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An improved dense class in Sobolev spaces
to manifolds

Antoine Detaille*

February 27, 2024

Abstract

We consider the strong density problem in the Sobolev space 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩) of
maps with values into a compact Riemannian manifold 𝒩. It is known, from the
seminal work of Bethuel, that such maps may always be strongly approximated by
𝒩-valued maps that are smooth outside of a finite union of (𝑚 − ⌊𝑠𝑝⌋ − 1)-planes.
Our main result establishes the strong density in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩) of an improved
version of the class introduced by Bethuel, where the maps have a singular set
without crossings. This answers a question raised by Brezis and Mironescu.

In the special case where𝒩 has a sufficiently simple topology and for some values
of 𝑠 and 𝑝, this result was known to follow from the method of projection, which takes
its roots in the work of Federer and Fleming. As a first result, we implement this
method in the full range of 𝑠 and 𝑝 in which it was expected to be applicable. In the
case of a general target manifold, we devise a topological argument that allows to
remove the self-intersections in the singular set of the maps obtained via Bethuel’s
technique.
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1 Introduction

One of the most important problems concerning the Sobolev space 𝑊 𝑠,𝑝(𝛺;𝒩) of
maps with values into a compact manifold 𝒩 is the strong density problem. Here, 𝛺 ⊂ ℝ𝑚 is
a sufficiently smooth bounded open set, and 1 ≤ 𝑝 < +∞, 0 < 𝑠 < +∞. Moreover, we
split 𝑠 = 𝑘 + 𝜎, where 𝑘 = ⌊𝑠⌋ ∈ ℕ is the integer part of 𝑠 and 𝜎 ∈ [0, 1) is the fractional
part of 𝑠. It is known from the work of Schoen and Uhlenbeck [SU83, Section 4] that, in
a striking contrast with the case of real-valued maps, the set 𝐶∞(𝛺;𝒩) of smooth maps
with values into 𝒩 need not be dense in 𝑊 𝑠,𝑝(𝛺;𝒩). The failure of strong density of
smooth maps comes from topological obstructions due to the target manifold. Aside from
the problem of characterizing those target manifolds 𝒩 such that 𝐶∞(𝛺;𝒩) is dense
in 𝑊 𝑠,𝑝(𝛺;𝒩), depending on 𝑠, 𝑝, and 𝛺, a natural question that arises in view of this
phenomenon is to find a suitable class of smooth maps outside of a small singular set
that would be dense in𝑊 𝑠,𝑝(𝛺;𝒩) regardless of the target 𝒩.

A major breakthrough in this regard was accomplished by Bethuel in his seminal
paper [Bet91] in the case of𝑊1,𝑝 , and was subsequently pursued in𝑊 𝑠,𝑝 with 0 < 𝑠 < 1
by Brezis and Mironescu [BM15], in𝑊 𝑘,𝑝 with 𝑘 = 2, 3 . . . by Bousquet, Ponce, and Van
Schaftingen [BPVS15], and in𝑊 𝑠,𝑝 with 𝑠 > 1 non-integer by the author [Det23].

In order to state precisely Bethuel’s theorem and its counterpart for arbitrary 𝑠, we
need to introduce the relevant class of functions. But first, let us recall the precise
definition of the Sobolev space𝑊 𝑠,𝑝(𝛺;𝒩). In the sequel, 𝒩 denotes a smooth compact
connected Riemannian manifold without boundary, isometrically embedded in ℝ𝜈.
The latter assumption is not restrictive, since one may always find such an embedding
provided that one chooses 𝜈 ∈ ℕ sufficiently large; see [Nas54, Nas56]. The space
𝑊 𝑠,𝑝(𝛺;𝒩) is then defined as the set of all maps 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ𝜈) such that 𝑢(𝑥) ∈ 𝒩

for almost every 𝑥 ∈ 𝛺. Due to the presence of the manifold constraint, 𝑊 𝑠,𝑝(𝛺;𝒩)
is in general not a vector space, but it is nevertheless a metric space endowed with the
distance defined by

𝑑𝑊 𝑠,𝑝(𝛺)(𝑢, 𝑣) = ∥𝑢 − 𝑣∥𝑊 𝑠,𝑝(𝛺).

Definition 1.1. The class ℛ
cros
𝑖

(𝛺;𝒩) is the set of all maps 𝑢 such that there exists a set
𝒮 = 𝒮𝑢 ⊂ ℝ𝑚 which is a finite union of closedly embedded 𝑖-dimensional submanifolds of ℝ𝑚
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and such that 𝑢 ∈ 𝐶∞(𝛺 \𝒮;𝒩) and

|𝐷 𝑗𝑢(𝑥)| ≤ 𝐶
1

dist (𝑥,𝒮)𝑗
for every 𝑥 ∈ 𝛺 and 𝑗 ∈ ℕ∗,

where 𝐶 > 0 is a constant depending on 𝑢 and 𝑗.

We note importantly that the singular set 𝒮 depends on the map 𝑢. Moreover, when
we write 𝑢 ∈ 𝐶∞(𝛺 \𝒮;𝒩), this means that there exists an open set 𝑈 ⊂ ℝ𝑚 such that
𝛺 ⋐ 𝑈 and a map 𝑣 ∈ 𝐶∞(𝑈 \𝒮;𝒩) such that 𝑢 = 𝑣 on 𝛺 \𝒮. In Definition 1.1 and in
the sequel, by submanifold, we always implicitly mean submanifold without boundary. We
shall always explicitly state when the submanifolds are allowed to have a boundary. By
closedly embedded, we mean that the manifold should be a closed subset of ℝ𝑚 , which
should not be confused with a closed manifold, which is a compact manifold without
boundary. Observe also that, since𝒮 is a submanifold of the wholeℝ𝑚 instead of merely
𝛺, the estimate on the derivatives of 𝑢 may depend on parts of𝒩 that lie outside of𝛺 —
although we may always restrict to the part of𝒮 lying in a neighborhood of𝛺, enlarging
the constant 𝐶 if necessary. This technical detail will be of crucial importance for us
later on, when we require stability properties of the class ℛcros under composition with
local diffeomorphisms for instance — we omit the subscript when we want to speak
about the class ℛcros in general without specifying the dimension of the singular set.

With these definitions at hand, Bethuel’s theorem and its counterpart for arbitrary
0 < 𝑠 < +∞ read as follows.

Theorem 1.2. Assume that 𝑠𝑝 < 𝑚 and that 𝛺 satisfies the segment condition. The class
ℛ

cros
𝑚−⌊𝑠𝑝⌋−1(𝛺;𝒩) is always dense in𝑊 𝑠,𝑝(𝛺;𝒩).

Having at hand Theorem 1.2, a natural question is whether or not one may improve
the classℛcros to get an even better dense class of almost smooth maps. For this purpose,
we introduce the following subclass of the class ℛcros.

Definition 1.3. The class ℛuncr
𝑖

(𝛺;𝒩) is the set of all 𝑢 ∈ ℛ
cros
𝑖

(𝛺;𝒩) such that the singular
set 𝒮 is a closedly embedded 𝑖-dimensional submanifold of ℝ𝑚 .

Our main result reads as follows.

Theorem 1.4. Assume that 𝑠𝑝 < 𝑚. The class ℛuncr
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) is dense in𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩).

Here, 𝑄𝑚 = (−1, 1)𝑚 is the open unit cube in ℝ𝑚 . The key feature of Theorem 1.4
above is to assert that one may avoid the crossings in the singular sets of the almost
smooth maps that are dense in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩). Indeed, since the singular set of a map
in ℛ

cros
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) is a union of submanifolds, it may exhibit crossings at the points
where those manifolds intersect. In fact, the singular sets of the maps constructed in
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the existing proofs of Theorem 1.2 for arbitrary target manifolds do exhibit crossings,
as they arise as dual skeletons of decompositions of the domain into cubes. This will
be explained in a more detailed way later on. On the other hand, ℛuncr corresponds
to all the maps in ℛ

cros such that their singular set is uncrossed, that is, does not have
crossings. This explains our choice of notation for both classes ℛcros and ℛ

uncr.
We emphasize that, in full generality, Theorem 1.4 is new even in the case 𝑠 = 1. This

answers in particular a question raised by Brezis and Mironescu; see e.g. the discussion
in [BM21, Chapter 10].

Up to now, the only approach to prove strong density results that was able to provide
the density of the classℛuncr instead of merely the classℛcros was based on the method of
projection, famously devised by Federer and Fleming [FF60] in their study of normal and
integral currents. Adapted by Hardt and Lin [HL87] in the context of maps to manifolds
in order to tackle the extension problem, this method was subsequently used to prove
strong density results notably by Bethuel and Zheng [BZ88] for𝑊1,𝑝(𝔹𝑚 ;𝕊𝑚−1)when𝑚−
1 ≤ 𝑝 < 𝑚, Rivière [Riv00] for 𝑊 1

2 ,2(𝕊2;𝕊1), Bourgain, Brezis, and Mironescu [BBM05]
for 𝑊 𝑠,𝑝(𝕊𝑚 ;𝕊𝑚−1) when 0 < 𝑠 < 1 and 𝑠𝑝 < 𝑚 (see also [BBM04] for the case 𝑠 = 1

2 ),
Bousquet [Bou07] for 𝑊 𝑠,𝑝(𝕊𝑚 ;𝕊1) when 1 ≤ 𝑠𝑝 < 2, and Bousquet, Ponce, and Van
Schaftingen [BPVS14] for an (⌊𝑠𝑝⌋−1)-connected target𝒩 when 0 < 𝑠 < 1. Therefore, up
to now, density results for the method of projection are limited either to specific targets
𝒩 or to the range 0 < 𝑠 ≤ 1. For other closely related directions of research, see e.g. the
work of Hajłasz [Haj94] for a method of almost projection, with futher developments to
fractional spaces by Bousquet, Ponce, and Van Schaftingen [BPVS13], and also the work
of Pakzad and Rivière [PR03] concerning weak density and connections.

In the first part of our paper, in Section 2, we show that the method of projection
indeed works in its full expected applicability range, that is, for any 0 < 𝑠 < +∞ and any
(⌊𝑠𝑝⌋ − 1)-connected target manifold 𝒩. This answers a question raised by Bousquet,
Ponce, and Van Schaftingen; see [BPVS14, Section 2]. Although not allowing to prove
Theorem 1.4 in its full generality, this result is interesting per se: (i) it gives the full range
of applicability of the method of singular projection, (ii) it provides a much simpler
proof of Theorem 1.2 in the particular case of an (⌊𝑠𝑝⌋ − 1)-connected target, and (iii) it
has the advantage of applying to a general domain 𝛺, unlike our proof of Theorem 1.4.

In order to present the additional difficulties arising when implementing the method
of projection in the full range 0 < 𝑠 < +∞ of fractional Sobolev spaces, let us first briefly
explain how it works in the simple case of a sphere target. When 𝒩 = 𝕊𝑁 ⊂ ℝ𝑁+1,
the idea of the method is to approximate an 𝕊𝑁 -valued map 𝑢 first by considering the
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convolution 𝜑𝜂 ∗ 𝑢, and then projecting this construction onto 𝕊𝑁 by letting

𝑢𝜂,𝑎 =
𝜑𝜂 ∗ 𝑢 − 𝑎
|𝜑𝜂 ∗ 𝑢 − 𝑎 | .

Introducing the parameter 𝑎 is at the core of Federer and Fleming’s original idea for the
projection method. One should then suitably choose 𝑎 = 𝑎𝜂 such that 𝑎𝜂 → 0 as 𝜂 → 0
and establish appropriate estimates to prove that the maps 𝑢𝜂 = 𝑢𝜂,𝑎𝜂 belong to the class
ℛ

cros and converge to 𝑢 with respect to the Sobolev norm as 𝜂 → 0.
The main novel difficulty in our setting is that we need to establish fractional estimates

for a general singular projection. Indeed, up to now, these estimates either were obtained
by relying on the specific form of the projection for a particular target, as in [Bou07],
or were deduced from the integer order estimates through the Gagliardo–Nirenberg
interpolation inequality when 0 < 𝑠 < 1, as in [BPVS14]. However, for 𝑠 > 1, this
approach would force us to exclude some relevant values of the parameters 𝑠 and 𝑝.

To illustrate the need for direct estimates, let us see what can be obtained by interpo-
lation. Assume for instance that one wants to prove the density of the class ℛcros

0 (𝔹2;𝕊1)
in 𝑊 𝑠,𝑝(𝔹2;𝕊1) in the case 1 ≤ 𝑠𝑝 < 2 — which is the only relevant one. One typically
wants to interpolate𝑊 𝑠,𝑝 between 𝐿𝑟 and𝑊 𝑘,𝑞 , with 𝑘 ∈ ℕ satisfying 𝑘 > 𝑠. For this to
hold, one is lead to choose 𝑟 and 𝑞 satisfying the relation

1
𝑝
=

1 − 𝜃
𝑟

+ 𝜃
𝑞

,

where 𝜃 ∈ (0, 1) satisfies

𝑠 = 0 · (1 − 𝜃) + 𝑘𝜃,

that is, 𝜃 = 𝑠/𝑘. The key assumption to implement successfully Federer and Fleming’s
averaging argument over 𝑎, which essentially requires that the 𝑊 𝑘,𝑞-norm of 𝑥 ↦→ 𝑥

|𝑥 |
over 𝔹2 should be finite, is therefore that 𝑘𝑞 < 2. If 0 < 𝑠 < 1, then we may take 𝑘 = 1,
and hence the condition is 𝑞 < 2. But if 1 < 𝑠 < 2, then 𝑘 ≥ 2, and this implies that
𝑞 should be chosen less that 1, which is not possible. Therefore, one sees that some
ranges of values of 𝑠 and 𝑝 that are relevant in the problem of strong density of the class
ℛ

cros cannot be handled by interpolation when 𝑠 > 1 is not an integer. For the record,
note that the above model case is exactly the one treated by Bousquet [Bou07], using
direct fractional estimates relying on the specific form of the singular projection when
the target is a circle. Similarly, for maps 𝔹3 → 𝕊2 with 2 < 𝑠𝑝 < 3, one cannot handle
the case 2 < 𝑠 < 3 by means of interpolation. To the best of our knowledge, no direct
estimates are available in the existing literature for this case, and hence the method of
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projection could not be implemented in this setting up to now.
Nevertheless, even knowing the full range of validity of the method of projection

is not sufficient to prove Theorem 1.4 in full generality. Indeed, as will be proved in
Lemma 2.2, a singular projection is only available when the target is (⌊𝑠𝑝⌋−1)-connected.
Moreover, as will be discussed in Section 2.3, there is little hope that even all (⌊𝑠𝑝⌋ −
1)-connected manifolds admit a singular projection whose singular set is a submanifold,
which is required to deduce the density of the uncrossed class ℛuncr using the method
of projection. Therefore, proving Theorem 1.4 in the general case requires to find a
different approach. This is the purpose of the second part of this paper, in Section 3.

Before giving a sketch of our approach, we introduce some notation relative to de-
compositions into cubes. Given 𝑟 > 0, a cubication of radius 𝑟 in ℝ𝑚 is a subset of the
family of cubes𝑄𝑟(𝑎)+2𝑟ℤ𝑚 for some 𝑎 ∈ ℝ𝑚 , where𝑄𝑟(𝑎) denotes the cube of inradius
𝑟 centered at 𝑎 in ℝ𝑚 . Here the inradius of a cube is the half of its sidelength. We speak
about a cubication of 𝛺 ⊂ ℝ𝑚 when we want to specify the set formed by the union of
all cubes in the cubication. If𝑈𝑚 is a cubication and ℓ ∈ {0, . . . , 𝑚}, the ℓ -skeleton𝑈ℓ of
𝑈𝑚 is the set of all faces of dimension ℓ of all cubes in 𝑈𝑚 . An ℓ -subskeleton of 𝑈𝑚 is a
subset of𝑈ℓ . Given a skeleton𝑈ℓ , we write

𝒰
ℓ =

⋃
𝜎ℓ∈𝑈ℓ

𝜎ℓ

the set formed by all the elements of𝑈ℓ . In the sequel, we shall often make the abuse of
language of also calling the underlying set𝒰ℓ an ℓ -skeleton, but we shall always carefully
distinguish it from the set of all ℓ -faces using the notation that we introduced.

A special skeleton that will be of particular interest for us is the ℓ -skeleton 𝐾ℓ of
the unit cube 𝑄𝑚 = [−1, 1]𝑚 for every ℓ ∈ {0, . . . , 𝑚}, so that 𝐾𝑚 = {𝑄𝑚}. For every
ℓ ∈ {0, . . . , 𝑚 − 1}, the dual skeleton of 𝐾ℓ is the subskeleton 𝑇ℓ ∗ , where ℓ ∗ = 𝑚 − ℓ − 1,
such that 𝒯ℓ ∗ is the set of all those 𝑥 ∈ 𝑄𝑚 that have at least ℓ +1 vanishing components.
The dual skeleton of a general skeleton is then defined by taking the union of all dual
skeletons of the cubes forming the skeleton. Illustrations of skeletons (in blue) and their
duals (in red) in the unit cube 𝑄3 are provided on Figure 1. The value of ℓ ranges from
2 on the left to 0 on the right, which corresponds to a value of ℓ ∗ ranging from 0 to 2.

