(Iwuozor et al., 2022). Their importance and usage in large amounts accounts for its existence in 243 

the effluents of these industries. Specifically, these industries release about 700,000 tons (or 244 

15%) of dyes annually into the aquatic environment, causing serious health and environmental 245 

issues (Zhang et al., 2020b; Yaneva & Georgieva, 2013). In order to avoid such issues, many 246 

researchers have suggested the use of different materials like wheat residues-based adsorbents 247 

for the removal of dye molecules from the aquatic systems. Table 2 shows that most studies 248 

focused on the elimination of cationic methylene blue dye followed by malachite green, methyl 249 

orange, congo red, crystal violet, etc.  250 

The removal of methylene blue (MB) was tested using wheat straw (Ben’ko & Lunin, 251 

2018), wheat husk modified with perchloric acid (Banerjee et al., 2014), phytic acid-treated 252 
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wheat straw (You et al., 2016), Fe3O4–wheat straw (Pirbazari et al., 2014), and citric acid 253 

modified wheat straw (Han et al., 2010). The pH factor had an effect on the MB adsorption 254 

process depending on the type of adsorbent. For instance, the removal percentage increased from 255 

40.7% to 96.2% by changing the pH of the solution from 4.5 to 9.5, using wheat husk treated 256 

with perchloric acid (Banerjee et al., 2014). In another work (You et al., 2016), the MB uptake 257 

by phytic acid-modified wheat straw was found to increase by raising the pH from 2.0 to 10, 258 

giving approximately a maximum uptake of 205.4 mg/g. Another team (Pirbazari et al., 2014) 259 

also found that an increase in pH, affected positively the removal of MB by Fe3O4–wheat straw, 260 

and maximum uptake was reported at pH 7.0 (pH studied range of 2.0–12.0). Contact time is 261 

another factor that impacts the adsorption process. Banerjee et al. (2014) and You et al. (2016) 262 

concluded that 50 min are sufficient to attain equilibrium for the removal of MB by perchloric 263 

acid modified wheat husk and phytic acid modified wheat straw, respectively. The adsorbent 264 

dose also affects the ability to remove the MB dye. The removal efficiency of MB enhanced 265 

from 79.80 to 93.4% and from 36% to 96% by changing the dose from 10 to 25 g/L and 0.1 to 1 266 

g/L, using wheat husk modified with perchloric acid (Banerjee et al., 2014) and Fe3O4–wheat 267 

straw (Pirbazari et al., 2014), respectively. Another crucial adsorption parameter is the solution 268 

temperature. The rise of temperature from 303 to 323 K was found to reduce the adsorption 269 

efficiency from 93.4% to 59.8% using perchloric acid treated wheat husk (Banerjee et al., 2014). 270 

On the contrary, Han et al. (2010) explored the utilization of citric acid-modified wheat straw 271 

and noticed that with the increment of 293 K to 313 K the maximum monolayer adsorption 272 

obtained from Langmuir isotherm increased from 396.9 to 450.0 mg/g. Another study concluded 273 

that the temperature change from 298 – 323 K, had little effect on the MB uptake (the maximum 274 

uptake qmax from Langmuir isotherm decreased from 217.4 mg/g to 215.9 mg/g) by phytic acid-275 
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modified wheat straw (You et al., 2016). Thermodynamic studies showed that the adsorption of 276 

MB onto different adsorbents was mostly spontaneous (Banerjee et al., 2014; Han et al., 2010), 277 

exothermic (Banerjee et al., 2014) or endothermic (Han et al., 2010) with increasing (Han et al., 278 

2010) or even decreasing (Banerjee et al., 2014) randomness at the solution/solid interface. 279 

Sodkouieh et al. (2023) showed that the adsorption mechanism of MB on carboxymethylated 280 

wheat straw involved different types of interactions (Fig. 3) including electrostatic attractions, 281 

Yoshida H-bonding, dipole-dipole H-bonding, and n-π interaction.  282 

Wheat straw-based adsorbents were also used to remove other cationic dyes such as 283 

Rhodamine B (RhB), malachite green (MG), and crystal violet (CV). For example, Kohzadi et al. 284 

(2023) explored the application of raw and Fe-treated hydrochars and biochars obtained from 285 

wheat straw to adsorb RhB. FeCl3 wheat straw hydrochar appeared to have more voids, porosity, 286 

and roughness. The maximum uptake of RhB by Fe-treated hydrochar was 80 mg/g at 1 g/L of 287 

adsorbent dosage, 1.5 h of contact time, inlet dye amount 2.5–25 mg/L, pH 6.0, agitation speed 288 

of 120 rpm, at room temperature (25 °C). Mean free energy (E) from Dubinin-Radushkevic (D-289 

R) model was 7.07 kJ/mol indicated that physisorption played an important role in the removal 290 

of RhB by Fe-modified hydrochars. Another team (Yang et al., 2019) utilized wheat straw and 291 

wheat bran as precursors for the production of biochars at various pyrolysis temperatures (400, 292 

600, and 800 °C). The aforementioned wheat straw (WSBC) and wheat bran (WBBC) derived 293 

biochars were applied for MG and CV dyes removal. The highest uptakes of these dyes were 294 

obtained from biochars fabricated at 800 °C and WSBC-800 gave the highest adsorption capacity 295 

against MG. The maximum uptake of MG was estimated to be 1449.4 mg/g and 1301.9 mg/g, for 296 

WSBC-800 and WBBC-800, respectively. Another team (Haq et al., 2021) explored the 297 

utilization of wheat bran to adsorb the CV dye. Maximum adsorption of 92.51% and 89.73% was 298 
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noticed at pH 2.0 (pH studied range from 1.0 – 11) and at 120 min of contact time (contact time 299 

studied range from 5–120 min), respectively. Thermodynamic results (temperature range 273 K 300 

to 333 K) showed that the CV adsorption onto wheat bran was spontaneous and endothermic 301 

with enhancing randomness at the solution/solid interface. The increment of temperature from 302 

273 K to 333 K caused an increase in adsorption percentage of CV dye from 85.5% to 86.5%. 303 

The adsorption behavior of wheat straw and various derivatives has also been 304 

investigated on aqueous solutions of anionic dyes. Specifically, three works modified wheat 305 

straw with surfactants (Zhang et al. 2014a, 2017, 2018b), two groups enriched wheat straw with 306 

inorganic acids or salts (Mirjallili et al. 2011, Mohammadi et al. 2021), whereas one group 307 

prepared a magnesium hydroxide-coated biochar (Zhang et al. 2014b). 308 

Based on the summary of Table 2, in most cases adsorption best matched the pseudo-309 

second order kinetic model and the Langmuir isotherm model. Furthermore, all studies agreed to 310 

an optimum pH range between 3-4, revealing that the process was largely limited by electrostatic 311 

interactions between the anionic dye and cationic moieties on the adsorbent surface. In most 312 

cases, adsorption was spontaneous and exothermic, which is attributed to the tendency to reduce 313 

the internal energy to attain a thermodynamically stability (Chanajaree et al., 2021). However, 314 

the adsorption of direct yellow 12 on wheat straw biochar and acid red 18/acid black 1 on 315 

surfactant modified wheat straw, showed an endothermic behavior. Since the ΔΗ° values for 316 

these cases were below 40 kJ/mol, chemisorption is unlikely (Akpomie & Conradie, 2023). A 317 

possible explanation may be that the molecules of these dyes require the additional energy to 318 

move faster and penetrate deeper into the pores of the adsorbent (Al-Ghouti & Al-Absi, 2023).  319 

4. Adsorption of heavy metals  320 
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Heavy metals are widely recognized as the most common and toxic inorganic 321 

contaminants in water and soil systems (Haris et al., 2021; Saleem et al., 2023). The rapid 322 

growth of the global economy, population, and industrialization has resulted in a significant 323 

increase in severe metal pollution and associated threats to the environment and human health 324 

