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An improved dense class in Sobolev spaces
to manifolds

Antoine Detaille∗

January 31, 2024

Abstract

We consider the strong density problem in the Sobolev space , B,?(&< ;
) of
maps with values into a compact Riemannian manifold 
. It is known, from the
seminal work of Bethuel, that such maps may always be strongly approximated by

-valued maps that are smooth outside of a finite union of (< − bB?c − 1)-planes.
Our main result establishes the strong density in , B,?(&< ;
) of an improved
version of the class introduced by Bethuel, where the maps have a singular set
without crossings. This answers a question raised by Brezis and Mironescu.

In the special casewhere
 has a sufficiently simple topology and for some values
of B and ?, this result was known to follow from themethod of projection, which takes
its roots in the work of Federer and Fleming. As a first result, we implement this
method in the full range of B and ? in which it was expected to be applicable. In the
case of a general target manifold, we devise a topological argument that allows to
remove the self-intersections in the singular set of the maps obtained via Bethuel’s
technique.
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1 Introduction

One of the most important problems concerning the Sobolev space , B,?(�;
) of
maps with values into a compact manifold
 is the strong density problem. Here,� ⊂ ℝ< is
a sufficiently smooth bounded open set, and 1 ≤ ? < +∞, 0 < B < +∞. Moreover, we
split B = : + �, where : = bBc ∈ ℕ is the integer part of B and � ∈ [0, 1) is the fractional
part of B. It is known from the work of Schoen and Uhlenbeck [SU83, Section 4] that, in
a striking contrast with the case of real-valued maps, the set �∞(�;
) of smooth maps
with values into 
 need not be dense in , B,?(�;
). The failure of strong density of
smooth maps comes from topological obstructions due to the target manifold. Aside from
the problem of characterizing those target manifolds 
 such that �∞(�;
) is dense
in, B,?(�;
), depending on B, ?, and �, a natural question that arises in view of this
phenomenon is to find a suitable class of smooth maps outside of a small singular set
that would be dense in, B,?(�;
) regardless of the target
.

A major breakthrough in this regard was accomplished by Bethuel in his seminal
paper [Bet91] in the case of,1,? , and was subsequently pursued in, B,? with 0 < B < 1
by Brezis and Mironescu [BM15], in, :,? with : = 2, 3 . . . by Bousquet, Ponce, and Van
Schaftingen [BPVS15], and in, B,? with B > 1 non-integer by the author [Det23].

In order to state precisely Bethuel’s theorem and its counterpart for arbitrary B, we
need to introduce the relevant class of functions. But first, let us recall the precise
definition of the Sobolev space, B,?(�;
). In the sequel,
 denotes a smooth compact
connected Riemannian manifold without boundary, isometrically embedded in ℝ�.
The latter assumption is not restrictive, since one may always find such an embedding
provided that one chooses � ∈ ℕ sufficiently large; see [Nas54, Nas56]. The space
, B,?(�;
) is then defined as the set of all maps D ∈ , B,?(�;ℝ�) such that D(G) ∈ 


for almost every G ∈ �. Due to the presence of the manifold constraint, , B,?(�;
)
is in general not a vector space, but it is nevertheless a metric space endowed with the
distance defined by

3, B,?(�)(D, E) = ‖D − E‖, B,?(�).

Definition 1.1. The class ℛ
cros
8
(�;
) is the set of all maps D such that there exists a set

� = �D ⊂ ℝ< which is a finite union of closedly embedded 8-dimensional submanifolds of ℝ<
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and such that D ∈ �∞(� \�;
) and

|� 9D(G)| ≤ � 1
dist (G,�)9

for every G ∈ � and 9 ∈ ℕ∗,

where � > 0 is a constant depending on D and 9.

We note importantly that the singular set � depends on the map D. Moreover, when
we write D ∈ �∞(� \�;
), this means that there exists an open set * ⊂ ℝ< such that
� b * and a map E ∈ �∞(* \�;
) such that D = E on� \�. In Definition 1.1 and in
the sequel, by submanifold, we always implicitly mean submanifold without boundary. We
shall always explicitly state when the submanifolds are allowed to have a boundary. By
closedly embedded, we mean that the manifold should be a closed subset of ℝ< , which
should not be confused with a closed manifold, which is a compact manifold without
boundary. Observe also that, since� is a submanifold of thewholeℝ< instead ofmerely
�, the estimate on the derivatives of Dmay depend on parts of
 that lie outside of�—
althoughwemay always restrict to the part of� lying in a neighborhood of�, enlarging
the constant � if necessary. This technical detail will be of crucial importance for us
later on, when we require stability properties of the classℛcros under composition with
local diffeomorphisms for instance — we omit the subscript when we want to speak
about the classℛcros in general without specifying the dimension of the singular set.

With these definitions at hand, Bethuel’s theorem and its counterpart for arbitrary
0 < B < +∞ read as follows.

Theorem 1.2. Assume that B? < < and that � satisfies the segment condition. The class
ℛ

cros
<−bB?c−1(�;
) is always dense in, B,?(�;
).

Having at hand Theorem 1.2, a natural question is whether or not one may improve
the classℛcros to get an even better dense class of almost smoothmaps. For this purpose,
we introduce the following subclass of the classℛcros.

Definition 1.3. The classℛuncr
8
(�;
) is the set of all D ∈ ℛcros

8
(�;
) such that the singular

set � is a closedly embedded 8-dimensional submanifold of ℝ< .

Our main result reads as follows.

Theorem 1.4. Assume that B? < <. The classℛuncr
<−bB?c−1(&

< ;
) is dense in, B,?(&< ;
).

Here, &< = (−1, 1)< is the open unit cube in ℝ< . The key feature of Theorem 1.4
above is to assert that one may avoid the crossings in the singular sets of the almost
smooth maps that are dense in , B,?(&< ;
). Indeed, since the singular set of a map
in ℛ

cros
<−bB?c−1(&

< ;
) is a union of submanifolds, it may exhibit crossings at the points
where those manifolds intersect. In fact, the singular sets of the maps constructed in
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the existing proofs of Theorem 1.2 for arbitrary target manifolds do exhibit crossings,
as they arise as dual skeletons of decompositions of the domain into cubes. This will
be explained in a more detailed way later on. On the other hand, ℛuncr corresponds
to all the maps in ℛ

cros such that their singular set is uncrossed, that is, does not have
crossings. This explains our choice of notation for both classesℛcros and ℛ

uncr.
We emphasize that, in full generality, Theorem 1.4 is new even in the case B = 1. This

answers in particular a question raised by Brezis and Mironescu; see e.g. the discussion
in [BM21, Chapter 10].
Up to now, the only approach to prove strong density results that was able to provide

the density of the classℛuncr instead ofmerely the classℛcros was based on themethod of
projection, famously devised by Federer and Fleming [FF60] in their study of normal and
integral currents. Adapted byHardt and Lin [HL87] in the context of maps tomanifolds
in order to tackle the extension problem, this method was subsequently used to prove
strongdensity results notablybyBethuel andZheng [BZ88] for,1,?(�< ;�<−1)when<−
1 ≤ ? < <, Rivière [Riv00] for, 1

2 ,2(�2;�1), Bourgain, Brezis, and Mironescu [BBM05]
for , B,?(�< ;�<−1) when 0 < B < 1 and B? < < (see also [BBM04] for the case B = 1

2 ),
Bousquet [Bou07] for , B,?(�< ;�1) when 1 ≤ B? < 2, and Bousquet, Ponce, and Van
Schaftingen [BPVS14] for an (bB?c−1)-connected target
when0 < B < 1. Therefore, up
to now, density results for the method of projection are limited either to specific targets

 or to the range 0 < B ≤ 1. For other closely related directions of research, see e.g. the
work of Hajłasz [Haj94] for a method of almost projection, with futher developments to
fractional spaces by Bousquet, Ponce, and Van Schaftingen [BPVS13], and also the work
of Pakzad and Rivière [PR03] concerning weak density and connections.
In the first part of our paper, in Section 2, we show that the method of projection

indeedworks in its full expected applicability range, that is, for any 0 < B < +∞ and any
(bB?c − 1)-connected target manifold 
. This answers a question raised by Bousquet,
Ponce, and Van Schaftingen; see [BPVS14, Section 2]. Although not allowing to prove
Theorem 1.4 in its full generality, this result is interesting per se: (i) it gives the full range
of applicability of the method of singular projection, (ii) it provides a much simpler
proof of Theorem 1.2 in the particular case of an (bB?c − 1)-connected target, and (iii) it
has the advantage of applying to a general domain�, unlike our proof of Theorem 1.4.

In order to present the additional difficulties arising when implementing the method
of projection in the full range 0 < B < +∞ of fractional Sobolev spaces, let us first briefly
explain how it works in the simple case of a sphere target. When 
 = �# ⊂ ℝ#+1,
the idea of the method is to approximate an �# -valued map D first by considering the

4



convolution !� ∗ D, and then projecting this construction onto �# by letting

D�,0 =
!� ∗ D − 0
|!� ∗ D − 0 |

.

Introducing the parameter 0 is at the core of Federer and Fleming’s original idea for the
projection method. One should then suitably choose 0 = 0� such that 0� → 0 as �→ 0
and establish appropriate estimates to prove that the maps D� = D�,0� belong to the class
ℛ

cros and converge to D with respect to the Sobolev norm as �→ 0.
Themain novel difficulty in our setting is thatwe need to establish fractional estimates

for a general singular projection. Indeed, up to now, these estimates eitherwere obtained
by relying on the specific form of the projection for a particular target, as in [Bou07],
or were deduced from the integer order estimates through the Gagliardo–Nirenberg
interpolation inequality when 0 < B < 1, as in [BPVS14]. However, for B > 1, this
approach would force us to exclude some relevant values of the parameters B and ?.
To illustrate the need for direct estimates, let us see what can be obtained by interpo-

lation. Assume for instance that onewants to prove the density of the classℛcros
0 (�2;�1)

in, B,?(�2;�1) in the case 1 ≤ B? < 2 — which is the only relevant one. One typically
wants to interpolate, B,? between !A and, :,@ , with : ∈ ℕ satisfying : > B. For this to
hold, one is lead to choose A and @ satisfying the relation

1
?
=

1 − �
A
+ �
@
,

where � ∈ (0, 1) satisfies

B = 0 · (1 − �) + :�,

that is, � = B/:. The key assumption to implement successfully Federer and Fleming’s
averaging argument over 0, which essentially requires that the , :,@-norm of G ↦→ G

|G |
over �2 should be finite, is therefore that :@ < 2. If 0 < B < 1, then we may take : = 1,
and hence the condition is @ < 2. But if 1 < B < 2, then : ≥ 2, and this implies that
@ should be chosen less that 1, which is not possible. Therefore, one sees that some
ranges of values of B and ? that are relevant in the problem of strong density of the class
ℛ

cros cannot be handled by interpolation when B > 1 is not an integer. For the record,
note that the above model case is exactly the one treated by Bousquet [Bou07], using
direct fractional estimates relying on the specific form of the singular projection when
the target is a circle. Similarly, for maps �3 → �2 with 2 < B? < 3, one cannot handle
the case 2 < B < 3 by means of interpolation. To the best of our knowledge, no direct
estimates are available in the existing literature for this case, and hence the method of
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projection could not be implemented in this setting up to now.
Nevertheless, even knowing the full range of validity of the method of projection

is not sufficient to prove Theorem 1.4 in full generality. Indeed, as will be proved in
Lemma2.2, a singular projection is only availablewhen the target is (bB?c−1)-connected.
Moreover, as will be discussed in Section 2.3, there is little hope that even all (bB?c −
1)-connectedmanifolds admit a singular projectionwhose singular set is a submanifold,
which is required to deduce the density of the uncrossed class ℛuncr using the method
of projection. Therefore, proving Theorem 1.4 in the general case requires to find a
different approach. This is the purpose of the second part of this paper, in Section 3.
Before giving a sketch of our approach, we introduce some notation relative to de-

compositions into cubes. Given A > 0, a cubication of radius A in ℝ< is a subset of the
family of cubes&A(0)+2Aℤ< for some 0 ∈ ℝ< , where&A(0) denotes the cube of inradius
A centered at 0 inℝ< . Here the inradius of a cube is the half of its sidelength. We speak
about a cubication of � ⊂ ℝ< when we want to specify the set formed by the union of
all cubes in the cubication. If*< is a cubication and ℓ ∈ {0, . . . , <}, the ℓ -skeleton*ℓ of
*< is the set of all faces of dimension ℓ of all cubes in *< . An ℓ -subskeleton of *< is a
subset of*ℓ . Given a skeleton*ℓ , we write

�
ℓ =

⋃
�ℓ∈*ℓ

�ℓ

the set formed by all the elements of*ℓ . In the sequel, we shall often make the abuse of
language of also calling the underlying set�ℓ an ℓ -skeleton, but we shall always carefully
distinguish it from the set of all ℓ -faces using the notation that we introduced.

