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Abstract18

Heatwaves have devastating impacts on societies and ecosystems. Their frequencies and19

intensities are increasing globally with anthropogenic climate change. Statistical mod-20

els using Extreme Value Theory (EVT) have been used for quantifying risks of extreme21

temperatures but recent very intense events have cast doubt on their ability to repre-22

sent the tail probabilities of temperatures. Using outputs from a large ensemble of a cli-23

mate model, we show that physics-based estimates of the upper-bound of temperatures24

in the mid-latitudes are 3–8°C higher than suggested by EVT-based models. We pro-25

pose a new method to bridge the gap between the physical and statistical estimates by26

forcing the EVT-based models to have an upper bound coherent with the bound pro-27

vided by the instability of the air column. We show that our method reduces the under-28

estimation of tail risks while not deteriorating the performance of the statistical mod-29

els on the core of the distribution of extreme temperatures.30

Plain Language Summary31

The usual application of extreme value theory to determine the probabilities of ex-32

treme temperatures tends to underestimate the risks. We propose a method to reduce33

this underestimation by imposing a physically relevant upper bound estimate based on34

the stability of the air column. The coupling between extreme value theory and physics35

knowledge alleviates many of the shortcomings of usual statistical approaches used in36

heatwave attribution.37

1 Introduction38

Heatwaves and their impacts have been the focus of extensive attention in the con-39

text of global climate change (National Academies of Sciences Engineering and Medicine,40

2016; Pörtner et al., 2022). There is indeed a clear signal pointing towards increasing41

frequency and intensity for these events worldwide (Seneviratne et al., 2021). Human42

bodies (Campbell et al., 2018; Breshears et al., 2021; Huang et al., 2022; Masselot et al.,43

2023), plants (Hatfield & Prueger, 2015; Brás et al., 2021), ecosystems (Bastos et al., 2021)44

and infrastructures (Zuo et al., 2015) have a limited capacity to cope with extreme tem-45

peratures and can suffer large damages once certain thresholds are reached. The capac-46

ity to predict and anticipate future maximum intensities of heatwaves is therefore of pri-47

mary importance for adaptation to climate change.48

A simple way to quantify the risks associated with extreme temperatures is to run49

a long simulation with a climate model to sample more extreme events than those ob-50

served in the past. Apart from the inherent limitations of models to represent correctly51

the entire temperature distribution — especially at its tail (Naveau et al., 2018; Vau-52

tard et al., 2020; Van Oldenborgh et al., 2022; Patterson, 2023; Vautard et al., 2023) —53

this method is limited by the fact that estimating precisely small probabilities requires54

extremely long simulations (Wouters & Bouchet, 2016), which is too costly for most com-55

plex — and therefore realistic — models. Various approaches have been suggested to ad-56

dress this problem, like rare events algorithms (Ragone et al., 2018; Yiou & Jézéquel,57

2020; Ragone & Bouchet, 2021) or ensemble boosting (Gessner et al., 2021; E. M. Fis-58

cher et al., 2023), but, although less costly, they still require extensive climate simula-59

tions.60

An other classical approach is to measure the upper tail probabilities of temper-61

atures distribution — typically the risk of the yearly maximum of daily maximum 2-m62

air temperature reaching a certain level — using results from Extreme Value Theory (EVT).63

EVT is a mathematical theory based on a convergence principle of the probability dis-64

tribution of block maxima (Coles et al., 2001; Beirlant et al., 2005) towards a General-65

ized Extreme Value (GEV) distribution. It has been used to devise statistical models66
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for maxima (or minima) of climate variables of interest (Ghil et al., 2011; Katz et al.,67

2002), such as temperatures. It is extensively used by attribution methods to compare68

the probabilities of reaching extreme levels between a counterfactual world without cli-69

mate change and a factual world with climate change (Hannart & Naveau, 2018; S. Philip70

et al., 2020; Naveau et al., 2020; Kiriliouk & Naveau, 2020; Van Oldenborgh et al., 2021;71

Worms & Naveau, 2022).72

A GEV distribution has three parameters: the location µ, scale σ and shape ξ pa-73

rameters. Fitting such a distribution to extreme temperatures usually gives estimates74

of the shape parameter that are negative (Van Oldenborgh et al., 2022; Auld et al., 2021).75

This implies that the distribution of annual maximum temperatures is bounded upwards76

by a value:77

B(µ, σ, ξ) = µ− σ

ξ
(1)

which depends on the parameters of the distribution. Observing a record temperature78

above this upper bound should then have a null probability, i.e. it should be impossi-79

ble. The upper bound is an important quantity insofar as it provides an ultimate worst80

case scenario for societal adaptation (Palmer, 2002; Fischbacher-Smith, 2010; Scher et81

al., 2021). An underestimation of this quantity may therefore have daunting consequences82

in impact studies.83

Recent intense heatwaves such as in 2010 in Russia (Di Capua et al., 2021), 201984

in Western Europe (Mitchell et al., 2019) and 2021 in the Pacific Northwest (S. Y. Philip85

et al., 2021; Thompson et al., 2022) have nonetheless challenged the reliability of the es-86

timation of the statistical upper bound by breaking it sometimes by a large margin (E. Fis-87

cher et al., 2021). Several issues indeed arise when applying EVT to empirical data: the88

pre-asymptotic nature of these data (Gomes, 1984; Coles et al., 2001), the parametric89

hypotheses made for taking into account the non-stationarity induced by global warm-90

ing and the limited number of points to fit the distribution. For extreme temperatures,91

the latter is probably the most problematic insofar as one usually has no more than 70-92