(Filippini et al., 2022). Therefore, the removal of heavy metals from contaminated water matrices 325 

has become a matter of great concern. From the gathered data (Table 3), the most studied metals 326 

are lead followed by chromium, copper, cadmium, nickel, zinc, mercury, etc.  327 

Wheat residues-based adsorbents, particularly after appropriate modification, are showing 328 

great potential in removing heavy metals from the water environment. Their efficiency is, 329 

however, affected by various factors, including their physicochemical properties, solution pH, 330 

adsorbent dosage, and contact time (Dong et al., 2019; Lu et al., 2020). The modification of 331 

wheat-residue-derived adsorbents further enhances their efficiency compared to their pristine 332 

forms. Various methods have been explored for this, such as modifying raw wheat straw itself, 333 

transforming it into other carbonaceous adsorbents like biochar, or further modifying the 334 

converted forms to enhance their effectiveness. Several methods have been employed to modify 335 

wheat straws for enhanced efficiency in adsorption. These include the use of citric acid (Han et 336 

al., 2010), diethylenetriamine and N,N-dimethylformamide (Chen et al., 2010), magnetization 337 

(Tian et al., 2011), amine (Xu et al., 2011a), tartaric acid (Kaya et al., 2014), calcination (Ogata 338 

et al., 2018), polyethylenimine (Dong et al., 2019), carbonization and ball milling (Cao et al., 339 

2019a), and compositing with TiO2 (Li et al., 2021). 340 

In addition to directly enhancing the properties of wheat-straw, the conversion of wheat 341 

straw into biochar has been recognized as a promising strategy to develop carbonaceous 342 

adsorbents with high metal removal efficiency (Wang et al., 2010; Wang et al., 2011; Cao et al., 343 
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2019b; Zhang et al., 2022; Shen et al., 2017). Moreover, the modification of these biochars has 344 

further improved their treatment efficiency against toxic metals. Examples of such modifications 345 

include nano-chlorapatite modification of wheat-straw-based biochar (Yuan et al., 2023) and the 346 

exfoliation process to produce exfoliated biochar (Haris et al., 2022). For instance, Haris et al. 347 

(2022) compared the efficiency of pristine wheat-straw derived biochar (PB) and its HNO3 348 

treated or exfoliated biochar forms (EBFs) towards thallium Tl(I) adsorption in an aquatic 349 

environment. They found that EBFs exhibited a significantly higher specific surface area (421.24 350 

m2/g) and pore size (3.98 nm) compared to PB (3.81 m2/g and 2.05 nm, respectively). When used 351 

for T1(I) adsorption, EBFs showed superior adsorption capacity (382.38 mg/g) at pH 7.0, which 352 

was over 9 times greater than that of PB.  353 

Adsorption isotherm models are widely applied to evaluate adsorbent- adsorbate 354 

interactions at equilibrium adsorption (Hamid et al., 2022). The isotherm study describes the 355 

distribution of metal ions between liquid and solid phases, providing valuable insights into the 356 

adsorption process (Sinha et al., 2022; Ambika et al., 2022). Several adsorption models including 357 

Freundlich, Langmuir, Temkin, Redlich-Peterson, Dubinin-Radushkevish, etc. have been applied 358 

to evaluate the adsorption behaviour of heavy metals (Muhammad et al., 2021; Chen et al., 359 

2022). The Langmuir and Freundlich isotherm models are frequently used to examine the 360 

adsorption of heavy metals. The Langmuir isotherm has been particularly suitable to describe the 361 

heavy metals adsorption onto wheat residues-based adsorbents as it represents the monolayer 362 

adsorption behaviour, characterized by a homogeneous distribution of adsorbate molecules 363 

without significant interactions among them (Zhang et al., 2022; Li et al., 2021). The Freundlich 364 

isotherm, however, describes the multilayer adsorption behavior and has proven to be a good fit 365 

for heavy metals adsorption in certain cases, involving heterogeneous chemisorption processes. 366 
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For instance, Chen et al. (2010) observed Cr(VI) adsorption on modified wheat-straw at different 367 

temperature (298, 313, and 328 K). They found that Freundlich adsorption model had a higher 368 

determination coefficient R2 (0.941, 0.958, and 0.991) than Temkin (0.903, 0.925, and 0.971) and 369 

Langmuir model (0.759, 0.770, and 0.857). This indicates that modified wheat-straw exhibit 370 

multilayer adsorption behavior on heterogeneous surfaces, characterized by a finite number of 371 

sites with interactive properties. 372 

Similarly, the evaluation of adsorption kinetics provides valuable perceptions into the 373 

underlying mass transfer adsorption process, including any rate-controlling step involved 374 

(Plazinski et al., 2009). Various kinetics equations like pseudo-first-order PFO, pseudo-second-375 

order PSO, Elovich, and intra-particle diffusion IPD were used to determine the adsorption 376 

capacity of heavy metals dictated by the reaction time (Han et al., 2010). In most of the studies 377 

on the removal of heavy metals using wheat residues-based adsorbents, the PSO model exhibited 378 

the best fit (Table 3). This has been attributed to the rate-limiting step associated with this model, 379 

whereby the availability of binding sites on the biochar surface is influenced by chemical 380 

reaction rates (Tian et al., 2011; Bandara et al., 2020). PSO model effectively describes the solid-381 

liquid reaction and elucidates the kinetics mechanism of adsorption, emphasizing that the 382 

adsorption process is primarily governed by the availability of binding sites rather than the 383 

amount of heavy metals (Farooq et al., 2011). For instance, Fu et al. (2021) applied various 384 

kinetics equations (PFO, PSO, and Elovich) to approximate the adsorption kinetics of Cd(II) 385 

onto magnetic biochar derived from wheat straw. They extrapolated that PSO model provides the 386 

best analysis with the largest R2 (0.99) than PFO model (0.98) and Elvoich model (0.92), 387 

confirming chemisorption as the rate-limiting step for Cd(II) adsorption.  388 
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Thermodynamic studies are intended to evaluate the impact of temperature on 389 

contaminant adsorption. Thermodynamic constants, involving free energy (ΔG°), entropy (ΔS°) 390 

and enthalpy (ΔH°); provide insights into the endothermic or exothermic nature of the adsorption 391 

process (Chen et al., 2020a). The adsorption process is favoured at high temperatures as, for 392 

instance, observed in the adsorption of heavy metals onto wheat residues-based adsorbents that 393 

was found to be thermodynamically spontaneous (Ogata et al., 2018). A negative ΔH° value 394 

suggests an exothermic nature of adsorption, whereas a positive ΔH° value indicates an 395 

endothermic process. Furthermore, a positive ΔS° value affirms enhanced randomness associated 396 

with the adsorption of heavy metal ions (Ogata et al., 2013; Wang et al., 2019). Numerous 397 

experimental findings have consistently demonstrated the endothermic nature of heavy metal 398 

removal, as indicated by the positive values of ΔH°. For example, Zhu et al. (2016) applied 399 

bismuth-modified biochar prepared from wheat-straw for the adsorption of As(III) and evaluated 400 

the thermodynamic parameters. Their findings revealed a positive ΔH° value (11.86 kJ mol-1), 401 

demonstrating the favourable endothermic nature of As(III) adsorption onto the biochar. The 402 

positive ΔS° value (0.15 kJ/mol) suggested an increase in the disorder of the solid-solution 403 

interface and the negative ΔG° value (-32.48 kJ/mol) suggests the co-existence of chemisorption 404 

and physisorption during the adsorption process. 405 

The metal adsorption efficacy of wheat residues-based adsorbents predominantly relies 406 

on factors such as its specific surface area, cation exchange capacity and abundance of surface-407 

active functional groups (Cao et al., 2019b). For example, the existence of surface functionalities 408 

such as phenolic, carboxylic and hydroxyl (–COO− and –OH−) enhanced the number of 409 

negatively-charged active sites on wheat residues-based adsorbents. These sites were found to 410 

effectively bind with cationic metals including Cu(II), Tl(I), Zn(II), Pb(II) and Cd(II) in water 411 
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matrices (Zama et al., 2017). In addition, the existence of electron donor active groups (C–O–R, 412 

–C–OH, C–O) facilitated the adsorption of Cr(VI) on biochar obtained from wheat-straw, with 413 

adsorption-coupled reduction of Cr(VI) into Cr(III) to enable surface adsorption (Wang et al., 414 

2010; Xu et al., 2011a). These findings suggest that the characteristics of wheat residues-based 415 

adsorbents, such as ionic content, organic functional groups, π-electrons and mineral content, 416 

have a direct impact on adsorption mechanisms of heavy metals and determine the adsorption 417 

capacity of wheat residues-derived materials for heavy metals in contaminated water 418 

environment. Adsorption is a universal term to describe all the processes at the wheat residues-419 

based adsorbents–solution interface, involving chemisorption, surface complexation, 420 

intermolecular attractions, precipitation/co-precipitation, ion exchange and magnetic bonding 421 