A special skeleton that will be of particular interest for us is the ℓ -skeleton  ℓ of
the unit cube &< = [−1, 1]< for every ℓ ∈ {0, . . . , <}, so that  < = {&<}. For every
ℓ ∈ {0, . . . , < − 1}, the dual skeleton of  ℓ is the subskeleton )ℓ ∗ , where ℓ ∗ = < − ℓ − 1,
such that�ℓ ∗ is the set of all those G ∈ &< that have at least ℓ +1 vanishing components.
The dual skeleton of a general skeleton is then defined by taking the union of all dual
skeletons of the cubes forming the skeleton. Illustrations of skeletons (in blue) and their
duals (in red) in the unit cube &3 are provided on Figure 1. The value of ℓ ranges from
2 on the left to 0 on the right, which corresponds to a value of ℓ ∗ ranging from 0 to 2.

We introduce amore rigid version of the classℛcros, where the singular set is required
to coincide with the dual skeleton of some cubication of ℝ< .

Definition 1.5. The class ℛrig
8
(�;
) is the set of all D ∈ ℛcros

8
(�;
) such that the singular

set � is the 8-dimensional dual skeleton of some cubication of ℝ< .

The fact that the class ℛ
rig — recall that we omit the subscript when we want to

speak about the class ℛ
cros or one of its variants without specifying the dimension
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Figure 1: Skeletons and their dual skeletons

of the singular set — is a subclass of the class ℛ
cros is a consequence of the fact that

the singular set of maps in ℛ
rig may be taken to be a finite union of 8-dimensional

hyperplanes. Indeed, the dual skeleton of a cubication ofℝ< is a union of affine spaces,
and one may keep only a finite number of them since� is bounded.
It is a consequence of the proof of Theorem 1.2 — but not of Theorem 1.2 itself —

that the more rigid class ℛrig
<−bB?c−1(�;
) is dense in, B,?(�;
). Indeed, the maps in

ℛ
cros
<−bB?c−1 that are constructed in the proof of Theorem 1.2 to approximate a given map

in, B,? actually belong toℛ
rig
<−bB?c−1.

To prove our main result, it therefore suffices to be able to approximate any map
in ℛ

rig. This is the main goal of Section 3. Our proof is in two main steps. First,
we devise a topological procedure that removes the crossings between the orthogonal
hyperplanes constituting the singular set of a general map in ℛ

rig. This procedure,
which itself consists of several steps, only requires to modify the initial map on a small
set, but comes without any estimate. In order to obtain, from the previous construction,
a better mapwith suitable estimates, we rely in a second step on the shrinking procedure
from [BPVS15], which is a more involved version of the scaling argument that was
already used by Bethuel in his seminal paper [Bet91] to remove the singularities with
control of energy.
The new ingredient is therefore the topological procedure to uncross the singularities.

This procedure is explained in Section 3.1 in particular cases that allow for more simple
notation and illustrative figures, before the general case, presented in Section 3.2. At
the core of the argument lies the following model problem. It is well-know that the
1-skeleton


1 of the unit cube&3 is a retract of&3 \�1, where )1 is the dual skeleton of
 1. Is it possible to write instead 


1 as a retract of &3 \�, where � is a 1-dimensional
submanifold of ℝ3, that is, without crossing? Although it may come as very surprising,
the answer to this question is actually yes. Elaborating on the construction allowing
to obtain such a retraction is the cornerstone of the topological step of our proof in
Section 3.
As a concluding remark, we comment on the dimension of the singular set in the
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class ℛcros and its variants. Indeed, as we explained, the content of Theorem 1.4 is to
provide the strong density of an improved version of the class ℛcros. Another natural
idea to improve the density result given by Theorem 1.2 would be to try reducing the
dimension of the singular set, that is, to prove the density of the class ℛcros

8
for some

8 < < − bB?c − 1. However, it turns out that, in presence of the topological obstruction
ruling out the density of �∞(�;
) in, B,?(�;
), the only value of 8 for which ℛ

cros
8

is dense in , B,? is 8 = < − bB?c − 1. For smallest 8, the same topological obstruction
also rules out the density of the classℛcros

8
, while for larger 8,ℛcros

8
is not even a subset

of , B,? . See [BPVS15, Section 6] for a detailed proof in the case where B ∈ ℕ∗. The
argument may be carried out similarly for fractional order spaces.
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2 The method of singular projection

2.1 Singular projections: definitions and main result

In the study of the properties of the Sobolev space, B,?(�;
), a natural approach is
to work on a tubular neighborhood 
 + �� of radius � > 0 sufficiently small so that the
nearest point projection Π : 
 + �� → 
 is well-defined and smooth, and to use Π to
bring all the constructions back to the manifold. This approach is suitable to work with
in the supercritical range B? ≥ <, since the continuous embedding of, B,? into �0 —or
VMO in the limiting case B? = < — usually allows one to keep all the constructions in
the tubular neighborhood
 + ��.
To deal with the more delicate range B? < < in which one cannot guarantee that the

constructions we want to perform stay in 
 + ��, a natural idea would be to look for a
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globally defined retraction % : ℝ� → 
. However, such an approach is hopeless, since
a manifold admitting such a global retraction would be contractible as a retract of the
contractible space ℝ�. But any compact manifold without boundary of dimension at
least 1 has at least one non trivial homology group, and is therefore non contractible.
The idea, originally introduced by Hardt and Lin [HL87] with roots in the work of

Federer and Fleming [FF60], is to consider instead a singular projection, that is, a smooth
map% : ℝ�\�→
 satisfying%|
 = id
, where� ⊂ ℝ� is a suitable singular set disjoint
from 
. See the introduction for more references concerning the use of the method of
projection in the context of Sobolevmaps tomanifolds. In the first part of this paper, our
objective is to show that the method of singular projection may indeed be implemented
to solve the strong density problem in its full range of expected applicability.
We start by defining the precise notion of singular projection that we consider.

Definition 2.1. Let ℓ ∈ {2, . . . , �}. An ℓ -singular projection onto 
 is a smooth map
% : ℝ� \ �→
 such that %|
 = id
 and

|� 9%(G)| ≤ � 1
dist (G,�)9

for every G ∈ ℝ� \ � and 9 ∈ ℕ∗

for some constant � > 0 depending on 9 and
, where � ⊂ ℝ� \
 is either the underlying set
of a finite (� − ℓ )-subskeleton in ℝ� or a closedly embedded (� − ℓ )-submanifold of ℝ�.

At this stage, the reader may wonder why we split the form of allowed singular sets
for singular projections into two types, instead of considering more generally maps
that are singular outside of a finite union of closedly embedded (� − ℓ )-submanifolds
of ℝ�, which would include both cases in Definition 2.1. The answer is given by the
combination of the two following lemmas.

Lemma 2.2. If there exists a continuous map % : ℝ� \ �→ 
 such that %|
 = id
, where �
is a finite union of closedly embedded (� − ℓ )-submanifolds of ℝ�, then 
 is (ℓ − 2)-connected.

Lemma 2.3. If
 is (ℓ − 2)-connected, then it admits an ℓ -singular projection, whose singular
set is the underlying set of a finite (� − ℓ )-subskeleton in ℝ�.

We first comment Lemma 2.2 and 2.3 before giving their proof. The combination
of both these lemmas shows at the same time that the (ℓ − 2)-connectedness of 
 is a
necessary and sufficient condition for the existence of an ℓ -singular projection onto 
,
and that allowing the singular set to be a finite union of closedly embedded (� − ℓ )-
submanifolds ofℝ� would not have broadened the range of target manifolds admitting
a singular projection. Meanwhile, assuming that � is the underlying set of a finite
(�−ℓ )-subskeleton inℝ� will allow for technical simplifications in the sequel, in addition
tobeing thenatural formof singular set arisingwhenperforming theproof ofLemma2.3.
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We also have allowed for singular sets that are given by one submanifold of ℝ�, that is,
that do not exhibit crossings, becausewe are precisely interested in studying the density
of the classℛuncr

8
, whose maps have a singular set without crossings.

Proof of Lemma 2.2. The key observation is the fact that ℝ� \ � is (ℓ − 2)-connected.
Taking this for granted, the conclusion follows directly from the fact that a retract of an
(ℓ − 2)-connected space is itself (ℓ − 2)-connected. Namely, for every 8 ∈ {0, . . . , ℓ − 2},
we have the commutative diagram

{0} = �8(ℝ� \ �)

�8(
) �8(
)

%∗

id


for themaps induced between the homotopy groups. This implies that the identity map
on the group �8(
) is the zero map, whence �8(
) = {0} for every 8 ∈ {0, . . . , ℓ − 2}.
The fact that ℝ� \ � is (ℓ − 2)-connected is presumably well-known, but it seems

difficult to find a proof of it in the general case, so we provide one for the convenience
of the reader. One may consult [MVS21, Lemma 3.8] for a proof in the case where ℳ

is an affine space. Our argument relies on the same idea. We show that, if � is an
(ℓ − 2)-connected open subset ofℝ� andℳ a closedly embedded (�− ℓ )-submanifold of
�, then�\ℳ is (ℓ−2)-connected. The conclusion then follows by removing inductively
eachmanifold constituting�, and using this claim at each step to show that the resulting
set remains (ℓ − 2)-connected.
To prove the claim, let 8 ∈ {0, . . . , ℓ − 2} and 5 : �8 → � \ℳ be a continuous map.

Since� is (ℓ −2)-connected, there exists a continuousmap 6 : �8+1 → � such that 6 = 5

on �8 . Moreover, by a standard regularization process, we may assume that 6 is smooth
on �8+1. Since 5 (�8) is closed and � \ℳ is open, there exists � > 0 sufficiently small
such that, for any 0 ∈ ��, ( 5 (�8) − 0) ∩ (� \ℳ) = ∅. Now, we invoke the following
particular case of Lemma 2.7 that will be proved below using Sard’s theorem: since
8 + 1 ≤ ℓ − 1 < ℓ , for almost every 0 ∈ ��, we have 6−1(� + 0) = ∅. This implies that,
for any such 0 ∈ ��, 6 − 0 is a continuous extension to �8+1 of 5 − 0, whence 5 − 0 is
nullhomotopic. But by our choice of �, 5 − 0 and 5 are homotopic, which implies that
5 itself is nullhomotopic. This concludes the proof of the lemma. �

Proof of Lemma 2.3. We follow the approach in [VS19, Proposition 4.4]. Let � > 0 be
sufficiently small so that the nearest point projection Π onto 
 is well-defined on

 + ��. Let  � be a cubication of ℝ� of radius A > 0. Choosing A > 0 sufficiently small,
we may find a subskeleton *� of  � such that 
 ⊂ �

� ⊂ 
 + ��/2. We let +� be the
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subskeleton of  � consisting in all cubes in  � that do not intersect some cube in *�,
and, � =  � \ (*� ∪+�).
We define % on �

� by % = Π, and on �
�, we set % = 1 for some arbitrary 1 ∈ 
.

Hence, it remains to define % on �
�. We proceed by induction. For any �0 ∈ ,0 such

that % is not yet defined on �0, we let % = 1 at �0. Then, for any �1 ∈ ,1 on which % is
not yet defined, we use the assumption �0(
) = {0} to extend % on �1 from its values
on,0. Repeating this process up to dimension ℓ − 1, we define % on the whole �

ℓ−1.
Finally, we use successive homogeneous extensions to extend % on�

� \�(ℓ−1)∗ , where
)(ℓ−1)∗ is the dual skeleton to,ℓ−1. Recall that the homogenous extension to & 8 \ {0} of
a map 5 defined on %& 8 is given by G ↦→ 5 (G/|G |∞). Hence, a first step of homogeneous
extension allows us to define % on�

ℓ , with one singularity at the center of each ℓ -cell. A
second step extends % on�

ℓ+1, with a singular set given by a finite union of segments,
whose endpoints are located at the centers of the (ℓ + 1)-cells and at the centers of the
ℓ -cells from the previous step. We pursue this construction up to dimension �, each step
increasing the dimension of the singular set by 1. By the properties of homogeneous
extension, the map % that we constructed is indeed a singular projection, with singular
set given by � = �

(ℓ−1)∗ , which concludes the proof.
We observe however that the above argument produces only a Lipschitz map. To

obtain a smooth map, one should slightly modify the first step, which relies on topolog-
ical extension, to define smoothly % on �

ℓ−1 + �A/2 instead of merely �
ℓ−1. Then, one

should use the thickening procedure from [BPVS15, Section 4] instead of homogeneous
extension, in order to get a smooth map outside of �(ℓ−1)∗ with the required estimates
for all derivatives. See also the work of Gastel [Gas16, Proposition 1] for a more detailed
but slightly different proof. �

Now that we have defined a precise notion of singular projection, we may state the
main result of this section.