80 historical years to fit a GEV distribution. The mis-specification of the statistical GEV93

model, upper bound included, may therefore lead to an underestimation of the tail risks94

of very intense events (Diffenbaugh, 2020; Zeder et al., 2023).95

The physical mechanisms leading to heatwaves in the mid-latitudes occur at var-96

ious spatial and temporal scales (Perkins, 2015; Horton et al., 2016; Domeisen et al., 2022;97

Barriopedro et al., 2023). In the mid- and upper-level troposphere, these events are as-98

sociated to a quasi-stationary high-amplitude Rossby wave (Petoukhov et al., 2013) which99

can be embedded in a hemispheric pattern (Coumou et al., 2014; Kornhuber et al., 2020;100

Di Capua et al., 2021). A blocking anticyclone is situated above the heatwave region sus-101

taining the poleward advection of warm air along its western flank and causing adiabatic102

warming by subsidence and clear skies at its center. The latter causes warming through103

short-wave insolation of the lower layers of the atmosphere, which can be amplified if soils104

are dessicated and water is limited for plants evapotranspiration. This results in the al-105

location of incoming solar energy towards sensible rather than latent heat, increasing fur-106

ther surface air temperature (Seneviratne et al., 2006; E. M. Fischer et al., 2007; Senevi-107

ratne et al., 2010; Hirschi et al., 2011; Miralles et al., 2012, 2014; Rasmijn et al., 2018;108

Dirmeyer et al., 2021).109

If the anticyclone stays stationary, extreme temperatures can be reached. High tem-110

perature increases are fundamentally limited by the moist convective instability of the111

air column (Zhang & Boos, 2023), which defines a relevant upper bound for surface tem-112

peratures in the mid-latitudes. During heatwaves, surface air temperatures reach their113

maximal values when the air column is neutrally stratified. Accordingly, temperatures114

drop when precipitations are triggered by the convective instability of the boundary layer.115
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As a consequence, one can derive an estimate of the maximum reachable temper-116

ature at the surface from characteristics of the free-troposphere (temperature and geopo-117

tential at 500hPa) and surface specific humidity. This allows to propose an estimate of118

the physical upper bound Bϕ of temperature for mid-latitudes regions, for which Noyelle119

et al. (2023) showed that it is 5–10°C higher than statistical estimates of the upper bound120

in a case study for Western Europe. Additionally, as shown by Zhang and Boos (2023)121

this upper bound increases with global warming.122

In this paper, we address the issue of the underestimation of tail risks for extreme123

temperatures by bridging the gap between the physical and statistical theories of extreme124

temperatures. We propose to estimate statistical GEV models on time series of yearly125

maxima where the upper bound of the distribution is imposed by the physical knowl-126

edge of the system:127

B(µ, σ, ξ) = Bϕ. (2)

This reduces the space parameter dimension by one. We show that this method128

estimates correctly the GEV distribution parameters and reduces the underestimation129

bias of traditional fitting methods.130

This paper is organized as follows. Section 2 presents the climate data and the sta-131

tistical models used. In this section we detail how we compute an estimate of the phys-132

ical upper bound for surface temperatures. The results of the analysis are presented in133

section 3. We first demonstrate the inadequacy of the estimation of the upper bound with134

traditional methods. Then we show the relevance of our approach on synthetic GEV data135

and on a large ensemble of climate model outputs. Finally, we discuss the results in sec-136

tion 4.137

2 Data and methods138

2.1 Climate model data139

Here we use the large ensemble of the state-of-the-art IPSL-CM6A-LR model (Boucher140

et al., 2020) with the CMIP6 configuration under an extended historical simulations span-141

ning historical forcing over the period 1850-2014 and RCP2-4.5 forcing over the period142

2014-2059. The ensemble encompasses 31 independent members. For each member and143

each year, the GMST is computed as the area weighted global mean 2-m air tempera-144

ture. For each member and each grid point over the Northern Hemisphere (30°N-80°N)145

we extract the yearly maximum of daily maximum 2-m air temperature. To compute the146

physical upper bound of surface temperature Bϕ we additionally consider the yearly max-147

imum over the months June, July, August and September of the daily mean air temper-148

ature at 500hPa (T500), daily mean geopotential height at 500hPa (Z500) and yearly min-149

imum of daily mean 2-m air specific humidity. For the period 1850-1949, only 10 mem-150

bers are available for the variables T500 and Z500. At each grid point, we therefore re-151

sample randomly from these 10 members to create data series of yearly maxima of T500152

and Z500.153

The use of climate data that we make here is not intended to give precise and rel-154

evant values for adaptation purposes but merely as an illustration of our method on phys-155

ically relevant data points.156

2.2 Statistical models157

Classically, the distribution of yearly maxima of daily maximum 2-m air temper-158

ature (TXx) are modelled using a member of the so-called Generalized Extreme Value159
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(GEV) family of distributions. The probability of a yearly maxima Z to be below a thresh-160

old z is expressed as P (Z ≤ z) = G(z) where:161

G(z) =

{
exp

{
−
[
1 + ξ( z−µ

σ )
]−1/ξ

}
, if ξ ̸= 0,

exp
{
− exp

[
−( z−µ

σ )
]}

, if ξ = 0,
(3)

where µ is the location parameter, σ is the scale parameter and ξ is the shape param-162

eter. We denote this model M0. The use of this family of distributions is motivated by163

the extremal theorems which state that at a suitable limit of an infinite number of sam-164

ples, the distribution of maxima converges towards a member of the GEV family (Coles,165