We introduce a more rigid version of the classℛcros, where the singular set is required
to coincide with the dual skeleton of some cubication of ℝ𝑚 .

Definition 1.5. The class ℛrig
𝑖
(𝛺;𝒩) is the set of all 𝑢 ∈ ℛ

cros
𝑖

(𝛺;𝒩) such that the singular
set 𝒮 is the 𝑖-dimensional dual skeleton of some cubication of ℝ𝑚 .

The fact that the class ℛ
rig — recall that we omit the subscript when we want to

speak about the class ℛ
cros or one of its variants without specifying the dimension
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Figure 1: Skeletons and their dual skeletons

of the singular set — is a subclass of the class ℛ
cros is a consequence of the fact that

the singular set of maps in ℛ
rig may be taken to be a finite union of 𝑖-dimensional

hyperplanes. Indeed, the dual skeleton of a cubication of ℝ𝑚 is a union of affine spaces,
and one may keep only a finite number of them since 𝛺 is bounded.

It is a consequence of the proof of Theorem 1.2 — but not of Theorem 1.2 itself —
that the more rigid class ℛrig

𝑚−⌊𝑠𝑝⌋−1(𝛺;𝒩) is dense in 𝑊 𝑠,𝑝(𝛺;𝒩). Indeed, the maps in
ℛ

cros
𝑚−⌊𝑠𝑝⌋−1 that are constructed in the proof of Theorem 1.2 to approximate a given map

in𝑊 𝑠,𝑝 actually belong to ℛ
rig
𝑚−⌊𝑠𝑝⌋−1.

To prove our main result, it therefore suffices to be able to approximate any map
in ℛ

rig. This is the main goal of Section 3. Our proof is in two main steps. First,
we devise a topological procedure that removes the crossings between the orthogonal
hyperplanes constituting the singular set of a general map in ℛ

rig. This procedure,
which itself consists of several steps, only requires to modify the initial map on a small
set, but comes without any estimate. In order to obtain, from the previous construction,
a better map with suitable estimates, we rely in a second step on the shrinking procedure
from [BPVS15], which is a more involved version of the scaling argument that was
already used by Bethuel in his seminal paper [Bet91] to remove the singularities with
control of energy.

The new ingredient is therefore the topological procedure to uncross the singularities.
This procedure is explained in Section 3.1 in particular cases that allow for more simple
notation and illustrative figures, before the general case, presented in Section 3.2. At
the core of the argument lies the following model problem. It is well-know that the
1-skeleton 𝒦

1 of the unit cube𝑄3 is a retract of𝑄3 \𝒯1, where 𝑇1 is the dual skeleton of
𝐾1. Is it possible to write instead 𝒦

1 as a retract of 𝑄3 \𝒮, where 𝒮 is a 1-dimensional
submanifold of ℝ3, that is, without crossing? Although it may come as very surprising,
the answer to this question is actually yes. Elaborating on the construction allowing
to obtain such a retraction is the cornerstone of the topological step of our proof in
Section 3.

As a concluding remark, we comment on the dimension of the singular set in the
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class ℛ
cros and its variants. Indeed, as we explained, the content of Theorem 1.4 is to

provide the strong density of an improved version of the class ℛ
cros. Another natural

idea to improve the density result given by Theorem 1.2 would be to try reducing the
dimension of the singular set, that is, to prove the density of the class ℛ

cros
𝑖

for some
𝑖 < 𝑚 − ⌊𝑠𝑝⌋ − 1. However, it turns out that, in presence of the topological obstruction
ruling out the density of 𝐶∞(𝛺;𝒩) in 𝑊 𝑠,𝑝(𝛺;𝒩), the only value of 𝑖 for which ℛ

cros
𝑖

is dense in 𝑊 𝑠,𝑝 is 𝑖 = 𝑚 − ⌊𝑠𝑝⌋ − 1. For smallest 𝑖, the same topological obstruction
also rules out the density of the class ℛcros

𝑖
, while for larger 𝑖, ℛcros

𝑖
is not even a subset

of 𝑊 𝑠,𝑝 . See [BPVS15, Section 6] for a detailed proof in the case where 𝑠 ∈ ℕ∗. The
argument may be carried out similarly for fractional order spaces.
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2 The method of singular projection

2.1 Singular projections: definitions and main result

In the study of the properties of the Sobolev space𝑊 𝑠,𝑝(𝛺;𝒩), a natural approach is
to work on a tubular neighborhood 𝒩 + 𝐵𝜄 of radius 𝜄 > 0 sufficiently small so that the
nearest point projection Π : 𝒩 + 𝐵𝜄 → 𝒩 is well-defined and smooth, and to use Π to
bring all the constructions back to the manifold. This approach is suitable to work with
in the supercritical range 𝑠𝑝 ≥ 𝑚, since the continuous embedding of𝑊 𝑠,𝑝 into 𝐶0 — or
VMO in the limiting case 𝑠𝑝 = 𝑚 — usually allows one to keep all the constructions in
the tubular neighborhood 𝒩 + 𝐵𝜄.

To deal with the more delicate range 𝑠𝑝 < 𝑚 in which one cannot guarantee that the
constructions we want to perform stay in 𝒩 + 𝐵𝜄, a natural idea would be to look for a
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globally defined retraction 𝑃 : ℝ𝜈 → 𝒩. However, such an approach is hopeless, since
a manifold admitting such a global retraction would be contractible as a retract of the
contractible space ℝ𝜈. But any compact manifold without boundary of dimension at
least 1 has at least one non trivial homology group, and is therefore non contractible.

The idea, originally introduced by Hardt and Lin [HL87] with roots in the work of
Federer and Fleming [FF60], is to consider instead a singular projection, that is, a smooth
map𝑃 : ℝ𝜈\𝛴 → 𝒩 satisfying𝑃|𝒩 = id𝒩, where𝛴 ⊂ ℝ𝜈 is a suitable singular set disjoint
from 𝒩. See the introduction for more references concerning the use of the method of
projection in the context of Sobolev maps to manifolds. In the first part of this paper, our
objective is to show that the method of singular projection may indeed be implemented
to solve the strong density problem in its full range of expected applicability.

We start by defining the precise notion of singular projection that we consider.

Definition 2.1. Let ℓ ∈ {2, . . . , 𝜈}. An ℓ -singular projection onto 𝒩 is a smooth map 𝑃 : ℝ𝜈 \
𝛴 → 𝒩 such that 𝑃|𝒩 = id𝒩 and

|𝐷 𝑗𝑃(𝑥)| ≤ 𝐶
1

dist (𝑥,𝛴)𝑗
for every 𝑥 ∈ ℝ𝜈 \ 𝛴 and 𝑗 ∈ ℕ∗

for some constant 𝐶 > 0 depending on 𝑗 and 𝒩, where 𝛴 ⊂ ℝ𝜈 \𝒩 is either the underlying set
of a finite (𝜈 − ℓ )-subskeleton in ℝ𝜈 or a closedly embedded (𝜈 − ℓ )-submanifold of ℝ𝜈.

At this stage, the reader may wonder why we split the form of allowed singular sets
for singular projections into two types, instead of considering more generally maps
that are singular outside of a finite union of closedly embedded (𝜈 − ℓ )-submanifolds
of ℝ𝜈, which would include both cases in Definition 2.1. The answer is given by the
combination of the two following lemmas.

Lemma 2.2. If there exists a continuous map 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩 such that 𝑃|𝒩 = id𝒩, where 𝛴
is a finite union of closedly embedded (𝜈 − ℓ )-submanifolds of ℝ𝜈, then 𝒩 is (ℓ − 2)-connected.

Lemma 2.3. If 𝒩 is (ℓ − 2)-connected, then it admits an ℓ -singular projection, whose singular
set is the underlying set of a finite (𝜈 − ℓ )-subskeleton in ℝ𝜈.

We first comment Lemma 2.2 and 2.3 before giving their proof. The combination
of both these lemmas shows at the same time that the (ℓ − 2)-connectedness of 𝒩 is a
necessary and sufficient condition for the existence of an ℓ -singular projection onto 𝒩,
and that allowing the singular set to be a finite union of closedly embedded (𝜈 − ℓ )-
submanifolds of ℝ𝜈 would not have broadened the range of target manifolds admitting
a singular projection. Meanwhile, assuming that 𝛴 is the underlying set of a finite
(𝜈−ℓ )-subskeleton inℝ𝜈 will allow for technical simplifications in the sequel, in addition
to being the natural form of singular set arising when performing the proof of Lemma 2.3.
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We also have allowed for singular sets that are given by one submanifold of ℝ𝜈, that is,
that do not exhibit crossings, because we are precisely interested in studying the density
of the class ℛuncr

𝑖
, whose maps have a singular set without crossings.

Proof of Lemma 2.2. The key observation is the fact that ℝ𝜈 \ 𝛴 is (ℓ − 2)-connected.
Taking this for granted, the conclusion follows directly from the fact that a retract of an
(ℓ − 2)-connected space is itself (ℓ − 2)-connected. Namely, for every 𝑖 ∈ {0, . . . , ℓ − 2},
we have the commutative diagram

{0} = 𝜋𝑖(ℝ𝜈 \ 𝛴)

𝜋𝑖(𝒩) 𝜋𝑖(𝒩)

𝑃∗

id𝒩

for the maps induced between the homotopy groups. This implies that the identity map
on the group 𝜋𝑖(𝒩) is the zero map, whence 𝜋𝑖(𝒩) = {0} for every 𝑖 ∈ {0, . . . , ℓ − 2}.

The fact that ℝ𝜈 \ 𝛴 is (ℓ − 2)-connected is presumably well-known, but it seems
difficult to find a proof of it in the general case, so we provide one for the convenience
of the reader. One may consult [MVS21, Lemma 3.8] for a proof in the case where ℳ

is an affine space. Our argument relies on the same idea. We show that, if 𝛺 is an
(ℓ − 2)-connected open subset of ℝ𝜈 and ℳ a closedly embedded (𝜈− ℓ )-submanifold of
𝛺, then𝛺\ℳ is (ℓ−2)-connected. The conclusion then follows by removing inductively
each manifold constituting𝛴, and using this claim at each step to show that the resulting
set remains (ℓ − 2)-connected.

To prove the claim, let 𝑖 ∈ {0, . . . , ℓ − 2} and 𝑓 : 𝕊𝑖 → 𝛺 \ ℳ be a continuous map.
Since 𝛺 is (ℓ −2)-connected, there exists a continuous map 𝑔 : 𝔹𝑖+1 → 𝛺 such that 𝑔 = 𝑓

on 𝕊𝑖 . Moreover, by a standard regularization process, we may assume that 𝑔 is smooth
on 𝔹𝑖+1. Since 𝑓 (𝕊𝑖) is closed and 𝛺 \ ℳ is open, there exists 𝛿 > 0 sufficiently small
such that, for any 𝑎 ∈ 𝐵𝛿, ( 𝑓 (𝕊𝑖) − 𝑎) ∩ (𝛺 \ ℳ) = ∅. Now, we invoke the following
particular case of Lemma 2.7 that will be proved below using Sard’s theorem: since
𝑖 + 1 ≤ ℓ − 1 < ℓ , for almost every 𝑎 ∈ 𝐵𝛿, we have 𝑔−1(𝛴 + 𝑎) = ∅. This implies that,
for any such 𝑎 ∈ 𝐵𝛿, 𝑔 − 𝑎 is a continuous extension to 𝔹𝑖+1 of 𝑓 − 𝑎, whence 𝑓 − 𝑎 is
nullhomotopic. But by our choice of 𝛿, 𝑓 − 𝑎 and 𝑓 are homotopic, which implies that
𝑓 itself is nullhomotopic. This concludes the proof of the lemma. □

Proof of Lemma 2.3. We follow the approach in [VS19, Proposition 4.4]. Let 𝜄 > 0 be
sufficiently small so that the nearest point projection Π onto 𝒩 is well-defined on
𝒩 + 𝐵𝜄. Let 𝐾𝜈 be a cubication of ℝ𝜈 of radius 𝑟 > 0. Choosing 𝑟 > 0 sufficiently small,
we may find a subskeleton 𝑈𝜈 of 𝐾𝜈 such that 𝒩 ⊂ 𝒰

𝜈 ⊂ 𝒩 + 𝐵𝜄/2. We let 𝑉𝜈 be the
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subskeleton of 𝐾𝜈 consisting in all cubes in 𝐾𝜈 that do not intersect some cube in 𝑈𝜈,
and𝑊 𝜈 = 𝐾𝜈 \ (𝑈𝜈 ∪𝑉𝜈).

We define 𝑃 on 𝒰
𝜈 by 𝑃 = Π, and on 𝒱

𝜈, we set 𝑃 = 𝑏 for some arbitrary 𝑏 ∈ 𝒩.
Hence, it remains to define 𝑃 on 𝒲

𝜈. We proceed by induction. For any 𝜎0 ∈ 𝑊0 such
that 𝑃 is not yet defined on 𝜎0, we let 𝑃 = 𝑏 at 𝜎0. Then, for any 𝜎1 ∈ 𝑊1 on which 𝑃 is
not yet defined, we use the assumption 𝜋0(𝒩) = {0} to extend 𝑃 on 𝜎1 from its values
on 𝑊0. Repeating this process up to dimension ℓ − 1, we define 𝑃 on the whole 𝒲

ℓ−1.
Finally, we use successive homogeneous extensions to extend 𝑃 on 𝒲

𝜈 \𝒯(ℓ−1)∗ , where
𝑇(ℓ−1)∗ is the dual skeleton to𝑊ℓ−1. Recall that the homogenous extension to 𝑄 𝑖 \ {0} of
a map 𝑓 defined on 𝜕𝑄 𝑖 is given by 𝑥 ↦→ 𝑓 (𝑥/|𝑥 |∞). Hence, a first step of homogeneous
extension allows us to define 𝑃 on𝒲

ℓ , with one singularity at the center of each ℓ -cell. A
second step extends 𝑃 on 𝒲

ℓ+1, with a singular set given by a finite union of segments,
whose endpoints are located at the centers of the (ℓ + 1)-cells and at the centers of the
ℓ -cells from the previous step. We pursue this construction up to dimension 𝜈, each step
increasing the dimension of the singular set by 1. By the properties of homogeneous
extension, the map 𝑃 that we constructed is indeed a singular projection, with singular
set given by 𝛴 = 𝒯

(ℓ−1)∗ , which concludes the proof.
We observe however that the above argument produces only a Lipschitz map. To

obtain a smooth map, one should slightly modify the first step, which relies on topolog-
ical extension, to define smoothly 𝑃 on 𝒲

ℓ−1 + 𝐵𝑟/2 instead of merely 𝒲
ℓ−1. Then, one

should use the thickening procedure from [BPVS15, Section 4] instead of homogeneous
extension, in order to get a smooth map outside of 𝒯(ℓ−1)∗ with the required estimates
for all derivatives. See also the work of Gastel [Gas16, Proposition 1] for a more detailed
but slightly different proof. □

Now that we have defined a precise notion of singular projection, we may state the
main result of this section.

Theorem 2.4. Assume that𝛺 ⊂ ℝ𝑚 is a bounded open set satisfying the segment condition, and
that there exists an ℓ -singular projection 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩 with 𝑠𝑝 < ℓ . The class ℛcros

𝑚−ℓ (𝛺;𝒩)
is dense in 𝑊 𝑠,𝑝(𝛺;𝒩). If in addition 𝛴 is a (𝜈 − ℓ )-submanifold of ℝ𝜈, then ℛ

uncr
𝑚−ℓ (𝛺;𝒩) is

dense in𝑊 𝑠,𝑝(𝛺;𝒩).

As explained in the introduction, in the particular case where the target manifold
admits an ℓ -singular projection with 𝑠𝑝 < ℓ , this result provides at the same time a
simpler proof of the density of the class ℛ

cros with crossings, which corresponds to
Bethuel’s theorem and its counterpart for arbitrary 0 < 𝑠 < +∞, and of our main result
concerning the density of the uncrossed class ℛ

uncr provided that the singular set of
the target manifold has no crossing.

We note the following important particular case.
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Corollary 2.5. Let 𝑠𝑝 < 𝑁 + 1. The class ℛ𝑚−𝑁−1(𝛺;𝕊𝑁 ) is dense in𝑊 𝑠,𝑝(𝛺;𝕊𝑁 ).

The case 𝑁 = 1 was already known [Bou07, Theorem 2], but the other cases are
presumably new in the general case 0 < 𝑠 < +∞. Note that, as mentioned in the
introduction, the case 𝑠 = 1 is already contained in [BZ88] and the case 0 < 𝑠 < 1 was
proved in [BBM05], see also [BPVS14].