Theorem2.4. Assume that� ⊂ ℝ< is a bounded open set satisfying the segment condition, and
that there exists an ℓ -singular projection % : ℝ� \ �→
 with B? < ℓ . The classℛcros

<−ℓ (�;
)
is dense in, B,?(�;
). If in addition � is a (� − ℓ )-submanifold of ℝ�, then ℛ

uncr
<−ℓ (�;
) is

dense in, B,?(�;
).

As explained in the introduction, in the particular case where the target manifold
admits an ℓ -singular projection with B? < ℓ , this result provides at the same time a
simpler proof of the density of the class ℛ

cros with crossings, which corresponds to
Bethuel’s theorem and its counterpart for arbitrary 0 < B < +∞, and of our main result
concerning the density of the uncrossed class ℛ

uncr provided that the singular set of
the target manifold has no crossing.
We note the following important particular case.
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Corollary 2.5. Let B? < # + 1. The classℛ<−#−1(�;�# ) is dense in, B,?(�;�# ).

The case # = 1 was already known [Bou07, Theorem 2], but the other cases are
presumably new in the general case 0 < B < +∞. Note that, as mentioned in the
introduction, the case B = 1 is already contained in [BZ88] and the case 0 < B < 1 was
proved in [BBM05], see also [BPVS14].
This corollary is also a good opportunity to emphasize that the method of singular

projection does not always provide the good singular set. Indeed, Corollary 2.5 above gives
the same size of singular set for every B and ? such that B? < # +1. However, if B? < # ,
since then�bB?c(
) = {0}, we actually have density of smooth maps in, B,?(�;�# ), while
Corollary 2.5 only provides the density of the classℛ<−#−1(�;�# ).

Proof. Note that % : ℝ#+1 \ {0} → �# defined by %(G) = G
|G | is an (# + 1)-singular

projection, and invoke Theorem 2.4. �

A similar result holds for the torus �2, for which a singular 2-projection whose
singular set is the union of a circle inside the torus and a line passing through the hole
of the torus may be constructed by hand.

Corollary 2.6. Let B? < 2. The classℛ<−2(�;�2) is dense in, B,?(�;�2).

Consider now the two-holed torus �2#�2. Theorem 2.4 also applies to this target,
but since the singular set constructed by hand — or using Lemma 2.3 and the fact that
�2#�2 is connected — exhibits crossings, we only obtain the density of the class ℛcros

<−2.
One may wonder whether or not it is possible to construct a better singular projection
onto �2#�2 whose singular set would be a submanifold, to deduce the density of the
class ℛuncr

<−2 . We are not able to answer this question, but the discussion in Section 2.3
suggests that there is little hope that the answer is yes.

2.2 Approximation by singular projection

We now turn to the proof of Theorem 2.4. The strategy is to rely on classical approx-
imation by convolution, and then project back the approximating maps to the target
manifold using the singular projection. Therefore, a first key step is to control the regu-
larity of the singular set which is obtained through this process. In addition, we need a
control on the derivatives of the projectedmap near the singular set. This is the purpose
of the following lemma, based on Sard’s theorem and the submersion theorem.

Lemma 2.7. Let E ∈ �∞(�;ℝ�) and let � ⊂ ℝ� be a finite union of (� − ℓ )-dimensional
submanifolds of ℝ�. For almost every 0 ∈ ℝ�,

(i) the set E−1(�+ 0) is a finite union of (< − ℓ )-dimensional submanifolds of�, one for each
manifold constituting � — or the empty set if ℓ > <;
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(ii) if ℓ ≤ <, for every compact  ⊂ �, there exists a constant � > 0 depending on �, E, ℓ ,
 , and 0 such that, for every G ∈  ,

dist (G, E−1(� + 0)) ≤ � dist (E(G),� + 0).

Lemma 2.7 is a slight generalization of [BPVS14, Lemma 2.3] to the case where � is
an arbitrary union of submanifolds, not necessarily affine spaces. The proof of the first
part follows the argument given in [BPVS14], but for the second part, we give a different
proof, by contradiction.

Proof. For (i), it suffices to consider the case where � is made of only one submanifold,
as the general case then follows by taking the union over all manifolds constituting �.
Consider the mapΨ : � × �→ ℝ� defined by

Ψ(G, I) = E(G) − I.

SinceΨ is a smooth map between smooth manifolds, Sard’s theorem— see e.g. [Bre93,
Chapter II.6] — ensures that, for almost every 0 ∈ ℝ�, the linear map �Ψ(G, I) : ℝ< ×
)I� → ℝ� is surjective for every (G, I) ∈ Ψ−1({0}). If ℓ > <, this already implies the
conclusion, since the domain of this linearmap has dimension<+(�−ℓ ) < �. Therefore,
�Ψ(G, I) is never surjective, which forces Ψ−1({0}) = ∅ for almost every 0 ∈ ℝ�. We
note that this corresponds to the easy case of Sard’s theorem, which is nothing else but
the fact that the image of a smoothmap is a null setwhen the dimension of the codomain
is strictly higher than the dimension of the domain.
If ℓ ≤ <, we pursue by observing that for any 0 ∈ ℝ� such that �Ψ(G, I) is surjective,

ℝ� = �Ψ(G, I)[ℝ< × )I�] = �E(G)[ℝ<] + )I� for every (G, I) ∈ Ψ−1({0}).

Furthermore, by definition, we have (G, I) ∈ Ψ−1({0}) if and only if E(G) = I + 0 ∈ �+ 0.
Hence, we conclude that

ℝ� = �E(G)[ℝ<] + )E(G)(� + 0) for every G ∈ E−1(� + 0).

Otherwise stated, for almost every 0 ∈ ℝ�, themap E is transversal to �+ 0. This implies
that — see for instance [War83, Theorem 1.39] — for almost every 0 ∈ ℝ�, E−1(� + 0) is
a smooth submanifold of ℝ< of dimension < − ℓ .
We now turn to the proof of (ii). Once again, it suffices to prove the assertion when

� is made of one manifold, since the distance to a union of sets is the minimum of the
distances to all those sets. We assume without loss of generality that 0 = 0. Assume by
contradiction that there exists a compact set  ⊂ � and a sequence (G=)=∈ℕ in  such

13



that

dist (G= , E−1(�)) > = dist (E(G=),�).

We note that G= ∉ E−1(�), otherwise we would have 0 > 0. As  is compact, up to
extraction, wemay assume that G= → G ∈  as = → +∞. We observe that dist (E(G),�) =
0, which implies that E(G) ∈ �, and hence G ∈ E−1(�).
For = ∈ ℕ sufficiently large, let H= be the nearest point projection of G= onto E−1(�).

Since G= ∉ E−1(�), we have G= ≠ H= . Moreover, by construction of the nearest point
projection, we know that G= − H= ∈ )H=E−1(�)⊥ for every = ∈ ℕ, and also |G= − H= | =
dist (G= , E−1(�)). In particular, H= → G. Up to a further extraction, we may assume that

G= − H=
|G= − H= |

→ � ∈ )GE−1(�)⊥ as = → +∞.

Since E is continuously differentiable, we deduce that

E(G=) − E(H=)
dist (G= , E−1(�)) =

E(G=) − E(H=)
|G= − H= |

→ �E(G)[�] as = → +∞.

Let us note that, since we are in the situation where

ℝ� = �E(G)[ℝ<] + )E(G)�,

we have

ℝ� = �E(G)[)GE−1(�)⊥] ⊕ )E(G)�.

Indeed, this follows from the fact that �E(G)[�] ∈ )E(G)� for every � ∈ )GE−1(�) and a
dimension argument. Therefore, up to replacing the usual scalar product on ℝ� with a
new one, we may assume that the two subspaces involved in the above direct sum are
actually orthogonal. This only modifies the distances by a multiplicative constant. Let
Π� denote the nearest point projection onto � relative to the metric induced by this new
scalar product.
By the triangle inequality, we write

|E(G=) − E(H=)|
dist (G= , E−1(�)) ≤

|E(G=) −Π�(E(G=))|
dist (G= , E−1(�)) +

|Π�(E(G=)) −Π�(E(H=))|
dist (G= , E−1(�)) ,

where we made use of the fact that Π�(E(H=)) = E(H=) since E(H=) ∈ �. We note that
Π�(E(G=)) is well-defined for = sufficiently large, as E(G=) is then close to �. The first
term in the right-hand side converges to 0 as = → +∞ by the assumption over (G=)=∈ℕ,
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as |E(G=) − Π�(E(G=))| = dist (E(G=),�). Concerning the other term, since Π� ◦ E is
continuously differentiable in a neighborhood of G, we have

Π�(E(G=)) −Π�(E(H=))
dist (G= , E−1(�)) → �Π�(E(G))[�E(G)[�]] as = → +∞.

Since �Π�(E(G)) is, by construction of the nearest point projection, the orthogonal
projection onto )E(G)�, we have�Π�(E(G))[�E(G)[�]] = 0 as a consequence of our choice
of scalar product and the fact that � ∈ )GE−1(�)⊥.

Hence, we conclude that

|E(G=) − E(H=)|
dist (G= , E−1(�)) → 0 as = → +∞.

This implies that �E(G)[�] = 0. But, since � ∈ )GE−1(�)⊥ is a nonzero vector, this
contradicts the fact that

ℝ� = �E(G)[)GE−1(�)⊥] ⊕ )E(G)�,

and concludes the proof. �

The next lemma provides a mean value-type estimate for the derivatives of a singular
projection.

Lemma 2.8. Let $ ⊂ ℝ� be a bounded set and % : ℝ� \ �→ 
 be a singular projection. For
every G, H ∈ $ \ � such that dist (G,�) ≤ dist (H,�) and for every 9 ∈ ℕ∗,

|� 9%(G) − � 9%(H)| ≤ �
|G − H |

dist (G,�)9+1

for some constant � > 0 depending on
 and the diameter of $.

Proof. We claim that there exists � > 0 depending only on 
 such that, whenever
|G − H | ≤ � and dist (G,�) < �, there exists a Lipschitz path � : [0, 1] → ℝ� \� satisfying
�(0) = G, �(1) = H, |�′ | . |G − H | and dist (�(C),�) ≥ dist (G,�) for every C ∈ [0, 1]. The
conclusion of the lemma follows directly from this claim. Indeed, if |G − H | ≤ � and
dist (G,�) < �, it suffices to apply the mean value theorem along the path � and to use
the estimates on the derivatives of %. If instead |G − H | ≥ �, since dist (G,�) is bounded
from above on $, we have

|� 9%(G) − � 9%(H)| . 1
dist (G,�)9

.
|G − H |

dist (G,�)9+1 .
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In the case where |G − H | ≤ � but dist (G,�) ≥ �, we only have to invoke the mean value
theorem along the straight line between G and H.
We turn to the proof of the claim. We first assume that � is a closedly embedded

submanifold ofℝ�. We take' > 0 so large that$ ⊂ �', and by a compactness argument,
we choose 0 < � < ' sufficiently small so that there exist finitely many open sets *1,
. . . , * 9 ⊂ ℝ� such that for any I ∈ � ∩ �2', there exists 8 ∈ {1, . . . , 9} with �2�(I) ⊂ *8 ,
and there exist diffeomorphisms Φ8 : *8 → ��−ℓA8

× �ℓB8 for some A8 , B8 > 0, satisfying
Φ8(
 ∩*8) = ��−ℓA8

× {0} and such that for every 0 ∈ *8 , dist (0,�) is given by the norm
of the second component of Φ8(0). Choose I ∈ � ∩ �2' such that G ∈ ��(I), so that
H ∈ �2�(I). Let 8 ∈ {1, . . . , 9} with �2�(I) ⊂ *8 . We observe that we may connect Φ(I)
andΦ(H) in ��−ℓA8

×�ℓB8 by a Lipschitz path �̃ : [0, 1] → ��−ℓA8
×�ℓB8 with |�′ | . |Φ(G)−Φ(H)|

and such that the norm of the second component of �̃ is always larger than dist (G,�).
Conclusion follows by defining � = Φ−1 ◦ �̃.