2001). It is therefore implicitly assumed that the pre-asymptotic distribution of yearly166

maxima can be correctly represented by this distribution.167

To account for non-stationarity in the temperatures distribution, one can first let168

the location parameter depend linearly on GMST:169

µ = µ0 + µ1GMST. (4)

and the scale parameter σ is constant. We denote this model M1. We also consider a170

statistical model M2 where the scale parameter is also dependent on GMST:171

{
µ = µ0 + µ1GMST

σ = log (1 + exp(σ0 + σ1GMST)) .
(5)

The functional form for the scale parameter assures that it stays positive and – al-172

though it is non-linear – for typical values that we consider here the scale parameter de-173

pends almost linearly on GMST. Importantly, for all these models if the shape param-174

eter ξ is negative, the distribution is bounded upwards and the bound B depends on the175

three parameters (cf. Eq.1). We use the maximum likelihood method to provide estima-176

tors µ̂, σ̂ and ξ̂ (and correspondingly for non-stationary ones) of the parameters of the177

GEV distribution. The estimator for the bound is then:178

B̂ = µ̂− σ̂

ξ̂
. (6)

Note that in the non-stationary cases, the estimate B̂ depends on the covariate GMST179

and therefore on time.180

In the following, we mimic the practice of attribution studies (S. Philip et al., 2020)181

by fitting the statistical models with one (M1) and two non-stationary parameters (M2)182

on 70 TXx randomly resampled from the pool of the 31 climate model members over the183

period 1945-2014 using the ensemble mean GMST as a covariate (see Fig. B1a for its184

time evolution). The choice to use only 70 points was made in reference to the average185

number of data points available for most weather stations (which were installed after 1945).186

To obtain distributions of the quantities of interest displayed below, we repeat the fit-187

ting procedure 1000 times.188

2.3 Computation of the physical upper bound189

As in Zhang and Boos (2023) and Noyelle et al. (2023), the maximum reachable190

surface temperature is computed as the surface temperature for which the moist static191

energy of the surface air parcel is equal to the saturated moist static energy of the free-192
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troposphere (considered to be at 500hPa):193

Ts,max = T500 +
Lv

cp
(Qsat(T500)−Q) +

g

cp
(Z500 − Zs). (7)

where T500 is the air temperature at 500hPa, Q the surface specific humidity of the air194

parcel, Z500 the geopotential height at 500hPa and Zs the elevation of the surface. Ts,max195

is computed from these four variables using the latent heat of vaporization Lv, the spe-196

cific heat of air at constant pressure cp, the gravitational constant g and the equation197

Qsat(T500) ≃ ϵesat(T500)
500hPa where esat(T500) is the saturation vapor pressure given by the198

Clausius-Clapeyron relation.199

The relation 7 is maximal when T500 and Z500 are maximized and Q is minimized.200

However, by plugging the yearly maximum value of the two first quantities and the yearly201

minimum of the last one, it is possible that we either overestimate the physical upper202

bound Bϕ — because there could not be a meteorological situation that combines the203

extremized values of these three quantities at the same time — or that we underestimate204

it — because the yearly natural variability may not provide sufficiently extreme values205

of these three quantities.206

To propose a reasonable value of the physical upper bound Bϕ for each resampling207

of n values of TXx that may be computable in practice, we also resample the correspond-208

ing n yearly maxima of T500 (TX500,i) and Z500 (ZX500,i), and n yearly minima of Q209

(QNi). For each year 1 ≤ i ≤ n resampled we compute the physical upper bound Bϕ,i210

using equation 7 with the corresponding yearly maxima of T500 and Z500. However, we211

treat differently the air specific humidity Q variable which, as shown by Noyelle et al.212

(2023), is critical to have a relevant estimation of the upper bound. For this variable we213

use the same value for each of the n resampled years. This value is defined as the covariate-214

trend adjusted minima Q̃Nmin of the (QNi)1≤i≤n over the n resampled years. If the trend215

on QN is non significant, we use simply the minima of Q over the n resampled years.216

This procedure gives us n values of the physical upper bound Bϕ,i:217

Bϕ,i = Ts,max(TX500,i, ZX500,i, Q̃Nmin). (8)

We then regress the Bϕ,i on the covariate GMST (or RMST) which gives us a lin-218

ear estimate for the physical upper bound219

Bϕ(GMST) = A+B ×GMST. (9)

During the fit of the statistical models presented in the preceding subsection, we220

then impose that the statistical upper bound be equal to the physical upper bound. Do-221

ing so is equivalent to imposing a constraint on the GEV parameters.222

This procedure is straightforward to apply and gives a reasonable estimate for the223

physical upper bound. It should nonetheless be stated that this value constitutes only224

a rough estimate of the true upper bound and is subject to uncertainties. We note that225

our procedure can be more easily conceptualized in a bayesian context for which one could226

define a prior distribution on Bϕ(GMST) (Robin & Ribes, 2020).227

3 Results228

3.1 Shortcomings of the traditional fitting approach229

We first show the inadequacy of the traditional fitting approach for estimating tail230

probabilities of yearly maximum of daily maximum temperature (TXx) with a GEV dis-231

tribution (see also E. M. Fischer et al. (2023); Zeder et al. (2023)). To do so, we use the232
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outputs of the large ensemble (31 members). We fit the statistical models with one (M1)233

and two non-stationary parameters (M2) on 70 TXx randomly resampled from the pool234

of the 31 members over the period 1945-2014 using the ensemble mean GMST as a co-235

variate. We then investigate whether the upper bounds B1 and B2 estimated with the236

two models are ”true” upper bounds, i.e. whether they are exceeded on the full dataset237

over the period 1850-2059 for the 31 members. By doing so 1000 times, we have an es-238

timate of the probability that the estimated upper bounds of the two models will be ex-239

ceeded at least once (see Appendix A for the detail of the computation).240

Figure 1ab shows the result of this computation for every land grid points in the241

