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ABSTRACT 

This paper presents two artificial intelligence (AI)-based 

controllers for grid-forming inverter-based generators in 

a simplified microgrid. The supervised learning approach 

was considered for the AI-based controls. The training 

datasets were collected from an experimentally validated 

virtual synchronous generator controller. The first AI 

model is a convolutional neural network (CNN), and the 

second is a gated recurrent unit (GRU). These two neural 

network types are chosen as they handle short-term 

temporal sequence data, provided as a sliding window of 

measurements. The proposed controllers are tested under 

a black start, load variations, and a three-phase-to-ground 

short circuit at the inverter’s output. Both controllers 

manage to achieve the black start of the inverter, supply 

the power demanded by the load, damp the short circuit 

current during a fault occurrence and recover afterward.  

I. INTRODUCTION 

To reduce greenhouse gas emissions, sources of electricity 
production are diversified, which introduces a high 
penetration of distributed renewable energy resources 
(RES) in electrical grids [1] [2]. The use of such distributed 
generation brings new challenges regarding grid stability 
due to the intermittent nature of RES [3]. Furthermore, 
distributed generation units are mostly inverter-based 
generators (IBG). As they do not provide inertia by default, 
their operation could weaken the stability of distribution 
grids. Thus, new control methods are indispensable for 
guaranteeing the stability of the power system under these 
new conditions. We are referring here notably to grid-
forming controllers. In that category, the main solutions 
are either based on model-based controllers or data-driven 
controllers.  
Concerning model-based approaches, virtual synchronous 
generator (VSG) controllers represent a traditional 
solution [4]. Simplified approaches exist, like virtual 
inertia, for instance, most of the time implementing a 
droop control [5], [6]. Less-traditional forms of controls 
are investigated in the literature as well, like virtual 
oscillators [7] or matching control [8]. Model-based 
controllers are usually restricted to operating in a 
predefined environment and require precise tuning.  
Regarding data-driven approaches, numerous methods can 
be found in the literature. Neural networks can be used to 
control a grid-connected inverter under disturbances, 
considering dynamic and power converter switching 
conditions [9]. The virtual inertia of grid-connected 
inverters can be controlled via an adaptive critic design-

based reinforcement approach [10]. Moreover, the inertia 
of a VSG can be controlled with a neural network [11]. For 
instance, reinforcement learning was also considered, to 
achieve a data-driven optimal control strategy of a VSG 
[12]. The aforementioned solutions are either applied to 
the whole grid-following inverters or just to some 
parameters.  
In a previous study [13], we proposed a feedforward neural 
network (FFNN) to control a grid-forming inverter-based 
generator in a microgrid (MG). Although the FFNN has 
demonstrated promising capabilities of conserving the 
frequency and voltage at their nominal values in typical 
load variations, it has also shown weaknesses in capturing 
the extreme dynamics of the controlled system like, for 
instance, damping the short circuit current and recovering 
afterward. This is because the FFNN operates 
instantaneously, meaning that predictions are based on the 
state of the system per time step, without considering 
historical states. The dynamics of the system are thus lost. 
To avoid the complexity of model-based controllers, cover 
the ensemble of the grid-forming unit, and overcome the 
limitations of the instantaneous operation of FFNN, a 
short-term temporal sequence approach is considered in 
this work. The features are represented as short-term 
temporal sequences of measurements, provided via a 
sliding window. As a result, two data-driven models, a 
convolutional neural network (CNN) and a gated recurrent 
unit (GRU) are tested in this paper, as they both can handle 
short-term temporal sequence features, thus can capture 
the dynamics of the system during harsh events like a 
short-circuit. The proposed controllers have thus to 
achieve voltage and frequency control as a grid-forming 
unit, as well as be capable of damping the short circuit 
current in dedicated situations by capturing the temporal 
sequence of the controlled system.   
The paper is organized as follows: the second section 
covers the electrical models. The electrical environment, 
the model-based controller used for data generation, and 
the AI-based controllers’ testing scenarios are described. 
The third section elaborates on the AI-related part. The 
CNN and GRU implementation are described as well as 
their interaction with the electrical environment. The 
obtained results and observations are presented in the 
fourth section. Finally, the paper is concluded and future 
developments are listed in the last section.    