(Yuan et al., 2023). The adsorption process of heavy metals onto wheat residues-based 422 

adsorbents is not governed by a single mechanism, but rather involves a combination of multiple 423 

mechanisms. For instance, Nzediegwu et al. (2021) showed that the adsorption mechanism of 424 

Pb(II) on wheat straw derived biochar/hydrochar was represented by electrostatic attraction, 425 

cation exchange, complexation, and precipitation (Fig. 4). Another team Cao et al. (2019a) 426 

studied the Pb(II) adsorption mechanism by pristine wheat-straw, wheat-straw biochar and ball-427 

mill modified wheat-straw biochar. They reported that precipitation (i.e., PbCO3 and 428 

Pb3(CO3)2(OH)2), complexation (-COOH and -OH) and ion-exchange (Ca(II), Mg(II), K(I), and 429 

Na(I)) were the dominant mechanisms involved in adsorption process.  430 

 431 

5. Adsorption of other contaminants   432 

Pharmaceuticals, inorganic anions and cations, phenols, herbicides, etc. are also 433 

eliminated from aqueous solutions by using wheat wastes-based adsorbents. Tetracycline, nitrate, 434 
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phosphate, ammonium, and 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide are examples of 435 

aquatic pollutants that widely tested in the literature relative to other pollutants (Table 4).  436 

Wang et al. (2021) used diethylenetriamine, chloroacetic acid, and zirconium modified 437 

wheat straw (Zr-Ws) adsorbent for the removal of tetracycline (TC). The adsorbent exhibited 438 

remarkable adsorption ability along with some selectivity against tetracycline due to the 439 

zirconium oxychloride and hydroxyl-enriched structure of Zr-WS. The adsorbed amount of TC 440 

onto Zr-WS was 77.2 mg/g at 303 K. Freundlich equation showed suitable fit to the isotherm 441 

data with R2 (0.984-0.992) and square of error SSE (14.8-17.7) relative to R2 (0.963-0.993) and 442 

SSE (7.33-65.4) for Temkin, while Elovich equation was better to analyze the kinetic data with 443 

R2 (0.971-0.996) and SSE (0.596-56.4)x 10-2 relative to R2 (0.927-0.986) and SSE (0.508-444 

2.710)x10-2 for PSO. Equilibrium and kinetic results confirmed that the TC/Zr-WS system had a 445 

heterogeneous, multi-layer, and chemisorption nature. The thermodynamic parameters in terms 446 

of ΔH° > 0, ΔG° < 0, and ΔS° > 0 affirmed that the studied adsorption system was endothermic 447 

and spontaneous with increased entropy. ΔH° (kJ/mol) 56.3,  ΔS° (J/mol.K)  211, and ΔG° 448 

(kJ/mol) –5.46, –8.51, and –9.70 at 293K, 303K, and 313K, respectively. The mechanism of TC 449 

adsorption on Zr-WS might involve coordination complexation, electrostatic attraction, and ion 450 

exchange. Increasing pH from 2 to 7 enhanced TC uptake from 35.0 to 57.5 mg/g, respectively 451 

for the sample of 100 mg/L. Huang et al. (2023) also tested the adsorption of tetracycline on 452 

KMnO4 activated wheat straw biochar (Mn-BC). The KMnO4 modification increased the 453 

adsorption performance against TC by developing the pore and surface characteristics of the 454 

biochar. Mn-BC exhibited the largest uptake of 107.77 mg/g for TC, which was 3.4 times more 455 

than that of original biochar (32.12 mg/g). The best removal by raw and activated biochars was 456 

reported at pH 7 and 5, respectively. The Freundlich and PSO equations well analyzed the data 457 
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of TC/Mn-BC system. The mechanism (Fig. 5) of studied system involved the electrostatic 458 

interaction, hydrogen binding, pore filling, and π-π interaction.   459 

Chemically modified wheat residue in terms of H2SO4 modified wheat husks (Fagopyrum 460 

Esculentum) was efficiently applied for adsorption of 2,4-D herbicide (Franco et al., 2021). 461 

Regarding the optimum conditions, the best removal was reported at the pH 2 and the dosage of 462 

0.95 g/L showed the best correlation between the removal efficiency and uptake of herbicide. 463 

The kinetic data were well represented (R2 0.9915-0.9985) by the Avarami fractional- order 464 

equation (also known as Bangham), and the adsorption achieved equilibrium at lower than 150 465 

min. The maximum uptake was 161.1 mg/g at 298K according to the Liu equation (R2 0.9992-466 

1.000). From the thermodynamic parameters, the studied system was exothermic, spontaneous, 467 

and preferable, and the adsorption mechanism involved electrostatic interactions, H-bonding, and 468 

π–π interaction. More favorable adsorption was obtained under the acidic media as compared to 469 

the alkaline media. This result could be attributed to the higher affinity of 2,4-D for the water 470 

and strong repulsion between the anionic 2,4-D (pKa=2.81) and negatively charged adsorbent 471 

surface (pHPZC=3.5) at higher pH. The uptake was increased from 25 to 80 mg/g with the change 472 

of inlet 2,4-D amount from 50 to 200 mg/L due to the enhanced driving force for mass transfer.  473 

Another team (Wang et al., 2016) studied the adsorption of atrazine on wheat straw- 474 

biochar obtained at 750 °C (WS750). The Langmuir model (R2 0.996) was more accurate to 475 

represent the sorption isotherm of atrazine than Freundlich equation (R2 0.982). PSO model (R2 476 

0.995) could present a well-analysis for the sorption kinetic of atrazine than PFO (R2 0.901). 477 

Thus, the studied system had the monolayer and chemisorption nature. The value of qmax was 478 

20.161 mg/g and the equilibrium nearly arrived after 80 h. The uptake of atrazine by WS750 was 479 

favorably proportional to the inlet atrazine amount. The sorption quantities of atrazine by WS750 480 
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gradually decrease (33.50 to 22.71 mg/g) with the increased pH values (from 5 to 9). WS750 481 

exhibited high affinity for atrazine in low pH medium as compared to high pH medium due the 482 

favorable interaction with aromatic ring and positively charged (protonated) N atoms of atrazine.   483 

Raw and ZnCl2 activated wheat straw biochars were used as adsorbents against 4-484 

chlorophenol 4-CP (Shen et al., 2021). Adsorption ability of activated biochar was nearly 4 times 485 

more than that of raw biochar which could be due the significant development in the oxygenated 486 

active groups and surface area; in particular, the surface area of activated biochar was about 126 487 

times that of raw. For ZnCl2 modified (activated) wheat straw biochar, Langmuir exhibited R2 488 

(0.9771-0.9893) compared to R2 (0.9740-0.9862) for Freundlich model. The high R2 values of 489 

these two models suggested the existence of both heterogeneous and homogeneous adsorption. 490 

The values of qmax were 111.02, 105.07, and 94.15 mg/g at 20 °C, 30 °C, 40 °C, indicating an 491 

exothermic adsorption. Adsorption of 4-CP on activated biochar attained equilibrium state in 720 492 

min. PSO showed high R2 (0.9809-0.9965) relative to R2 (0.9228-0.9608) for PFO, indicating the 493 

chemisorption. The rate-limiting step was not represented by the intraparticle diffusion alone, as 494 

proved by Weber-Morris equation. Due to ΔG° -21.86, -21.26, -21.18 kJ/mol (293, 303, 313K) 495 

and ΔH° -31.99 kJ/mol < 0, the adsorption system was exothermic and spontaneous. ΔS° -34.82 496 

J/mol.K < 0 suggested a decreased entropy process. Activated biochar showed a best removal (~ 497 

87%) of 4-CP within the pH from 4 to 8. This could be due to the promoted electrostatic forces 498 

between the protonated phenolic -OH group of 4-CP (pKa = 9.3) and the negatively charged 499 

surface of biochar (pHPZC = 2.57). The hydrogen bonding, van der Waals forces, electrostatic 500 

interaction and π-π interaction could represent the mechanism of tested system.   501 

Shou & Qiu (2016) studied the kinetics of phenol adsorption onto wheat straw/H3PO4 502 

AC. PSO kinetic model exhibited high R2 0.9974 relative to R2 of 0.8998 and 0.8381 for PFO 503 
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and Elovich models, respectively for the sample of 500 mg/L initial phenol concentration. The 504 