Northern Hemisphere mid-latitudes (30N-80N). For most of the grid points, the prob-242

ability to exceed the upper bound estimated on the period 1945-2014 is above 40%. Re-243

markably, there is not a single grid point over the region studied for which the proba-244

bility to exceed the upper bound is equal to 0 after 1000 resamplings. Model M1 (first245

column) performs better for this test than model M2 (second column) but both statis-246

tical models largely underestimate the value of the upper bound. This shows that, at least247

on climate model outputs, the estimation of the upper bound of the TXx distribution248

is not reliable. Figure 1cd gives an estimation of the empirical return time that corre-249

sponds to the values of the bounds B1 and B2. The return time — which should be in-250

finite — is in practice closer to 2000 years for model M1 (Fig. 1c) and to 200 years for251

model M2 (Fig. 1d). We also note that, for model M1, large regions in the eastern side252

of continental masses show a large return time of the upper bound (above 6000 years,253

colored in light blue), which suggests that for these regions the upper bound is only slightly254

underestimated. Finally, the ratio between the GEV and the empirical probabilities of255

a centennial event is depicted in Figure 1ef. A positive (negative) value gives how much256

more (less) likely a centennial event occurs in the dataset with respect to the GEV es-257

timate (see Appendix A for the detail of the computation). For both models, the inten-258

sity of events which are predicted to be centennial according to the GEV estimate ac-259

tually happen every 25 to 50 years, which make them 2 to 4 times more likely than pre-260

dicted. Apart for a few grid points, this underestimation occurs almost everywhere.261

Increasing the size of the sample for fitting the models only slightly improves the262

situation (see Fig. B2 for 100 years and Fig. B3 for 150 years) and for most grid points263

the probability to exceed the upper bound estimated is above 20% even with 150 years264

of data. Similarly, changing the fitting period towards a period with more variation in265

the covariate does not change the results significantly (Fig. B4 with 70 points resampled266

over the period 1956-2025). Finally, using the Regional Mean Surface Temperature (RMST)267

rather than GMST as a covariate only marginally changes the results (Fig. B1bcd for268

the regional covariates, and Fig. B5 for the results of the fits). Figure B6 shows that the269

statistical estimation of the upper bound is lower than the physical estimation of the up-270

per bound by a margin of 3 to 8°C. Except for a small region in Western Russia, the sta-271

tistical upper bound is systematically lower than the physical upper bound.272

3.2 Imposing the upper bound on synthetic GEV data273

We first demonstrate the interest of the method of imposing the upper bound in274

the GEV fit using synthetic data with parameters typical of the parameters found when275

fitting a GEV on TXx data (see Appendix A for the detail). We simulate 1000 series of276

50, 100 and 200 points distributed according to the model M1, i.e. with a non-stationarity277

on the location parameter only. We then fit the full model M1 and the model MB
1 where278

the (correct) upper bound is imposed during the fit. For comparison purposes, we ad-279

ditionally fit three other models derived from M1 where either the (correct) location (Mµ
1 ),280

scale (Mσ
1 ) or shape parameter (Mξ

1) is imposed to the model.281

Figure B8 shows the results for the estimation of the different parameters (Fig. B8abcd)282

and several metrics (Fig. B8efghi). All models estimate correctly the location param-283
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b Non-stationary location and scale parameters (M2)
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Return time of the upper bound [y]
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Ratio between the GEV and the empirical probabilities of a centennial event

Figure 1. Bias of tail risks of extreme temperatures with the traditional GEV fitting ap-

proach. The first row (panels a and b) shows the empirical probability that the statistical upper

bound estimated using 70 points resampled on the period 1945-2014 over all 31 members is ex-

ceeded at least once on the full dataset (1850-2059). The second row (panels c and d) shows the

estimated return time of this upper bound on the full dataset. Grid points where only one TXx

exceeds the upper bound (return time above 6000 years) are colored in light blue. The third row

(panels e and f) shows the ratio between the GEV and the empirical probabilities of a centennial

event. A positive (negative) value gives how much more (less) likely a centennial event occurs in

the dataset with respect to the GEV estimate. The first column shows the results for the sta-

tistical model with a linear dependence on GMST of the location parameter only (M1) and the

second column for the statistical model with a linear dependence of both the location and scale

parameters (M2).
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eters µ0 and µ1 — with a slight overestimation of the first one and underestimation of284

the second one — but they almost all underestimate the scale parameter (Fig. B8c). Mod-285

els M1, Mµ
1 and Mσ

1 underestimate the shape parameter and there is a large spread around286

the true value (Fig. B8d). On the contrary, when we impose the upper bound the es-287

timation of the shape parameter is remarkably precise. As a consequence, the upper bound288