This corollary is also a good opportunity to emphasize that the method of singular
projection does not always provide the good singular set. Indeed, Corollary 2.5 above gives
the same size of singular set for every 𝑠 and 𝑝 such that 𝑠𝑝 < 𝑁 +1. However, if 𝑠𝑝 < 𝑁 ,
since then𝜋⌊𝑠𝑝⌋(𝒩) = {0}, we actually have density of smooth maps in𝑊 𝑠,𝑝(𝛺;𝕊𝑁 ), while
Corollary 2.5 only provides the density of the class ℛ𝑚−𝑁−1(𝛺;𝕊𝑁 ).

Proof. Note that 𝑃 : ℝ𝑁+1 \ {0} → 𝕊𝑁 defined by 𝑃(𝑥) = 𝑥
|𝑥 | is an (𝑁 + 1)-singular

projection, and invoke Theorem 2.4. □

A similar result holds for the torus 𝕋2, for which a singular 2-projection whose
singular set is the union of a circle inside the torus and a line passing through the hole
of the torus may be constructed by hand.

Corollary 2.6. Let 𝑠𝑝 < 2. The class ℛ𝑚−2(𝛺;𝕋2) is dense in𝑊 𝑠,𝑝(𝛺;𝕋2).

Consider now the two-holed torus 𝕋2#𝕋2. Theorem 2.4 also applies to this target,
but since the singular set constructed by hand — or using Lemma 2.3 and the fact that
𝕋2#𝕋2 is connected — exhibits crossings, we only obtain the density of the class ℛcros

𝑚−2.
One may wonder whether or not it is possible to construct a better singular projection
onto 𝕋2#𝕋2 whose singular set would be a submanifold, to deduce the density of the
class ℛ

uncr
𝑚−2 . We are not able to answer this question, but the discussion in Section 2.3

suggests that there is little hope that the answer is yes.

2.2 Approximation by singular projection

We now turn to the proof of Theorem 2.4. The strategy is to rely on classical approx-
imation by convolution, and then project back the approximating maps to the target
manifold using the singular projection. Therefore, a first key step is to control the regu-
larity of the singular set which is obtained through this process. In addition, we need a
control on the derivatives of the projected map near the singular set. This is the purpose
of the following lemma, based on Sard’s theorem and the submersion theorem.

Lemma 2.7. Let 𝑣 ∈ 𝐶∞(𝛺;ℝ𝜈) and let 𝛴 ⊂ ℝ𝜈 be a finite union of (𝜈 − ℓ )-dimensional
submanifolds of ℝ𝜈. For almost every 𝑎 ∈ ℝ𝜈,

(i) the set 𝑣−1(𝛴+ 𝑎) is a finite union of (𝑚 − ℓ )-dimensional submanifolds of 𝛺, one for each
manifold constituting 𝛴 — or the empty set if ℓ > 𝑚;
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(ii) if ℓ ≤ 𝑚, for every compact 𝐾 ⊂ 𝛺, there exists a constant 𝐶 > 0 depending on 𝛴, 𝑣, ℓ ,
𝐾, and 𝑎 such that, for every 𝑥 ∈ 𝐾,

dist (𝑥, 𝑣−1(𝛴 + 𝑎)) ≤ 𝐶 dist (𝑣(𝑥),𝛴 + 𝑎).

Lemma 2.7 is a slight generalization of [BPVS14, Lemma 2.3] to the case where 𝛴 is
an arbitrary union of submanifolds, not necessarily affine spaces. The proof of the first
part follows the argument given in [BPVS14], but for the second part, we give a different
proof, by contradiction.

Proof. For (i), it suffices to consider the case where 𝛴 is made of only one submanifold,
as the general case then follows by taking the union over all manifolds constituting 𝛴.
Consider the map Ψ : 𝛺 × 𝛴 → ℝ𝜈 defined by

Ψ(𝑥, 𝑧) = 𝑣(𝑥) − 𝑧.

Since Ψ is a smooth map between smooth manifolds, Sard’s theorem — see e.g. [Bre93,
Chapter II.6] — ensures that, for almost every 𝑎 ∈ ℝ𝜈, the linear map 𝐷Ψ(𝑥, 𝑧) : ℝ𝑚 ×
𝑇𝑧𝛴 → ℝ𝜈 is surjective for every (𝑥, 𝑧) ∈ Ψ−1({𝑎}). If ℓ > 𝑚, this already implies the
conclusion, since the domain of this linear map has dimension𝑚+(𝜈−ℓ ) < 𝜈. Therefore,
𝐷Ψ(𝑥, 𝑧) is never surjective, which forces Ψ−1({𝑎}) = ∅ for almost every 𝑎 ∈ ℝ𝜈. We
note that this corresponds to the easy case of Sard’s theorem, which is nothing else but
the fact that the image of a smooth map is a null set when the dimension of the codomain
is strictly higher than the dimension of the domain.

If ℓ ≤ 𝑚, we pursue by observing that for any 𝑎 ∈ ℝ𝜈 such that 𝐷Ψ(𝑥, 𝑧) is surjective,

ℝ𝜈 = 𝐷Ψ(𝑥, 𝑧)[ℝ𝑚 × 𝑇𝑧𝛴] = 𝐷𝑣(𝑥)[ℝ𝑚] + 𝑇𝑧𝛴 for every (𝑥, 𝑧) ∈ Ψ−1({𝑎}).

Furthermore, by definition, we have (𝑥, 𝑧) ∈ Ψ−1({𝑎}) if and only if 𝑣(𝑥) = 𝑧 + 𝑎 ∈ 𝛴+ 𝑎.
Hence, we conclude that

ℝ𝜈 = 𝐷𝑣(𝑥)[ℝ𝑚] + 𝑇𝑣(𝑥)(𝛴 + 𝑎) for every 𝑥 ∈ 𝑣−1(𝛴 + 𝑎).

Otherwise stated, for almost every 𝑎 ∈ ℝ𝜈, the map 𝑣 is transversal to 𝛴+ 𝑎. This implies
that — see for instance [War83, Theorem 1.39] — for almost every 𝑎 ∈ ℝ𝜈, 𝑣−1(𝛴 + 𝑎) is
a smooth submanifold of ℝ𝑚 of dimension 𝑚 − ℓ .

We now turn to the proof of (ii). Once again, it suffices to prove the assertion when
𝛴 is made of one manifold, since the distance to a union of sets is the minimum of the
distances to all those sets. We assume without loss of generality that 𝑎 = 0. Assume by
contradiction that there exists a compact set 𝐾 ⊂ 𝛺 and a sequence (𝑥𝑛)𝑛∈ℕ in 𝐾 such
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that

dist (𝑥𝑛 , 𝑣−1(𝛴)) > 𝑛 dist (𝑣(𝑥𝑛),𝛴).

We note that 𝑥𝑛 ∉ 𝑣−1(𝛴), otherwise we would have 0 > 0. As 𝐾 is compact, up to
extraction, we may assume that 𝑥𝑛 → 𝑥 ∈ 𝐾 as 𝑛 → +∞. We observe that dist (𝑣(𝑥),𝛴) =
0, which implies that 𝑣(𝑥) ∈ 𝛴, and hence 𝑥 ∈ 𝑣−1(𝛴).

For 𝑛 ∈ ℕ sufficiently large, let 𝑦𝑛 be the nearest point projection of 𝑥𝑛 onto 𝑣−1(𝛴).
Since 𝑥𝑛 ∉ 𝑣−1(𝛴), we have 𝑥𝑛 ≠ 𝑦𝑛 . Moreover, by construction of the nearest point
projection, we know that 𝑥𝑛 − 𝑦𝑛 ∈ 𝑇𝑦𝑛𝑣−1(𝛴)⊥ for every 𝑛 ∈ ℕ, and also |𝑥𝑛 − 𝑦𝑛 | =
dist (𝑥𝑛 , 𝑣−1(𝛴)). In particular, 𝑦𝑛 → 𝑥. Up to a further extraction, we may assume that

𝑥𝑛 − 𝑦𝑛
|𝑥𝑛 − 𝑦𝑛 |

→ 𝜉 ∈ 𝑇𝑥𝑣−1(𝛴)⊥ as 𝑛 → +∞.

Since 𝑣 is continuously differentiable, we deduce that

𝑣(𝑥𝑛) − 𝑣(𝑦𝑛)
dist (𝑥𝑛 , 𝑣−1(𝛴))

=
𝑣(𝑥𝑛) − 𝑣(𝑦𝑛)
|𝑥𝑛 − 𝑦𝑛 |

→ 𝐷𝑣(𝑥)[𝜉] as 𝑛 → +∞.

Let us note that, since we are in the situation where

ℝ𝜈 = 𝐷𝑣(𝑥)[ℝ𝑚] + 𝑇𝑣(𝑥)𝛴,

we have

ℝ𝜈 = 𝐷𝑣(𝑥)[𝑇𝑥𝑣−1(𝛴)⊥] ⊕ 𝑇𝑣(𝑥)𝛴.

Indeed, this follows from the fact that 𝐷𝑣(𝑥)[𝜁] ∈ 𝑇𝑣(𝑥)𝛴 for every 𝜁 ∈ 𝑇𝑥𝑣−1(𝛴) and a
dimension argument. Therefore, up to replacing the usual scalar product on ℝ𝜈 with a
new one, we may assume that the two subspaces involved in the above direct sum are
actually orthogonal. This only modifies the distances by a multiplicative constant. Let
Π𝛴 denote the nearest point projection onto 𝛴 relative to the metric induced by this new
scalar product.

By the triangle inequality, we write

|𝑣(𝑥𝑛) − 𝑣(𝑦𝑛)|
dist (𝑥𝑛 , 𝑣−1(𝛴))

≤ |𝑣(𝑥𝑛) −Π𝛴(𝑣(𝑥𝑛))|
dist (𝑥𝑛 , 𝑣−1(𝛴))

+ |Π𝛴(𝑣(𝑥𝑛)) −Π𝛴(𝑣(𝑦𝑛))|
dist (𝑥𝑛 , 𝑣−1(𝛴))

,

where we made use of the fact that Π𝛴(𝑣(𝑦𝑛)) = 𝑣(𝑦𝑛) since 𝑣(𝑦𝑛) ∈ 𝛴. We note that
Π𝛴(𝑣(𝑥𝑛)) is well-defined for 𝑛 sufficiently large, as 𝑣(𝑥𝑛) is then close to 𝛴. The first
term in the right-hand side converges to 0 as 𝑛 → +∞ by the assumption over (𝑥𝑛)𝑛∈ℕ,
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as |𝑣(𝑥𝑛) − Π𝛴(𝑣(𝑥𝑛))| = dist (𝑣(𝑥𝑛),𝛴). Concerning the other term, since Π𝛴 ◦ 𝑣 is
continuously differentiable in a neighborhood of 𝑥, we have

Π𝛴(𝑣(𝑥𝑛)) −Π𝛴(𝑣(𝑦𝑛))
dist (𝑥𝑛 , 𝑣−1(𝛴))

→ 𝐷Π𝛴(𝑣(𝑥))[𝐷𝑣(𝑥)[𝜉]] as 𝑛 → +∞.

Since 𝐷Π𝛴(𝑣(𝑥)) is, by construction of the nearest point projection, the orthogonal
projection onto 𝑇𝑣(𝑥)𝛴, we have𝐷Π𝛴(𝑣(𝑥))[𝐷𝑣(𝑥)[𝜉]] = 0 as a consequence of our choice
of scalar product and the fact that 𝜉 ∈ 𝑇𝑥𝑣−1(𝛴)⊥.

Hence, we conclude that

|𝑣(𝑥𝑛) − 𝑣(𝑦𝑛)|
dist (𝑥𝑛 , 𝑣−1(𝛴))

→ 0 as 𝑛 → +∞.

This implies that 𝐷𝑣(𝑥)[𝜉] = 0. But, since 𝜉 ∈ 𝑇𝑥𝑣
−1(𝛴)⊥ is a nonzero vector, this

contradicts the fact that

ℝ𝜈 = 𝐷𝑣(𝑥)[𝑇𝑥𝑣−1(𝛴)⊥] ⊕ 𝑇𝑣(𝑥)𝛴,

and concludes the proof. □

The next lemma provides a mean value-type estimate for the derivatives of a singular
projection.

Lemma 2.8. Let 𝜔 ⊂ ℝ𝜈 be a bounded set and 𝑃 : ℝ𝜈 \ 𝛴 → 𝒩 be a singular projection. For
every 𝑥, 𝑦 ∈ 𝜔 \ 𝛴 such that dist (𝑥,𝛴) ≤ dist (𝑦,𝛴) and for every 𝑗 ∈ ℕ∗,

|𝐷 𝑗𝑃(𝑥) − 𝐷 𝑗𝑃(𝑦)| ≤ 𝐶
|𝑥 − 𝑦 |

dist (𝑥,𝛴)𝑗+1

for some constant 𝐶 > 0 depending on 𝒩 and the diameter of 𝜔.

Proof. We claim that there exists 𝛿 > 0 depending only on 𝒩 such that, whenever
|𝑥 − 𝑦 | ≤ 𝛿 and dist (𝑥,𝛴) < 𝛿, there exists a Lipschitz path 𝛾 : [0, 1] → ℝ𝜈 \𝛴 satisfying
𝛾(0) = 𝑥, 𝛾(1) = 𝑦, |𝛾′ | ≲ |𝑥 − 𝑦 | and dist (𝛾(𝑡),𝛴) ≥ dist (𝑥,𝛴) for every 𝑡 ∈ [0, 1]. The
conclusion of the lemma follows directly from this claim. Indeed, if |𝑥 − 𝑦 | ≤ 𝛿 and
dist (𝑥,𝛴) < 𝛿, it suffices to apply the mean value theorem along the path 𝛾 and to use
the estimates on the derivatives of 𝑃. If instead |𝑥 − 𝑦 | ≥ 𝛿, since dist (𝑥,𝛴) is bounded
from above on 𝜔, we have

|𝐷 𝑗𝑃(𝑥) − 𝐷 𝑗𝑃(𝑦)| ≲ 1
dist (𝑥,𝛴)𝑗

≲
|𝑥 − 𝑦 |

dist (𝑥,𝛴)𝑗+1 .
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In the case where |𝑥 − 𝑦 | ≤ 𝛿 but dist (𝑥,𝛴) ≥ 𝛿, we only have to invoke the mean value
theorem along the straight line between 𝑥 and 𝑦.

We turn to the proof of the claim. We first assume that 𝛴 is a closedly embedded
submanifold ofℝ𝜈. We take𝑅 > 0 so large that 𝜔 ⊂ 𝐵𝑅, and by a compactness argument,
we choose 0 < 𝛿 < 𝑅 sufficiently small so that there exist finitely many open sets 𝑈1,
. . . , 𝑈 𝑗 ⊂ ℝ𝜈 such that for any 𝑧 ∈ 𝛴 ∩ 𝐵2𝑅, there exists 𝑖 ∈ {1, . . . , 𝑗} with 𝐵2𝛿(𝑧) ⊂ 𝑈𝑖 ,
and there exist diffeomorphisms Φ𝑖 : 𝑈𝑖 → 𝐵𝜈−ℓ

𝑟𝑖
× 𝐵ℓ𝑠𝑖 for some 𝑟𝑖 , 𝑠𝑖 > 0, satisfying

Φ𝑖(𝒩 ∩𝑈𝑖) = 𝐵𝜈−ℓ
𝑟𝑖

× {0} and such that for every 𝑎 ∈ 𝑈𝑖 , dist (𝑎,𝛴) is given by the norm
of the second component of Φ𝑖(𝑎). Choose 𝑧 ∈ 𝛴 ∩ 𝐵2𝑅 such that 𝑥 ∈ 𝐵𝛿(𝑧), so that
𝑦 ∈ 𝐵2𝛿(𝑧). Let 𝑖 ∈ {1, . . . , 𝑗} with 𝐵2𝛿(𝑧) ⊂ 𝑈𝑖 . We observe that we may connect Φ(𝑧)
and Φ(𝑦) in 𝐵𝜈−ℓ

𝑟𝑖
×𝐵ℓ𝑠𝑖 by a Lipschitz path �̃� : [0, 1] → 𝐵𝜈−ℓ

𝑟𝑖
×𝐵ℓ𝑠𝑖 with |𝛾′ | ≲ |Φ(𝑥)−Φ(𝑦)|

and such that the norm of the second component of �̃� is always larger than dist (𝑥,𝛴).
Conclusion follows by defining 𝛾 = Φ−1 ◦ �̃�.

In the case where 𝛴 is a subskeleton, we observe that one may obtain a suitable 𝛾 as
a succession of line segments and arcs of circle. □

The proof of Theorem 2.4 relies on approximation by convolution. It will be instru-
mental for us to establish estimates for the distance between the convoluted map and
the original one, and also estimates on the derivatives of the convoluted map. To state
the required estimates in the fractional setting, we introduce the fractional derivative as

𝐷𝜎,𝑝𝑣(𝑥) =
(∫

𝛺

|𝑣(𝑥) − 𝑣(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

) 1
𝑝

.

