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ABSTRACT 24 

Higher efficiency in large-scale and long-term biodiversity monitoring can be obtained 25 

through the use of Essential Biodiversity Variables, among which species population sizes 26 

provide key data for conservation programs. Relevant estimations and assessment of actual 27 

population sizes are critical for species conservation, especially in the current context of 28 

global biodiversity erosion. However, knowledge on population size varies greatly, 29 

depending on species conservation status and ranges. While the most threatened or 30 

restricted-range species generally benefit from exhaustive counts and surveys, monitoring 31 

common and widespread species population size tends to be neglected or is simply more 32 

challenging to achieve. In such a context, citizen science (CS) is a powerful tool for the long-33 

term monitoring of common species through the engagement of various volunteers, 34 

permitting data acquisition on the long term and over large spatial scales. Despite this 35 

substantially increased sampling effort, detectability issues imply that even common 36 

species may remain unnoticed at suitable sites. The use of structured CS schemes, including 37 

repeated visits, enables to model the detection process, permitting reliable inferences of 38 

population size estimates. Here, we relied on a large French structured CS scheme (EPOC-39 

ODF) comprising 27 156 complete checklists over 3 873 sites collected during the 2021-2023 40 

breeding seasons to estimate the population size of 63 common bird species using 41 

Hierarchical Distance Sampling (HDS). These population size estimates were compared to 42 

the previous expert-based French breeding bird atlas estimations, which did not account 43 

for detectability issues. We found that population size estimates from the former French 44 

breeding bird atlas were lower than those estimated using HDS for 65% of species. Such a 45 

prevalence of lower estimations is likely due to more conservative estimates inferred from 46 

semi-quantitative expert-based assessments used for the previous atlas. We also found 47 

that species with long-range songs such as the Common Cuckoo (Cuculus canorus), Eurasian 48 

Hoopoe (Upupa epops) or the Eurasian Blackbird (Turdus merula) had, in contrast, higher 49 

estimated population sizes in the previous atlas than in our HDS models. Our study 50 

highlights the need to rely on sound statistical methodology to ensure reliable ecological 51 

inferences with adequate uncertainty estimation and advocates for a higher reliance on 52 

structured CS in support of long-term biodiversity monitoring. 53 

 54 
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Introduction 57 

Worldwide bird populations are nowadays caught in the midst of a global, man-driven erosion of 58 

biodiversity caused by the synergistic effects of habitat destruction and fragmentation, resource 59 

overexploitation, climate change, pollution, pesticide use as well as the global spread of invasive species 60 

(Ceballos et al., 2015; Johnson et al., 2017). In Europe, the intensification of agriculture crystallises this 61 

phenomenon because the ever-increased use of pesticides and fertilisers has been pointed out as the main 62 

driver of current bird population declines (Rigal et al., 2023). Recent researches have pointed out how 63 

important species-specific life attributes (e.g., species range and density) and functional traits (e.g., body 64 

mass, diet or dispersal) explain long-term bird trends and responses to global changes (Hong et al., 2023; 65 

Santini et al., 2023; Germain et al., 2023). Monitoring long-term as well as shorter-term trends have been 66 

historically possible through standardised biodiversity - including bird - surveys at a national scale and 67 

aggregated at the continental one (Jiguet et al., 2012; Pilotto et al., 2020; Brlík et al., 2021). This monitoring 68 

produces comprehensive distribution atlases pointing out current ranges and their historical changes 69 

(Keller et al., 2020), as well as long-term population trends (Brlík et al., 2021). Identifying common species 70 

declines in the long-term should be accounted for in agricultural and planning policies (Gaston & Fuller, 71 

2008; Rigal et al., 2023) to help reconciling society's needs with the safeguarding of ordinary biodiversity 72 

(Couvet & Ducarme, 2014). 73 

Monitoring the success of the implementation of such policies is possible through the measurement of 74 

Essential Biodiversity Variables (Jetz et al., 2019; Navarro et al., 2017; Pereira et al., 2013), including the 75 

assessment of species distribution range and population abundance or density (Santini et al., 2023). Global 76 

monitoring capabilities of species populations have increased over the past few decades as citizen science 77 

(CS) has gained prominence across various domains, particularly in ecology (Kullenberg & Kasperowski, 78 