is systematically underestimated for models M1, Mµ
1 and Mσ

1 . It is also the case for the289

model Mξ
1 but the estimation is much more precise. We note here the paramount im-290

portance of correctly estimating the shape parameter for correctly estimating the up-291

per bound and vice versa.292

The return level at 1% (Fig. B8f) is underestimated and the corresponding return293

time (Fig. B8g) is overestimated for all models but the model with the upper bound im-294

posed perform best both in bias and in spread. When comparing models in terms of the295

norms L∞ and L2 with respect to the true Cumulative Distribution Function (CDF),296

the model Mµ performs best but the other models have similar performance. Increas-297

ing the sample size improves the estimation for all models, but for the estimation of tail298

probabilities the model MB
1 remains the best (e.g. Fig. B8g).299

The SI provides similar estimations for the models M0 (Fig. B9) and M2 (Fig. B8)300

for which we have similar results as those presented here. Our results demonstrate that301

once one knows the upper bound of a bounded GEV distribution, imposing the value302

of the bound during the fit gives the best fitting results on the metrics displayed here.303

Nonetheless, when it comes to non-synthetic data, it is likely that we will make an er-304

ror on the imposed value of the upper bound — which is unknown. To investigate this305

issue, we additionally fitted the model MB
1 with an error Berr on the bound B. Results306

are presented in Appendix B for an error of Berr = +2.5 (Fig. B11) and Berr = +5307

(Fig. B12). In these cases, the scale parameter (Fig. B11c and S12c) tend to be under-308

estimated and the shape parameter (Fig. B11d and B12d) to be overestimated. Accord-309

ingly, the return level at 1% (Fig. B11fc and B12f) is overestimated and the return time310

for the true return level at 1% is underestimated (Fig. B11g and B12g). We neverthe-311

less note that the error made is small when compared to the spread around the estima-312

tion for the other models and that for Berr = 2.5 the overestimation of the return time313

is of the same order of magnitude as the underestimation of the full model M1. On the314

rest of the distribution, the performance of the biased model MB+Berr
1 is comparable315

to the other models (Fig. B11hi and B12hi). For the quality of the fit it is therefore prefer-316

able to impose an upper bound as close as possible to the correct upper bound but er-317

rors up to +5°C can be tolerated even though they tend to overestimate events at the318

upper tail of the distribution. We come back to this question in the discussion section.319

3.3 Imposing the upper bound on a climate model outputs320

We apply our approach to temperatures simulated by a climate model and deter-321

mine the distribution of yearly maxima of daily maximum temperature at one grid point322

in Western Europe (lon=0°, lat=49.44°N) for the 31 members of the IPSL model over323

the period 1850-2059. Figure 2a shows the evolution of these maxima with time. We note324

in particular that there is an extreme outlier on the year 2019 which reaches the value325

of 38.6°C (shown by a black triangle), shattering the previous record of all members by326

a margin of 1.9°C. We fit the models M1 and M2 with the GMST as covariate by re-327

sampling 1000 times over all members during the period 1945–2014 (70 years), as pre-328

viously. Figure 2a shows the median, 5th and 95th percentiles of the estimated upper329

bounds B1 and B2 for both statistical models along with the estimated physical upper330

bound Bϕ. The median estimates of upper bounds B1 and B2 are below 10 data points331

of the temperature time series. On the contrary, the physical upper bound is never reached332

and is above the 95-th percentile of the distribution of the upper bounds B1 and B2.333
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Figure 2b illustrates the issue of the underestimation of the upper bound with the334

case of the 2019 extreme event. In black we show the empirical distribution of maxima335

for years 2016-2021, for which the value of the covariate GMST is similar to the one of336

2019 (14.32°C vs 14.24 to 14.38°C). As an illustration we show the PDF fitted on mem-337

ber 14 during the period 1945-2014 for models without the upper bound imposed (M1338

and M2) and with the upper bound imposed (MB
1 and MB

2 ). The PDF of the former339

are very close and are not distinguishable on the graph. Remarkably, they both estimate340

an upper bound which is around 1°C smaller than the 2019 extreme outlier. To show341

that we did not choose member 14 for its underestimation of the bound, the two blue342

boxplots shows the distribution of 1000 estimations of the 2019 upper bound done by343

resampling as previously. More than 75% of these estimations are below the maximum344

value of 2019.345

Fig. 2c shows a comparison between the estimated return time in the full data set346

(1850-2059) of the 1% return level using the fits of the different models. Models M1 and347

M2 vastly overestimate this return time: the median return time empirical estimate for348

the return level at 1% according to their distribution is around 40 years. On the con-349

trary, models MB
1 and MB

2 underestimate this return time, by around 250 years for the350

latter and 100 years for the former. This translates into an overestimation of tail risks351

of extreme temperatures for the two models for which the physical upper bound is im-352

posed. Figure 2de show the performance of the different models on the rest of the dis-353

tribution using average norms L∞ and L2 between the fitted CDF and the empirical CDF354

(see SI for the detail of the computation). Models have similar performance for both met-355

rics, with a slightly better one for models M1 and MB
1 . Models where the upper bound356

is prescribed perform slightly worse compared to traditional models. We provide in Ap-357

pendix B the same figure using the RMST as covariate (Fig. B13), which gives similar358

results.359

Finally, Figure 3 shows the same results as Fig. 1 for models where the upper bound360

is prescribed (MB
1 and MB

2 ). Remarkably, Fig. 3ab show that a for a majority of grid361

points the probability to exceed the upper bound is null after 1000 resamplings (grid points362

colored in blue). For grid points where the probability is not null, it is close to zero (e.g.363

in the Iberian peninsula or in North West America). There is however two regions over364