II. ELECTRICAL MODELS  

The electrical aspect of the case study is elaborated in this 

section by explaining the electrical environment, the 

model-based controller used for data collection, and the 

testing scenarios of the proposed AI-based controllers.  
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A. Electrical Environment 

The considered case study, from the electrical point of 

view, is a simplified isolated microgrid (MG), illustrated 

in Figure 1. It is represented by one inverter-based 

generator (IBG) and three loads connected one at a time 

during the simulation. The three loads are located at a 

single point of connection, downstream of the line linking 

them to the IBG.  

 

 
Figure 1. Simplified Isolated Microgrid 

The MG operates in a balanced three-phase mode at the 

low voltage distribution level, i.e., the nominal phase 

voltage is 230 V and the nominal frequency is 50 Hz. The 

dc bus voltage is assumed to be constant.  

B. Data Generation  

Knowing that the adopted data-driven approach is relying 

on supervised learning, the availability of labeled training 

data is key. Thus, data were collected by simulating the 

virtual synchronous generator (VSG), from [4], under 

numerous scenarios. This VSG consists of a linear 

quadratic regulator including an integrator and a state 

observer. This controller is developed to provide high 

robustness during harsh events such as short circuits. Each 

simulated scenario includes the black start of the IBG and 

the occurrence of a three-phase short circuit at its output 

during the supply of the load. The power demand, i.e., 

rating in kW and kVAR, and type of the load, i.e., resistive 

inductive and capacitive, vary from one scenario to the 

other, ensuring the balance of the dataset, yet the black 

start and the short circuit are always present. The generated 

dataset includes the measurements describing the state of 

the inverter and the MG, such as the voltages and currents 

of the MG and the inverter, the active and reactive powers, 

the frequency, and the errors between the RMS phase 

voltage and the nominal value. These measurements 

represent the features (inputs) of the AI-based controllers. 

Furthermore, the generated dataset also includes the 

control signals, meaning that the duty ratios. These control 

signals represent the labels (outputs) of the AI-based 

controllers.    

C. Testing Scenarios 

The AI-based controllers’ capabilities are tested with the 

loads and the events defined in Table 1 and Table 2 

respectively. The proposed controllers are expected to start 

the IBGs, conserve the stability of the simplified MG (i.e., 

fulfill the demand of the connected loads concerning their 

power ratings and types) by maintaining the voltage and 

frequency at their nominal values, and damp the short 

circuit current during the occurrence of a three-phase short 

circuit at the output of the IBG.  

Table 1 describes the three designed loads by including 

their power ratings and types. Load 1 is set to be highly 

capacitive, Load 2 is resistive with small rated power, and 

Load 3 is designed to be highly inductive.  

Load Active 

Power 

(kW) 

Inductive 

Reactive 

Power 

(kVAR) 

Capacitive 

Reactive 

Power 

(kVAR) 

Load 1 15 0 7 

Load 2 1 0 0 

Load 3 15 7 0 
Table 1 Characteristics of the Connected Loads 

The events in Table 2 are chosen to ensure the capability 

of the proposed AI-based controllers in terms of black start 

and load variations, similar to the FFNN in [13]. 