2016). This participatory approach has provided the public with unprecedented opportunities to contribute 79 

to biodiversity monitoring through data collection and indirectly through their engagement in policy 80 

evaluation (McKinley et al., 2017). The development of CS can be related to the emergence of multiple 81 

online databases (Newman et al., 2012) capable of gathering comprehensive datasets across large spatial 82 

scales and multiple taxa such as iNaturalist (www.inaturalist.org) and Biolovision (data.biolovision.net) or 83 

taxa-centred, for instance, eBird (www.ebird.org). The emergence of CS databases has thus resulted in an 84 

exponential increase in biodiversity monitoring capabilities, ranging from phenological shifts (Hurlbert & 85 

Liang, 2012), species distribution (Suzuki-Ohno et al., 2017; Matutini et al., 2021) and abundance 86 

estimation (Callaghan et al., 2021). 87 

Traditionally, species autecology was recensed in atlases providing temporal snapshots of known 88 

distribution and population size estimates using discontinuously gathered data collected during a short 89 

period (Donald and Fuller, 1998) and allowing long-term changes assessment when repeated over decades 90 

(Keller et al., 2020). The first attempt of French avifauna compilation dates back to 1936 (Mayaud et al., 91 

1936) while the first national atlas was published in 1976 (Yeatman et al., 1976) followed by subsequent in 92 



1995 (Yeatman-Berthelot & Jarry, 1995) and 2015 (Issa & Muller, 2015). Each iteration was marked by a 93 

significant increase in participating citizen birders, ranging from 500 to 2400 to 10,000. However, while the 94 

ultimate aim of bird atlases is to acquire even knowledge across multiple species for a given geographical 95 

area (typically national-wide inquiries), it is essential to note that rare and threatened species benefit from 96 

more in-depth population monitoring than more frequent and abundant ones (Ingram et al., 2021). Such 97 

exhaustive knowledge of rare species populations is due to interest risen by high extinction risk (IUCN, 98 

2001), the need for recovery plans (Farrier et al., 2007) and narrow distributions allowing exhaustive counts 99 

(Quaintenne et al., 2020). In contrast, common species (being altogether abundant, widespread; 100 

Rabinowitz, 1981) are considered Least Concern (LC). They consequently tend to receive lesser attention 101 

than rarer species (Neeson et al., 2018) despite being key components of global avian biomass changes 102 

(Gaston & Fuller, 2008; Inger et al., 2015; Whelan et al., 2015; Rigal et al., 2023). 103 

The principal cause of low quantitative coverage of common birds can be tied to the lack of specific 104 

funding stemming from a conservation prioritisation approach (Brooks et al., 2006; Meine et al., 2006) and 105 

the trade-off between data quality and data acquisition over large spatial scales (Devictor et al., 2010; 106 

Kamp et al., 2016). In France, this incomplete knowledge translates into a significant drop in quality for 107 

population size estimates of most common bird species, where 60% of breeding species population 108 

estimates are qualified as medium (i.e. state of knowledge of species abundance considered more or less 109 

satisfying, but semi-quantitative data are either lacking or outdated, see Comolet-Tirman et al., 2015) while 110 

for rare and localised species (24% of species), estimates are considered as highly reliable (Comolet-Tirman 111 

et al., 2022). To account for this discrepancy, a semi-quantitative estimation method was used for the last 112 

atlas survey, with population sizes simply inferred from the average number of breeding pairs measured 113 

over 10x10km grid cells using abundance classes of 1-9, 10-99, 100-999, 1000-6666 (the last upper limit 114 

could vary according to knowledge about species densities) multiplied by the number of grid cells known 115 

for nesting. Population sizes estimated using this method correspond to lower and upper limits. Lower 116 

limits were obtained by calculating the geometric mean of the abundance classes weighted by the number 117 

of 10x10 grid cells belonging to these abundance classes while upper limits were obtained by using the 118 

arithmetic means (see Roché et al., 2013 method referred further as ArGeom). 119 

However, similarly to other studies (Kellner & Swihart, 2014), this approach fails to account for species 120 

detectability p defined as the probability of detecting at least one individual of a given species in a particular 121 

sampling effort, given that individuals of that species are present in the area of interest during the sampling 122 

session (Boulinier et al., 1998). Numerous studies have previously shown that p varies with time of day and 123 

season (Skirvin, 1981), observers (Quinn et al., 2011) and year-specific factors (Kéry & Schmid, 2004). 124 