PSO kinetic equation implied that the process was predominated by chemisorption which 505 

involved valency forces through electrons sharing between adsorbent and adsorbate. The 506 

equilibrium was attained at 40 min with an uptake of 270.61 mg/g for the sample of 500 mg/L 507 

initial phenol concentration. The plot of the intraparticle diffusion equation revealed that the rate-508 

limiting step was identified by the pore diffusion along with other mechanism like boundary 509 

layer.  510 

Shahaji et al. (2023) examined the performance of raw wheat straw for the elimination of 511 

nitrate from aqueous solution. The adsorption performance of straw against the NO3
– was within 512 

the range from 22 % to 53 %. The best result was reported at contact time = 3 h, straw amount = 513 

3 g, and inlet nitrate amount = 700 mg/L. Langmuir equation well applied to describe the 514 

adsorption isotherm (R2 0.71), suggesting a monolayer adsorption on homogeneous adsorbent 515 

sites. From the Langmuir equation, the value of qmax was 94.25 mg/g and the value of separation 516 

factor (RL 0.4859) was between 0 and 1 which confirmed favorable adsorption. The enhancement 517 

in straw dosage and inlet nitrate amount improved the nitrate adsorption due the availability of 518 

more binding sites and the existence of more NO3- ions, respectively.    519 

Bifunctional adsorbent in terms of La-Ca-quaternary amine-modified straw was adopted 520 

for adsorption of phosphate and nitrate from nutrient-polluted water (Zhang et al., 2023). The 521 

mechanism of adsorption included electrostatic attraction, ion exchange, inner-layer 522 

complexation, and surface precipitation. Both the Langmuir and Freundlich equations well fitted 523 

the isotherm data of nitrate with R2 > 0.94, which implied the existence of mono- and multi-layer 524 

adsorption. Meanwhile, the Langmuir model (R2 0.960) better correlated the data of phosphate as 525 

compared to the Freundlich equation (R2 0.883), suggesting monolayer adsorption. The 526 
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experimental data of nitrate were well fitted to PSO and PFO kinetic models with R2 > 0.92, 527 

indicating the existence of chemical and physical adsorption. The PSO kinetic equation 528 

(R2=0.954) well fitted the adsorption data of phosphate, confirming the chemisorption. 529 

Phosphate took 8 h to reach adsorption equilibrium, but nitrate reached it in just 3 h. Nitrates 530 

exhibited a strong affinity for the quaternary amine active groups provided by amine  531 

modification, while phosphates adsorbed on the metal-active groups more slowly. The uptake of 532 

nitrate was shown to be rather steady across the pH from 3 to 10, and declined considerably at 533 

pH values below 3 and above 10. In a lower pH solution, more H+ ions were existed which 534 

hindered the attraction of NO3- ions towards the quaternary amine active groups. However, the 535 

more negatively charged adsorbent surface in a higher pH solution (the pH of adsorbent at the 536 

zero-point charge (pHPzc) = 10.81) caused nitrate to be repelled electrostatically. Furthermore, a 537 

large quantity of OH– competed with NO3– for the quaternary amine active sites, which reduced 538 

the adsorption performance. Moreover, La-Ca-MWS demonstrated a high phosphate uptake 539 

(49.5–92.2 mg/g) within a wide range of pH from 2 to 12. 540 

6. Regeneration and reusability of adsorbents  541 

Reusability studies by carrying out multiple adsorption/desorption cycles are necessary to 542 

minimize the cost of the fabrication of adsorbents. An ideal spent/exhausted/used adsorbent must 543 

have both high desorption and adsorption capability for commercial and industrial applications 544 

(Baskar et al., 2022). Alkalis, acids, alcohols, salts, etc. have been applied for regenerating wheat 545 

wastes-based adsorbents loaded with various contaminants, as summarized in Table 5. 546 

Among these, NaOH and HCl were widely applied as eluents. NaOH was better than 547 

several agents in regenerating of exhausted wheat residues-derived adsorbents. For example, Shi 548 

et al. (2022b) investigated the regeneration ability of amine-modified wheat straw loaded with 549 
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nitrate by using different kinds of regents such as NaOH, HCl, and NaCl. Results showed that 550 

0.1M NaOH exhibited a better regeneration performance (93.6%) than 0.1M HCl (87.2%) and 551 

0.1M NaCl (69.1%). The larger regeneration performance of NaOH relative to other agents was 552 

also reported for KMnO4/KOH modified wheat straw biochar loaded with tetracycline (Xu et al., 553 

2022), KMnO4 activated wheat straw biochar loaded with tetracycline (Huang et al., 2023), 554 

perchloric acid modified wheat husk loaded with acid orange 10 (Banerjee et al., 2016). 555 

Moreover, exhausted wheat based adsorbents regenerated with NaOH exhibited a slight decrease 556 

in their performance within high regeneration cycles. In this context, a slight decrease in removal 557 

percentage of 2,4-D herbicide (2.18%) was reported for the H2SO4 modified wheat husks 558 

regenerated by 0.5M NaOH within 5 cycles (Franco et al., 2021).  Also, Ogata et al. (2020) 559 

showed that the calcined wheat bran loaded with Cr(VI) could be regenerated by 1M NaOH with 560 

only 1% decrease in regeneration performance within 5 cycles. Tian et al. (2011) used 0.1 M 561 

NaOH for the desorption of arsenic from magnetic (Fe3O4) wheat straw at 30 °C for 3 h. After 10 562 

recycling times, the removal efficiency of arsenic was still higher than 80%. Thus, this material 563 

would be useful in practical industrial applications. 564 

HCl was applied for desorption of pollutants from exhausted wheat-based adsorbents. 565 

Nzediegwu et al. (2021) showed that 0.1M HCl eluent exhibited high regeneration performances 566 

of 92% and 100% for Pb(II) loaded wheat straw biochar and hydrochar, respectively. The 567 

findings showed that Pb(II) would be stable on the adsorbents in an almost neutral medium but 568 

would become much less stable in an acidic medium. Moreover, 0.1M HCl could efficiently 569 

regenerate Pb(II) loaded adsorbents, as opposed to deionized water. Another team (Shi et al., 570 

2022b) reported that 0.1M HCl could exhibit a regeneration performance of 87.2% for amine 571 

modified wheat straw loaded with nitrate. Qi et al. (2023) showed that the largest desorption 572 
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efficiencies of wheat straw biochar were 96.07%, 76.17%, and 56.22% for Cd2+, Cu2+, and Pb2+, 573 

respectively using 2M HCl. Sodkouieh et al. (2023) showed that 0.01M HCl was better than 574 

0.01M NaCl and distilled water for the regeneration of methylene blue loaded 575 

NaOH/monochloro acetic acid modified wheat straw. The reported regeneration performance of 576 

0.01M HCl was 84.8%. Zhang et al. (2020a) showed that 0.2M HCl was able to regenerate Pb(II) 577 

loaded wheat bran/NaOH AC with high adsorption performance of about 99% at the first 578 

regeneration cycle and only 4% decrease in adsorption performance within 4 cycles. HNO3 was 579 

also used as a regenerating agent. Wheat straws loaded with the Cr(III) ions were regenerated 580 

with 0.1 M HNO3 solution (Chen et al., 2020a). There was no significant change (46.875-44.0 581 

mg/g within 10 cycles) in the uptake of metal ions during the frequently recycling experiments, 582 

suggesting the effective reusability of adsorbent. Zhang et al. (2018c) showed that the 583 

regeneration performance was in the order HNO3 ˃ NaNO3 ˃ H2O for wheat straw biochar 584 

loaded with Hg(II).  585 

Alcohols like methanol and ethanol were also applied as eluents for the regeneration 586 

purpose. Zhang et al. (2018a) used methanol for the regeneration of montmorillonite-wheat straw 587 

derived biochar composite loaded with norfloxacin. The regeneration performance was 86.8% at 588 

the first cycle and a slight decrease of 0.3% was reported in the regeneration performance within 589 