Let also 𝜑 ∈ 𝐶∞
c (𝔹𝑚) be a fixed mollifier, that is,

𝜑 ≥ 0 on 𝔹𝑚 and
∫
𝔹𝑚

𝜑 = 1.

Given 𝜂 > 0, we define

𝜑𝜂(𝑥) =
1
𝜂𝑚

𝜑
( 𝑥
𝜂

)
for every 𝑥 ∈ ℝ𝑚 .

Lemma 2.9 corresponds to [BPVS14, Lemma 2.4]. We present the proof for the sake of
completeness.

Lemma 2.9. Assume that 0 < 𝜎 < 1 and let 𝑣 ∈ 𝑊𝜎,𝑝(𝛺;ℝ𝜈). For every 𝜂 > 0 and for every
𝑥 ∈ 𝛺 such that 𝜂 < dist (𝑥, 𝜕𝛺),

(i) |𝜑𝜂 ∗ 𝑣(𝑥) − 𝑣(𝑥)| ≤ 𝐶𝜂𝜎𝐷𝜎,𝑝𝑣(𝑥);

(ii) |𝐷(𝜑𝜂 ∗ 𝑣)(𝑥)| ≤ 𝐶′𝜂𝜎−1𝐷𝜎,𝑝𝑣(𝑥);
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for some constants 𝐶 > 0 depending on 𝜑 and 𝐶′ > 0 depending on 𝐷𝜑.

Proof. Jensen’s inequality ensures that

|𝜑𝜂 ∗ 𝑣(𝑥) − 𝑣(𝑥)| ≤
∫
𝐵𝜂

𝜑𝜂(ℎ)|𝑣(𝑥 − ℎ) − 𝑣(𝑥)| dℎ

≤
(∫

𝐵𝜂

𝜑𝜂(ℎ)𝜂𝑚+𝜎𝑝 |𝑣(𝑥 − ℎ) − 𝑣(𝑥)|𝑝
|ℎ |𝑚+𝜎𝑝 dℎ

) 1
𝑝

.

Since 𝜑𝜂 ≲ 𝜂−𝑚 , we conclude that

|𝜑𝜂 ∗ 𝑣(𝑥) − 𝑣(𝑥)| ≤ 𝐶𝜂𝜎𝐷𝜎,𝑝𝑣(𝑥).

This proves the first part of the conclusion.
For the second part, by differentiating under the integral, we find

𝐷(𝜑𝜂 ∗ 𝑣)(𝑥) =
∫
𝐵𝜂

𝐷𝜑𝜂(ℎ)𝑣(𝑥 − ℎ)dℎ.

As
∫
𝐵𝜂
𝐷𝜑𝜂 = 0, we may write

|𝐷(𝜑𝜂 ∗ 𝑣)(𝑥)| ≤
∫
𝐵𝜂

|𝐷𝜑𝜂(ℎ)| |𝑣(𝑥 − ℎ) − 𝑣(𝑥)| dℎ.

Since
∫
𝐵𝜂
|𝐷𝜑𝜂 | ≲ 𝜂−1, Jensen’s inequality ensures that

|𝐷(𝜑𝜂 ∗ 𝑣)(𝑥)| ≲
1

𝜂
𝑝−1
𝑝

(∫
𝐵𝜂

|𝐷𝜑𝜂(ℎ)|𝜂𝑚+𝜎𝑝 |𝑣(𝑥 − ℎ) − 𝑣(𝑥)|𝑝
|ℎ |𝑚+𝜎𝑝 dℎ

) 1
𝑝

.

We conclude as above by using the fact that |𝐷𝜑𝜂 | ≤ 𝜂−𝑚−1. □

We are now ready to prove Theorem 2.4. As explained in the introduction, we follow
the approach in [BPVS14]. However, as we already mentioned, the range where 𝑠 ≥ 1
is not an integer is more difficult, as we cannot rely on interpolation, and we need to
establish directly estimates on the Gagliardo seminorm.

Proof of Theorem 2.4. Let 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;𝒩). By a standard dilation procedure, we may
assume that 𝑢 ∈ 𝑊 𝑠,𝑝(𝜔;𝒩) for some open set 𝜔 ⊂ ℝ𝑚 such that 𝛺 ⊂ 𝜔. In particular,
there exists 𝛾 > 0 such that dist(𝛺; 𝜕𝜔) > 2𝛾. Note that this is the only point in
the proof where we use the regularity of 𝛺, and that assuming merely the segment
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condition is sufficient to implement a dilation argument; see e.g. [Det23, Lemma 6.2].
Therefore, for any 0 < 𝜂 ≤ 𝛾, the map 𝑢𝜂 = 𝜑𝜂 ∗ 𝑢 is well-defined and smooth on
𝛺𝛾 = 𝛺 + 𝐵𝛾. After an extension procedure, using e.g. a cutoff function, we may
assume that 𝑢𝜂 is actually a smooth (non necessarily 𝒩-valued) map on the whole ℝ𝑚 ,
that coincides with 𝜑𝜂 ∗ 𝑢 on 𝛺𝛾. Hence, for any 𝑎 ∈ ℝ𝜈, the map 𝑣𝜂,𝑎 = 𝑃 ◦ (𝑢𝜂 − 𝑎)
satisfies 𝑣𝜂,𝑎 ∈ 𝐶∞(ℝ𝑚 \ 𝑆𝜂,𝑎 ;𝒩), where 𝑆𝜂,𝑎 = 𝑢−1

𝜂 (𝛴 + 𝑎). Recall that 𝛴 ⊂ ℝ𝜈 is the
singular set of the singular projection 𝑃 onto 𝒩. Moreover, in the case where 𝛴 is a
subskeleton, by adding extra cells if necessary, we may assume that it is a finite union
of (𝜈 − ℓ )-hyperplanes. By Lemma 2.7, we deduce that 𝑆𝜂,𝑎 is a finite union of closed
submanifolds of ℝ𝑚 for almost every 𝑎 ∈ ℝ𝜈, and actually a closed submanifold of ℝ𝑚

when 𝛴 is a submanifold. Additionally, the required estimates on the derivatives of the
maps 𝑣𝜂,𝑎 allowing to deduce that they belong to the class ℛcros

𝑚−ℓ follow from the Faà di
Bruno formula as in (2.2) below, combined with point (ii) of Lemma 2.7 and the fact that
𝑢𝜂 has bounded derivatives on 𝛺. We are going to show that, for every 0 < 𝜂 ≤ 𝛾, we
may choose such an 𝑎𝜂 ∈ ℝ𝜈 so that 𝑎𝜂 → 0 as 𝜂 → 0 and 𝑣𝜂,𝑎𝜂 → 𝑢 in𝑊 𝑠,𝑝(𝛺), and this
will conclude the proof of the theorem.

For this purpose, we let

𝛼 =
1
4 dist (𝛴,𝒩)

and we choose 𝜓 ∈ 𝐶∞(ℝ𝜈) such that

(a) 𝜓(𝑥) = 0 if dist (𝑥,𝛴) ≤ 𝛼;

(b) 𝜓(𝑥) = 1 if dist (𝑥,𝛴) ≥ 2𝛼.

We write

𝑣𝜂,𝑎 = 𝑤𝜂,𝑎 + 𝑦𝜂,𝑎 ,

where

𝑤𝜂,𝑎 = 𝜓(𝑢𝜂 − 𝑎)𝑣𝜂,𝑎 = (𝜓𝑃) ◦ (𝑢𝜂 − 𝑎)

and

𝑦𝜂,𝑎 = (1 − 𝜓(𝑢𝜂 − 𝑎))𝑣𝜂,𝑎 = ((1 − 𝜓)𝑃) ◦ (𝑢𝜂 − 𝑎).

Since the map 𝜓𝑃 is smooth with bounded derivatives and since 𝑢𝜂− 𝑎𝜂 → 𝑢 in𝑊 𝑠,𝑝(𝛺)
whenever 𝑎𝜂 → 0, using the compactness of 𝒩 to get a uniform 𝐿∞ bound, we deduce
from the continuity of the composition operator — see for instance [BM21, Chapter 15.3]
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— that 𝑤𝜂,𝑎𝜂 → 𝑢 in 𝑊 𝑠,𝑝(𝛺) provided that we choose 𝑎𝜂 → 0. It therefore remains to
prove that we can choose the 𝑎𝜂 so that 𝑦𝜂,𝑎𝜂 → 0 in𝑊 𝑠,𝑝(𝛺) in order to conclude.

For this purpose, we are going to show the average estimate∫
𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎 → 0 as 𝜂 → 0. (2.1)

Taking (2.1) for granted, we conclude the proof as follows. Markov’s inequality ensures
that ����{𝑎 ∈ 𝐵𝛼: ∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) ≥

(∫
𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎
) 1

2
}���� ≤ (∫

𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎
) 1

2

→ 0.

Hence, for every 0 < 𝜂 ≤ 𝛾, we may choose 𝑎𝜂 ∈ 𝐵𝛼 such that 𝑎𝜂 → 0 and

∥𝑦𝜂,𝑎 ∥𝑊 𝑠,𝑝(𝛺) ≤
(∫

𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎
) 1

2𝑝

→ 0,

which proves the theorem. It therefore only remains to prove estimate (2.1).
We start by the case where 𝜎 = 0, and thus 𝑠 = 𝑘 ∈ ℕ∗. For every 𝑗 ∈ {1, . . . , 𝑘}, the

Faà di Bruno formula ensures that

|𝐷 𝑗𝑦𝜂,𝑎(𝑥)| ≲
𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖((1 − 𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎)| |𝐷𝑡1𝑢𝜂(𝑥)| · · · |𝐷𝑡𝑖𝑢𝜂(𝑥)|.

Since 𝜓 has bounded derivatives, we obtain

|𝐷 𝑗𝑦𝜂,𝑎(𝑥)| ≲
𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)𝑖

|𝐷𝑡1𝑢𝜂(𝑥)| · · · |𝐷𝑡𝑖𝑢𝜂(𝑥)|. (2.2)

As 𝒩 is compact, we also know that

|𝑦𝜂,𝑎(𝑥)| is uniformly bounded with respect to 𝑥, 𝜂, and 𝑎. (2.3)

Moreover, by definition of 𝜓, the map 𝑦𝜂,𝑎 is supported on {dist(𝑢𝜂 − 𝑎,𝛴) ≤ 2𝛼}. We
observe that, using the fact that 𝑢 ∈ 𝒩 and the definition of 𝛼,

{dist(𝑢𝜂 − 𝑎,𝛴) ≤ 2𝛼} ⊂ {dist(𝑢𝜂 ,𝛴) ≤ 3𝛼} ⊂ {|𝑢𝜂 − 𝑢 | ≥ 𝛼}.
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Since 𝑖𝑝 ≤ 𝑠𝑝 < ℓ , we have that∫
𝐵𝛼

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)𝑖𝑝

d𝑎 =
∫
𝐵𝛼+𝑢𝜂(𝑥)

1
dist(𝑎,𝛴)𝑖𝑝

d𝑎 ≤
∫
𝐵𝑅

1
dist(𝑎,𝛴)𝑖𝑝

d𝑎 < +∞,

where 𝑅 > 0 is chosen sufficiently large so that 𝐵𝛼 + 𝑢𝜂(𝑥) ⊂ 𝐵𝑅 for every 𝑥 ∈ 𝛺 and
0 < 𝜂 ≤ 𝛾. Integrating (2.2) and (2.3), and using Tonelli’s theorem and the information
on the support of 𝑦𝜂,𝑎 , we deduce that∫

𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎 ≲
∫
{|𝑢𝜂−𝑢 |≥𝛼}

1 +
𝑘∑
𝑗=1

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷𝑡1𝑢𝜂 |𝑝 · · · |𝐷𝑡𝑖𝑢𝜂 |𝑝 .

Since 𝑢𝜂 → 𝑢 in 𝐿𝑝(𝛺), in particular 𝑢𝜂 → 𝑢 in measure, and therefore |{|𝑢𝜂 − 𝑢 | ≥
𝛼}| → 0 as 𝜂 → 0. Hölder’s inequality ensures that, for 𝑡1 + · · · + 𝑡𝑖 = 𝑗,∫

{|𝑢𝜂−𝑢 |≥𝛼}
|𝐷𝑡1𝑢𝜂 |𝑝 · · · |𝐷𝑡𝑖𝑢𝜂 |𝑝 ≤

(∫
{|𝑢𝜂−𝑢 |≥𝛼}

|𝐷𝑡1𝑢𝜂 |
𝑗𝑝
𝑡1

) 𝑡1
𝑗

· · ·
(∫

{|𝑢𝜂−𝑢 |≥𝛼}
|𝐷𝑡𝑖𝑢𝜂 |

𝑗𝑝
𝑡𝑖

) 𝑡𝑖
𝑗

.

But as 𝑢 ∈ 𝐿∞(𝛺)∩𝑊 𝑘,𝑝(𝛺), we infer from the classical Gagliardo–Nirenberg inequality
— see [Gag59] and [Nir59, Lecture 2] — that

𝑢 ∈𝑊 𝑡𝛽 ,
𝑘𝑝
𝑡𝛽 (𝛺) ⊂ 𝑊 𝑡𝛽 ,

𝑗𝑝
𝑡𝛽 (𝛺) whenever 1 ≤ 𝑡𝛽 ≤ 𝑘.

Invoking Lebesgue’s lemma, we conclude that∫
𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝𝑊 𝑠,𝑝(𝛺) d𝑎 → 0 as 𝜂 → 0,

which establishes estimate (2.1).
We now turn to the case 0 < 𝜎 < 1, and we assume that 𝑘 ≥ 1. Using the integer order

case, we already have∫
𝐵𝛼

∥𝑦𝜂,𝑎 ∥𝑝
𝑊 𝑘,𝑝(𝛺) d𝑎 → 0 as 𝜂 → 0,

so that it only remains to prove that∫
𝐵𝛼

|𝐷𝑘𝑦𝜂,𝑎 |𝑝𝑊𝜎,𝑝(𝛺) d𝑎 → 0 as 𝜂 → 0.

20



Since 𝑦𝜂,𝑎 is supported on {dist(𝑢𝜂 − 𝑎,𝛴) ≤ 2𝛼} ⊂ {|𝑢𝜂 − 𝑢 | ≥ 𝛼}, we may write

|𝐷𝑘𝑦𝜂,𝑎 |𝑝𝑊𝜎,𝑝(𝛺)

≤ 2
∫
{dist(𝑢𝜂(𝑥)−𝑎,𝛴)≤2𝛼}

∫
{dist(𝑢𝜂(𝑥)−𝑎,𝛴)≤dist(𝑢𝜂(𝑦)−𝑎,𝛴)}

|𝐷𝑘𝑦𝜂,𝑎(𝑥) − 𝐷𝑘𝑦𝜂,𝑎(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥

≤ 2
∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
{dist(𝑢𝜂(𝑥)−𝑎,𝛴)≤dist(𝑢𝜂(𝑦)−𝑎,𝛴)}

|𝐷𝑘𝑦𝜂,𝑎(𝑥) − 𝐷𝑘𝑦𝜂,𝑎(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥.

Given 𝑥, 𝑦 ∈ 𝛺, using the Faà di Bruno formula and the multilinearity of the derivative,
we obtain

|𝐷𝑘𝑦𝜂,𝑎(𝑥) − 𝐷𝑘𝑦𝜂,𝑎(𝑦)| ≲
𝑘∑
𝑗=1

∑
1≤𝑡1≤···≤𝑡 𝑗
𝑡1+···+𝑡 𝑗=𝑘

(
𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 +

𝑗∑
𝑖=1

𝐵𝑖 , 𝑗 ,𝑡1 ,...,𝑡 𝑗

)
, (2.4)

where

𝐴 𝑗 ,𝑡1 ,...,𝑡 𝑗 = |𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎) − 𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)| |𝐷𝑡1𝑢𝜂(𝑥)| · · · |𝐷𝑡 𝑗𝑢𝜂(𝑥)|

and

𝐵𝑖 , 𝑗 ,𝑡1 ,...,𝑡 𝑗 = |𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)|
( ∏

1≤𝛽<𝑖
|𝐷𝑡𝛽𝑢𝜂(𝑥)|

)
|𝐷𝑡𝑖𝑢𝜂(𝑥) − 𝐷𝑡𝑖𝑢𝜂(𝑦)|

( ∏
𝑖<𝛽≤ 𝑗

|𝐷𝑡𝛽𝑢𝜂(𝑦)|
)
.

To bear in mind more readable terms, the reader may think of the case 𝑗 = 1, where one
has

𝐴1 = |𝐷((1 − 𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎) − 𝐷((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)| |𝐷𝑢𝜂(𝑥)|

and

𝐵1 = |𝐷((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)| |𝐷𝑢𝜂(𝑥) − 𝐷𝜂(𝑦)|.