Omitting species detectability by assuming perfect or constant p across sampling schemes, observers and 125 

habitat types can lead to biased inferences (Nichols et al., 2009; Kéry, 2011) and affect the estimation of 126 

long-term trends due to its unaddressed variation (Schmidt et al., 2013; Sanz-Pérez et al., 2020). 127 



Here, we propose an estimation method enabling a more robust approach of population size 128 

estimations. We provide associated uncertainty intervals built upon a revised structured sampling scheme, 129 

ensuring data traceability and allowing inferences in the spatial variation of species abundance by formally 130 

including the detection process within the modelling framework. 131 

In this study, we aimed at testing whether applying this modelling framework on an unprecedentedly 132 

large citizen-based dataset collected over France would (i) provide a new quantitative evaluation of French 133 

breeding bird populations and (ii) allow a comparison of population sizes inferred through Hierarchical 134 

Distance sampling from those inferred using the previous atlas methodology ArGeom across a large part of 135 

French avifauna. In particular, we expect that quantifying the influence of species detectability would allow 136 

more relevant ecological inferences (e.g., including environmental and sampling effort covariates to the 137 

models) to approach closer to a realistic estimation of breeding bird population size at a national level than 138 

previously used methodologies. 139 

Materials and methods 140 

Sampling protocol 141 

EPOC-ODF (French structured estimation of breeding bird population size) is a French CS monitoring 142 

scheme based upon 5-minute point counts, where observers are tasked to point locations of recorded 143 

individuals, either through visual or auditory detection. Birders can register their field observations directly 144 

using the NaturaList smartphone application or transcript later on the data portal Faune-France 145 

(www.faune-france.org). The survey locations corresponded to the centroids of a 2x2km grid, selected 146 

from a random sampling. Each location has to be visited three times during the breeding season, from 147 

March to June, each consisting of three successive 5-minute point counts, to limit chances of duplicated 148 

counts while being less demanding in observation effort (Fuller & Langslow, 1984). After completion, i.e. 149 

nine visits during a breeding season, surveyed sites are removed from the sampling pool for the subsequent 150 

year, to maximise the number of sites surveyed. See Appendix S1 for more details about the sampling 151 

design. 152 

Over the 2021 and 2023 breeding seasons, 276 distinct species were encountered over 27 156 complete 153 

checklists collected over 3 873 pre-selected locations (Fig 1) by 520 observers. Sampling effort is monitored 154 

through local associations tasked to recruit volunteers. The primary focus of the scheme being the 155 

monitoring of common breeding bird species, we decided to constrain the number of species considered 156 

viable targets of this scheme to 103 out of the 276 species contacted. We narrowed our study to 63 species 157 

out of the initial set of 103, comprising only those recorded at a minimum of 150 distinct locations (3.9% 158 

of total locations), to have a sample size allowing to reach model convergence. We also applied a temporal 159 

filter that considered both observed activity during the breeding season and expert opinion to capture the 160 

breeding phenology of each targeted species and exclude possible early or late migrants from population 161 

size estimates (see Appendix S2.1).  162 



 163 

Figure 1 - Spatial distribution of surveyed EPOC-ODF locations (n = 3 505) over 2021-2023 breeding seasons. 164 

PCA reduction of environmental covariates  165 

For bioclimatic data, we used 19 variables from WorldClim at 1km resolution (Fick & Hijmans, 2017), 166 

on which we applied a Principal Component Analysis (PCA), keeping the first three axes (82.3% of explained 167 

variance), to limit multicollinearity through orthogonal transformation (Cruz-Cárdenas et al., 2014). 168 

We used habitat cover data from Theia OSO at 10m resolution (Thierion et al., 2022) and aggregated it 169 

according to two different scales: (1) a seven-class corresponding to habitat type (Urban, Annual crops, 170 

Perennial crops, Pastures, Grasslands, Forests, Water body/Mineral surfaces) and (2) three-class (Open, 171 