Time (s) Event 

0 Black start and connection of Load 1 (A) 

0.5 Occurrence of a three-phase short circuit 

on the output of the IBG (B) 

0.7 End of the short circuit faulty event (C) 

1 Disconnection of Load 1 and connection of 

Load 2 (D) 

2 Disconnection of Load 2 and connection of 

Load 3 (E) 
Table 2 List of Occurring Events 

The three-phase short circuit event at the output of the IBG 

is considered to challenge the controllers’ capabilities of 

damping the short circuit current and recovering afterward, 

which is not the case with the FFNN [13]. In the end, the 

aforementioned events are designed to test the controllers’ 

abilities to ensure the stability of the MG, by maintaining 

the voltage and frequency at their nominal values, during 

the black start and load variations. Moreover, these events 

are designed to test whether the controllers can physically 

protect the inverter, by damping the short circuit current, 

during the occurrence of the fault. 

III. AI MODELS IMPLEMENTATION 

The integrations of the proposed AI models in the 

electrical environment are identical. Both models 

communicate with the electrical environment via the same 

set of parameters that represent the inputs and outputs of 

the AI-based controllers. The outputs or the control signals 

provided by the AI-based controllers are the duty ratios (in 

the dq-frame).  

The inputs expected by both AI-based controllers are the 

following: voltages and currents of the grid and the 

inverter (in the dq-frame), measured active and reactive 

powers, frequency of the grid, and the RMS voltage errors 

(difference between measured rms voltages and 230 V for 

the three phases).  

In addition to what was implemented in [13], a buffer 

memory is added upstream of the input layer of each AI 

model. The purpose of this buffer is to provide short-term 

temporal sequences of measurements at the inputs of the 
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AI-based controllers. This temporal sequence of 

measurements adds extra stability to the controller, during 

operation, by compensating for any faulty instantaneous 

measurement by the other instants present in the sequence. 

Moreover, the memory buffer acts as a fixed range sliding 

window of inputs, such that at every time step, the oldest 

instantaneous measurement is dropped and the latest is 

added.  

Figure 2 illustrates schematically the implemented control 

policy and the interaction with the electrical environment. 

 
Figure 2. Implemented Control Policy 

A. Convolutional Neural Network 

Convolutional neural networks (CNN) are part of the 

various types of deep learning methods. CNNs are used in 

numerous fields, e.g., image classification, object tracking, 

and speech and natural language processing [14]. 

The CNN provides the capacity of mapping inputs in the 

form of batches, i.e., a batch including a set of 

instantaneous measurements per feature. In our case study, 

the memory buffer provides batches of inputs in the 

following shape: {Batch, number of historical 

instantaneous measurements, number of features}.   

The proposed sequential CNN model consists of 11 layers.  

The first layer represents the input layer, then is followed 

by a normalization layer. The third layer is a convolutional 

one-dimensional layer including 128 filters and followed 

by a one-dimensional max pooling layer. The fifth layer is 

also a 1-D convolutional layer, yet including 64 filters, that 

is followed by a 1-D max pooling layer. The seventh layer 

is the last 1-D convolutional layer. It consists of 32 filters. 

The eighth layer is a flattened layer that prepares the 

outputs of the previous 1-D convolutional layer to fit in the 

ninth layer representing a 64-units dense layer. The tenth 

and eleventh are as well dense layers, including 32 units 

and representing the outputs layer respectively.  

B. Gated Recurrent Unit  

The gated recurrent neural networks have proven 

favorable outcomes in numerous applications including 

sequential or temporal data [15]. As a result, the gated 

recurrent unit (GRU) is the second chosen approach in our 

case study. The addition of the memory buffer upstream of 

the input layer provides the temporal sequences of 

measurements required by the GRU.  

The proposed sequential GRU model includes six layers. 

The first layer corresponds to the input layer. The second 

layer is the normalization layer. The third layer is a GRU 

layer that includes 160 units and returns the sequence to 

the following layer. The fourth layer is also a GRU layer 

including 64 units returning the sequence to the following 

layer. Finally, the fifth layer is a GRU layer with 96 units 

followed by the outputs layer, represented in the form of a 

dense layer.  