We observe that |𝐷𝑡𝑢𝜂 |≲ 𝜂−𝑡 for every 𝑡 ∈ ℕ. Therefore, (2.4) yields

|𝐷𝑘𝑦𝜂,𝑎(𝑥) − 𝐷𝑘𝑦𝜂,𝑎(𝑦)|𝑝 ≲
𝑘∑
𝑗=1

(
𝐶 𝑗 +

𝑘∑
𝑡=1

𝐷𝑗 ,𝑡

)
, (2.5)
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where

𝐶 𝑗 = 𝜂−𝑘𝑝 |𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎) − 𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)|𝑝

and

𝐷𝑗 ,𝑡 = 𝜂−(𝑘−𝑡)𝑝 |𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)|𝑝 |𝐷𝑡𝑢𝜂(𝑥) − 𝐷𝑡𝑢𝜂(𝑦)|𝑝 .

As for the integer case, since 𝑗𝑝 ≤ 𝑘𝑝 < ℓ , we have∫
𝐵𝛼

|𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)|𝑝 d𝑎 ≲
∫
𝐵𝛼

1
dist(𝑢𝜂(𝑦) − 𝑎,𝛴)𝑗𝑝

d𝑎 < +∞.

We now integrate with respect to 𝑥 and 𝑦, split the integral in 𝑦 into two parts, and use
again the estimate |𝐷𝑡𝑢𝜂 |≲ 𝜂−𝑡 . This yields, for any 𝑟 > 0,∫

𝐵𝛼

∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
𝛺

𝐷𝑗 ,𝑡

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎

≲ 𝜂−(𝑘+1)𝑝
∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
𝐵𝑟 (𝑥)

1
|𝑥 − 𝑦 |𝑚+(𝜎−1)𝑝 d𝑦 d𝑥

+ 𝜂−𝑘𝑝
∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
ℝ𝑚\𝐵𝑟 (𝑥)

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥

≲ (𝜂−(𝑘+1)𝑝𝑟(1−𝜎)𝑝 + 𝜂−𝑘𝑝𝑟−𝜎𝑝)|{|𝑢𝜂 − 𝑢 | ≥ 𝛼}|.

Inserting 𝑟 = 𝜂, we obtain∫
𝐵𝛼

∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
𝛺

𝐷𝑗 ,𝑡

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎 ≲ 𝜂−𝑠𝑝 |{|𝑢𝜂 − 𝑢 | ≥ 𝛼}|.

By the fractional Gagliardo–Nirenberg inequality — see e.g. [BM01, Corollary 3.2]
and [BM18, Theorem 1] — we have 𝑢 ∈ 𝑊𝜎,

𝑠𝑝
𝜎 (𝛺). Invoking the Markov inequality

and Lemma 2.9, we find

|{|𝑢𝜂 − 𝑢 | ≥ 𝛼}| ≤ 1
𝛼

𝑠𝑝
𝜎

∫
{|𝑢𝜂−𝑢 |≥𝛼}

|𝑢𝜂 − 𝑢 |
𝑠𝑝
𝜎 ≲ 𝜂𝑠𝑝

∫
{|𝑢𝜂−𝑢 |≥𝛼}

(𝐷𝜎,
𝑠𝑝
𝜎 𝑢)

𝑠𝑝
𝜎 . (2.6)

Hence, using Lebesgue’s lemma, we conclude that

𝜂−𝑠𝑝 |{|𝑢𝜂 − 𝑢 | ≥ 𝛼}| ≲
∫
{|𝑢𝜂−𝑢 |≥𝛼}

(𝐷𝜎,
𝑠𝑝
𝜎 𝑢)

𝑠𝑝
𝜎 → 0 as 𝜂 → 0.
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This achieves to estimate the second term in (2.5).
For the first term, we also split the integral with respect to 𝑦 into two parts, but this

time we use Lemma 2.8 to estimate |𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎) − 𝐷 𝑗((1 − 𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎)|
in the ball 𝐵𝑟(𝑥). This yields, for every 𝑟 > 0,∫

𝐵𝛼

∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
{dist(𝑢𝜂(𝑥)−𝑎,𝛴)≤dist(𝑢𝜂(𝑦)−𝑎,𝛴)}

𝐶 𝑗

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎

≲ 𝜂−𝑘𝑝
∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
𝐵𝛼

(∫
𝐵𝑟 (𝑥)

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)(𝑗+1)𝑝

|𝑢𝜂(𝑥) − 𝑢𝜂(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

+
∫
ℝ𝑚\𝐵𝑟 (𝑥)

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)𝑗𝑝

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

)
d𝑎 d𝑥.

We estimate∫
𝐵𝑟 (𝑥)

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)(𝑗+1)𝑝

|𝑢𝜂(𝑥) − 𝑢𝜂(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≲ 𝑟(1−𝜎)𝑝𝜂−𝑝 1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)(𝑗+1)𝑝

and ∫
ℝ𝑚\𝐵𝑟 (𝑥)

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)𝑗𝑝

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≲ 𝑟−𝜎𝑝 1

dist(𝑢𝜂(𝑥) − 𝑎,𝛴)𝑗𝑝
.

Inserting 𝑟 = 𝜂 dist(𝑢𝜂(𝑥) − 𝑎,𝛴), we obtain∫
𝐵𝛼

∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
{dist(𝑢𝜂(𝑥)−𝑎,𝛴)≤dist(𝑢𝜂(𝑦)−𝑎,𝛴)}

𝐶 𝑗

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 d𝑥 d𝑎

≲ 𝜂−𝑠𝑝
∫
{|𝑢𝜂(𝑥)−𝑢(𝑥)|≥𝛼}

∫
𝐵𝛼

1
dist(𝑢𝜂(𝑥) − 𝑎,𝛴)(𝑗+𝜎)𝑝

d𝑎 d𝑥 ≲ 𝜂−𝑠𝑝 |{|𝑢𝜂 − 𝑢 | ≥ 𝛼}|,

where, in the last inequality, we once more made use of the fact that 𝑠𝑝 < ℓ . We observe
interestingly that our choice of 𝑟 is not so common. Indeed, in such an optimization
argument, one usually takes 𝑟 to be some suitable power of 𝜂. Here, not only our choice
is more complex, but it also depends on 𝑥 and 𝑎, the outer variables of integration.
Using estimate (2.6), we conclude that the above quantity goes to 0 as 𝜂 → 0, which
finishes to estimate the first term in (2.5). Both terms being controlled, this establishes
average estimate (2.1), therefore concluding the proof of the theorem when 𝑘 ≥ 1 and
0 < 𝜎 < 1.

The case 𝑘 = 0 and 0 < 𝜎 < 1 is similar, and actually simpler. Indeed, as no
derivatives are involved, we have to estimate the difference ((1 −𝜓)𝑃)(𝑢𝜂(𝑥) − 𝑎) − ((1 −
𝜓)𝑃)(𝑢𝜂(𝑦) − 𝑎), which is directly performed with the same technique as for the 𝐶 𝑗
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term in the previous case. Moreover, this range of parameters was already treated
in [BPVS14] with a different technique, interpolating with the first order term using the
Gagliardo–Nirenberg inequality. We therefore omit the details of the argument. □

2.3 Concluding thoughts: What singular set can we hope for?

We conclude this section by considering the question of existence of a singular pro-
jection whose singular set is a closed submanifold of ℝ𝜈. We have seen in Lemmas 2.2
and 2.3 that the (ℓ − 2)-connectedness of the target manifold 𝒩 is a necessary and suffi-
cient condition for the existence of a singular projection, and that the proof produces a
singular projection whose singular set is a subskeleton, and therefore exhibits crossings.
Since projections whose singular set do not have crossings allow to obtain the density of
the class ℛuncr instead of the class ℛcros, it is natural to ask whether or not it is always
possible to improve singular projections so that their singular set is a submanifold. That
is: Does every (ℓ − 2)-connected manifold admit a singular projection whose singular
set is a submanifold?

Although we are not able to answer this question, we give in this section a family of
examples suggesting that there is little hope that the answer is yes. For every ℓ ∈ ℕ∗, we
let 𝒩ℓ denote a connected sum of ℓ copies of the 2-dimensional torus, embedded into
ℝ3. Since 𝒩ℓ is connected, it admits a 2-singular projection. Actually, this projection
may even be taken to be the nearest point projection. For 𝒩1 = 𝕋2, its singular set is the
circle forming the core of the torus and a line passing through the hole of the torus. For
𝒩2 = 𝕋2#𝕋2, the two-holed torus, its singular set is the eight-figure forming the core
of the torus and two lines, each one passing through one of the holes of 𝒩2. One may
notice that, in those two examples, the singular set of the natural singular projection
onto 𝕋2 is a 1-dimensional submanifold of ℝ3, while the singular set of the natural
singular projection onto 𝕋2#𝕋2 is only a finite union of 1-dimensional submanifolds of
ℝ3. It is therefore natural to ask whether or not this can be improved to have a singular
projection onto 𝕋2#𝕋2 whose singular set would be a 1-dimensional submanifold of ℝ3.
The same question arises for 𝒩ℓ for every ℓ ≥ 2.

Proposition 2.10. If ℓ ≥ 2, then there is no homotopy retract 𝑃 : 𝕊3 \𝒮 → 𝒩ℓ such that 𝒮 is a
1-dimensional submanifold of 𝕊3.

We have stated Proposition 2.10 with 𝕊3 instead of ℝ3, but this is equivalent up to
compactification in the case of maps that are constant at infinity — or if the singular set
passes through the point at infinity, as it is the case for the 𝒩ℓ above. In Definition 2.1,
singular projections were required to be continuous retracts of ℝ𝜈 \ 𝛴 into 𝒩, that is,
𝑃 ◦ 𝑖 : 𝒩 → 𝒩 = id𝒩, where 𝑖 is the inclusion of 𝒩 into ℝ𝜈 \ 𝛴. In Proposition 2.10, we
consider instead homotopy retracts, that is, 𝑃 should in addition satisfy that 𝑖 ◦ 𝑃 : ℝ𝜈 \
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𝛴 → ℝ𝜈 \ 𝛴 is homotopic to the identity map. In particular, 𝑃 induces a homotopy
equivalence between ℝ𝜈 \ 𝛴 and 𝒩. This is a stronger requirement than asking merely
that 𝑃 is a continuous retract. Nevertheless, one may check that the usual constructions
for a singular projection, like in Lemma 2.3, produce a homotopy retract that is constant
at infinity, so Proposition 2.10 leaves little hope to find a singular projection whose
singular set would be a submanifold into 𝒩ℓ when ℓ ≥ 2.

Proof. Assume by contradiction that there exists a homotopy retract 𝑃 : 𝕊3 \ 𝒮 → 𝒩ℓ ,
where 𝒮 is a submanifold of 𝕊3. We start by computing the homology groups of 𝕊3,
𝕊3 \𝒮, and the relative homology groups of 𝕊3 relatively to 𝕊3 \𝒮. The first homology
groups of the sphere are given by

𝐻0(𝕊3) = ℤ, 𝐻1(𝕊3) = {0}, 𝐻2(𝕊3) = {0}, 𝐻3(𝕊3) = ℤ.

We note that we always implicitly consider homology with integer coefficients. On the
other hand, since we assumed the existence of the homotopy retract 𝑃, it follows that
𝕊3 \ 𝒮 and 𝒩ℓ share the same homology groups: 𝐻𝑗(𝕊3 \ 𝒮) = 𝐻𝑗(𝒩ℓ ) for every 𝑗 ∈ ℕ.
Therefore, we obtain

𝐻0(𝕊3 \𝒮) = ℤ, 𝐻1(𝕊3 \𝒮) = ℤ2ℓ , 𝐻2(𝕊3 \𝒮) = ℤ, 𝐻3(𝕊3 \𝒮) = {0}.

To obtain the homology groups𝐻𝑘(𝕊3 , 𝕊3 \𝒮), we use the long exact sequence of relative
homology groups

· · · 𝐻𝑘(𝕊3) 𝐻𝑘(𝕊3 , 𝕊3 \𝒮) 𝐻𝑘−1(𝕊3 \𝒮) 𝐻𝑘−1(𝕊3) · · · .

The portion of this sequence for 𝑘 = 2 yields

{0} 𝐻2(𝕊3 , 𝕊3 \𝒮) ℤ2ℓ {0},

which implies that 𝐻2(𝕊3 , 𝕊3 \ 𝒮) = ℤ2ℓ . We now examine the portion of the sequence
with 𝑘 = 3, which translates into

{0} ℤ 𝐻3(𝕊3 , 𝕊3 \𝒮) ℤ {0}.

As ℤ is a free ℤ-module, the above short exact sequence of abelian groups splits, which
implies that necessarily 𝐻3(𝕊3 , 𝕊3 \𝒮) = ℤ ⊕ ℤ.

We now recall two important duality principles concerning homology groups. The
first one is Poincaré duality: If ℳ is a closed orientable 𝑚-dimensional manifold, then
the homology group 𝐻𝑚−𝑘(ℳ) is isomorphic to the cohomology group 𝐻 𝑘(ℳ) for
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every 𝑘 ∈ {0, . . . , 𝑚}; see e.g. [Hat02, Theorem 3.30]. The second one is the Poincaré-
Lefschetz duality: If 𝐾 is a compact locally contractible subspace of a closed orientable
𝑚-dimensional manifold ℳ, then 𝐻𝑘(ℳ,ℳ \ 𝐾) � 𝐻𝑚−𝑘(𝐾) for every 𝑘 ∈ {0, . . . , 𝑚};
see e.g. [Hat02, Theorem 3.44]. Applied to ℳ = 𝕊3 and 𝐾 = 𝒮, the Poincaré-Lefschetz
duality yields

𝐻0(𝒮) � 𝐻3(𝕊3 , 𝕊3 \𝒮) = ℤ ⊕ ℤ and 𝐻1(𝒮) � 𝐻2(𝕊3 , 𝕊3 \𝒮) = ℤ2ℓ .

On the other hand, since 𝒮 is assumed to be a 1-dimensional submanifold of 𝕊3, the
Poincaré duality implies that

𝐻0(𝒮) � 𝐻1(𝒮) � ℤ2ℓ and 𝐻1(𝒮) � 𝐻0(𝒮) � ℤ ⊕ ℤ.

However, for a 1-dimensional manifold, the groups 𝐻0 and 𝐻1 both coincide with a
direct sum of the same number of copies of ℤ, one for each connected component.
Therefore, the above situation is only possible for ℓ = 1, which concludes the proof. □

Note along the way that, when ℓ = 1, the above proof shows that the singular set of a
homotopy retract to 𝕋2 must have exactly two connected components. This is coherent
with what we obtain with the natural construction described above, and shows that
the singular set obtained there cannot be improved to be made of only one connected
component.

A similar reasoning could be carried out in other situations, provided one is able to
compute the required homology groups. For instance, one could examine the situation
for non orientable surfaces, relying on homology with coefficients in ℤ/2ℤ so that
Poincaré duality is also available.

3 The general case: the crossings removal procedure

3.1 The idea of the method

In this section, we consider the case of a general target manifold 𝒩, non necessarily
(⌊𝑠𝑝⌋ − 1)-connected. In this context where the method of projection cannot be applied,
all currently available proofs of the density of the class ℛ

cros and its variants rely on
modifying the map 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;𝒩) to be approximated on its domain — in contrast
with the method of projection, which consists in working on the codomain. In the most
general case, there are essentially two ideas of proof. The first one is the method of
good and bad cubes, introduced by Bethuel [Bet91] to handle the case 𝑊1,𝑝 , and later
pursued in the general case 𝑊 𝑠,𝑝 with 0 < 𝑠 < +∞ [BPVS15, Det23]. The second one is
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the averaging argument devised by Brezis and Mironescu [BM15], suited for the case
0 < 𝑠 < 1.

Both these ideas require to decompose the domain 𝑄𝑚 into a small grid, and rely
crucially on homogeneous extension. In Bethuel’s approach, this procedure is used to
approximate 𝑢 on the bad cubes of the grid, while in Brezis and Mironescu’s approach,
it is used on all the cubes of the grid. By the very definition of homogeneous extension,
it is clear that this technique necessarily produces maps whose singular set exhibits
crossings — except in the case of point singularities.

The key ingredient in the homogeneous extension procedure is the standard retraction
𝑄𝑚 \𝒯ℓ ∗ → 𝒦

ℓ , where we recall that 𝐾ℓ is the ℓ -skeleton of the unit cube, and 𝑇ℓ ∗ its
dual skeleton. In order to perform approximation with maps having a singular set
without crossings, a natural question would be whether or not there exists another
retraction 𝑔 : 𝑄𝑚 \ 𝒮 → 𝒦

ℓ , where here 𝒮 would be an ℓ ∗-submanifold of ℝ𝑚 , that is,
without crossings. This would correspond to a modified version of the usual retraction
𝑄𝑚 \𝒯1 → 𝒦

1, where the singular set has been uncrossed.
It turns out that such a retraction does exist, and is actually quite simple to construct.