5 cycles. H-bond between methanol and norfloxacin was stronger, which resulted in an easy 590 

elimination of norfloxacin. Wang et al. (2016) also tested the regeneration of wheat straw- based 591 

biochar loaded with atrazine using methanol. The uptake of atrazine by biochar was reduced 592 

from 31.2 mg/g to 22.3 mg/g within 3 regeneration cycles. Thus, 72% of adsorbent performance 593 

was retained after 3 times regeneration with methanol. Shi et al. (2022a) showed that ethanol and 594 

methanol were effective with high performances of 92.86% and 83.31% in regenerating ZnCl2 595 
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activated wheat straw-derived biochar loaded with bisphenol A. For regeneration by ethanol, the 596 

adsorbent performance was 98.3 mg/g at the first cycle and dropped to 82.8 mg/g at the fifth 597 

cycle. The highest regeneration efficiency of ethanol was due to its ability to weaken the π-π 598 

interaction and hydrogen bonding between the adsorbate and adsorbent. Zhang et al. (2018b) 599 

reported that the use of ethanol (75 vol%) showed a maximum regeneration performance of 600 

78.68% for the CTAB surfactant- modified wheat bran loaded with acid red 18 dye.   601 

Other eluents were also included in the literature. Mehdinejadiani et al. (2019) used NaCl 602 

saturated solution for the desorption of nitrate from silane/octane treated wheat straw. NaCl was 603 

able to recover about 97.3% of the loaded nitrate and the removal percentage of nitrate was 604 

slightly decreased by about 2.4% within five regeneration cycles. This could be attributed to the 605 

insignificant weight loss of adsorbent during the regeneration process. Chen et al. (2020a) 606 

regenerated the Cr(VI)-loaded wheat straws with 1 M KOH Solution. Within 10 cycles, the q 607 

values for Cr(VI) decreased from 80.625 to 76.875 mg/g during the regeneration of Cr(VI) 608 

loaded wheat straw by 1M KOH. Thus, there was no significant change (3.75 mg/g) in the 609 

adsorption capacities during the frequent regeneration, confirming the effective reusability of the 610 

straws. Zhang et al. (2023) showed that the adsorption performance of La-Ca-quaternary amine 611 

(trimethylamine)-treated wheat straw against nitrate and phosphate was greater than 85% (~87 612 

%) after nine regeneration cycles with a 10 % NaOH–NaCl mixture. This adsorbent could be 613 

practically applied in the elimination of inorganic anions from water. 614 

From the above discussion, it can deduce that wheat residues-based adsorbents can be 615 

efficiently regenerated by different agents, and frequently utilize for removal of various aquatic 616 

contaminants. The most widely adopted eluents for regeneration purpose are NaOH and HCl. 617 

Thus, these adsorbents will be useful for practical and economic applications.  618 
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7. Conclusions and future prospects   619 

Wheat residues-based adsorbents in their raw and modified forms against various aquatic 620 

contaminants have been reviewed. The most used residues were straws followed by brans, husks, 621 

and stalks. Moreover, the most applied wheat residues-based adsorbents were in the forms of 622 

chemically modified and biochar followed by raw, activated carbon, composite, and hydrochar. 623 

In general, the modified adsorbent forms exhibited enhanced performances relative to 624 

unmodified or pristine form. The enhancement could be attributed to the development in 625 

functionality with or without improvement in pore properties. Most of the collected data were 626 

related to methylene blue and malachite green dyes, lead, chromium, and copper metal ions, and 627 

tetracycline antibiotic along with inorganic anions in terms of phosphate and nitrate. The 628 

maximum adsorbed amounts of these contaminants were 448.20, 322.58, and 578.13 mg/g for 629 

lead, chromium, and copper, 1374.6 and 1449.4 mg/g for methylene blue and malachite green, 630 

and 854.75, 179.21, and 107.77 mg/g for tetracycline, phosphate, and nitrate, respectively. The 631 

adsorbents performance mainly dependent on inlet pollutant amount, adsorbent dose, solution 632 

pH, temperature, and contact time. PSO kinetic and Langmuir/Freundlich isotherm equations 633 

well fitted the adsorption data in most of the studies. Temkin, Sips, Redlich-Peterson and Liu 634 

isotherm equations as well as PFO, IPD, Elovich, and Avrami kinetic equations are also 635 

indicated in some cases. The adsorption mechanism included a variety of interaction steps like 636 

complexation, electrostatic attraction, precipitation, cation exchange, H-bonding, π-π interaction, 637 

etc. The studied systems obeyed endothermic/ exothermic, spontaneous, and favorable natures. 638 

NaOH and HCl were widely and efficiently applied as regenerating agents. For future prospects, 639 

the practical application of wheat residues-based adsorbent against real wastewaters and the cost 640 

analysis for the synthesis and utilization of these materials need to be considered. Moreover, 641 
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preparing other adsorbents from wheat residues like ash, silica, zeolite, etc. and exploring the 642 

remediation of other pollutants like oils, surfactants, etc. are also need to be studied.  643 
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Copyright 2023 Springer). 1131 

Fig. 4. Possible interaction mechanisms for lead(II) adsorption by a) wheat straw biochar and b) 1132 
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adsorption onto various wheat residues-based adsorbents.  1141 
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Table 1. Lignocellulosic content of various wheat residues. 
 

 

 

 

 

 

 

 

 

 

 

Wheat residue     Cellulose (%) Hemicellulose (%) Lignin (%) Reference   

Wheat straw 45.32 19.89 12.49 (Chen et al., 2020) 

Wheat straw 43.10 29.02 19.31 (Pirbazari et al., 2016) 

Wheat husk 37.00 16.54 17.20 (Franco et al., 2021) 

Wheat husk 36.0 18.0 16.0 (Mirjalili et al., 2011) 

Wheat bran  17.30 51.80 10.70 (Fricler et al., 2023) 

Wheat bran  32.1 29.2 16.4 (Zhang et al., 2018) 

Wheat stalk  37.48 26.02 14.75 (Kumar & Prakash, 2023) 

Wheat stalk  43.5 34.4 18.3 (Li et al., 2018) 
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Table 2. Maximum uptakes and the best applied isotherm/kinetic model of synthetic dyes 

adsorption onto various wheat residues-based adsorbents.   

 

Adsorbent   Synthetic dye   qmax  

(mg/g) 

Isotherm Kinetic   Reference   

Citric acid modified WS Methylene blue 450.0 Langmuir, 

Freundlich  

PSO (Han et al., 2010)  

NaOH/Fe3O4 modified WS Methylene blue  1374.6 Freundlich  PFO (Pirbazari et al., 2014)  

Phytic acid modified WS Methylene blue 220.9 Langmuir  PSO (You et al., 2016)  

Polymer modified WS Methylene blue  115 - PSO (Lin et al., 2017) 

Perchloric acid modified WH Methylene blue 4.23 Langmuir PSO (Banerjee  et al., 2014)  

Raw WS Methylene blue  45.9 Langmuir - (Ben’ko & Lunin, 2018)  

Biomass fly ash/WS biochar composite  Methylene blue  854.75 Freundlich  PSO (Li et al., 2023)  

NaOH/monochloroacetic acid modified WS Methylene blue  191.427 Langmuir  PSO (Sodkouieh et al., 2023)  

NaOH modified WS Methylene blue  131.123 Langmuir  PSO (Sodkouieh et al., 2023)  

Cinnamic acid modified WH biochar  Methylene blue  427.35 Langmuir PSO (Habiba et al., 2022)   

NaOH modified WS Methylene blue  85.470 Langmuir  PSO (Laidani et al., 2019)  

Raw WS Methylene blue  172.414 Langmuir  PSO (Pirbazari et al., 2016)  

Tartaric acid modified WB Methylene blue  

 

25.18 

 

Langmuir, 

Freundlich 

PSO (Yao et al., 2012)  

WS biochar  Malachite green  1449.4 Langmuir  PSO (Yang et al., 2019)  

WB biochar  Malachite green  1301.9 Langmuir  PSO (Yang et al., 2019)  

WB/H2SO4 carbon  Malachite green  69.0 Langmuir  PSO (Mukwa et al., 2017)  

NaOH/carbon disulphite modified WB 

carbon  

Malachite green  112.9 Langmuir  PSO (Dhami & Homagai, 2020)  

Raw WH Malachite green  2.344 Langmuir  PSO (Mohamed et al., 2019)  

Raw WB Methyl orange  19.85 - PSO, 

PFO 

(Alzaydien, 2015)  

Quaternary ammonium modified WS Methyl orange  350.9 Langmuir  PSO (Zhang et al., 2012)  