In the case where � is a subskeleton, we observe that one may obtain a suitable � as
a succession of line segments and arcs of circle. �

The proof of Theorem 2.4 relies on approximation by convolution. It will be instru-
mental for us to establish estimates for the distance between the convoluted map and
the original one, and also estimates on the derivatives of the convoluted map. To state
the required estimates in the fractional setting, we introduce the fractional derivative as

��,?E(G) =
(∫

�

|E(G) − E(H)|?
|G − H |<+�? dH

) 1
?

.

Let also ! ∈ �∞c (�<) be a fixed mollifier, that is,

! ≥ 0 on �< and
∫
�<

! = 1.

Given � > 0, we define

!�(G) =
1
�<

!
(
G

�

)
for every G ∈ ℝ< .

Lemma 2.9 corresponds to [BPVS14, Lemma 2.4]. We present the proof for the sake of
completeness.

Lemma 2.9. Assume that 0 < � < 1 and let E ∈ ,�,?(�;ℝ�). For every � > 0 and for every
G ∈ � such that � < dist (G, %�),

(i) |!� ∗ E(G) − E(G)| ≤ �����,?E(G);

(ii) |�(!� ∗ E)(G)| ≤ �′��−1��,?E(G);
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for some constants � > 0 depending on ! and �′ > 0 depending on �!.

Proof. Jensen’s inequality ensures that

|!� ∗ E(G) − E(G)| ≤
∫
��

!�(ℎ)|E(G − ℎ) − E(G)| dℎ

≤
(∫

��

!�(ℎ)�<+�?
|E(G − ℎ) − E(G)|?

|ℎ |<+�? dℎ
) 1
?

.

Since !� . �−< , we conclude that

|!� ∗ E(G) − E(G)| ≤ �����,?E(G).

This proves the first part of the conclusion.
For the second part, by differentiating under the integral, we find

�(!� ∗ E)(G) =
∫
��

�!�(ℎ)E(G − ℎ)dℎ.

As
∫
��
�!� = 0, we may write

|�(!� ∗ E)(G)| ≤
∫
��

|�!�(ℎ)| |E(G − ℎ) − E(G)| dℎ.

Since
∫
��
|�!� | . �−1, Jensen’s inequality ensures that

|�(!� ∗ E)(G)| .
1

�
?−1
?

(∫
��

|�!�(ℎ)|�<+�?
|E(G − ℎ) − E(G)|?

|ℎ |<+�? dℎ
) 1
?

.

We conclude as above by using the fact that |�!� | ≤ �−<−1. �

We are now ready to prove Theorem 2.4. As explained in the introduction, we follow
the approach in [BPVS14]. However, as we already mentioned, the range where B ≥ 1
is not an integer is more difficult, as we cannot rely on interpolation, and we need to
establish directly estimates on the Gagliardo seminorm.

Proof of Theorem 2.4. Let D ∈ , B,?(�;
). By a standard dilation procedure, we may
assume that D ∈ , B,?($;
) for some open set $ ⊂ ℝ< such that� ⊂ $. In particular,
there exists � > 0 such that dist(�; %$) > 2�. Note that this is the only point in
the proof where we use the regularity of �, and that assuming merely the segment
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condition is sufficient to implement a dilation argument; see e.g. [Det23, Lemma 6.2].
Therefore, for any 0 < � ≤ �, the map D� = !� ∗ D is well-defined and smooth on
�� = � + ��. After an extension procedure, using e.g. a cutoff function, we may
assume that D� is actually a smooth (non necessarily 
-valued) map on the whole ℝ< ,
that coincides with !� ∗ D on ��. Hence, for any 0 ∈ ℝ�, the map E�,0 = % ◦ (D� − 0)
satisfies E�,0 ∈ �∞(ℝ< \ (�,0 ;
), where (�,0 = D−1

� (� + 0). Recall that � ⊂ ℝ� is the
singular set of the singular projection % onto 
. Moreover, in the case where � is a
subskeleton, by adding extra cells if necessary, we may assume that it is a finite union
of (� − ℓ )-hyperplanes. By Lemma 2.7, we deduce that (�,0 is a finite union of closed
submanifolds of ℝ< for almost every 0 ∈ ℝ�, and actually a closed submanifold of ℝ<

when � is a submanifold. Additionally, the required estimates on the derivatives of the
maps E�,0 allowing to deduce that they belong to the class ℛcros

<−ℓ follow from the Faà di
Bruno formula as in (2.2) below, combined with point (ii) of Lemma 2.7 and the fact that
D� has bounded derivatives on �. We are going to show that, for every 0 < � ≤ �, we
may choose such an 0� ∈ ℝ� so that 0� → 0 as �→ 0 and E�,0� → D in, B,?(�), and this
will conclude the proof of the theorem.
For this purpose, we let


 =
1
4 dist (�,
)

and we choose # ∈ �∞(ℝ�) such that

(a) #(G) = 0 if dist (G,�) ≤ 
;

(b) #(G) = 1 if dist (G,�) ≥ 2
.

We write

E�,0 = F�,0 + H�,0 ,

where

F�,0 = #(D� − 0)E�,0 = (#%) ◦ (D� − 0)

and

H�,0 = (1 − #(D� − 0))E�,0 = ((1 − #)%) ◦ (D� − 0).

Since themap#% is smoothwith bounded derivatives and since D�− 0� → D in, B,?(�)
whenever 0� → 0, using the compactness of 
 to get a uniform !∞ bound, we deduce
from the continuity of the composition operator— see for instance [BM21, Chapter 15.3]
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— that F�,0� → D in, B,?(�) provided that we choose 0� → 0. It therefore remains to
prove that we can choose the 0� so that H�,0� → 0 in, B,?(�) in order to conclude.

For this purpose, we are going to show the average estimate∫
�


‖H�,0 ‖?, B,?(�) d0 → 0 as �→ 0. (2.1)

Taking (2.1) for granted, we conclude the proof as follows. Markov’s inequality ensures
that ����{0 ∈ �
: ‖H�,0 ‖?, B,?(�) ≥

(∫
�


‖H�,0 ‖?, B,?(�) d0
) 1

2
}���� ≤ (∫

�


‖H�,0 ‖?, B,?(�) d0
) 1

2

→ 0.

Hence, for every 0 < � ≤ �, we may choose 0� ∈ �
 such that 0� → 0 and

‖H�,0 ‖, B,?(�) ≤
(∫

�


‖H�,0 ‖?, B,?(�) d0
) 1

2?

→ 0,

which proves the theorem. It therefore only remains to prove estimate (2.1).
We start by the case where � = 0, and thus B = : ∈ ℕ∗. For every 9 ∈ {1, . . . , :}, the

Faà di Bruno formula ensures that

|� 9H�,0(G)| .
9∑
8=1

∑
1≤C1≤···≤C8
C1+···+C8=9

|� 8((1 − #)%)(D�(G) − 0)| |�C1D�(G)| · · · |�C8D�(G)|.

Since # has bounded derivatives, we obtain

|� 9H�,0(G)| .
9∑
8=1

∑
1≤C1≤···≤C8
C1+···+C8=9

1
dist(D�(G) − 0,�)8

|�C1D�(G)| · · · |�C8D�(G)|. (2.2)

As
 is compact, we also know that

|H�,0(G)| is uniformly bounded with respect to G, �, and 0. (2.3)

Moreover, by definition of #, the map H�,0 is supported on {dist(D� − 0,�) ≤ 2
}. We
observe that, using the fact that D ∈ 
 and the definition of 
,

{dist(D� − 0,�) ≤ 2
} ⊂ {dist(D� ,�) ≤ 3
} ⊂ {|D� − D | ≥ 
}.
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Since 8? ≤ B? < ℓ , we have that∫
�


1
dist(D�(G) − 0,�)8?

d0 =
∫
�
+D�(G)

1
dist(0,�)8?

d0 ≤
∫
�'

1
dist(0,�)8?

d0 < +∞,

where ' > 0 is chosen sufficiently large so that �
 + D�(G) ⊂ �' for every G ∈ � and
0 < � ≤ �. Integrating (2.2) and (2.3), and using Tonelli’s theorem and the information
on the support of H�,0 , we deduce that∫

�


‖H�,0 ‖?, B,?(�) d0 .
∫
{|D�−D |≥
}

1 +
:∑
9=1

9∑
8=1

∑
1≤C1≤···≤C8
C1+···+C8=9

|�C1D� |? · · · |�C8D� |? .

Since D� → D in !?(�), in particular D� → D in measure, and therefore |{|D� − D | ≥

}| → 0 as �→ 0. Hölder’s inequality ensures that, for C1 + · · · + C8 = 9,∫

{|D�−D |≥
}
|�C1D� |? · · · |�C8D� |? ≤

(∫
{|D�−D |≥
}

|�C1D� |
9?
C1

) C1
9

· · ·
(∫
{|D�−D |≥
}

|�C8D� |
9?
C8

) C8
9

.

But as D ∈ !∞(�)∩, :,?(�), we infer from the classical Gagliardo–Nirenberg inequality
— see [Gag59] and [Nir59, Lecture 2] — that

D ∈, C� ,
:?
C� (�) ⊂ , C� ,

9?
C� (�) whenever 1 ≤ C� ≤ :.

Invoking Lebesgue’s lemma, we conclude that∫
�


‖H�,0 ‖?, B,?(�) d0 → 0 as �→ 0,

which establishes estimate (2.1).
We now turn to the case 0 < � < 1, andwe assume that : ≥ 1. Using the integer order

case, we already have∫
�


‖H�,0 ‖?
, :,?(�) d0 → 0 as �→ 0,

so that it only remains to prove that∫
�


|�:H�,0 |?,�,?(�) d0 → 0 as �→ 0.
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Since H�,0 is supported on {dist(D� − 0,�) ≤ 2
} ⊂ {|D� − D | ≥ 
}, we may write

|�:H�,0 |?,�,?(�)

≤ 2
∫
{dist(D�(G)−0,�)≤2
}

∫
{dist(D�(G)−0,�)≤dist(D�(H)−0,�)}

|�:H�,0(G) − �:H�,0(H)|?

|G − H |<+�? dH dG

≤ 2
∫
{|D�(G)−D(G)|≥
}

∫
{dist(D�(G)−0,�)≤dist(D�(H)−0,�)}

|�:H�,0(G) − �:H�,0(H)|?

|G − H |<+�? dH dG.

Given G, H ∈ �, using the Faà di Bruno formula and the multilinearity of the derivative,
we obtain

|�:H�,0(G) − �:H�,0(H)| .
:∑
9=1

∑
1≤C1≤···≤C 9
C1+···+C 9=:

(
� 9 ,C1 ,...,C 9 +

9∑
8=1

�8 , 9 ,C1 ,...,C 9

)
, (2.4)

where

� 9 ,C1 ,...,C 9 = |� 9((1 − #)%)(D�(G) − 0) − � 9((1 − #)%)(D�(H) − 0)| |�C1D�(G)| · · · |�C 9D�(G)|

and

�8 , 9 ,C1 ,...,C 9 = |� 9((1 − #)%)(D�(H) − 0)|
( ∏

1≤�<8
|�C�D�(G)|

)
|�C8D�(G) − �C8D�(H)|

( ∏
8<�≤ 9
|�C�D�(H)|

)
.

To bear in mind more readable terms, the reader may think of the case 9 = 1, where one
has

�1 = |�((1 − #)%)(D�(G) − 0) − �((1 − #)%)(D�(H) − 0)| |�D�(G)|

and

�1 = |�((1 − #)%)(D�(H) − 0)| |�D�(G) − ��(H)|.

We observe that |�CD� |. �−C for every C ∈ ℕ. Therefore, (2.4) yields

|�:H�,0(G) − �:H�,0(H)|? .
:∑
9=1

(
� 9 +

:∑
C=1

�9 ,C

)
, (2.5)
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where

� 9 = �−:? |� 9((1 − #)%)(D�(G) − 0) − � 9((1 − #)%)(D�(H) − 0)|?

and

�9 ,C = �−(:−C)? |� 9((1 − #)%)(D�(H) − 0)|? |�CD�(G) − �CD�(H)|? .