Western Russia and Central Eurasia where the probability to exceed the upper bound365

at least once is still above 60 %. Nevertheless, Fig. 3cd show that for the vast major-366

ity of these grid points, the return time of the estimated upper bound is very high: above367

6000 years which implies that only a single TXx on the dataset is above this value. In368

Fig. B14 and B15 we provide the fits for example grid points in these two regions. They369

show that only one TXx in the 19th century is actually above the median estimate of370

the physical upper bound (respectively in 1850 and 1860). We also note that for those371

grid points the statistical and physical estimates of the upper bounds are much closer372

than for the grid point in Western Europe — although the physical upper bound is more373

precisely estimated.374

Additionally, Fig. 3ef show that imposing the upper bound partially alleviates the375

issue of underestimation of centennial events. Contrary to Fig. 1ef, there is no uniform376

underestimation of the return level of the centennial events. In particular, coastal regions377

even tend to overestimate the risk of these events. This effect is probably due to the choice378

we made to take the lowest value of the surface specific humidity in the resampled data379

to compute an estimate of the physical upper bound. On the other hand, the overesti-380

mation bias over Europe for example is largely reduced and some regions even slightly381

overestimate the risk. One should note that there are still large regions where our pro-382

cedure underestimate the risk of centennial events, for example in Canada, Western Rus-383

sia and Central Eurasia. This effect may be due to historical aerosols forcing which are384

used by the model and the choice we made to use data between 1945 and 2014 for the385

fit. This period indeed corresponds to higher anthropogenic aerosols levels in these re-386
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ẑ p

=
1
%

)
[y

]

c

M1 M2 MB
1 MB

2

0.0

0.1

0.2

0.3

‖F̂
−
F
e
‖ ∞

d

M1 M2 MB
1 MB

2

0.00

0.05

0.10

0.15

0.20
‖F̂
−
F
e
‖ 2

e

Figure 2. Comparison between the statistical models with and without imposing the upper

bound for the IPSL-CM6A-LR climate model outputs. (a) Yearly maxima of daily maximum

temperature (TXx) at a grid point in Western Europe (lon=0°, lat=49.44°N) for the 31 members

of the IPSL model (black), median, 5 and 95-th percentiles of the distribution of upper bounds

B1 and B2 (blue plain and dashed) for statistical models M1 and M2 for 1000 fits with resam-

pled data points on the period 1945-2014 (black arrow), and median, 5 and 95-th percentiles

of the distribution of physical upper bounds Bϕ (orange). The black triangle shows the value

of the 2019 extreme outlier (38.6°C). (b) Histogram of TXx over the period 2016-2021 (black)

and PDFs (colors) using the fit on member 14 for statistical models M1, M2, MB
1 and MB

2 .

The black dotted line shows the extreme 2019 event and the colored lines shows the physical

upper bound and the estimated statistical upper bounds for the fit on member 14 (the blue plain

and dashed lines are almost confounded). The boxplots shows the distribution of upper bounds

for the different models for 1000 fits on resampled data. (c) Distribution of return time for the

return level at 1% for all statistical models. Average norms (d) L∞ and (e) L2 between the esti-

mated and the empirical CDFs.
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Figure 3. Prescribing the upper bound leads to better estimation of tail risks of extreme tem-

perature. This figure is the same as Figure 1 with models MB
1 and MB

2 . The first row (panels

a and b) shows the empirical probability that the statistical upper bound estimated using 70

points resampled on the period 1945-2014 over all 31 members is exceeded at least once on the

full dataset (1850-2059). The grid points where the probability is null are colored in light blue.

The second row (panels c and d) shows the estimated return time of this upper bound on the

full dataset. Grid points where only one TXx exceeds the upper bound (return time above 6000

years) are colored in light blue. Grid points where no TXx exceeds the upper bound are colored

in white. The third row (panels e and f) shows the ratio between the GEV and the empirical

probabilities of a centennial event. A positive (negative) value gives how much more (less) likely

a centennial event occurs in the dataset with respect to the GEV estimate. The first column

shows the results for the statistical model with a linear dependence on GMST of the location

parameter only (MB
1 ) and the second column for the statistical model with a linear dependence

of both the location and scale parameters (MB
2 ).
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gions, which are increasingly recognized to strongly influence the magnitude of extreme387

temperatures (Sillmann et al., 2013; Dong et al., 2017; Westervelt et al., 2020; Luo et388

al., 2020; Seong et al., 2021). Nevertheless, the overestimation is reduced to around 2.5389

more events in the dataset than according to the GEV estimate (Fig. 3e). Finally, as390

previously, model MB
2 performs worse according to this metric than model MB

1 .391

4 Discussion and conclusions392

We presented a new method to bridge the gap between physical knowledge and sta-393

tistical estimates of tail probabilities of extreme mid-latitude surface temperatures. We394

proposed to incorporate a physical estimate of the upper bound in the fitting of GEV395

distributions for yearly maximum of daily maximum 2-m air surface temperature. We396

showed on synthetic GEV data and on climate model outputs that doing so leads to more397

precisely fitted parameters — especially the crucial shape parameter, reduces the under-398

estimation of tail probabilities and does not deteriorate the performance of the fit on the399

rest of the distribution. The underestimation of the upper bound is largely avoided and400

we additionally showed that our method improves the estimation of probabilities of cen-401

tennial events, although this was not intended by the method. Our method also has the402

advantage of rendering the statistical fit more stable with respect to its tail properties.403