Amine/NaOH modified WS Methyl orange  304.2 Langmuir, Sips, 

Redlich-Peterson   

PSO (Aliabadi et al., 2018)  

CTAB surfactant modified WS Congo red  71.2 Langmuir  PFO (Zhang et al., 2014a)  

Raw WH  Congo red 38.61 Langmuir PSO (Sabah & Alwared, 2019)  

Raw WB Crystal violet  116.94 Langmuir  PSO (Haq et al., 2021)  

Gemini surfactant modified WB 

 

Acid red 18 67.24 

 

Langmuir PSO (Zhang et al., 2017)  

Gemini surfactant modified WB 

 

Acid orange 7 85.12 

 

Langmuir PSO (Zhang et al., 2017)  

Sodium bicarbonate modified WB Acid orange 7 92.64 Freundlich  PSO (Mohammadi et al., 2021)  

Gemini surfactant modified WB 

 

Acid black 1 83.51 

 

Langmuir PSO (Zhang et al., 2017)  

Polymer modified WS Orange II  506 - PSO (Lin et al., 2017) 

CTAB surfactant modified WB Acid red 18 65.41 Langmuir PSO (Zhang et al., 2018b)  
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WS: wheat straw, WB: wheat bran, WH: wheat husk, PFO: pseudo-first order, PSO: pseudo-second order  

FeCl3 modified WS hydrochar  Rhodamine B 80 Langmuir, 

Freundlich  

PSO (Kohzadi et al., 2023)  

MgCl2/NaOH modified WS biochar  Directly frozen 

yellow  

205.5 Langmuir  - (Zhang et al., 2014b) 

HCIO4 modified WH Reactive yellow 

15 

5.3561 Langmuir  - (Mirjalili et al., 2011)  

Quaternary ammonium modified WS Acid green 25 952.3 Langmuir  PSO (Zhang et al., 2012)  

Raw WS  Basic yellow 21 71.43 Temkin  PSO (Hassanein &  Koumanova, 

2010)  

Raw WB Coomassie 

brilliant blue  

6.410 Langmuir PSO (Ata et al., 2012)  

WH (soaked in HNO3) Reactive blue 19 2.336 Langmuir, 

Freundlich   

- (Vasu et al., 2019)  

WH (soaked in HNO3) Reactive red 195 2.100 Langmuir, 

Freundlich   

- (Vasu et al., 2019)  

Perchloric acid modified WH Acid orange 10 

 

31.29 

 

Freundlich PSO (Banerjee et al., 2015)  
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Table 3. Maximum uptakes and the best applied isotherm/kinetic model of heavy metal 

ions adsorption onto various wheat residues-based adsorbents.            .             

 

Adsorbent   Heavy metal    qmax  

(mg/g) 

Isotherm Kinetic   Reference   

WS biochar  Pb(II) 251.71 Langmuir PSO (Qi et al., 2023)  

WS biochar  Pb(II) 17.95 Langmuir  PSO (Wang et al., 2022) 

Amino modified WS biochar  Pb(II) 46.84 Langmuir  PSO (Wang et al., 2022) 

WS biochar  Pb(II) 134.68 - - (Cao et al., 2019a)  

Raw WS  Pb(II) 46.33 - - (Cao et al., 2019a)  

Acetic acid modified WB Pb(II) 13.31 Langmuir  PSO (Xing et al., 2013) 

WS biochar  Pb(II) 80.19 Langmuir  IPD (Zhang  et al., 2022)  

Raw WB Pb(II) 1.667 Langmuir, 

Freundlich   

PSO (Ogata et al., 2014)  

WS/ZnCl2 biochar  Pb(II) 149.701 Langmuir  PSO (Mu et al., 2018a)  

WS biochar  Pb(II) 157.95 - - (Cao et al., 2019b)  

WS/steam activated biochar   Pb(II) 125.0 Freundlich PSO (Kwak et al., 2019)  

WS biochar  Pb(II) 109.0 Freundlich PSO (Kwak et al., 2019)  

WB/NaOH activated carbon  Pb(II) 448.2 Langmuir  PSO (Zhang et al., 2020a)  

WS biochar  Pb(II) 

 

68.44 

 

Temkin, 

Freundlich 

PSO (Nzediegwu et al., 2021)  

WS hydrochar  Pb(II) 

 

9.94 

 

Freundlich PSO (Nzediegwu et al., 2021)  

Magnetic Fe3O4 WL biochar  Pb(II) 179.85 Langmuir, 

Freundlich  

PSO (Li et al., 2020) 

WL biochar  Pb(II) 160.39 Langmuir, 

Freundlich  

PSO (Li et al., 2020) 

WS biochar  Pb(II) 134.68 - - (Cao et al., 2019b) 

Raw WS  Pb(II) 46.33 - - (Cao et al., 2019b) 

Magnetic Fe2O3 WS biochar  Pb(II) 196.91 Freundlich  PSO (Zhao et al., 2019) 

Raw WS Pb(II) 0.38 Langmuir  PSO (Anis et al., 2013) 

WS biochar  Pb(II) 35.95 - PSO, 

Elovich 

(Wang et al., 2011)  

Lactic acid modified WS Pb(II) 51.49 Langmuir PSO (Mu et al., 2018b) 

Magnetic Fe3O4 modified WS Pb(II) 50.76 Langmuir  PSO (Haghighat & Ameri, 2016) 

Raw WS Pb(II) 41.15 Langmuir  PSO (Haghighat & Ameri, 2016) 

Raw WS Pb(II) 41.60 Langmuir  - (Ameri et al., 2014) 

Amine crosslinked WS Cr(VI) 295.34 Langmuir  - (Xu et al., 2011a)  

Diethylenetriamine modified WS Cr(VI) 322.58 Freundlich   PSO (Chen et al., 2010)  

WS carbon  Cr(VI) 21.34 Freundlich PSO (Wang et al., 2010) 

Raw WS Cr(VI) 125.6 Langmuir  PSO (Chen et al., 2020a)  
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Tartaric acid modified WB Cr(VI) 23.918 Freundlich  - (Kaya et al., 2014)  

Raw WB Cr(VI) 1.206 Freundlich  - (Kaya et al., 2014)  

WS biochar  Cr(VI) 97% - PSO (Wang et al., 2023a)  

WS carbon  Cr(VI) 

 

21.34 

 

Freundlich PSO (Wang et al., 2010)  

Amphoteric (amino/acid) WS Cr(VI) 227.3 Langmuir  - (Zhong et al., 2013) 

Raw WS Cr(VI) 30.94 Langmuir  - (Zhong et al., 2013) 

Calcined WB Cr(VI) 29.3 Freundlich  PSO (Ogata et al., 2020) 

Raw WB Cr(VI) 4.2 Freundlich  PSO (Ogata et al., 2020) 

KOH activated WS biochar  Cr(VI) 96.082 Freundlich  PSO, 

Elovich  

(Jamil et al., 2023) 

WS biochar  Cr(VI) 42.0 Langmuir  PSO (Ali et al., 2020) 

WL biochar  Cr(VI) - - PFO (Liu et al., 2022a) 

Raw WS Cr(III) 68.9 Langmuir  PSO (Chen et al., 2020a)  

Polyethylenimine modified WS Cu(II) 54.4 Freundlich  Elovich (Dong et al., 2019) 

Citric acid modified WS Cu(II) 55.42 Langmuir, 

Freundlich 

PSO (Han et al., 2010) 

NaOH modified WS Cu(II) 10.680 Freundlich PSO (Guo et al., 2016)  

Raw WS Cu(II) 10.238 Freundlich PSO (Guo et al., 2016)  

WS biochar  Cu(II) 578.13 Langmuir PSO (Qi et al., 2023)  

Iron K2FeO4 modified WL biochar  Cu(II) 

 

46.849 

 

Langmuir  PSO (Yan et al., 2022)  

Raw WS Cu(II) 4.3 Langmuir  PSO (Gorgievski et al., 2013) 

Amphoteric (amino/acid) WS Cu(II) 73.53 Langmuir  - (Zhong et al., 2013) 

Raw WS Cu(II) 16.01 Langmuir  - (Zhong et al., 2013) 

Raw WS Cu(II) 0.58 Langmuir  PSO (Anis et al., 2013) 

Raw WH Cu(II) 3.97 Freundlich  Elovich (Liu et al., 2012) 