As for the integer case, since 9? ≤ :? < ℓ , we have∫
�


|� 9((1 − #)%)(D�(H) − 0)|? d0 .
∫
�


1
dist(D�(H) − 0,�)9?

d0 < +∞.

We now integrate with respect to G and H, split the integral in H into two parts, and use
again the estimate |�CD� |. �−C . This yields, for any A > 0,∫

�


∫
{|D�(G)−D(G)|≥
}

∫
�

�9 ,C

|G − H |<+�? dH dG d0

. �−(:+1)?
∫
{|D�(G)−D(G)|≥
}

∫
�A (G)

1
|G − H |<+(�−1)? dH dG

+ �−:?
∫
{|D�(G)−D(G)|≥
}

∫
ℝ<\�A (G)

1
|G − H |<+�? dH dG

. (�−(:+1)?A(1−�)? + �−:?A−�?)|{|D� − D | ≥ 
}|.

Inserting A = �, we obtain∫
�


∫
{|D�(G)−D(G)|≥
}

∫
�

�9 ,C

|G − H |<+�? dH dG d0 . �−B? |{|D� − D | ≥ 
}|.

By the fractional Gagliardo–Nirenberg inequality — see e.g. [BM01, Corollary 3.2]
and [BM18, Theorem 1] — we have D ∈ ,�,

B?
� (�). Invoking the Markov inequality

and Lemma 2.9, we find

|{|D� − D | ≥ 
}| ≤ 1



B?
�

∫
{|D�−D |≥
}

|D� − D |
B?
� . �B?

∫
{|D�−D |≥
}

(��,
B?
� D)

B?
� . (2.6)

Hence, using Lebesgue’s lemma, we conclude that

�−B? |{|D� − D | ≥ 
}| .
∫
{|D�−D |≥
}

(��,
B?
� D)

B?
� → 0 as �→ 0.
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This achieves to estimate the second term in (2.5).
For the first term, we also split the integral with respect to H into two parts, but this

time we use Lemma 2.8 to estimate |� 9((1 − #)%)(D�(G) − 0) − � 9((1 − #)%)(D�(H) − 0)|
in the ball �A(G). This yields, for every A > 0,∫

�


∫
{|D�(G)−D(G)|≥
}

∫
{dist(D�(G)−0,�)≤dist(D�(H)−0,�)}

� 9

|G − H |<+�? dH dG d0

. �−:?
∫
{|D�(G)−D(G)|≥
}

∫
�


(∫
�A (G)

1
dist(D�(G) − 0,�)(9+1)?

|D�(G) − D�(H)|?

|G − H |<+�? dH

+
∫
ℝ<\�A (G)

1
dist(D�(G) − 0,�)9?

1
|G − H |<+�? dH

)
d0 dG.

We estimate∫
�A (G)

1
dist(D�(G) − 0,�)(9+1)?

|D�(G) − D�(H)|?

|G − H |<+�? dH . A(1−�)?�−? 1
dist(D�(G) − 0,�)(9+1)?

and ∫
ℝ<\�A (G)

1
dist(D�(G) − 0,�)9?

1
|G − H |<+�? dH . A−�? 1

dist(D�(G) − 0,�)9?
.

Inserting A = � dist(D�(G) − 0,�), we obtain∫
�


∫
{|D�(G)−D(G)|≥
}

∫
{dist(D�(G)−0,�)≤dist(D�(H)−0,�)}

� 9

|G − H |<+�? dH dG d0

. �−B?
∫
{|D�(G)−D(G)|≥
}

∫
�


1
dist(D�(G) − 0,�)(9+�)?

d0 dG . �−B? |{|D� − D | ≥ 
}|,

where, in the last inequality, we oncemoremade use of the fact that B? < ℓ . We observe
interestingly that our choice of A is not so common. Indeed, in such an optimization
argument, one usually takes A to be some suitable power of �. Here, not only our choice
is more complex, but it also depends on G and 0, the outer variables of integration.
Using estimate (2.6), we conclude that the above quantity goes to 0 as � → 0, which
finishes to estimate the first term in (2.5). Both terms being controlled, this establishes
average estimate (2.1), therefore concluding the proof of the theorem when : ≥ 1 and
0 < � < 1.
The case : = 0 and 0 < � < 1 is similar, and actually simpler. Indeed, as no

derivatives are involved, we have to estimate the difference ((1 −#)%)(D�(G) − 0) − ((1 −
#)%)(D�(H) − 0), which is directly performed with the same technique as for the � 9
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term in the previous case. Moreover, this range of parameters was already treated
in [BPVS14] with a different technique, interpolating with the first order term using the
Gagliardo–Nirenberg inequality. We therefore omit the details of the argument. �

2.3 Concluding thoughts: What singular set can we hope for?

We conclude this section by considering the question of existence of a singular pro-
jection whose singular set is a closed submanifold of ℝ�. We have seen in Lemmas 2.2
and 2.3 that the (ℓ − 2)-connectedness of the target manifold
 is a necessary and suffi-
cient condition for the existence of a singular projection, and that the proof produces a
singular projectionwhose singular set is a subskeleton, and therefore exhibits crossings.
Since projections whose singular set do not have crossings allow to obtain the density of
the class ℛuncr instead of the class ℛcros, it is natural to ask whether or not it is always
possible to improve singular projections so that their singular set is a submanifold. That
is: Does every (ℓ − 2)-connected manifold admit a singular projection whose singular
set is a submanifold?

Although we are not able to answer this question, we give in this section a family of
examples suggesting that there is little hope that the answer is yes. For every ℓ ∈ ℕ∗, we
let 
ℓ denote a connected sum of ℓ copies of the 2-dimensional torus, embedded into
ℝ3. Since 
ℓ is connected, it admits a 2-singular projection. Actually, this projection
may even be taken to be the nearest point projection. For
1 = �

2, its singular set is the
circle forming the core of the torus and a line passing through the hole of the torus. For

2 = �2#�2, the two-holed torus, its singular set is the eight-figure forming the core
of the torus and two lines, each one passing through one of the holes of 
2. One may
notice that, in those two examples, the singular set of the natural singular projection
onto �2 is a 1-dimensional submanifold of ℝ3, while the singular set of the natural
singular projection onto �2#�2 is only a finite union of 1-dimensional submanifolds of
ℝ3. It is therefore natural to ask whether or not this can be improved to have a singular
projection onto�2#�2 whose singular set would be a 1-dimensional submanifold ofℝ3.
The same question arises for
ℓ for every ℓ ≥ 2.

Proposition 2.10. If ℓ ≥ 2, then there is no homotopy retract % : �3 \�→
ℓ such that � is a
1-dimensional submanifold of �3.

We have stated Proposition 2.10 with �3 instead of ℝ3, but this is equivalent up to
compactification in the case of maps that are constant at infinity — or if the singular set
passes through the point at infinity, as it is the case for the 
ℓ above. In Definition 2.1,
singular projections were required to be continuous retracts of ℝ� \ � into 
, that is,
% ◦ 8 : 
→
 = id
, where 8 is the inclusion of
 into ℝ� \ �. In Proposition 2.10, we
consider instead homotopy retracts, that is, % should in addition satisfy that 8 ◦ % : ℝ� \
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� → ℝ� \ � is homotopic to the identity map. In particular, % induces a homotopy
equivalence between ℝ� \ � and 
. This is a stronger requirement than asking merely
that % is a continuous retract. Nevertheless, one may check that the usual constructions
for a singular projection, like in Lemma 2.3, produce a homotopy retract that is constant
at infinity, so Proposition 2.10 leaves little hope to find a singular projection whose
singular set would be a submanifold into
ℓ when ℓ ≥ 2.

Proof. Assume by contradiction that there exists a homotopy retract % : �3 \ � → 
ℓ ,
where � is a submanifold of �3. We start by computing the homology groups of �3,
�3 \�, and the relative homology groups of �3 relatively to �3 \�. The first homology
groups of the sphere are given by

�0(�3) = ℤ, �1(�3) = {0}, �2(�3) = {0}, �3(�3) = ℤ.

We note that we always implicitly consider homology with integer coefficients. On the
other hand, since we assumed the existence of the homotopy retract %, it follows that
�3 \ � and 
ℓ share the same homology groups: �9(�3 \ �) = �9(
ℓ ) for every 9 ∈ ℕ.
Therefore, we obtain

�0(�3 \�) = ℤ, �1(�3 \�) = ℤ2ℓ , �2(�3 \�) = ℤ, �3(�3 \�) = {0}.

To obtain the homology groups�:(�3 , �3 \�), we use the long exact sequence of relative
homology groups

· · · �:(�3) �:(�3 , �3 \�) �:−1(�3 \�) �:−1(�3) · · · .

The portion of this sequence for : = 2 yields

{0} �2(�3 , �3 \�) ℤ2ℓ {0},

which implies that �2(�3 , �3 \ �) = ℤ2ℓ . We now examine the portion of the sequence
with : = 3, which translates into

{0} ℤ �3(�3 , �3 \�) ℤ {0}.

Asℤ is a freeℤ-module, the above short exact sequence of abelian groups splits, which
implies that necessarily �3(�3 , �3 \�) = ℤ ⊕ ℤ.

We now recall two important duality principles concerning homology groups. The
first one is Poincaré duality: If ℳ is a closed orientable <-dimensional manifold, then
the homology group �<−:(ℳ) is isomorphic to the cohomology group � :(ℳ) for
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every : ∈ {0, . . . , <}; see e.g. [Hat02, Theorem 3.30]. The second one is the Poincaré-
Lefschetz duality: If  is a compact locally contractible subspace of a closed orientable
<-dimensional manifold ℳ, then �:(ℳ,ℳ \  ) � �<−:( ) for every : ∈ {0, . . . , <};
see e.g. [Hat02, Theorem 3.44]. Applied to ℳ = �3 and  = �, the Poincaré-Lefschetz
duality yields

�0(�) � �3(�3 , �3 \�) = ℤ ⊕ ℤ and �1(�) � �2(�3 , �3 \�) = ℤ2ℓ .

On the other hand, since � is assumed to be a 1-dimensional submanifold of �3, the
Poincaré duality implies that

�0(�) � �1(�) � ℤ2ℓ and �1(�) � �0(�) � ℤ ⊕ ℤ.

However, for a 1-dimensional manifold, the groups �0 and �1 both coincide with a
direct sum of the same number of copies of ℤ, one for each connected component.
Therefore, the above situation is only possible for ℓ = 1, which concludes the proof. �

Note along the way that, when ℓ = 1, the above proof shows that the singular set of a
homotopy retract to �2 must have exactly two connected components. This is coherent
with what we obtain with the natural construction described above, and shows that
the singular set obtained there cannot be improved to be made of only one connected
component.
A similar reasoning could be carried out in other situations, provided one is able to

compute the required homology groups. For instance, one could examine the situation
for non orientable surfaces, relying on homology with coefficients in ℤ/2ℤ so that
Poincaré duality is also available.

3 The general case: the crossings removal procedure

3.1 The idea of the method

In this section, we consider the case of a general target manifold 
, non necessarily
(bB?c − 1)-connected. In this context where the method of projection cannot be applied,
all currently available proofs of the density of the class ℛ

cros and its variants rely on
modifying the map D ∈ , B,?(�;
) to be approximated on its domain — in contrast
with the method of projection, which consists in working on the codomain. In the most
general case, there are essentially two ideas of proof. The first one is the method of
good and bad cubes, introduced by Bethuel [Bet91] to handle the case,1,? , and later
pursued in the general case, B,? with 0 < B < +∞ [BPVS15, Det23]. The second one is
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the averaging argument devised by Brezis and Mironescu [BM15], suited for the case
0 < B < 1.
Both these ideas require to decompose the domain &< into a small grid, and rely

crucially on homogeneous extension. In Bethuel’s approach, this procedure is used to
approximate D on the bad cubes of the grid, while in Brezis and Mironescu’s approach,
it is used on all the cubes of the grid. By the very definition of homogeneous extension,
it is clear that this technique necessarily produces maps whose singular set exhibits
crossings — except in the case of point singularities.
The key ingredient in the homogeneous extensionprocedure is the standard retraction

&< \�ℓ ∗ → 

ℓ , where we recall that  ℓ is the ℓ -skeleton of the unit cube, and )ℓ ∗ its

dual skeleton. In order to perform approximation with maps having a singular set
without crossings, a natural question would be whether or not there exists another
retraction 6 : &< \ � → 


ℓ , where here � would be an ℓ ∗-submanifold of ℝ< , that is,
without crossings. This would correspond to a modified version of the usual retraction
&< \�1 →


1, where the singular set has been uncrossed.
It turns out that such a retraction does exist, and is actually quite simple to construct.