IV. RESULTS AND OBSERVATIONS 

The results following the testing of the CNN and the GRU 

models are presented in this section by considering the 

MG’s frequency, MG’s voltage, and IBG’s current 

respectively.  

A. Microgrid Frequency Profiles 

The MG’s frequency profiles of both the CNN and GRU-

based models are illustrated in Figure 3. As shown, both 

controllers are capable of restoring the frequency at its 

nominal value (50 Hz) following the designed events. 

Although both plots are close, the GRU’s frequency 

reaches a slightly higher peak than the CNN, during the 

black start of the IBG and following the elimination of the 

short circuit fault.  

 
Figure 3 Frequency Profiles of CNN vs. GRU 

B. Microgrid Voltage Profiles 

The MG’s voltage profiles of both the CNN and GRU-

based models are illustrated in Figure 4. Since the 

considered simplified MG is a balanced three-phase 

system, only one phase voltage is presented. As shown, 

both controllers are capable of keeping the RMS voltage 

within the acceptable range following the designed events. 

However, the CNN requires extra time to stabilize the 

voltage at the beginning of the event (D).   
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Figure 4 Single-phase rms Microgrid Voltages of CNN vs. GRU 

C. Inverter-Based Generator Current 

Profiles 

The inverters’ current profiles are presented in Figure 5. 

These plots aim at visualizing the CNN and GRU 

controllers’ behaviors during the three-phase short circuit 

fault at the output of the IBGs. As shown, only one phase 

current is presented per controller. The illustrated current 

profiles represent the phases that undergo the highest 

peaks. Although the MG is a three-phase balanced system, 

the balance was temporarily lost, for 0.02 s, at the 

beginning of the fault. Moreover, it is noticed that the 

CNN-based controller damps the short circuit current at 

around 50 A, yet the GRU-based does at slightly higher 

value, at 60 A. It is also seen that both currents are 

undertaking a spike at the beginning of the fault. The spike 

in the CNN case reaches almost 110 A which is lower than 

the GRU’s, with almost 160 A. This spike is to be furtherly 

analyzed, as it might cause physical damage to the 

inverter’s components if not prevented, either via a 

software action or physical saturation for example.  

 
Figure 5 Single-phase rms Inverter Currents of CNN vs. GRU 

One of the solutions to this issue is to replace the actual AI 

approaches with a hybrid data-driven/model-based one, in 

which we will have access to the reference currents of the 

controllers. In the hybrid case, a saturation block would be 

added at the level of the reference currents.  

V. CONCLUSION AND FUTURE 

WORK 

The two AI models, CNN and GRU, presented in this 

paper are trained with labeled datasets collected from 

simulating a virtual synchronous generator (VSG). The 

collected datasets represent the scenarios in which the 

black start of the inverter-based generator (IBG), load 

variations, and occurrence of a three-phase short circuit at 

the output of the IBG take place. Both AI-based controllers 

are implemented to control an inverter in a simplified 

isolated microgrid. Testing is conducted to identify the 

capabilities of each AI model under scenarios including a 

black start, variations of load types and ratings, as well as 

a three-phase short circuit.  

Both proposed approaches can maintain the stability of the 

simplified microgrid, under the events of black start and 

load variations, by restoring the frequency and the voltage 

of the microgrid to their nominal values. Furthermore, both 

controllers cope with the three-phase short circuit fault and 

recover afterward, yet they are undertaking a spike in the 

current profiles during the occurrence of the short circuit 

fault. As a result, considering short-term temporal 

sequences of measurements, implementing a CNN or a 

GRU, is an adequate data-driven solution for controlling a 

grid-forming inverter-based generator under extreme 

dynamics.    

At the electrical environment level, the proposed AI 

models will be tested in a more complex and realistic 

representation of a microgrid, in which multiple AI-

controlled IBGs will be installed supplying multiple loads. 

This will help investigate the limitations and the 

capabilities of the proposed solutions in a more realistic 

manner.   
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