Forests, and Artificial) in regards to overall effect on detectability (fig 2). Additionally, we conducted PCA 172 

dimension reduction on the seven-class aggregation, retaining three of the six PCA (54.71% of explained 173 

variance) axes depicting environmental gradients for (i) forest-to-open-field cultures; (ii) open-field 174 

cultures-to-pastures and (iii) perennial crop-to-urban Appendix S3 for the workflow pipeline and habitat 175 

cover aggregation. Distances to roads were measured from ROUTE 500 (Cote et al., 2021). Environmental 176 

covariates were extracted over a 500m buffer radii upon registered observer location (fig 2). These 177 

distances were chosen according to mean dispersal distances and home range sizes in common European 178 

birds (Paradis et al., 1998). The three-class habitat covers were collected upon 100m circles radii to assess 179 

immediate habitat types that could hinder species detection. Whenever the exact location was unavailable, 180 

we used the centroid of sightings as a proxy for observer location (Appendix S4). We used environmental 181 

data collected from a prediction grid covering France at a resolution of 2x2km for PCA dimension reduction. 182 



Outcomes from this initial PCA were used to transform environmental data collected from surveyed 183 

locations through PCA projections. 184 

 185 

Figure 2 - Global overview of covariates acquisition, treatments and usage workflow. Data are retrieved over 186 

observers’ GPS location or approximated using observations barycenter, when unavailable, over two 187 

resolutions, 100m buffer (dotted circles) and 500m buffer radii (solid circles). Distance to roads is 188 

determined by measuring the distance between the nearest road to the observer location or observation 189 

barycenter. Habitat cover, in percentage, is aggregate over seven and three classes (see Table S3.1). Seven-190 

class habitat cover and bioclimatic are reduced from PCA keeping the first three dimensions for bioclimatic 191 

data and three selected for the seven-class habitat cover. 192 

Modelling framework 193 

We used Hierarchical Distance Sampling (HDS) models to estimate the abundance of the target species 194 

while accounting for uncertainty arising from the observation process (Chandler et al., 2011; Kéry & Royle, 195 

2015). We applied a right-side truncation of 5%, removing observation distances above the 95% quantile, 196 

for each targeted species to remove extreme distance values for model robustness (Buckland et al., 2001). 197 

Then, we divided observation distances into five proportional bin classes based on the maximal observed 198 

distance. Models calibration and assessment were done using unmarked 1.2.5 R package (Fiske & Chandler, 199 

2011). Effort covariates were accounted for by incorporating the Julian date and the hours of list realisation 200 

(as minutes from sunrise), see Table 1. 201 



Distance sampling key functions, depicting detection probabilities fall-off given distance of observation 202 

(Buckland et al., 2001), were chosen between half-normal and hazard-rate based on AIC (Akaike 203 

Information Criterion, Akaike, 1974), with other states kept constant. 204 

We based our modelling framework on a secondary candidate set strategy (fig 3), where the detection 205 

and availability states of our HDS were fit according to the set of the first candidates while others were 206 

kept constant (Morin et al., 2020). For the Poisson process underlying abundance distribution, we used a 207 

single model consisting of retained covariate PCAs axes (Table 1). See Appendix Table S5.1 for the number 208 

of times where each sub-process was included in the final candidate sets. 209 

 210 



Figure 3 - Methodological framework for population size estimation. At first, a key function is determined 211 

AIC-wise between half-normal and hazard-rate with other components of the HDS kept constant. The 212 

selected key function is then used during the secondary candidate set strategy (Morin et al., 2020), fitting 213 

multiple sub-models (Table 1) for each state separately holding others constant. Sub-models with greatest 214 

support,AIC ≤ 10 are then selected in a final candidate set consisting of multiple HDS through combinatorial 215 

association (Morin et al., 2020). At this stage, we used sub-models estimated coefficients as starting values 216 

to help model convergence. Population size estimates are obtained through model averaging of the final 217 

candidate set. LM : Linear Model 218 

 219 

Table 1 - Ensemble of sub-models tested in the secondary candidate set approach (Morin et al., 220 

2020). (*) For the hour effort covariate, we used minutes from sunrise estimated from site longitude, 221 

latitude and date of list completion. 222 

States Sub-models 

Detection 

~ Distance to roads 

~ Distance to roads + Proportion of artificial lands (100m) 

~ Distance to roads + Proportion of open lands (100m) 

~ Distance to roads + Proportion of forests (100m) 

Availability 

~ Julian date 

~ Julian date + Julian date² 

~ Hour (*) 