This may come as very surprising, in view of Proposition 2.10. Note importantly that
this is not due to the fact that Proposition 2.10 requires a homotopy retract, since the
map that we are going to construct is actually a homotopy retract. The possibility to
obtain such a retraction is instead due to the fact that here, we only require it to be a
retraction on a 1-dimensional set, while in Proposition 2.10, we imposed a 2-dimensional
constraint. This allows for more freedom in our construction.
The procedure to build this retraction 6 is explained below, with < = 3 to allow

for illustration. The starting point is the zero-homogeneous map G ↦→ G/|G |∞, which
retracts &3 \ {0} onto %&3. Choosing the center of projection to be a point above &3

instead of inside &3 yields a continuous map ℎ defined on the whole &3, that retracts
&3 onto its four lateral faces and its lower face. We then postcompose the map ℎ with
the usual retraction of these five faces minus their centers onto their boundary, which is
exactly 


1. This produces the expected continuous retraction 6 : &3 \�→

1, where

� is the inverse image of the centers of the five aforementioned faces under ℎ, which
consists of five line segments that emanate from those centers and end up on the top
face of &3. Those lines do not cross inside &3, but they would intersect at the center
of projection above &3 if they were extended up to there. The situation is depicted on
Figure 2, where the singularities of 6 are represented in red, and extended up to the
projection point to help visualization.
Another way of looking at this construction is the following. Viewed from the pro-

jection point lying slightly above &3, the set of all faces except the top one looks like on
Figure 3, with the centers of the faces represented in red. The retraction 6 : &3\�→


1
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Figure 2: The retraction 6 and its singular set

may then be viewed as a vertical projection onto the set depicted on Figure 3, followed
by the retraction onto the edges away from the red centers. The singular set would then
look like vertical lines starting from the red centers.

Figure 3: Planar view of the faces of &3 without the top one

As a final comment concerning this model construction, we note that it appears to be
natural in the context of homology theory. Indeed, the first homology group of 
1 is
given by �1(
1) = ℤ5, with one cycle generated by the boundary of each face of 
1

except the top onewhich is the sum of all five others. This is clearly seen on&3\�: there
is one cyclewinding around each segment constituting�, each one corresponding to the
boundary of one of the five lowest faces of&3, and the sum of all of them corresponds to
the boundary of the top face. This suggests that our construction is somehow adapted
to the homology of 
1. Moreover, this can be used to prove that the set � must have
exactly five connected components inside of &3, so that our construction is optimal in
this sense.
Having at our disposal the smooth retraction 6 is a first step towards the proof of

the density of the class of maps with uncrossed singular set ℛuncr
<−bB?c−1 in, B,? , but we
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are not done yet. As the more rigid class ℛrig
<−bB?c−1(&

< ;
) is dense in, B,?(&< ;
), it
suffices to show that everymap that belongs toℛrig

<−bB?c−1(&
< ;
)may be approximated

in, B,? by maps in ℛ
uncr
<−bB?c−1(&

< ;
). Using a dilation argument if necessary, we may
furthermore assume that the restriction of the singular set of those maps to &< is the
dual skeleton of a cubication of&< . However, as it is constructed above, the map 6 only
uncrosses the singularities inside one cube, note the full set of singularities of a map in
ℛ

rig
<−bB?c−1. Moreover, this procedure comes without any guarantee that the modified

map is close to the original one in the, B,? distance.
As the general constructions are quite involved, the remaining of this section is

devoted to two particular cases to explain the main ideas in a more simple setting,
allowing for less involved notation and illustrative figures. We start by presenting the
full approximation procedure in,1,?(&3;
)with 1 ≤ ? < 2, which corresponds to the
case of line singularities. This is the content of Proposition 3.1 below. We also sketch the
topological part of our construction to uncross plane singularities in &3, to illustrate the
additional technical difficulties that arise in this situation. The proof of Theorem 1.4 in
the general case is postponed to Section 3.2.

Proposition 3.1. Let D ∈ ℛ
rig
1 (&3;
) and 1 ≤ ? < 2. There exists a sequence (D=)=∈ℕ in

,1,?(&3;
) such that D= → D in ,1,?(&3;
) and such that each D= is locally Lipschitz
outside of a 1-dimensional Lipschitz submanifold �D= of &3.

To avoid technicalities and focus on the core of the argument, we have stated Propo-
sition 3.1 with approximating maps being only locally Lipschitz outside of the singular
set. In the proof of the general case of our main result, in Section 3, we will take care
of making the approximating maps smooth and establishing the estimates near the
singular set in order to ensure that they belong to the classℛuncr.

Proof. Since D ∈ ℛrig
1 (&3;
), wemay assume that its singular set�D is the dual skeleton

�
1 of the 1-skeleton 


1 of a cubication of &3 of inradius �, for some � ∈ 1
2ℕ∗ . Let �

1

be the vertical part of �1, that is, �1 consists of all the lines in �
1 having directing

vector (0, 0, 1). Let also �
1

tr = �
1 ∩

(
(−1, 1)2 × (−1 + �, 1)

)
be the vertical singular set

�
1 to which we have truncated the lower extremity. For every 0 < � < 1

2 , we define
,� = (�1

tr +&��)∩&3. Note that thewell,� contains all the crossings of the singular set
�

1. The reader may refer to Figure 4 for an illustration of the well,� and the singular
set �D .

We uncross the singularities of D in two steps. The first one, of topological nature,
consists in replacing D in,� by another extension of D|%,� . This extension in constructed
in a way that produces a singular setwithout crossings, but comeswith no control on the
energy of the resultingmap. The second step, of analytical nature, consists inmodifying
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the map obtained in the first step to obtain a better map with a control on the energy.
Step 1. — Uncrossing the singularities.
We construct a Lipschitz map Φtop

� : &3 → &3 such that Φtop
� = id outside of,� and

(Φtop
� )−1(�1) is a Lipschitz submanifold of &3. Assuming that the map Φtop

� has been
constructed, we explain how to conclude Step 1. We define the map E� : &3 \�� → 


by E� = D ◦ Φtop
� . Here, �� = (Φtop

� )−1(�1) is the singular set of E�, which is a Lipschitz
submanifold of &3 by assumption on Φtop

� . Then, the map E� is locally Lipschitz on
&3 \��, and it coincides with D outside of,�.
We now explain how to construct the map Φ

top
� . The procedure is illustrated on

Figure 4. For the part of ,� that lies around each line in �
1, we proceed similarly to

what we did on the model case described by Figure 2: We choose a projection point
slightly above the line, and we use this point to retract radially the part of ,� onto
the corresponding part of %,�. Note that here, topological operations like closure or
boundary are taken inside &3. For instance, %,� denotes the boundary of ,� in &3

with respect to the subspace topology. This avoids having to systematically take the
intersection with &3 to remove the part of %,� that would lie in the boundary of &3 in
ℝ3.

Carrying out this construction around each part of,� produces a smooth retraction
of,� onto %,�. Extending this map by identity outside of,� yields a Lipschitz map
Φ

top
� : &3 → &3 such that Φtop

� = id outside of,�.
As�1 is a union of line segmentswhich cross only in,�, we know that�1∩(&3\,�)

is a Lispchitz submanifold of &3 with boundary, the latter being the finite set of points
�

1 ∩ %,�. On the other hand, by construction of Φtop
� , the set ((Φtop

� )|,�
)−1(�1) is a

Lipschitz submanifold of&3 —actually a set of lines— alsowith boundary given by the
finite set of points�1∩ %,�. Therefore, we conclude that�� is a Lipschitz submanifold
of &3 (without boundary), which is depicted on the second cube in Figure 4. This
finishes to prove that the map Φtop

� enjoys all the required properties.
Step 2. — Controlling the energy.
In the second step, we explain how to modify the map E� in order to obtain a better

map D� with controlled energy. This relies on a scaling argument. For this, the key
observation is that, as ? < 2, contracting a Sobolev map to a smaller region decreases
its energy in dimension 2. Let +� = (�1 + &��) ∩ &3 be a neighborhood of inradius ��
of the vertical part of the singular set of D. Note that,� ⊂ +� (actually,,� correspond
to +� with its lower part truncated). The region +2� = (�1 + &2��) ∩ &3 is a twice
larger neighborhood of the vertical part of the singular set of D. Given 0 < � < 1, we
are going to shrink the values of E� in +� to the small region +�� = (�1 + &���) ∩ &3

while keeping E� unchanged outside of+2�. As explained above, choosing � sufficiently
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Figure 4: The well,�, with singularities before and after uncrossing
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small, we may make the energy of the shrinked map as small as we want on +��, hence
obtaining a new map with controlled energy regardless of the energy of the extension
E� constructed in first instance. The region +2� \+�� serves as a transition region. The
energy on this region remains under control, since we use the values of E� outside of
+�, where it coincides with the original map D.

We start with the model case of one vertical rectangle. Let '� = (−��, ��)2 × (−1, 1).
Given E ∈,1,?(&3;
), we define Esh

� ∈,1,?(&3;
) by

Esh
� (G′, G3) =


E(G′, G3) if (G′, G3) ∈ &3 \ '2�;
E( G′� , G3) if (G′, G3) ∈ '��;

E
(
G′
|G′ |

( 1
2−� (|G′ | − ���) + ��

)
, G3

)
otherwise.

Relying on the additivity of the integral and the change of variable theorem, we estimate∫
'2�

|�Esh
� |? .

∫
'2�\'�

|�E |? + �2−?
∫
'�

|�E |? .

We now turn to the modification of our map E�. Applying the above construction to
E� on each rectangle constituting +2�, which is nothing else but a translate of '2�, we
obtain a map D�,� ∈,1,?(&3;
) such that

(i) D�,� is locally Lipschitz on &3 \��,�, where ��,� is a Lipschitz submanifold of &3;

(ii) D�,� = E� = D outside of +�;

(iii) ∫
+2�

|�D�,� |? .
∫
+2�\+�

|�E� |? + �2−?
∫
+�

|�E� |? .

Since ? < 2, we may choose � = �� sufficiently small, depending on �, so that

�2−?
∫
+�

|�E� |? .
∫
+2�\+�

|�E� |? . (3.1)

We now let D� = D�,�� . Since D� = D outside of +2�, we deduce that∫
&3
|�D −�D� |? ≤

∫
+2�

|�D −�D� |? .
∫
+2�

|�D |? +
∫
+2�\+�

|�E� |? + �2−?
∫
+�

|�E� |? .
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As E� = D outside of +�, we infer from (3.1) that∫
&3
|�D − �D� |? .

∫
+2�

|�D |? .

But |+� | → 0 as � → 0, so that Lebesgue’s lemma ensures that �D� → �D in !?(&3)
as � → 0. On the other hand, since 
 is compact, we readily have D� → D in !?(&3)
as � → 0. Hence, we conclude that D� → D in,1,?(&3) as � → 0. Since D� is locally
Lipschitz outside of��,�� , which is a Lispchitz submanifold of&3, this finishes the proof
of the proposition. �

We now turn to the case of the density of the class ℛ
uncr
2 (&3;
), where the maps

have plane singularities. Compared to the case of line singularities treated previously,
the first topological step consisting in uncrossing the singularities features an additional
difficulty, that we explain in this subsection in an informal way, with the help of figures.
The precise construction of the topological step, as well as the analytical step in which
we improve the construction with a control on the energy and which relies on the same
scaling argument as for line singularities, are postponed to Section 3.2, wherewe explain
precisely the general tools needed to prove Theorem 1.4.
Consider a singular set �2 for a map D in ℛ

rig
2 (&3;
), given by the dual skeleton of

the 0-skeleton 

0 of a cubication of &3 having inradius � ∈ 1

2ℕ∗ . As previously, we let
�

2 denote the vertical part of�2, that is, the union of all hyperplanes which constitute
�

2 whose associated vector space contains 43. This set is made of two unions of parallel
planes: the set �1,3 consisting of all the planes in �

2 whose associated vector space is
spanned by 41 and 43, and the set�2,3 consisting of all the planes in�

2 whose associated
vector space is spanned by 42 and 43. We also let �2

tr = �
2 ∩

(
(−1, 1)2 × (−1 + �, 1)

)
be

the truncated version of�2.
As previously, given 0 < � < 1

2 , we consider,� = (�2
tr +&��) ∩&3 a well around�

2
tr .