This may come as very surprising, in view of Proposition 2.10. Note importantly that
this is not due to the fact that Proposition 2.10 requires a homotopy retract, since the
map that we are going to construct is actually a homotopy retract. The possibility to
obtain such a retraction is instead due to the fact that here, we only require it to be a
retraction on a 1-dimensional set, while in Proposition 2.10, we imposed a 2-dimensional
constraint. This allows for more freedom in our construction.

The procedure to build this retraction 𝑔 is explained below, with 𝑚 = 3 to allow
for illustration. The starting point is the zero-homogeneous map 𝑥 ↦→ 𝑥/|𝑥 |∞, which
retracts 𝑄3 \ {0} onto 𝜕𝑄3. Choosing the center of projection to be a point above 𝑄3

instead of inside 𝑄3 yields a continuous map ℎ defined on the whole 𝑄3, that retracts
𝑄3 onto its four lateral faces and its lower face. We then postcompose the map ℎ with
the usual retraction of these five faces minus their centers onto their boundary, which is
exactly 𝒦

1. This produces the expected continuous retraction 𝑔 : 𝑄3 \𝒮 → 𝒦
1, where

𝒮 is the inverse image of the centers of the five aforementioned faces under ℎ, which
consists of five line segments that emanate from those centers and end up on the top
face of 𝑄3. Those lines do not cross inside 𝑄3, but they would intersect at the center
of projection above 𝑄3 if they were extended up to there. The situation is depicted on
Figure 2, where the singularities of 𝑔 are represented in red, and extended up to the
projection point to help visualization.

Another way of looking at this construction is the following. Viewed from the pro-
jection point lying slightly above 𝑄3, the set of all faces except the top one looks like on
Figure 3, with the centers of the faces represented in red. The retraction 𝑔 : 𝑄3\𝒮 → 𝒦

1
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Figure 2: The retraction 𝑔 and its singular set

may then be viewed as a vertical projection onto the set depicted on Figure 3, followed
by the retraction onto the edges away from the red centers. The singular set would then
look like vertical lines starting from the red centers.

Figure 3: Planar view of the faces of 𝑄3 without the top one

As a final comment concerning this model construction, we note that it appears to be
natural in the context of homology theory. Indeed, the first homology group of 𝒦1 is
given by 𝐻1(𝒦1) = ℤ5, with one cycle generated by the boundary of each face of 𝒦1

except the top one which is the sum of all five others. This is clearly seen on𝑄3\𝒮: there
is one cycle winding around each segment constituting𝒮, each one corresponding to the
boundary of one of the five lowest faces of𝑄3, and the sum of all of them corresponds to
the boundary of the top face. This suggests that our construction is somehow adapted
to the homology of 𝒦1. Moreover, this can be used to prove that the set 𝒮 must have
exactly five connected components inside of 𝑄3, so that our construction is optimal in
this sense.

Having at our disposal the smooth retraction 𝑔 is a first step towards the proof of
the density of the class of maps with uncrossed singular set ℛuncr

𝑚−⌊𝑠𝑝⌋−1 in 𝑊 𝑠,𝑝 , but we
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are not done yet. As the more rigid class ℛrig
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) is dense in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩), it

suffices to show that every map that belongs toℛ
rig
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩)may be approximated
in 𝑊 𝑠,𝑝 by maps in ℛ

uncr
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩). Using a dilation argument if necessary, we may
furthermore assume that the restriction of the singular set of those maps to 𝑄𝑚 is the
dual skeleton of a cubication of𝑄𝑚 . However, as it is constructed above, the map 𝑔 only
uncrosses the singularities inside one cube, note the full set of singularities of a map in
ℛ

rig
𝑚−⌊𝑠𝑝⌋−1. Moreover, this procedure comes without any guarantee that the modified

map is close to the original one in the𝑊 𝑠,𝑝 distance.
As the general constructions are quite involved, the remaining of this section is

devoted to two particular cases to explain the main ideas in a more simple setting,
allowing for less involved notation and illustrative figures. We start by presenting the
full approximation procedure in𝑊1,𝑝(𝑄3;𝒩) with 1 ≤ 𝑝 < 2, which corresponds to the
case of line singularities. This is the content of Proposition 3.1 below. We also sketch the
topological part of our construction to uncross plane singularities in 𝑄3, to illustrate the
additional technical difficulties that arise in this situation. The proof of Theorem 1.4 in
the general case is postponed to Section 3.2.

Proposition 3.1. Let 𝑢 ∈ ℛ
rig
1 (𝑄3;𝒩) and 1 ≤ 𝑝 < 2. There exists a sequence (𝑢𝑛)𝑛∈ℕ in

𝑊1,𝑝(𝑄3;𝒩) such that 𝑢𝑛 → 𝑢 in 𝑊1,𝑝(𝑄3;𝒩) and such that each 𝑢𝑛 is locally Lipschitz
outside of a 1-dimensional Lipschitz submanifold 𝒮𝑢𝑛 of 𝑄3.

To avoid technicalities and focus on the core of the argument, we have stated Propo-
sition 3.1 with approximating maps being only locally Lipschitz outside of the singular
set. In the proof of the general case of our main result, in Section 3, we will take care
of making the approximating maps smooth and establishing the estimates near the
singular set in order to ensure that they belong to the class ℛuncr.

Proof. Since 𝑢 ∈ ℛ
rig
1 (𝑄3;𝒩), we may assume that its singular set𝒮𝑢 is the dual skeleton

𝒯
1 of the 1-skeleton 𝒦

1 of a cubication of 𝑄3 of inradius 𝜂, for some 𝜂 ∈ 1
2ℕ∗

. Let 𝒱1

be the vertical part of 𝒯1, that is, 𝒱1 consists of all the lines in 𝒯
1 having directing

vector (0, 0, 1). Let also 𝒱
1

tr = 𝒱
1 ∩

(
(−1, 1)2 × (−1 + 𝜂, 1)

)
be the vertical singular set

𝒱
1 to which we have truncated the lower extremity. For every 0 < 𝜇 < 1

2 , we define
𝑊𝜇 = (𝒱1

tr +𝑄𝜇𝜂)∩𝑄3. Note that the well𝑊𝜇 contains all the crossings of the singular set
𝒯

1. The reader may refer to Figure 4 for an illustration of the well𝑊𝜇 and the singular
set 𝒮𝑢 .

We uncross the singularities of 𝑢 in two steps. The first one, of topological nature,
consists in replacing 𝑢 in𝑊𝜇 by another extension of 𝑢|𝜕𝑊𝜇 . This extension in constructed
in a way that produces a singular set without crossings, but comes with no control on the
energy of the resulting map. The second step, of analytical nature, consists in modifying
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the map obtained in the first step to obtain a better map with a control on the energy.
Step 1. — Uncrossing the singularities.
We construct a Lipschitz map Φ

top
𝜇 : 𝑄3 → 𝑄3 such that Φtop

𝜇 = id outside of 𝑊𝜇 and
(Φtop

𝜇 )−1(𝒯1) is a Lipschitz submanifold of 𝑄3. Assuming that the map Φ
top
𝜇 has been

constructed, we explain how to conclude Step 1. We define the map 𝑣𝜇 : 𝑄3 \𝒮𝜇 → 𝒩

by 𝑣𝜇 = 𝑢 ◦ Φ
top
𝜇 . Here, 𝒮𝜇 = (Φtop

𝜇 )−1(𝒯1) is the singular set of 𝑣𝜇, which is a Lipschitz
submanifold of 𝑄3 by assumption on Φ

top
𝜇 . Then, the map 𝑣𝜇 is locally Lipschitz on

𝑄3 \𝒮𝜇, and it coincides with 𝑢 outside of𝑊𝜇.
We now explain how to construct the map Φ

top
𝜇 . The procedure is illustrated on

Figure 4. For the part of 𝑊𝜇 that lies around each line in 𝒱
1, we proceed similarly to

what we did on the model case described by Figure 2: We choose a projection point
slightly above the line, and we use this point to retract radially the part of 𝑊𝜇 onto
the corresponding part of 𝜕𝑊𝜇. Note that here, topological operations like closure or
boundary are taken inside 𝑄3. For instance, 𝜕𝑊𝜇 denotes the boundary of 𝑊𝜇 in 𝑄3

with respect to the subspace topology. This avoids having to systematically take the
intersection with 𝑄3 to remove the part of 𝜕𝑊𝜇 that would lie in the boundary of 𝑄3 in
ℝ3.

Carrying out this construction around each part of 𝑊𝜇 produces a smooth retraction
of 𝑊𝜇 onto 𝜕𝑊𝜇. Extending this map by identity outside of 𝑊𝜇 yields a Lipschitz map
Φ

top
𝜇 : 𝑄3 → 𝑄3 such that Φtop

𝜇 = id outside of𝑊𝜇.
As𝒯1 is a union of line segments which cross only in𝑊𝜇, we know that𝒯1∩(𝑄3\𝑊𝜇)

is a Lispchitz submanifold of 𝑄3 with boundary, the latter being the finite set of points
𝒯

1 ∩ 𝜕𝑊𝜇. On the other hand, by construction of Φtop
𝜇 , the set ((Φtop

𝜇 )|𝑊𝜇
)−1(𝒯1) is a

Lipschitz submanifold of𝑄3 — actually a set of lines — also with boundary given by the
finite set of points 𝒯1 ∩ 𝜕𝑊𝜇. Therefore, we conclude that 𝒮𝜇 is a Lipschitz submanifold
of 𝑄3 (without boundary), which is depicted on the second cube in Figure 4. This
finishes to prove that the map Φ

top
𝜇 enjoys all the required properties.

Step 2. — Controlling the energy.
In the second step, we explain how to modify the map 𝑣𝜇 in order to obtain a better

map 𝑢𝜇 with controlled energy. This relies on a scaling argument. For this, the key
observation is that, as 𝑝 < 2, contracting a Sobolev map to a smaller region decreases
its energy in dimension 2. Let 𝑉𝜇 = (𝒱1 + 𝑄𝜇𝜂) ∩ 𝑄3 be a neighborhood of inradius 𝜇𝜂
of the vertical part of the singular set of 𝑢. Note that𝑊𝜇 ⊂ 𝑉𝜇 (actually,𝑊𝜇 correspond
to 𝑉𝜇 with its lower part truncated). The region 𝑉2𝜇 = (𝒱1 + 𝑄2𝜇𝜂) ∩ 𝑄3 is a twice
larger neighborhood of the vertical part of the singular set of 𝑢. Given 0 < 𝜏 < 1, we
are going to shrink the values of 𝑣𝜇 in 𝑉𝜇 to the small region 𝑉𝜏𝜇 = (𝒱1 + 𝑄𝜏𝜇𝜂) ∩ 𝑄3

while keeping 𝑣𝜇 unchanged outside of𝑉2𝜇. As explained above, choosing 𝜏 sufficiently
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Figure 4: The well𝑊𝜇, with singularities before and after uncrossing
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small, we may make the energy of the shrinked map as small as we want on 𝑉𝜏𝜇, hence
obtaining a new map with controlled energy regardless of the energy of the extension
𝑣𝜇 constructed in first instance. The region 𝑉2𝜇 \𝑉𝜏𝜇 serves as a transition region. The
energy on this region remains under control, since we use the values of 𝑣𝜇 outside of
𝑉𝜇, where it coincides with the original map 𝑢.

We start with the model case of one vertical rectangle. Let 𝑅𝜇 = (−𝜇𝜂, 𝜇𝜂)2 × (−1, 1).
Given 𝑣 ∈𝑊1,𝑝(𝑄3;𝒩), we define 𝑣sh

𝜏 ∈𝑊1,𝑝(𝑄3;𝒩) by

𝑣sh
𝜏 (𝑥′, 𝑥3) =


𝑣(𝑥′, 𝑥3) if (𝑥′, 𝑥3) ∈ 𝑄3 \ 𝑅2𝜇;
𝑣( 𝑥′𝜏 , 𝑥3) if (𝑥′, 𝑥3) ∈ 𝑅𝜏𝜇;

𝑣
(
𝑥′

|𝑥′ |
( 1

2−𝜏 (|𝑥′ | − 𝜏𝜇𝜂) + 𝜇𝜂
)
, 𝑥3

)
otherwise.

Relying on the additivity of the integral and the change of variable theorem, we estimate∫
𝑅2𝜇

|𝐷𝑣sh
𝜏 |𝑝 ≲

∫
𝑅2𝜇\𝑅𝜇

|𝐷𝑣 |𝑝 + 𝜏2−𝑝
∫
𝑅𝜇

|𝐷𝑣 |𝑝 .

We now turn to the modification of our map 𝑣𝜇. Applying the above construction to
𝑣𝜇 on each rectangle constituting 𝑉2𝜇, which is nothing else but a translate of 𝑅2𝜇, we
obtain a map 𝑢𝜇,𝜏 ∈𝑊1,𝑝(𝑄3;𝒩) such that

(i) 𝑢𝜇,𝜏 is locally Lipschitz on 𝑄3 \𝒮𝜇,𝜏, where 𝒮𝜇,𝜏 is a Lipschitz submanifold of 𝑄3;

(ii) 𝑢𝜇,𝜏 = 𝑣𝜇 = 𝑢 outside of 𝑉𝜇;

(iii) ∫
𝑉2𝜇

|𝐷𝑢𝜇,𝜏 |𝑝 ≲
∫
𝑉2𝜇\𝑉𝜇

|𝐷𝑣𝜇 |𝑝 + 𝜏2−𝑝
∫
𝑉𝜇

|𝐷𝑣𝜇 |𝑝 .

Since 𝑝 < 2, we may choose 𝜏 = 𝜏𝜇 sufficiently small, depending on 𝜇, so that

𝜏2−𝑝
∫
𝑉𝜇

|𝐷𝑣𝜇 |𝑝 ≲
∫
𝑉2𝜇\𝑉𝜇

|𝐷𝑣𝜇 |𝑝 . (3.1)

We now let 𝑢𝜇 = 𝑢𝜇,𝜏𝜇 . Since 𝑢𝜇 = 𝑢 outside of 𝑉2𝜇, we deduce that∫
𝑄3

|𝐷𝑢 −𝐷𝑢𝜇 |𝑝 ≤
∫
𝑉2𝜇

|𝐷𝑢 −𝐷𝑢𝜇 |𝑝 ≲
∫
𝑉2𝜇

|𝐷𝑢 |𝑝 +
∫
𝑉2𝜇\𝑉𝜇

|𝐷𝑣𝜇 |𝑝 + 𝜏2−𝑝
∫
𝑉𝜇

|𝐷𝑣𝜇 |𝑝 .
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As 𝑣𝜇 = 𝑢 outside of 𝑉𝜇, we infer from (3.1) that∫
𝑄3

|𝐷𝑢 − 𝐷𝑢𝜇 |𝑝 ≲
∫
𝑉2𝜇

|𝐷𝑢 |𝑝 .

But |𝑉𝜇 | → 0 as 𝜇 → 0, so that Lebesgue’s lemma ensures that 𝐷𝑢𝜇 → 𝐷𝑢 in 𝐿𝑝(𝑄3)
as 𝜇 → 0. On the other hand, since 𝒩 is compact, we readily have 𝑢𝜇 → 𝑢 in 𝐿𝑝(𝑄3)
as 𝜇 → 0. Hence, we conclude that 𝑢𝜇 → 𝑢 in 𝑊1,𝑝(𝑄3) as 𝜇 → 0. Since 𝑢𝜇 is locally
Lipschitz outside of𝒮𝜇,𝜏𝜇 , which is a Lispchitz submanifold of𝑄3, this finishes the proof
of the proposition. □

We now turn to the case of the density of the class ℛ
uncr
2 (𝑄3;𝒩), where the maps

have plane singularities. Compared to the case of line singularities treated previously,
the first topological step consisting in uncrossing the singularities features an additional
difficulty, that we explain in this subsection in an informal way, with the help of figures.
The precise construction of the topological step, as well as the analytical step in which
we improve the construction with a control on the energy and which relies on the same
scaling argument as for line singularities, are postponed to Section 3.2, where we explain
precisely the general tools needed to prove Theorem 1.4.

Consider a singular set 𝒯2 for a map 𝑢 in ℛ
rig
2 (𝑄3;𝒩), given by the dual skeleton of

the 0-skeleton 𝒦
0 of a cubication of 𝑄3 having inradius 𝜂 ∈ 1

2ℕ∗
. As previously, we let

𝒱
2 denote the vertical part of 𝒯2, that is, the union of all hyperplanes which constitute

𝒯
2 whose associated vector space contains 𝑒3. This set is made of two unions of parallel

planes: the set 𝒯1,3 consisting of all the planes in 𝒯
2 whose associated vector space is

spanned by 𝑒1 and 𝑒3, and the set 𝒯2,3 consisting of all the planes in 𝒯
2 whose associated

vector space is spanned by 𝑒2 and 𝑒3. We also let 𝒱2
tr = 𝒱

2 ∩
(
(−1, 1)2 × (−1 + 𝜂, 1)

)
be

the truncated version of 𝒱2.
As previously, given 0 < 𝜇 < 1

2 , we consider𝑊𝜇 = (𝒱2
tr +𝑄𝜇𝜂) ∩𝑄3 a well around 𝒱

2
tr .