Figure B7 indeed shows that the standard deviation on the estimated upper bounds is404

much smaller for models MB
1 and MB

2 than for classical models M1 and M2. It espe-405

cially ensures that the upper bound always exists — which even though is clear phys-406

ically, is not often found in practice. We additionally showed that overestimating the up-407

per bound of the distribution would tend to also overestimate tail probabilities and there-408

fore risks of very high temperatures. This overestimation is however of the same order409

of magnitude as the underestimation associated with classical fits of GEV distribution.410

Other metrics could have been chosen to quantify the quality our fits with respect411

to data. We nevertheless emphasize that all classical metrics based on the log-likelihood,412

such as the Akaike information criterion (Akaike, 1998), the Bayesian information cri-413

terion (Schwarz, 1978) or the Likelihood ratio test (Coles et al., 2001), are not adapted414

here because they give an infinitely bad score to classical models. The latter indeed un-415

derestimate the upper bound: a model which gives a zero probability to an event which416

still occurs has an infinite log-likelihood. To the best of our knowledge there is also no417

consensus on the metrics to evaluate the quality of the fit of a model in a non-stationary418

context.419

Choosing the value of the upper bound to be imposed during the fit is the crucial420

element for the success of our procedure. The estimation procedure of the physical up-421

per bound Bϕ that we proposed here likely tends to overestimate this quantity because422

it combines extremized value of temperature and geopotential at 500hPa and surface spe-423

cific humidity which are unlikely to happen at the same time in practice. As shown on424

synthetic GEV data and on climate model outputs, it is therefore possible that we over-425

estimate tail risks at some places. However, given the fact that GEV estimates of tail426

probabilities may be used by practitioners for adaptation purposes, it is not only a sci-427

entific but also an ethical question to choose to over- or underestimate risks of very high428

temperature events. Because of the large consequences that an underestimation of tail429

probabilities could have on societies, we here advocate for a scientific choice which avoids430

this underestimation even though it comes at the risk of overestimation of tail proba-431

bilities.432
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Appendix A Supplementary information433

A1 Computation details for Figure 1434

A11 Probability of exceeding the upper bound435

We here detail the procedure to compute the probability of exceeding the upper436

bound that is presented in Figure 1. This procedure is applied for each grid point over437

the Northern Hemisphere mid-latitudes (30N-80N). We first draw randomly 70 TXx from438

the pooled data of the 31 members between the period 1945-2014 (2170 data points) with-439

out replacement. We then fit the statistical model into consideration. If the shape pa-440

rameter of the fit is negative (i.e. if there is indeed an upper bound), we consider the es-441

timated statistical upper bound B̂i and we count the number ni of TXx in the full dataset442

(1850-2059, 6510 data points) that are above B̂i. Note that for models M1 and M2 the443

estimated upper bound depends on the covariate GMST (or RMST, see below) and there-444

fore on time. We do this procedure N = 1000 times and the probability of exceeding445

the upper bound at least once is then computed as:446

P̂ (Z > B̂) =
1

N

N∑
i=1

1(ni > 0) (A1)

where 1(ni > 0) is equal to 1 if ni > 0 and equal to 0 otherwise.447

A12 Median return time of the upper bound448

The median return time of the estimated upper bound is then computed as:449

r̂(Z > B̂) =

(
Med

(
ni

Nd

))−1

(A2)

where Nd = 6510 is the size of the full dataset and Med is the median operation. ni

Nd
450

is an estimation of the probability that the yearly maxima is above the bound B̂i for the451

fit i. We then compute the median of this probability over the N = 1000 resampling452

and inverse it to give an estimate of the return time of the estimated upper bound.453

A13 Ratio between the GEV and the empirical probabilities of a cen-454

tennial event455

We proceed similarly to estimate the return time of a centennial event. For each456

fit i, we first find the return level ẑp=1%,i corresponding to the 99th quantile of the fit-457

ted GEV PDF. Note that for models M1 and M2 the estimated return level depends458

on the covariate GMST (or RMST, see below) and therefore on time. We then count the459

number ñi of TXx in the full dataset (1850-2059, 6510 data points) that are above ẑp=1%,i.460

The median empirical return time of the centennial return level is thus:461

r̂(Z > ẑp=1%) =

(
Med

(
ñi

Nd

))−1

(A3)

where as previously Nd = 6510 is the size of the full dataset and Med is the median462

operation. ñi

Nd
is an estimation of the probability that the yearly maxima is above the463

GEV centennial return level ẑp=1%,i for the fit i. We then compute the median of this464

probability over the N = 1000 resampling and inverse it to give an estimate of the em-465

pirical return time of the estimated centennial return level. If the fit corresponds to the466

true underlying distribution, we should find r̂(Z > ẑp=1%) = 100 by definition of the467

–14–



manuscript submitted to Geophysical Research Letters

centennial return level. However this is not the case in practice and we quantify this dif-468

ference by dividing by the true return time. The ratio presented in Figure 1 is then com-469

puted as:470

Ratio =

{
−r̂(Z > ẑp=1%)/100, if r̂(Z > ẑp=1%) > 100,

100/r̂(Z > ẑp=1%), if r̂(Z > ẑp=1%) ≤ 100.
(A4)