We first uncross the singularities in,� as follows. We start with a model construction
to uncross two families of parallel planes. We observe that the construction carried out
for lines in&3 in the proof of Proposition 3.1 may also be applied to lines in&2. Indeed,
it suffices to perform a radial projection around a point outside &2 in order to retract
&2 onto all its edges except one. This construction can then be applied to uncross two
planes (or, more precisely, portions of planes). Assume that one wants to uncross the
singularities around the vertical portion of plane � = {G ∈ &3: G1 = 0}. Consider the
line segment ℒ = {0} × (−1, 1) × {1 + �}, which is a line segment subparallel to � and
lying slightly above �. For every plane orthogonal to ℒ determined by G2 = C with
−1 < C < 1, one performs the 2-dimensional uncrossing procedure in this plane with
respect to the unique point of ℒ lying in the plane. Otherwise stated, one proceeds

33



to a radial projection around a line segment in the 42 direction lying slightly above �,
viewing the second coordinate variable as a dummy variable. This allows to uncross�
from other planes in horizontal position. The procedure is illustrated in Figure 5: the
vertical plane around which the well has been digged is uncrossed from the horizontal
plane, and both vertical planes are left unchanged.
We may then elaborate on this idea to uncross all singularities in ,�, as described

in Figure 6. On the parts of ,� that do not contain a crossing between two vertical
planes (the four darkest parts around the central one in Figure 6), we insert a copy of
the construction described just above, as in Figure 5. Note that the constructions are
compatible on the region where two different parts touch—which is a union of vertical
line segments — since they coincide with the identity there. On the parts of,� around
the crossing between orthogonal vertical planes (the central part in Figure 6), we finish
the construction of our extension by using the radial projection from a point slightly
above the crossing, as we did for line singularities. The resulting effect of these glued
constructions is to remove all the crossings between horizontal and vertical planes; see
Figure 6. However, unlike in the case of line singularities, we are not done yet, since
there still are crossings between orthogonal vertical planes to remove.

Figure 5: Uncrossing plane singularities in one direction

For this purpose, we use a well in another direction. We consider the truncated
set of parallel hyperplanes ℋ

2
tr = �

1,3 ∩
(
(−1 + �, 1) × (−1, 1)2

)
, and the well �� =

(ℋ2
tr +&���)∩&3, where 0 < � < 1 is chosen sufficiently small so that �� intersects only

the planes in the singular set that have not yet been uncrossed. Note that�� contains all
the remaining singularities. We then insert a rotated copy of the construction illustrated
in Figure 5 in each part of the well�� around a plane constitutingℋ2

tr . The procedure is
illustrated in Figure 7 in the case where there is only one plane in each direction. At the
end of this step, the crossings between orthogonal vertical planes have been removed,
and therefore no crossings remain.
This concludes our informal presentation of some particular cases of crossings re-
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Figure 6: Uncrossing plane singularities around all vertical planes

moval. In the next section, we introduce the general version of the two main tools that
have been presented here: the topological construction to remove crossings, and the
analytical procedure to control the energy on the modified region. These two tools are
the key ingredient the proof of our main result. Concerning the second one, we use the
shrinking construction introduced by Bousquet, Ponce, and Van Schaftingen [BPVS15,
Section 8]; see also [Det23, Section 7] for the fractional order setting. For the first
one, however, we need to perform an ad hoc construction, suited for our purposes.
This construction is nevertheless very similar to the thickening procedure introduced
in [BPVS15, Section 4]. As we have seen in our last example with plane singularities, the
crossings removal procedure may involve gluing building blocks in various dimensions
and also combining crossings removal procedures in different directions to get rid of all
the existing crossings.

3.2 The general crossings removal procedure

We now explain how to prove our main result, Theorem 1.4, in the general case.
The argument follows the same two steps as in Proposition 3.1: First, we uncross
the singularities through a topological procedure, and then we rely on an analytical
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Figure 7: Uncrossing plane singularities between vertical planes

argument to obtain a control on the energy.
We start by considering the first topological step. This is handled by the following

proposition.

Proposition 3.2. Let ℓ ∈ {0, . . . , < − 2} and let �ℓ ∗ be the dual skeleton of the ℓ -skeleton 

ℓ

of a cubication 

< of &< of inradius � > 0. For every 0 < � < 1, there exists a smooth local

diffeomorphism Φ : &< → &< such that

(i) �
ℓ ∗ = Φ−1(�ℓ ∗) is a smooth ℓ ∗-dimensional submanifold of &<;

(ii) Φ = id outside of�ℓ ∗ +&��.

Moreover, Φ can be extended to a smooth local diffeomorphism on a slightly larger open set
$ ⊂ ℝ< such that &< b $.

The proof of Proposition 3.2 is similar in its spirit to the thickening construction;
see [BPVS15, Section 4]. However, to have a tool suited for our purposes here, we cannot
re-use thickening as such, and we need to proceed to a quite different construction. We
also note that our restriction ℓ ≤ <−2 excludes the case ℓ = <−1,where ℓ ∗ = 0, andhence
the singular set would have beenmade of points. But in this case, the classesℛrig,ℛcros,
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and ℛ
uncr all coincide, so that Theorem 1.4 is already contained in Bethuel’s theorem

and its counterpart for arbitrary B, and requires therefore no additional argument.

Proof. As explained in the last example of Section 3.1, the general uncrossing procedure
requires to perform successive uncrossing steps in various directions.

Step 1. — Uncrossing singularities in a vertical well.
We let � be the part of �ℓ ∗ consisting only of ℓ ∗-planes that have the vertical vector

4< in their associated vector space. We also consider the truncated set of planes �tr =

� ∩ ((−1, 1)<−1 × (−1+ �, 1)). Finally, we let,� = (�tr +&��) ∩&< be a well around�tr .
The well,�/2 is defined accordingly. We note that,�/2 contains all the crossings that
involve at least one non vertical ℓ ∗-plane, i.e., a plane not in �.
Let

�

2 < �
ℓ ∗−1

< �ℓ ∗−1 < · · · < �
0
< �0 < �.

We consider ℰℓ ∗−1 = � ∩ ((−1, 1)<−1 × {1}) the intersection of � with the top face of
&< . Note thatℰℓ ∗−1 is an (ℓ ∗ − 1)-skeleton. For every 3 ∈ {0, . . . , ℓ ∗ − 1}, we define the
rectangles

'3 = (−��, ��)<−1−3 × (−(1 − �3)�, (1 − �3)�)3 × (−1 + � − ��, 1),
'3out = (−�3�, �3�)<−1−3 × (−(1 − �3)�, (1 − �3)�)3 × (−1 + � − �3�, 1),

and

'3in = (−�3�, �3�)
<−1−3 × (−(1 − �3)�, (1 − �3)�)3 × (−1 + � − �

3
�, 1).

Given a 3-face �3 ∈ �3, we let '�3 be the rotated copy of '3 positioned so that �3

corresponds to {0}<−3−1 × (−1, 1)3 × {1}. This way, we note that '�3 ⊂ ,� for every
3 ∈ {0, . . . , ℓ ∗ − 1} and every �3 ∈ �3, and that actually,� is made of the union of all
such '�3 . We define similarly '�3 ,in and '�3 ,out.
We use as a tool the following construction from [BPVS15, Proposition 4.3]: There

exists a smooth local diffeomorphism Θ3 : &3
�� \ {0} → &3

�� such that

(i) Θ3(&3 \ {0}) ⊂ &3
�� \&3

�
3
�;

(ii) Θ3 = id outside of &3
�3�

.

The map Θ3 is constructed by letting Θ3(G) = �(G)G for some well-chosen smooth map
� : &3

�� \ {0} → [1,+∞) such that � = 1 outside of &3
�3�

. We focus our attention to the
restriction of Θ3 to the lower part of &3

��, slightly below {0}. After a suitable distortion
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of &3 and addition of dummy variables, this yields a smooth local diffeomorphism
Ψ3 : '3 → '3 such that

(i) Ψ3('3) ⊂ '3 \ '3in;

(ii) Ψ3 = id outside of '3out.

LetΨ�3 be themap obtained by transporting isometricallyΨ3 to '�3 , and defineΦ3(G) =
Ψ�3 (G) if G ∈ '�3 . We note that this is well defined. Indeed, if G ∈ '�31

∩ '�32
, then G is

outside of '�31 ,out and '�32 ,out, which implies thatΨ�31
(G) = G = Ψ�32

(G).
We readily observe that the map Φ3 can be smoothly extended by identity to &< \⋃
�;∈�;

;∈{0,...,3−1}

'�; ,in. In particular, this yields Φ3 = id outside of,�. Moreover, Φ3 has the

property that it maps
⋃

�3∈�3
'�3 outside of

⋃
�3∈�3

'�3 ,in. By induction, this implies that the

composition Φv = Φℓ ∗−1 ◦ · · · ◦ Φ0 is a well-defined smooth local diffeomorphism and
maps &< outside of,�/2. In particular, Φ−1

v (�ℓ ∗) is a finite union of smooth ℓ ∗-dimen-
sional submanifolds of &< , and as,�/2 contains all the crossings between ℓ ∗-planes in
�
ℓ ∗ involving at least one non vertical one, we deduce that the only submanifolds in

Φ−1
v (�ℓ ∗) that intersect correspond to inverse images of vertical ℓ ∗-planes. Finally, since

the building blocks Θ3 have the form Θ3(G) = �(G)G, we also find that Φ−1
v (�) =�.

Step 2. — Uncrossing vertical planes.
It remains to remove the crossings between planes in�. For this purpose, we choose

another — non vertical — direction, and we rotate &< to make it correspond to the
vertical one. We then repeat the exact same construction as in the first step, except that
we replace,� by,�� for some 0 < � < 1 so small that,�� does not intersect the inverse
images under Φv of ℓ ∗-planes of �ℓ ∗ \�. The construction should then be modified
accordingly, adding the scaling � wherever necessary, and this yields another smooth
local diffeomorphism Φh : &< → &< that coincides with the identity outside of ,��

and such that Φ−1
h (�) is a finite union of smooth ℓ ∗-dimensional submanifolds of &< .

Moreover, only the inverse images coming from planes in the new vertical directionmay
still cross. Therefore, the map Φv ◦ Φh is a smooth local diffeomorphism that coincides
with the identity outside of �ℓ ∗ + &�� and such that (Φv ◦ Φh)−1(�ℓ ∗) is a finite union
of smooth submanifolds of &< , and only the parts coming from ℓ ∗-planes aligned with
the two chosen directions may still cross.
We pursue this procedure, chosing each time a new direction to be the vertical one,

until no crossing remains. This yields the desired map Φ.
Moreover, it is readily observed from our construction, since each building block

could have been defined on a slightly larger set, that Φ may be extended to a smooth
local diffeomorphism defined on a slightly larger set. �
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We now turn to the analytical step. This relies on the shrinking construction, which
has been introduced in [BPVS15, Section 8]; see also [Det23, Section 7] for the fractional
order setting.

Proposition 3.3. Let ℓ ∈ {0, . . . , < − 1}, 0 < � < 1
2 , 0 < � < 1

2 , � > 0,
< be a cubication in
ℝ< of radius � > 0, and�ℓ ∗ be the dual skeleton of
ℓ . If ℓ +1 > B?, then there exists a smooth
local diffeomorphism Φ : ℝ< → ℝ< satisfying Φ(�<) ⊂ �< for every �< ∈  < and such that,
for every D ∈ , B,?(
<) and every E ∈ , B,?(
<) such that D = E on the complement of
�
ℓ ∗ +&<

��, we have D ◦Φ ∈, B,?(
<), and moreover, there exists a constant � > 0 depending
on <, B, and ? such that

(i) if 0 < B < 1, then

|D ◦Φ− E |, B,?(
<) ≤ �
(
|E |, B,?(
<∩(�ℓ∗+&<

2��)) + (��)
−B ‖E‖!?(
<∩(�ℓ∗+&<

2��))

)
+ �;

(ii) if B ≥ 1, then for every 9 ∈ {1, . . . , :},

‖� 9(D ◦Φ) − � 9E‖!?(
<) ≤ �
9∑
8=1
(��)8−9 ‖� 8E‖!?(
<∩(�ℓ∗+&<

2��)) + �;

(iii) if B ≥ 1 and � ≠ 0, then for every 9 ∈ {1, . . . , :},

|� 9(D ◦Φ) − � 9E |,�,?(
<)

≤ �
9∑
8=1

(
(��)8−9−�‖� 8E‖!?(
<∩(�ℓ∗+&<

2��))+(��)
8−9 |� 8E |,�,?(
<∩(�ℓ∗+&<

2��))

)
+�;

(iv) for every 0 < B < +∞,

‖D ◦Φ − E‖!?(
<) ≤ �‖E‖!?(
<∩(�ℓ∗+&<
2��)) + �.