We first uncross the singularities in 𝑊𝜇 as follows. We start with a model construction
to uncross two families of parallel planes. We observe that the construction carried out
for lines in𝑄3 in the proof of Proposition 3.1 may also be applied to lines in𝑄2. Indeed,
it suffices to perform a radial projection around a point outside 𝑄2 in order to retract
𝑄2 onto all its edges except one. This construction can then be applied to uncross two
planes (or, more precisely, portions of planes). Assume that one wants to uncross the
singularities around the vertical portion of plane 𝒫 = {𝑥 ∈ 𝑄3: 𝑥1 = 0}. Consider the
line segment ℒ = {0} × (−1, 1) × {1 + 𝜀}, which is a line segment subparallel to 𝒫 and
lying slightly above 𝒫. For every plane orthogonal to ℒ determined by 𝑥2 = 𝑡 with
−1 < 𝑡 < 1, one performs the 2-dimensional uncrossing procedure in this plane with
respect to the unique point of ℒ lying in the plane. Otherwise stated, one proceeds
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to a radial projection around a line segment in the 𝑒2 direction lying slightly above 𝒫,
viewing the second coordinate variable as a dummy variable. This allows to uncross 𝒫
from other planes in horizontal position. The procedure is illustrated in Figure 5: the
vertical plane around which the well has been digged is uncrossed from the horizontal
plane, and both vertical planes are left unchanged.

We may then elaborate on this idea to uncross all singularities in 𝑊𝜇, as described
in Figure 6. On the parts of 𝑊𝜇 that do not contain a crossing between two vertical
planes (the four darkest parts around the central one in Figure 6), we insert a copy of
the construction described just above, as in Figure 5. Note that the constructions are
compatible on the region where two different parts touch — which is a union of vertical
line segments — since they coincide with the identity there. On the parts of𝑊𝜇 around
the crossing between orthogonal vertical planes (the central part in Figure 6), we finish
the construction of our extension by using the radial projection from a point slightly
above the crossing, as we did for line singularities. The resulting effect of these glued
constructions is to remove all the crossings between horizontal and vertical planes; see
Figure 6. However, unlike in the case of line singularities, we are not done yet, since
there still are crossings between orthogonal vertical planes to remove.

Figure 5: Uncrossing plane singularities in one direction

For this purpose, we use a well in another direction. We consider the truncated
set of parallel hyperplanes ℋ

2
tr = 𝒯

1,3 ∩
(
(−1 + 𝜂, 1) × (−1, 1)2

)
, and the well 𝐻𝜇 =

(ℋ2
tr +𝑄𝜌𝜇𝜂)∩𝑄3, where 0 < 𝜌 < 1 is chosen sufficiently small so that 𝐻𝜇 intersects only

the planes in the singular set that have not yet been uncrossed. Note that𝐻𝜇 contains all
the remaining singularities. We then insert a rotated copy of the construction illustrated
in Figure 5 in each part of the well𝐻𝜇 around a plane constitutingℋ

2
tr . The procedure is

illustrated in Figure 7 in the case where there is only one plane in each direction. At the
end of this step, the crossings between orthogonal vertical planes have been removed,
and therefore no crossings remain.

This concludes our informal presentation of some particular cases of crossings re-
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Figure 6: Uncrossing plane singularities around all vertical planes

moval. In the next section, we introduce the general version of the two main tools that
have been presented here: the topological construction to remove crossings, and the
analytical procedure to control the energy on the modified region. These two tools are
the key ingredient the proof of our main result. Concerning the second one, we use the
shrinking construction introduced by Bousquet, Ponce, and Van Schaftingen [BPVS15,
Section 8]; see also [Det23, Section 7] for the fractional order setting. For the first
one, however, we need to perform an ad hoc construction, suited for our purposes.
This construction is nevertheless very similar to the thickening procedure introduced
in [BPVS15, Section 4]. As we have seen in our last example with plane singularities, the
crossings removal procedure may involve gluing building blocks in various dimensions
and also combining crossings removal procedures in different directions to get rid of all
the existing crossings.

3.2 The general crossings removal procedure

We now explain how to prove our main result, Theorem 1.4, in the general case.
The argument follows the same two steps as in Proposition 3.1: First, we uncross
the singularities through a topological procedure, and then we rely on an analytical
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Figure 7: Uncrossing plane singularities between vertical planes

argument to obtain a control on the energy.
We start by considering the first topological step. This is handled by the following

proposition.

Proposition 3.2. Let ℓ ∈ {0, . . . , 𝑚 − 2} and let 𝒯ℓ ∗ be the dual skeleton of the ℓ -skeleton 𝒦
ℓ

of a cubication 𝒦
𝑚 of 𝑄𝑚 of inradius 𝜂 > 0. For every 0 < 𝜇 < 1, there exists a smooth local

diffeomorphism Φ : 𝑄𝑚 → 𝑄𝑚 such that

(i) 𝒮
ℓ ∗ = Φ−1(𝒯ℓ ∗) is a smooth ℓ ∗-dimensional submanifold of 𝑄𝑚;

(ii) Φ = id outside of 𝒯ℓ ∗ +𝑄𝜇𝜂.

Moreover, Φ can be extended to a smooth local diffeomorphism on a slightly larger open set
𝜔 ⊂ ℝ𝑚 such that 𝑄𝑚 ⋐ 𝜔.

The proof of Proposition 3.2 is similar in its spirit to the thickening construction;
see [BPVS15, Section 4]. However, to have a tool suited for our purposes here, we cannot
re-use thickening as such, and we need to proceed to a quite different construction. We
also note that our restriction ℓ ≤ 𝑚−2 excludes the case ℓ = 𝑚−1, where ℓ ∗ = 0, and hence
the singular set would have been made of points. But in this case, the classes ℛrig, ℛcros,
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and ℛ
uncr all coincide, so that Theorem 1.4 is already contained in Bethuel’s theorem

and its counterpart for arbitrary 𝑠, and requires therefore no additional argument.

Proof. As explained in the last example of Section 3.1, the general uncrossing procedure
requires to perform successive uncrossing steps in various directions.

Step 1. — Uncrossing singularities in a vertical well.
We let 𝒱 be the part of 𝒯ℓ ∗ consisting only of ℓ ∗-planes that have the vertical vector

𝑒𝑚 in their associated vector space. We also consider the truncated set of planes 𝒱tr =

𝒱 ∩ ((−1, 1)𝑚−1 × (−1+ 𝜂, 1)). Finally, we let𝑊𝜇 = (𝒱tr +𝑄𝜇𝜂) ∩𝑄𝑚 be a well around 𝒱tr .
The well 𝑊𝜇/2 is defined accordingly. We note that 𝑊𝜇/2 contains all the crossings that
involve at least one non vertical ℓ ∗-plane, i.e., a plane not in 𝒱.

Let

𝜇

2 < 𝜌
ℓ ∗−1

< 𝜌ℓ ∗−1 < · · · < 𝜌
0
< 𝜌0 < 𝜇.

We consider ℰℓ ∗−1 = 𝒱 ∩ ((−1, 1)𝑚−1 × {1}) the intersection of 𝒱 with the top face of
𝑄𝑚 . Note that ℰℓ ∗−1 is an (ℓ ∗ − 1)-skeleton. For every 𝑑 ∈ {0, . . . , ℓ ∗ − 1}, we define the
rectangles

𝑅𝑑 = (−𝜇𝜂, 𝜇𝜂)𝑚−1−𝑑 × (−(1 − 𝜌𝑑)𝜂, (1 − 𝜌𝑑)𝜂)𝑑 × (−1 + 𝜂 − 𝜇𝜂, 1),
𝑅𝑑out = (−𝜌𝑑𝜂, 𝜌𝑑𝜂)𝑚−1−𝑑 × (−(1 − 𝜌𝑑)𝜂, (1 − 𝜌𝑑)𝜂)𝑑 × (−1 + 𝜂 − 𝜌𝑑𝜂, 1),

and

𝑅𝑑in = (−𝜌
𝑑
𝜂, 𝜌

𝑑
𝜂)𝑚−1−𝑑 × (−(1 − 𝜌𝑑)𝜂, (1 − 𝜌𝑑)𝜂)𝑑 × (−1 + 𝜂 − 𝜌

𝑑
𝜂, 1).

Given a 𝑑-face 𝜎𝑑 ∈ 𝐸𝑑, we let 𝑅𝜎𝑑 be the rotated copy of 𝑅𝑑 positioned so that 𝜎𝑑

corresponds to {0}𝑚−𝑑−1 × (−1, 1)𝑑 × {1}. This way, we note that 𝑅𝜎𝑑 ⊂ 𝑊𝜇 for every
𝑑 ∈ {0, . . . , ℓ ∗ − 1} and every 𝜎𝑑 ∈ 𝐸𝑑, and that actually 𝑊𝜇 is made of the union of all
such 𝑅𝜎𝑑 . We define similarly 𝑅𝜎𝑑 ,in and 𝑅𝜎𝑑 ,out.

We use as a tool the following construction from [BPVS15, Proposition 4.3]: There
exists a smooth local diffeomorphism Θ𝑑 : 𝑄𝑑

𝜇𝜂 \ {0} → 𝑄𝑑
𝜇𝜂 such that

(i) Θ𝑑(𝑄𝑑 \ {0}) ⊂ 𝑄𝑑
𝜇𝜂 \𝑄𝑑

𝜌
𝑑
𝜂;

(ii) Θ𝑑 = id outside of 𝑄𝑑
𝜌𝑑𝜂

.

The map Θ𝑑 is constructed by letting Θ𝑑(𝑥) = 𝜆(𝑥)𝑥 for some well-chosen smooth map
𝜆 : 𝑄𝑑

𝜇𝜂 \ {0} → [1,+∞) such that 𝜆 = 1 outside of 𝑄𝑑
𝜌𝑑𝜂

. We focus our attention to the
restriction of Θ𝑑 to the lower part of 𝑄𝑑

𝜇𝜂, slightly below {0}. After a suitable distortion
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of 𝑄𝑑 and addition of dummy variables, this yields a smooth local diffeomorphism
Ψ𝑑 : 𝑅𝑑 → 𝑅𝑑 such that

(i) Ψ𝑑(𝑅𝑑) ⊂ 𝑅𝑑 \ 𝑅𝑑in;

(ii) Ψ𝑑 = id outside of 𝑅𝑑out.

LetΨ𝜎𝑑 be the map obtained by transporting isometricallyΨ𝑑 to 𝑅𝜎𝑑 , and defineΦ𝑑(𝑥) =
Ψ𝜎𝑑 (𝑥) if 𝑥 ∈ 𝑅𝜎𝑑 . We note that this is well defined. Indeed, if 𝑥 ∈ 𝑅𝜎𝑑1

∩ 𝑅𝜎𝑑2
, then 𝑥 is

outside of 𝑅𝜎𝑑1 ,out and 𝑅𝜎𝑑2 ,out, which implies that Ψ𝜎𝑑1
(𝑥) = 𝑥 = Ψ𝜎𝑑2

(𝑥).
We readily observe that the map Φ𝑑 can be smoothly extended by identity to 𝑄𝑚 \⋃
𝜎𝑙∈𝐸𝑙

𝑙∈{0,...,𝑑−1}

𝑅𝜎𝑙 ,in. In particular, this yields Φ𝑑 = id outside of 𝑊𝜇. Moreover, Φ𝑑 has the

property that it maps
⋃

𝜎𝑑∈𝐸𝑑
𝑅𝜎𝑑 outside of

⋃
𝜎𝑑∈𝐸𝑑

𝑅𝜎𝑑 ,in. By induction, this implies that the

composition Φv = Φℓ ∗−1 ◦ · · · ◦ Φ0 is a well-defined smooth local diffeomorphism and
maps 𝑄𝑚 outside of 𝑊𝜇/2. In particular, Φ−1

v (𝒯ℓ ∗) is a finite union of smooth ℓ ∗-dimen-
sional submanifolds of 𝑄𝑚 , and as 𝑊𝜇/2 contains all the crossings between ℓ ∗-planes in
𝒯
ℓ ∗ involving at least one non vertical one, we deduce that the only submanifolds in

Φ−1
v (𝒯ℓ ∗) that intersect correspond to inverse images of vertical ℓ ∗-planes. Finally, since

the building blocks Θ𝑑 have the form Θ𝑑(𝑥) = 𝜆(𝑥)𝑥, we also find that Φ−1
v (𝒱) = 𝒱.

Step 2. — Uncrossing vertical planes.
It remains to remove the crossings between planes in 𝒱. For this purpose, we choose

another — non vertical — direction, and we rotate 𝑄𝑚 to make it correspond to the
vertical one. We then repeat the exact same construction as in the first step, except that
we replace𝑊𝜇 by𝑊𝜌𝜇 for some 0 < 𝜌 < 1 so small that𝑊𝜌𝜇 does not intersect the inverse
images under Φv of ℓ ∗-planes of 𝒯ℓ ∗ \ 𝒱. The construction should then be modified
accordingly, adding the scaling 𝜌 wherever necessary, and this yields another smooth
local diffeomorphism Φh : 𝑄𝑚 → 𝑄𝑚 that coincides with the identity outside of 𝑊𝜌𝜇

and such that Φ−1
h (𝒱) is a finite union of smooth ℓ ∗-dimensional submanifolds of 𝑄𝑚 .

Moreover, only the inverse images coming from planes in the new vertical direction may
still cross. Therefore, the map Φv ◦ Φh is a smooth local diffeomorphism that coincides
with the identity outside of 𝒯ℓ ∗ + 𝑄𝜇𝜂 and such that (Φv ◦ Φh)−1(𝒯ℓ ∗) is a finite union
of smooth submanifolds of 𝑄𝑚 , and only the parts coming from ℓ ∗-planes aligned with
the two chosen directions may still cross.

We pursue this procedure, chosing each time a new direction to be the vertical one,
until no crossing remains. This yields the desired map Φ.

Moreover, it is readily observed from our construction, since each building block
could have been defined on a slightly larger set, that Φ may be extended to a smooth
local diffeomorphism defined on a slightly larger set. □

38



We now turn to the analytical step. This relies on the shrinking construction, which
has been introduced in [BPVS15, Section 8]; see also [Det23, Section 7] for the fractional
order setting.

Proposition 3.3. Let ℓ ∈ {0, . . . , 𝑚 − 1}, 0 < 𝜇 < 1
2 , 0 < 𝜏 < 1

2 , 𝜀 > 0, 𝒦𝑚 be a cubication in
ℝ𝑚 of radius 𝜂 > 0, and 𝒯

ℓ ∗ be the dual skeleton of 𝒦ℓ . If ℓ +1 > 𝑠𝑝, then there exists a smooth
local diffeomorphism Φ : ℝ𝑚 → ℝ𝑚 satisfying Φ(𝜎𝑚) ⊂ 𝜎𝑚 for every 𝜎𝑚 ∈ 𝐾𝑚 and such that,
for every 𝑢 ∈ 𝑊 𝑠,𝑝(𝒦𝑚) and every 𝑣 ∈ 𝑊 𝑠,𝑝(𝒦𝑚) such that 𝑢 = 𝑣 on the complement of
𝒯
ℓ ∗ +𝑄𝑚

𝜇𝜂, we have 𝑢 ◦Φ ∈𝑊 𝑠,𝑝(𝒦𝑚), and moreover, there exists a constant 𝐶 > 0 depending
on 𝑚, 𝑠, and 𝑝 such that

(i) if 0 < 𝑠 < 1, then

|𝑢 ◦Φ− 𝑣 |𝑊 𝑠,𝑝(𝒦𝑚) ≤ 𝐶
(
|𝑣 |𝑊 𝑠,𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚

2𝜇𝜂)) + (𝜇𝜂)−𝑠 ∥𝑣∥𝐿𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚
2𝜇𝜂))

)
+ 𝜀;

(ii) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣∥𝐿𝑝(𝒦𝑚) ≤ 𝐶

𝑗∑
𝑖=1

(𝜇𝜂)𝑖−𝑗 ∥𝐷 𝑖𝑣∥𝐿𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚
2𝜇𝜂)) + 𝜀;

(iii) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

|𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣 |𝑊𝜎,𝑝(𝒦𝑚)

≤ 𝐶

𝑗∑
𝑖=1

(
(𝜇𝜂)𝑖−𝑗−𝜎∥𝐷 𝑖𝑣∥𝐿𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚

2𝜇𝜂))+(𝜇𝜂)
𝑖−𝑗 |𝐷 𝑖𝑣 |𝑊𝜎,𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚

2𝜇𝜂))

)
+𝜀;

(iv) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ − 𝑣∥𝐿𝑝(𝒦𝑚) ≤ 𝐶∥𝑣∥𝐿𝑝(𝒦𝑚∩(𝒯ℓ∗+𝑄𝑚
2𝜇𝜂)) + 𝜀.