If for example r̂(Z > ẑp=1%) = 50, the events that are said to be centennial by471

the statistical model actually occur every 50 years in the dataset. Therefore the ratio472

is equal to 2: these events are twice more likely in the dataset than according to the GEV473

estimate. On the other hand, if r̂(Z > ẑp=1%) = 200, the events that are said to be474

centennial by the statistical model actually occur every 200 years in the dataset. There-475

fore the ratio is equal to −2: these events are twice less likely in the dataset that accord-476

ing to the GEV estimate.477

A2 Computation of RMST478

To define the RMST covariates, we split the Northern Hemisphere mid-latitude re-479

gions (30N-80N) into three parts: North America (180W-30W), Europe (30W-50E) and480

Asia (50E-180E). For each grid points in these three regions, we first compute the area481

weighted 2-m air temperature average. The RMST is then the ensemble mean of these482

quantities. The results are presented in Fig. B1bcd.483

A3 Computation details for synthetic GEV data484

A31 Simulations485

For the simulation of synthetic GEV data we use the following parameters:486

M0


µ = 23

σ = 1.35

ξ = −0.15

(A5)

M1


µ0 = 23

µ1 = 1.6

σ = 1.35

ξ = −0.15

(A6)

M2



µ0 = 23

µ1 = 1.6

σ0 = 1.35

σ1 = 0.1

ξ = −0.15.

(A7)

A32 Norm metrics487

The norm metrics L∞ and L2 are computed between the CDFs of the fitted dis-488

tribution F̂ and the true distribution F as such:489

∥F̂ − F∥∞ = sup
t∈R

|F̂ (t)− F (t)| (A8)
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and:490

∥F̂ − F∥2 =

√∫ +∞

−∞
(F̂ (t)− F (t))2dt. (A9)

Numerically these two quantities are computed using a sampling at dt = 10−2 for491

t between -200 and 200.492

A4 Norm metrics for climate model outputs493

The distribution of return times presented in Figure 2 panel c and Figure B13 panel494

c are computed the same way as for the return time presented above for Figure 1. The495

norm metrics L∞ and L2 are computed between the empirical CDF Fe of data and the496

fitted CDF F̂ for each year (using the 31 members) and then averaged over the full pe-497

riod (1850-2059).498
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Figure B1. Evolution of covariate for the GEV fit. (a) Ensemble mean (black) and members

(red) GMST. (b) Same for RMST over North America (180W-30W, 30N-80N). (c) Same for

RMST over Europe (30W-50E, 30N-80N). (d) Same for RMST over Asia (50E-180E, 30N-80N).

Appendix B Additional figures499
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Figure B2. Same as Fig. 1. with 100 points resampled over the period 1915-2014.
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Figure B3. Same as Fig. 1. with 150 points resampled over the period 1865-2014.
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Figure B4. Same as Fig. 1. with 70 points resampled over the period 1956-2025.
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Figure B5. Same as Fig. 1. with 70 points resampled over the period 1945-2014 with a re-

gional covariate.
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Figure B6. Absolute values of the upper bounds. Panels a and b show the median statistical

upper bound estimated with models M1 and M2 obtained after 1000 fits with data resampled

over the period 1945-2014. Panels c and d show the corresponding median physical upper bound.

Panels e and f show the difference between the two. For all the plots we chose the covariate to be

+0.5K above the 1951-1980 average (corresponding roughly to the year 2000).
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Figure B7. Precision of the estimation of the upper bounds. Panels a and b show the stan-

dard deviation in the estimated statistical upper bounds found for models M1 and M2 obtained

after 1000 fits with data resampled over the period 1945-2014. Panels c and d show the corre-

sponding standard deviation in the estimated physical upper bounds. Panels e and f show the

difference between the two. For all the plots we chose the covariate to be +0.5K above the 1951-

1980 average (corresponding roughly to the year 2000).
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Figure B8. Fit of the statistical models derived from M1 on synthetic GEV data. Estimation

of the parameters of the model: (a) and (b) location parameters, (c) scale parameter and (d)

shape parameter. Metrics to measure the quality of the fit: (e) bias in the upper bound, (f) bias

in the return level at 1%, (g) bias in the return time for the true return level at 1%, norm (h)

L∞ and (i) norm L2 between the estimated and the true CDFs. Each boxplot is derived from

1000 fits of randomly sampled GEV data from a M1 model with n = 50, 100 and 200 samples.
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Figure B9. Same as Figure B8 with synthetic data simulated according to model M0.
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Figure B10. Same as Figure B8 with synthetic data simulated according to model M2.
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Figure B11. Same as Figure B8 with an error Berr = 2.5 imposed for model MB
1 .
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Figure B12. Same as Figure B8 with an error Berr = 5 imposed for model MB
1 .
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Figure B13. Same as Fig. 2 with a regional covariate.
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Figure B14. Same as Fig. 2 with a grid point in Western Russia (lon=47.5°E, lat=57.04°N).
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Figure B15. Same as Fig. 2 with a grid point in Eastern Kazakhstan (lon=80°E,
lat=49.44°N).
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Appendix C Open Research500

Pre-processed climate model outputs and GEV data used in this paper are avail-501

able at https://zenodo.org/doi/10.5281/zenodo.10715007. The analysis presented502

here is done using Python. The Python code is available at https://doi.org/10.5281/503

zenodo.10679570. It makes use of the SDFC package developed by Yoann Robin and504

available at https://zenodo.org/doi/10.5281/zenodo.4263885.505
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