Proposition 3.3 is obtained from [Det23, Proposition 7.1] by choosing � sufficiently
small, depending on D and E, as explained below the proposition.

Having at hand Propositions 3.2 and 3.3, we are ready to perform the topological and
analytical steps of our construction. However, before proving Theorem 1.4, we need
one last technical tool. Indeed, our proof involves composing the map D ∈ ℛrig ⊂ ℛ

cros

we want to approximate with the maps provided by Propositions 3.2 and 3.3. The
following lemma ensures that the classℛcros is stable through composition with a local
diffeomorphism.
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Lemma 3.4. Let� ⊂ ℝ< be a bounded open set, let $ ⊂ ℝ< be an open set such that� b $,
and let Φ : $ → ℝ< be a local diffeomorphism such that Φ(�) ⊂ �. For every D ∈ ℛcros

8
(�),

we have that D ◦Φ ∈ ℛcros
8
(�).

Proof. Let � denote the singular set of D. We may assume that � ≠ ∅, otherwise the
proof is trivial. We may also assume that $ = ℝ< . Indeed, if this is not the case, we
consider an open set* such that� b * b $, and we pick a cutoff function # ∈ �∞c ($)
be such that # = 1 on * and a map ) ∈ �∞c (ℝ< \ �) such that )(G) = �G for every
G ∈ ℝ< \* . If � > 0 is sufficiently large, then the map #Φ+) is a local diffeomorphism
on ℝ< that coincides with Φ on�.
SinceΦ is a local diffeomorphism, themap D◦Φ is smooth on�\�̃, where �̃ = Φ−1(�)

is a finite union of smooth 8-dimensional submanifolds of ℝ< . Moreover, if D extends
smoothly on * \ � for some open set * ⊂ ℝ< satisfying � b * , then D ◦ Φ extends
smoothly on Φ−1(*) \ �̃, and Φ−1(*) is an open subset of ℝ< satisfying� b Φ−1(*). It
therefore remains to prove the estimates on the derivatives of D ◦Φ.
For this purpose, we first note that, as Φ is defined on the whole ℝ< , it has bounded

derivatives on �. Therefore, the Faà di Bruno formula ensures that, for every G ∈ �

and 9 ∈ ℕ∗,

|� 9(D ◦Φ)(G)| .
9∑
C=1
|�CD(Φ(G))| .

9∑
C=1

1
dist (Φ(G),�)C

.
1

dist (Φ(G),�)9
.

We conclude the proof by showing that dist (Φ(G),�) & dist (G, �̃) for every G ∈ �.
For this purpose, we first note that, by a compactness argument, there exists � > 0

such that, for every G ∈ �, the restriction of Φ to Φ−1(��(Φ(G))) is a diffeomorphism
onto ��(Φ(G)). Taking � smaller if necessary, this implies in particular that

|G − H | . |Φ(G) −Φ(H)| whenever |Φ(G) −Φ(H)| < �. (3.2)

It suffices to show that dist (Φ(G),�) & dist (G, �̃) whenever G ∈ � is such that Φ(G) is
sufficiently close to �. Hence, let G ∈ � be such that dist (Φ(G),�) < �. Let I ∈ � be
such that |Φ(G) − I | = dist (Φ(G),�). In particular, there exists H ∈ Φ−1(��(Φ(G))) such
that Φ(H) = I. With this choice, we have H ∈ Φ−1(�) = �̃ and therefore, due to (3.2),

dist (G, �̃) ≤ |G − H | . |Φ(G) −Φ(H)| = dist (Φ(G),�).

This concludes the proof of the lemma. �

Proof of Theorem 1.4. Since themore rigid classℛrig
<−[B?]−1(&

< ;
) is dense in, B,?(&< ;
),
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it suffices to consider D ∈ ℛ
rig
<−bB?c−1(&

< ;
) and to show that it can be approximated
by maps in the uncrossed classℛuncr

<−bB?c−1(&
< ;
). Let ℓ = bB?c, and let�ℓ ∗ be the dual

skeleton of the ℓ -skeleton 

ℓ of a cubication 


< of radius � > 0 of &< , chosen so that
�
ℓ ∗ coincides with the singular set of D. Recall that, as already explained, we may limit

ourselves to consider maps such that their singular set is placed like this. Also, recall
that we may assume that ℓ ≤ < − 2, as if ℓ = < − 1 there is nothing to prove.
For the sake of conciseness, we let �� = &< ∩ (�ℓ ∗ + &2��). Given 0 < � < 1

2 , we
start by applying Proposition 3.2 to obtain a map Φtop

� : &< → &< such that, defining
D

top
� = D ◦Φtop

� , we have that

(i) �
top
� = (Φtop

� )−1(�ℓ ∗) is a smooth ℓ ∗-dimensional submanifold of &< ;

(ii) Dtop
� = D outside of �ℓ ∗ +&��;

(iii) Dtop
� ∈, B,?(&<).

Item (iii) above is a consequence of the fact that Dtop
� ∈ ℛ

cros
<−bB?c−1(&

< ;
), as D ∈
ℛ

cros
<−bB?c−1(&

< ;
) and using Lemma 3.4.
Since ℓ + 1 = bB?c + 1 > B? and thanks to (ii) and (iii) above, we may now invoke

Proposition 3.3 on Dtop
� and D, with � = �, to deduce the existence of a smooth local

diffeomorphism Φsh
� : &< → &< such that, letting Dsh

� = D
top
� ◦ Φsh

� , we have that
Dsh
� ∈, B,?(&<)with

(i) if 0 < B < 1, then

|Dsh
� − D |, B,?(&<) . |D |, B,?(��) + (��)−B ‖D‖!?(��) + �;

(ii) if B ≥ 1, then for every 9 ∈ {1, . . . , :},

‖� 9Dsh
� − � 9D‖!?(&<) .

9∑
8=1
(��)8−9 ‖� 8D‖!?(��) + �;

(iii) if B ≥ 1 and � ≠ 0, then for every 9 ∈ {1, . . . , :},

|� 9Dsh
� −� 9D |,�,?(&<) .

9∑
8=1

(
(��)8−9−�‖� 8D‖!?(��) + (��)8−9 |� 8D |,�,?(��)

)
+ �;

(iv) for every 0 < B < +∞,

‖Dsh
� − D‖!?(&<) . ‖D‖!?(��) + �.
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Since Φsh
� is a local diffeomorphism, we know that (Φsh

� )−1(�top
� ) is a smooth ℓ ∗-

dimensional submanifold of &< . Moreover, Φtop
� and Φsh

� satisfy the assumptions of
Lemma 3.4. This shows that Dsh

� ∈ ℛ
uncr
<−bB?c−1(&

< ;
) for every 0 < � < 1
2 , and it

therefore only remains to prove the , B,? convergence Dsm
� → D as � → 0 to conclude

the proof. To accomplish this, we verify that the quantities in the right-hand side of (i)
to (iv) converge to 0 as �→ 0.

We first observe the following estimate on the measure of ��:

|�� | . (��)ℓ+1. (3.3)

By Lebesgue’s lemma, we deduce that the quantities |D |, B,?(��) and ‖D‖!?(��), that
appear on (i) and (iv) respectively, indeed tend to 0 as �→ 0. Moreover, when 0 < B < 1,
using the fact that D ∈ !∞(&<) by the compactness of 
, we have

‖D‖!?(��) . |�� |
1
? . (��)

ℓ+1
? .

Therefore,

(��)−B ‖D‖!?(��) . (��)
ℓ+1−B?
B? ,

which converges to 0 as �→ 0 because of the fact that B? < ℓ + 1.
We now consider estimates (ii) and (iii), when B ≥ 1. Observe that, since D ∈

, B,?(&<) ∩ !∞(&<), the Gagliardo–Nirenberg inequality implies that � 8D ∈ !
B?
8 (&<)

for every 8 ∈ {1, . . . , :}. Hence, Hölder’s inequality and (3.3) ensure that

‖� 8D‖!?(��) ≤ |�� |
B−8
B? ‖� 8D‖

!
B?
8 (��)

. (��)
(ℓ+1)(B−8)

B? ‖� 8D‖
!
B?
8 (��)

.

Therefore, we deduce that

(��)8−9 ‖� 8D‖!?(��) . (��)
(ℓ+1)(B−8)−(9−8)B?

B? ‖� 8D‖
!
B?
8 (��)

. (��)
(9−8)(ℓ+1−B?)

B? ‖� 8D‖
!
B?
8 (��)

.

As B? < ℓ + 1, the exponent of �� is positive, which implies that the right-hand side
converges to 0 as �→ 0. This handles estimate (ii).
If B ≥ 1 and � ≠ 0, the same reasoning leads to

(��)8−9−�‖� 8D‖!?(��) . (��)
(�+9−8)(ℓ+1−B?)

B? ‖� 8D‖
!
B?
8 (��)

,

which also goes to 0 as �→ 0. Similarly, by interpolation, see [Det23, Lemma 6.1], we
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find

|� 8D |,�,?(��) . |�� |
B−8−�
B? ‖� 8D‖1−�

!
B?
8 (��)
‖� 8+1D‖�

!
B?
8+1 (&<)

. (��)
(B−8−�)(ℓ+1)

B? ‖� 8D‖1−�
!
B?
8 (��)

for every 8 ∈ {1, . . . , 9 − 1}. Therefore,

(��)8−9 |� 8D |,�,?(��) . (��)
(9−8)(ℓ+1−B?)

B? ‖� 8D‖1−�
!
B?
8 (��)

,

which once more goes to 0 as � → 0. This finishes to handle the second term in
estimate (iii) when 8 < 9. The second term for 8 = 9 is simply |� 9D |,�,?(��), which
converges to 0 due to the Lebesgue lemma.

All cases being covered, this finishes to prove that Dsh
� → D as �→ 0, which concludes

the proof of the theorem. �

As a concluding remark, note that our method uses in a explicit way the fact that the
domain is a cube. However, the argument can be adapted to any domain which has
a shape allowing to evacuate crossings as we did for the cube. For instance, consider
the ball with a hole �2 \ �1 ⊂ ℝ< . One may use a decomposition into cells that are
diffeomorphic to cubes and arranged in a radial way, and evacuate crossings between
lines along the radial direction to deduce the density of ℛuncr

1 (�2 \ �1;
) in, B,?(�2 \
�1;
) when bB?c = < − 2. The idea of the construction is illustrated on Figure 8 in
dimension < = 2, where we have represented the singular set of the map in the radial
equivalent of the class ℛrig to be approximated in red, and the wells used to uncross
the singularities in dark blue. We shall not attempt to present a detailed argument,
since it would require to adapt the whole proof of the density of class ℛrig in a radial
version, which would considerably increase the length of this text. We therefore keep
this observation as a remark, and not a theorem with precise statement and proof. On
the other hand, on the same domain, themethod does not seem towork to uncross plane
singularities for instance, since there is no second direction along which to evacuate the
remaining crossings after the first uncrossing step has been performed.
Nevertheless, this particular situation does not provide a counterexample, since one

could extend the map to be approximated inside the hole by homogeneous extension,
and then apply the technique we introduced to uncross the singularities of the ex-
tended map on �2. However, such a straightforward extension argument cannot be
implemented on a general domain. Actually, there does not seem to be a direct way to
solve the case of a general domain using the technique we introduced for &< as such.

It is not clear to us what should be the general situation. It could be that the class
ℛ

uncr is always dense in , B,? , but that the proof for a general domain requires an
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Figure 8: Radial uncrossing procedure

adaptation of our argument or even a new idea. It could also be that there are some
new obstructions that arise, stemming for instance from the topology of the domain, in
the spirit of the work of Hang and Lin [HL03]. This motivates us to conclude on the
following open problem.

Open problem 3.5. Is it true that ℛuncr
<−bB?c−1(�;
) is always dense in, B,?(�;
) for any

domain� ⊂ ℝ< sufficiently smooth?
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