Proposition 3.3 is obtained from [Det23, Proposition 7.1] by choosing 𝜏 sufficiently
small, depending on 𝑢 and 𝑣, as explained below the proposition.

Having at hand Propositions 3.2 and 3.3, we are ready to perform the topological and
analytical steps of our construction. However, before proving Theorem 1.4, we need
one last technical tool. Indeed, our proof involves composing the map 𝑢 ∈ ℛ

rig ⊂ ℛ
cros

we want to approximate with the maps provided by Propositions 3.2 and 3.3. The
following lemma ensures that the class ℛcros is stable through composition with a local
diffeomorphism.
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Lemma 3.4. Let 𝛺 ⊂ ℝ𝑚 be a bounded open set, let 𝜔 ⊂ ℝ𝑚 be an open set such that 𝛺 ⋐ 𝜔,
and let Φ : 𝜔 → ℝ𝑚 be a local diffeomorphism such that Φ(𝛺) ⊂ 𝛺. For every 𝑢 ∈ ℛ

cros
𝑖

(𝛺),
we have that 𝑢 ◦Φ ∈ ℛ

cros
𝑖

(𝛺).

Proof. Let 𝒮 denote the singular set of 𝑢. We may assume that 𝒮 ≠ ∅, otherwise the
proof is trivial. We may also assume that 𝜔 = ℝ𝑚 . Indeed, if this is not the case, we
consider an open set𝑈 such that 𝛺 ⋐ 𝑈 ⋐ 𝜔, and we pick a cutoff function 𝜓 ∈ 𝐶∞

c (𝜔)
be such that 𝜓 = 1 on 𝑈 and a map 𝜙 ∈ 𝐶∞

c (ℝ𝑚 \ 𝛺) such that 𝜙(𝑥) = 𝜆𝑥 for every
𝑥 ∈ ℝ𝑚 \𝑈 . If 𝜆 > 0 is sufficiently large, then the map 𝜓Φ+𝜙 is a local diffeomorphism
on ℝ𝑚 that coincides with Φ on 𝛺.

SinceΦ is a local diffeomorphism, the map 𝑢◦Φ is smooth on𝛺\�̃�, where �̃� = Φ−1(𝒮)
is a finite union of smooth 𝑖-dimensional submanifolds of ℝ𝑚 . Moreover, if 𝑢 extends
smoothly on 𝑈 \ 𝒮 for some open set 𝑈 ⊂ ℝ𝑚 satisfying 𝛺 ⋐ 𝑈 , then 𝑢 ◦ Φ extends
smoothly on Φ−1(𝑈) \ �̃�, and Φ−1(𝑈) is an open subset of ℝ𝑚 satisfying 𝛺 ⋐ Φ−1(𝑈). It
therefore remains to prove the estimates on the derivatives of 𝑢 ◦Φ.

For this purpose, we first note that, as Φ is defined on the whole ℝ𝑚 , it has bounded
derivatives on 𝛺. Therefore, the Faà di Bruno formula ensures that, for every 𝑥 ∈ 𝛺

and 𝑗 ∈ ℕ∗,

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)| ≲
𝑗∑
𝑡=1

|𝐷𝑡𝑢(Φ(𝑥))| ≲
𝑗∑
𝑡=1

1
dist (Φ(𝑥),𝒮)𝑡

≲
1

dist (Φ(𝑥),𝒮)𝑗
.

We conclude the proof by showing that dist (Φ(𝑥),𝒮) ≳ dist (𝑥, �̃�) for every 𝑥 ∈ 𝛺.
For this purpose, we first note that, by a compactness argument, there exists 𝛿 > 0

such that, for every 𝑥 ∈ 𝛺, the restriction of Φ to Φ−1(𝐵𝛿(Φ(𝑥))) is a diffeomorphism
onto 𝐵𝛿(Φ(𝑥)). Taking 𝛿 smaller if necessary, this implies in particular that

|𝑥 − 𝑦 | ≲ |Φ(𝑥) −Φ(𝑦)| whenever |Φ(𝑥) −Φ(𝑦)| < 𝛿. (3.2)

It suffices to show that dist (Φ(𝑥),𝒮) ≳ dist (𝑥, �̃�) whenever 𝑥 ∈ 𝛺 is such that Φ(𝑥) is
sufficiently close to 𝒮. Hence, let 𝑥 ∈ 𝛺 be such that dist (Φ(𝑥),𝒮) < 𝛿. Let 𝑧 ∈ 𝒮 be
such that |Φ(𝑥) − 𝑧 | = dist (Φ(𝑥),𝒮). In particular, there exists 𝑦 ∈ Φ−1(𝐵𝛿(Φ(𝑥))) such
that Φ(𝑦) = 𝑧. With this choice, we have 𝑦 ∈ Φ−1(𝒮) = �̃� and therefore, due to (3.2),

dist (𝑥, �̃�) ≤ |𝑥 − 𝑦 | ≲ |Φ(𝑥) −Φ(𝑦)| = dist (Φ(𝑥),𝒮).

This concludes the proof of the lemma. □

Proof of Theorem 1.4. Since the more rigid classℛrig
𝑚−[𝑠𝑝]−1(𝑄

𝑚 ;𝒩) is dense in𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩),
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it suffices to consider 𝑢 ∈ ℛ
rig
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) and to show that it can be approximated
by maps in the uncrossed class ℛuncr

𝑚−⌊𝑠𝑝⌋−1(𝑄
𝑚 ;𝒩). Let ℓ = ⌊𝑠𝑝⌋, and let 𝒯ℓ ∗ be the dual

skeleton of the ℓ -skeleton 𝒦
ℓ of a cubication 𝒦

𝑚 of radius 𝜂 > 0 of 𝑄𝑚 , chosen so that
𝒯
ℓ ∗ coincides with the singular set of 𝑢. Recall that, as already explained, we may limit

ourselves to consider maps such that their singular set is placed like this. Also, recall
that we may assume that ℓ ≤ 𝑚 − 2, as if ℓ = 𝑚 − 1 there is nothing to prove.

For the sake of conciseness, we let 𝒜𝜇 = 𝑄𝑚 ∩ (𝒯ℓ ∗ + 𝑄2𝜇𝜂). Given 0 < 𝜇 < 1
2 , we

start by applying Proposition 3.2 to obtain a map Φ
top
𝜇 : 𝑄𝑚 → 𝑄𝑚 such that, defining

𝑢
top
𝜇 = 𝑢 ◦Φtop

𝜇 , we have that

(i) 𝒮
top
𝜇 = (Φtop

𝜇 )−1(𝒯ℓ ∗) is a smooth ℓ ∗-dimensional submanifold of 𝑄𝑚 ;

(ii) 𝑢top
𝜇 = 𝑢 outside of 𝒯ℓ ∗ +𝑄𝜇𝜂;

(iii) 𝑢top
𝜇 ∈𝑊 𝑠,𝑝(𝑄𝑚).

Item (iii) above is a consequence of the fact that 𝑢top
𝜇 ∈ ℛ

cros
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩), as 𝑢 ∈
ℛ

cros
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) and using Lemma 3.4.
Since ℓ + 1 = ⌊𝑠𝑝⌋ + 1 > 𝑠𝑝 and thanks to (ii) and (iii) above, we may now invoke

Proposition 3.3 on 𝑢
top
𝜇 and 𝑢, with 𝜀 = 𝜇, to deduce the existence of a smooth local

diffeomorphism Φsh
𝜇 : 𝑄𝑚 → 𝑄𝑚 such that, letting 𝑢sh

𝜇 = 𝑢
top
𝜇 ◦ Φsh

𝜇 , we have that
𝑢sh
𝜇 ∈𝑊 𝑠,𝑝(𝑄𝑚) with

(i) if 0 < 𝑠 < 1, then

|𝑢sh
𝜇 − 𝑢 |𝑊 𝑠,𝑝(𝑄𝑚) ≲ |𝑢 |𝑊 𝑠,𝑝(𝒜𝜇) + (𝜇𝜂)−𝑠 ∥𝑢∥𝐿𝑝(𝒜𝜇) + 𝜇;

(ii) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

∥𝐷 𝑗𝑢sh
𝜇 − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚) ≲

𝑗∑
𝑖=1

(𝜇𝜂)𝑖−𝑗 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝒜𝜇) + 𝜇;

(iii) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

|𝐷 𝑗𝑢sh
𝜇 −𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚) ≲

𝑗∑
𝑖=1

(
(𝜇𝜂)𝑖−𝑗−𝜎∥𝐷 𝑖𝑢∥𝐿𝑝(𝒜𝜇) + (𝜇𝜂)𝑖−𝑗 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝒜𝜇)

)
+ 𝜇;

(iv) for every 0 < 𝑠 < +∞,

∥𝑢sh
𝜇 − 𝑢∥𝐿𝑝(𝑄𝑚) ≲ ∥𝑢∥𝐿𝑝(𝒜𝜇) + 𝜇.

41



Since Φsh
𝜇 is a local diffeomorphism, we know that (Φsh

𝜇 )−1(𝒮top
𝜇 ) is a smooth ℓ ∗-

dimensional submanifold of 𝑄𝑚 . Moreover, Φtop
𝜇 and Φsh

𝜇 satisfy the assumptions of
Lemma 3.4. This shows that 𝑢sh

𝜇 ∈ ℛ
uncr
𝑚−⌊𝑠𝑝⌋−1(𝑄

𝑚 ;𝒩) for every 0 < 𝜇 < 1
2 , and it

therefore only remains to prove the 𝑊 𝑠,𝑝 convergence 𝑢sm
𝜇 → 𝑢 as 𝜇 → 0 to conclude

the proof. To accomplish this, we verify that the quantities in the right-hand side of (i)
to (iv) converge to 0 as 𝜇 → 0.

We first observe the following estimate on the measure of 𝒜𝜇:

|𝒜𝜇 | ≲ (𝜇𝜂)ℓ+1. (3.3)

By Lebesgue’s lemma, we deduce that the quantities |𝑢 |𝑊 𝑠,𝑝(𝒜𝜇) and ∥𝑢∥𝐿𝑝(𝒜𝜇), that
appear on (i) and (iv) respectively, indeed tend to 0 as 𝜇 → 0. Moreover, when 0 < 𝑠 < 1,
using the fact that 𝑢 ∈ 𝐿∞(𝑄𝑚) by the compactness of 𝒩, we have

∥𝑢∥𝐿𝑝(𝒜𝜇) ≲ |𝒜𝜇 |
1
𝑝 ≲ (𝜇𝜂)

ℓ+1
𝑝 .

Therefore,

(𝜇𝜂)−𝑠 ∥𝑢∥𝐿𝑝(𝒜𝜇) ≲ (𝜇𝜂)
ℓ+1−𝑠𝑝
𝑠𝑝 ,

which converges to 0 as 𝜇 → 0 because of the fact that 𝑠𝑝 < ℓ + 1.
We now consider estimates (ii) and (iii), when 𝑠 ≥ 1. Observe that, since 𝑢 ∈

𝑊 𝑠,𝑝(𝑄𝑚) ∩ 𝐿∞(𝑄𝑚), the Gagliardo–Nirenberg inequality implies that 𝐷 𝑖𝑢 ∈ 𝐿
𝑠𝑝

𝑖 (𝑄𝑚)
for every 𝑖 ∈ {1, . . . , 𝑘}. Hence, Hölder’s inequality and (3.3) ensure that

∥𝐷 𝑖𝑢∥𝐿𝑝(𝒜𝜇) ≤ |𝒜𝜇 |
𝑠−𝑖
𝑠𝑝 ∥𝐷 𝑖𝑢∥

𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

≲ (𝜇𝜂)
(ℓ+1)(𝑠−𝑖)

𝑠𝑝 ∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

.

Therefore, we deduce that

(𝜇𝜂)𝑖−𝑗 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝒜𝜇) ≲ (𝜇𝜂)
(ℓ+1)(𝑠−𝑖)−(𝑗−𝑖)𝑠𝑝

𝑠𝑝 ∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

≲ (𝜇𝜂)
(𝑗−𝑖)(ℓ+1−𝑠𝑝)

𝑠𝑝 ∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

.

As 𝑠𝑝 < ℓ + 1, the exponent of 𝜇𝜂 is positive, which implies that the right-hand side
converges to 0 as 𝜇 → 0. This handles estimate (ii).

If 𝑠 ≥ 1 and 𝜎 ≠ 0, the same reasoning leads to

(𝜇𝜂)𝑖−𝑗−𝜎∥𝐷 𝑖𝑢∥𝐿𝑝(𝒜𝜇) ≲ (𝜇𝜂)
(𝜎+𝑗−𝑖)(ℓ+1−𝑠𝑝)

𝑠𝑝 ∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

,

which also goes to 0 as 𝜇 → 0. Similarly, by interpolation, see [Det23, Lemma 6.1], we
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find

|𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝒜𝜇) ≲ |𝒜𝜇 |
𝑠−𝑖−𝜎
𝑠𝑝 ∥𝐷 𝑖𝑢∥1−𝜎

𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

∥𝐷 𝑖+1𝑢∥𝜎
𝐿
𝑠𝑝
𝑖+1 (𝑄𝑚)

≲ (𝜇𝜂)
(𝑠−𝑖−𝜎)(ℓ+1)

𝑠𝑝 ∥𝐷 𝑖𝑢∥1−𝜎
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

for every 𝑖 ∈ {1, . . . , 𝑗 − 1}. Therefore,

(𝜇𝜂)𝑖−𝑗 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝒜𝜇) ≲ (𝜇𝜂)
(𝑗−𝑖)(ℓ+1−𝑠𝑝)

𝑠𝑝 ∥𝐷 𝑖𝑢∥1−𝜎
𝐿
𝑠𝑝
𝑖 (𝒜𝜇)

,

which once more goes to 0 as 𝜇 → 0. This finishes to handle the second term in
estimate (iii) when 𝑖 < 𝑗. The second term for 𝑖 = 𝑗 is simply |𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝒜𝜇), which
converges to 0 due to the Lebesgue lemma.

All cases being covered, this finishes to prove that 𝑢sh
𝜇 → 𝑢 as 𝜇 → 0, which concludes

the proof of the theorem. □

As a concluding remark, note that our method uses in a explicit way the fact that the
domain is a cube. However, the argument can be adapted to any domain which has
a shape allowing to evacuate crossings as we did for the cube. For instance, consider
the ball with a hole 𝐵2 \ 𝐵1 ⊂ ℝ𝑚 . One may use a decomposition into cells that are
diffeomorphic to cubes and arranged in a radial way, and evacuate crossings between
lines along the radial direction to deduce the density of ℛuncr

1 (𝐵2 \ 𝐵1;𝒩) in 𝑊 𝑠,𝑝(𝐵2 \
𝐵1;𝒩) when ⌊𝑠𝑝⌋ = 𝑚 − 2. The idea of the construction is illustrated on Figure 8 in
dimension 𝑚 = 2, where we have represented the singular set of the map in the radial
equivalent of the class ℛ

rig to be approximated in red, and the wells used to uncross
the singularities in dark blue. We shall not attempt to present a detailed argument,
since it would require to adapt the whole proof of the density of class ℛ

rig in a radial
version, which would considerably increase the length of this text. We therefore keep
this observation as a remark, and not a theorem with precise statement and proof. On
the other hand, on the same domain, the method does not seem to work to uncross plane
singularities for instance, since there is no second direction along which to evacuate the
remaining crossings after the first uncrossing step has been performed.

Nevertheless, this particular situation does not provide a counterexample, since one
could extend the map to be approximated inside the hole by homogeneous extension,
and then apply the technique we introduced to uncross the singularities of the ex-
tended map on 𝐵2. However, such a straightforward extension argument cannot be
implemented on a general domain. Actually, there does not seem to be a direct way to
solve the case of a general domain using the technique we introduced for 𝑄𝑚 as such.

It is not clear to us what should be the general situation. It could be that the class
ℛ

uncr is always dense in 𝑊 𝑠,𝑝 , but that the proof for a general domain requires an
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Figure 8: Radial uncrossing procedure

adaptation of our argument or even a new idea. It could also be that there are some
new obstructions that arise, stemming for instance from the topology of the domain, in
the spirit of the work of Hang and Lin [HL03]. This motivates us to conclude on the
following open problem.

Open problem 3.5. Is it true that ℛuncr
𝑚−⌊𝑠𝑝⌋−1(𝛺;𝒩) is always dense in 𝑊 𝑠,𝑝(𝛺;𝒩) for any

domain 𝛺 ⊂ ℝ𝑚 sufficiently smooth?
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