Amino modified WS biochar  Cu(II) 19.79 Langmuir  PSO (Wang et al., 2022) 

WS biochar  Cu(II) 8.86 Langmuir  PSO (Wang et al., 2022) 

Nano-chlorapatite modified WH biochar  Cd(II) 183.486 Langmuir  PSO (Yuan et al., 2023)  

WH biochar  Cd(II) 4.209 Langmuir  PSO (Yuan et al., 2023)  

Raw WB Cd(II) 0.667 Langmuir, 

Freundlich   

PSO (Ogata et al., 2014)  

WS biochar  Cd(II) 215.55 Langmuir PSO (Qi et al., 2023)  

WS biochar  Cd(II) 32.57 Langmuir  PSO (Bogusz et al., 2017)  

Sulfur CS2 modified WS biochar  Cd(II) 41.376 Langmuir  PSO (Chen  et al., 2020b)  

WS biochar  Cd(II) 33.410 Langmuir  PSO (Chen  et al., 2020b) 

Raw WS Cd(II) 8.577 Langmuir, 

Freundlich  

- (Coelho et al., 2016) 

Urea modified WS Cd(II) 39.22 Langmuir  PSO (Farooq et al., 2011) 
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 WS: wheat straw, WB: wheat bran, WH: wheat husk, WL: wheat stalk, PFO: pseudo-first order, PSO: pseudo-second order, 

IPD: intraparticle diffusion  

 

Raw WS Cd(II) 4.25 Freundlich  PSO (Farooq et al., 2011) 

Raw WS Cd(II) 31.546 Langmuir  PSO (Dutta et al., 2016) 

Amino modified WS biochar  Cd(II) 10.37 Langmuir  PSO (Wang et al., 2022) 

WS biochar  Cd(II) 4.74 Langmuir PSO (Wang et al., 2022) 

Ethanol/NaOH modified WS Cd(II) 14.27 Langmuir, Temkin PSO (Wu et al., 2019) 

WS biochar  Ni(II) 25.06 Freundlich  - (Shen et al., 2017)  

WS biochar  Ni(II) 17.67 Langmuir  PSO (Bogusz et al., 2017)  

Raw WS Ni(II) 2.5 Langmuir  PSO (Gorgievski et al., 2013) 

Raw WS Zn(II) 3.6 Langmuir  PSO (Gorgievski et al., 2013) 

WS biochar  Hg(II) 5.85 Langmuir  PSO (Zhang et al., 2018c)  

Fe3O4 magnetic WS As(V) 8.062 Langmuir - (Tian et al., 2011)  

Fe3O4 magnetic WS As(III) 3.898 Langmuir - (Tian et al., 2011) 

Calcined WB 

 

Pt(IV) 22.0 

 

Langmuir, 

Freundlich     

PSO (Ogata et al., 2022)  

Raw WB Pt(IV) 6.74 

 

Langmuir, 

Freundlich     

PSO (Ogata et al., 2022) 

WB-titanium oxide composite  Se(VI) 3.79 Langmuir PSO (Li et al., 2021)  
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Table 4. Maximum uptakes and the best applied isotherm/kinetic model of other 

contaminants adsorption onto various wheat residues-based adsorbents.             

 

Adsorbent   Pollutant   qmax  

(mg/g) 

Isotherm Kinetic   Reference   

KMnO4/KOH modified WS biochar  Tetracycline  584.19 Langmuir  PSO (Xu et al., 2022) 

Lignin modified WL biochar  Tetracycline  31.48 Langmuir  PSO (Xiang et al., 2022)  

Zirconium modified WS  Tetracycline  80.6 - PSO (Wang et al., 2021)  

MOFs/WS biochar composite  Tetracycline  854.75 Freundlich  PSO (Li et al., 2023)  

KOH activated WS biochar  Tetracycline  222.2 Langmuir, 

Freundlich, 

Temkin  

PSO (Liu et al., 2022b)  

WS biochar  Tetracycline  75.76 Langmuir, 

Freundlich, 

Temkin  

PSO (Liu et al., 2022b) 

Montmorillonite- WS biochar  composite   

 

Norfloxacin  25.53 

 

Langmuir    - (Zhang  et al., 2018a)  

WS biochar  Norfloxacin  10.58 

 

Langmuir    - (Zhang  et al., 2018a) 

Iron (K2FeO4) modified WL biochar   Sulfadiazine  45.431 Freundlich  PSO (Yan et al., 2022)  

H2SO4 modified WB  Tylosin  61.61 Temkin, Langmuir  PSO (Sarrai et al., 2022)  

Raw WS  Cefradine  

 

39.5 

 

Freundlich - (Deng et al., 2019)  

WS biochar  Sulfamethazine  

 

18.282 

 

Langmuir, 

Freundlich  

- (Yang et al., 2020)  

Amine modified WS  Nitrate  77.0 Freundlich   - (Shi et al., 2022b)  

Ca-La-trimethylamine modified WS Nitrate  72.89 Langmuir PSO (Zhang et al., 2023)  

Raw WS  Nitrate  94.25 Langmuir  - (Shahaji  et al., 2023)  

Silane/octane modified WS  Nitrate  47.95 Langmuir GO (Mehdinejadiani  et al., 

2019)  

KMnO4 activated WS biochar  Nitrate  107.77 Freundlich  PSO (Huang  et al., 2023)  

WS biochar  Nitrate  32.12 Freundlich  PSO (Huang  et al., 2023) 

Amine crosslinked WS Phosphate  162.40 Langmuir  - (Xu et al., 2011a)  

Ca-La-trimethylamine modified WS Phosphate   86.97 Langmuir PSO (Zhang et al., 2023)  

Mg/Fe doped WS biochar  Phosphate  179.21 Langmuir, 

Freundlich  

PSO, 

PFO 

(Wang et al., 2023b)  

Amine crosslinked WS Phosphate  60.61 Langmuir  - (Xu et al., 2011b) 

Dimethyl diallyl ammonium chloride 

modified WS 

Phosphate  8.43 Freundlich   PSO (Ma et al., 2011) 

Dimethyl diallyl ammonium chloride 

modified WS 

Ammonium  85.47 Langmuir, 

Freundlich   

PSO (Ma et al., 2011)  

FeCl3/HCl modified WS biochar  Ammonium  99.6 Langmuir  PSO, 

PFO 

(Wang et al., 2020)  

WS biochar  Ammonium  85.1 Langmuir  PSO, 

PFO 

(Wang et al., 2020) 

WS biochar  Ammonium  2.08 Redlich-Peterson  PSO (Yang et al., 2018)  
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WS: wheat straw, WB: wheat bran, WH: wheat husk, WL: wheat stalk, PFO: pseudo-first order, PSO: pseudo-second 

order, IPD: intraparticle diffusion, GO: general order  

MgCl2/CeCl2 modified WS biochar  Phosphorus  13.0 Langmuir PSO (Pan et al., 2023) 

Triethylamine modified WS Perchlorate  119.0 Langmuir  PSO (Tan  et al., 2012)  

Raw WS  Fluoride  

 

1.93 

 

Freundlich  PSO (Yadav et al., 2013)  

Raw WS  Sodium ion  48.08 Langmuir  PSO (Rasouli  et al., 2020)  

H2SO4 modified WH  2,4-D herbicide  140.2 Liu Avrami  (Franco et al., 2021) 

KOH modified WS carbon  2,4-D herbicide  1.015 Langmuir  - (Tefera & Tulu, 2021)  

LiNO3-functionalized WS biochar  Atrazine  272.07 Freundlich  IPD (Yang et al., 2017)  

WS biochar  Atrazine  61.37 Langmuir  IPD (Yang et al., 2017)  

WS biochar  Atrazine  

 

20.161 

 

Langmuir  PSO (Wang et al., 2016)  

WS/H3PO4 activated carbon  Phenol  285.71 - PSO (Shou & Qiu, 2016)  

ZnCl2 modified WS biochar  4-Chlorophenol  111.02 Langmuir, 

Freundlich   

PSO (Shen et al., 2021)  

ZnCl2 activated WS hydrochar  Bisphenol A 909.1 Langmuir  PSO (Shi et al., 2022a) 

WS biochar  Bisphenol A 625.0 Langmuir  PSO (Shi et al., 2022a) 

WS/KOH activated carbon  Diphenolic acid  264.90 Langmuir  PSO (Alrowais et al., 2023)  
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Table 5. Regeneration results of wheat residues- based adsorbents loaded with different 

contaminants. 

Adsorbent   Pollutant    Eluent  No. of 

cycles  

Drop in capacity or  

removal % 

Ref.  

Montmorillonite-WS biochar 

composite 

Norfloxacin  Methanol  5 86.8-86.5% (Zhang et al., 2018a)   

Raw WB Pt(IV) NaOH, HNO3, 

HCl (0.5 or 

1M) 

1 59.3 or 64.5%, 

56.4 or 59.3%, 

59.9 or 64.0% 

(Ogata et al., 2022)  

Polyethylenimine modified WS Cu(II) 0.1M HCl  3 <70%-˃60% (Dong et al., 2019)  

Amine modified WS Nitrate  HCl, NaCl, 

NaOH (0.1M) 

1 87.2, 69.1, 93.6% (Shi et al., 2022b) 

Zirconium modified WS  Tetracycline  0.1 M HCl 3 60.3-45.2% (Wang et al., 2021) 

NaOH/Fe3O4 modified WS  Methylene blue  Deionized 

water  

1 9.0-12.0% (Pirbazari et al., 2014)   

Fe3O4 magnetic WS As(V) 0.1 M NaOH 10 100-91% (Tian et al., 2011)  

Phytic acid modified WS Methylene blue  0.1M HCl 4 93.4-68.5% (You et al., 2016) 

ZnCl2 activated WS hydrochar  Bisphenol A Ethanol  5 98.3-82.8% (Shi et al., 2022a) 

Ca-La-trimethylamine modified WS Nitrate  10% 

NaCl+NaOH 

9 46.88-40.0 mg/g 

 

(Zhang et al., 2023)  

Ca-La-trimethylamine modified WS Phosphate   10% 

NaCl+NaOH 

9 79.8-70.2 mg/g 

 

(Zhang et al., 2023)  

CTAB surfactant modified WS Congo red  0.1 M NaOH 3 78.4-54.1%  (Zhang  et al., 2014a)  

Raw WB Molybdenum  1 or 0.1M 

NaOH 

1 95.0 or 94.2% (Ogata et al., 2018)  

ZnCl2 modified WS biochar  4-Chlorophenol  DI water+ 

peroxydisulfate  

4 94.0-81.67% (Shen et al., 2021)  

H2SO4 modified WH 2,4-D herbicide  0.5 M NaOH 5 47.57-45.39% (Franco et al., 2021) 

CTAB surfactant modified WB Acid red 18 Ethanol 

(75vol%) 

1 78.68% (Zhang et al., 2018b) 

FeCl3 modified WS hydrochar  Rhodamin B H2O (pH 6) 3 4.55-2.55% (Kohzadi  et al., 2023)  

Raw WB Cd(II) 0.01M HCl,  

0.01M HNO3 

4 17.9-4.2 mg/g,  

17.9-4.3 mg/g  

(Ogata et al., 2014) 

Raw WB Pb(II) 0.01M HCl,  

0.01M HNO3 

4 27.5-14.9 mg/g, 

27.5-13.3 mg/g 

(Ogata et al., 2014) 

Raw WS Cr(VI) 1M KOH 10 80.625-76.875 mg/g (Chen  et al., 2020a) 

Raw WS Cr(III) 0.1M HNO3 10 46.875-44.0 mg/g (Chen  et al., 2020a) 

WS biochar  Hg(II) 0.01M HNO3 1 31.5% or 1.03 mg/g (Zhang  et al., 2018c)  

Raw WS Sodium ion  0.1 M HCl 5 89.89-52.38% (Rasouli  et al., 2020)  
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WS: wheat straw, WB: wheat bran, WH: wheat husk, WL: wheat stalk  

MgCl2/NaOH modified WS biochar  Directly frozen 

yellow  

0.01M NaOH 1 55.2% (Zhang et al., 2014b)   

Tartaric acid modified WB  Cr(VI) 0.5 M HCl 1 80% (pH 7),  

99% (pH 14) 

(Kaya  et al., 2014)  

Silane/octane modified WS Nitrate  NaCl sat. 

solution  

5 85.0-82.6% (Mehdinejadiani  et al., 

2019)  

WS biochar  Pb(II), CdII),  

Cu(II) 

2M HCl 1 56.22, 96.07,  

76.17% 

(Qi et al., 2023)  

WS biochar  Cd(II) 

 

HCl,  

HNO3 

1 70.0, 80.0% 

 

(Bogusz et al., 2017)  

WS biochar  Ni(II) HCl, 

HNO3 

1 99.0, 99.0% (Bogusz et al., 2017)  

WB/NaOH activated carbon  Pb(II) 0.2M HCl 4 99.0-94.9% (Zhang et al., 2020a)  

KMnO4 activated WS biochar  Tetracycline  0.5 M NaOH, 

Methanol, 

Thermal  

3 90.67-80.72%, 

89.62-40.17%, 

90.90-25.71% 

(Huang  et al., 2023)  

WS biochar  Pb(II) 0.1 M HCl,  

Deionized H2O 

1 92.0, 0.4% (Nzediegwu  et al., 

2021)  

WS hydrochar  Pb(II) 0.1 M HCl,  

Deionized H2O 

1 100.0, 15.0% (Nzediegwu  et al., 

2021)  

Iron K2FeO4 modified WL biochar  Cu(II),  

Sulfadiazine  

0.1 M NaOH 3 18-14.375%,  

31.67-24.9% 

(Yan et al., 2022)  

Raw WS Cd(II), Cu(II),  

Pb(II) 

 

0.01 M NaNO3 1 8.7, 17.9, 5.0% (Coelho et al., 2016) 

Quaternary ammonium modified WS Methyl orange,  

Acid green 25 

Deionized 

water  

1 22.2, 14.7% (Zhang et al., 2012)  

Magnetic WS biochar  Pb(II) HCl 5 32.4-41.7 mg/g (Zhao et al., 2019) 

Calcined WB Cr(VI) 1M NaOH 5 49-48% (Ogata et al., 2020) 

KOH activated WS biochar  Cr(VI) 1M NaOH 4 98.33-48.98% (Jamil et al., 2023)  

NaOH modified WS  Methylene blue  0.01M HCl,  

0.01M NaCl 

5 75.4%,  

17.8% 

(Sodkouieh  et al., 

2023)  

NaOH/monochloroacetic acid modified 

WS 

Methylene blue  0.01M HCl 

0.01M NaCl 

5 84.8%,  

24.6% 

(Sodkouieh  et al., 

2023)  

Amine/NaOH modified WS Methyl orange  Neutral distilled  

water 

1 2% (Aliabadi et al., 2018) 

Amine/NaOH modified WS Methyl orange  0.1M HCl 1 10% (Aliabadi et al., 2018) 

WS biochar  Atrazine  Methanol  3 31.2-22.3 mg/g (Wang et al., 2016)  

Perchloric acid modified WH Acid orange 10 0.1M NaOH 3 ˃80%-<60% (Banerjee et al., 2016)  
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Fig. 1. FTIR spectra of raw WS, NaOH modified MWS, and NaOH/monochloroacetic acid 

modified CMMWS wheat straws. (Reprinted with permission from Ref. (Sodkouieh et al., 2023). 

Copyright 2023 Springer). 

 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



 

Fig. 2. SEM images of (a) wheat straw biochar WSBC (b) KOH activated biochar WSKOHdry 

1:3. (Reprinted with permission from Ref. (Jamil et al., 2023). Copyright 2023 Elsevier). 
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Fig. 3. Illustration of the potential mechanism of interaction between MB dye and adsorbents: (a) 

Electrostatic interactions, (b) dipole-dipole H-bonding interactions, (c) Yoshida Hbonding, and 

(d) n-π stacking interactions. (Reprinted with permission from Ref. (Sodkouieh et al., 2023). 

Copyright 2023 Springer). 
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Fig. 4. Possible interaction mechanisms for lead(II) adsorption by a) wheat straw biochar and b) 

wheat straw hydrochar. (Reprinted with permission from Ref. (Nzediegwu et al., 2021). 

Copyright 2021 Elsevier). 
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Fig. 5. Scheme of the possible mechanism for tetracycline TC adsorption on KMnO4 activated 

wheat straw biochar Mn-BC. (Reprinted with permission from Ref. (Huang et al., 2023). 

Copyright 2023 Elsevier). 
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