~ Hour + Hour² 

~ Julian date + Hour 

~ Julian date + Julian date² + Hour 

~ Julian date + Hour + Hour² 

~ Julian date + Julian date² + Hour + Hour² 

Abundance ~ 3 Bioclimatics PCA axis + 3 Habitat cover PCA axis  

 223 



HDS population size estimates were obtained by averaging retained secondary candidate sets models, 224 

based on their relative model performance using AICc (Fig 3). We excluded the Eurasian Sparrowhawk 225 

(Accipiter nisus), the Meadow Pipit (Anthus pratensis) and the Coal tit (Periparus ater), from model 226 

averaging and exclusively relied upon prediction from best final models owing to substantial differences 227 

observed among their secondary candidate sets models. 228 

Model goodness-of-fit was assessed using an overdispersion coefficient metric (�̂�; Johnson et al., 2010). 229 

We used the chi-square metric as the discrepancy measure between observed and expected counts. 230 

Computed �̂� corresponds to the ratio between the chi-square obtained from the fitted model to the mean 231 

of bootstrapped chi-squares obtained from simulated datasets based upon estimated parameters (Kéry & 232 

Royle, 2015). All models were fit according to a Poisson (P) distribution after top model assessment and 233 

calculation of �̂�, secondary candidate sets with �̂� top models exceeding 1.2 were calibrated using a 234 

Negative binomial (NB) distribution (Payne et al., 2018). For a global overview of our modelling approach, 235 

see Appendix S5. Out of 63 species, we excluded nine species from the analysis; three exhibited signs of 236 

underdispersion with �̂� values less than 0.9 while six had �̂� values exceeding 1.5 (Payne et al., 2018), 237 

showing signs of overdispersion, despite being calibrated using a negative binomial distribution, see table 238 

S2.1 for more details. 239 

We assessed the robustness of our estimations to the exclusion of one year of data, corresponding to 240 

a third of the global dataset. We compared population size estimates from EPOC-ODF data collected over 241 

2021-2023 to estimates obtained from EPOC-ODF data collected over 2021-2022. Using the 2021-2022 242 

subset, we estimated the population sizes of 30 species, detected in at least 150 distinct sites. From these 243 

30 species, seven mean population sizes estimated using 2021 to 2023 data were outside the confidence 244 

intervals estimated from 2021 to 2022 data, with a slightly smaller population size estimated (Table S2.2) 245 

overall highlighting robust estimations. 246 

Trimming of HDS population size estimate: assessment of model extrapolation 247 

Population sizes were obtained by summing predicted values over the prediction grid. As we intend to 248 

predict over a large surface, novel environmental conditions may arise, leading to possible dissimilarities 249 

between the environmental gradient collected at survey sites and the environmental gradient over novel 250 

conditions (Elith & Leathwick, 2009). Mesgaran et al., 2014 described two types of extrapolation; (i) Novelty 251 

type I (NT1) where projected points (i.e prediction grid) are outside the range of individual covariates 252 

collected by the sampling scheme and (ii) Novelty type II (NT2) depicting the case when projected points 253 

are within univariate range but constitute novel combinations between covariates. 254 

We trimmed predicted values (Fig 4) over prediction grid cells showing signs of NT1 extrapolation, to a 255 

threshold value determined using a Tukey fence (Tukey, 1977), estimated from the distribution of 256 

predicted values with k=1.5. Extrapolation assessments were done using dsmextra 1.1.5 R package 257 

(Bouchet et al., 2020). We used this post-prediction treatment to assess population size estimates stability. 258 



We measured the coefficient of variation, corresponding to the ratio between the standard deviation and 259 

the mean of the “untrimmed” and “outlier-trimmed” estimated range uncertainty. Large coefficients of 260 

variation imply great discrepancies in confidence intervals of untrimmed and outlier-trimmed estimated 261 

uncertainty intervals. This is mainly caused by the spatial filtering from the extrapolation assessment 262 

highlighting smaller geographic regions with similar environmental conditions from sampled ones and the 263 

trimming of predicted abundance outliers. Species with a coefficient of variation exceeding 30% were 264 

removed from the comparison of ArGeom and HDS population size estimates (Table S2.3). 265 

 266 



Figure 4 - Decision tree of the post-prediction treatment. First, we analysed the distribution of predicted 267 

abundance values across the prediction grid and detected outliers, using a hinge of k = 1.5 (Tukey, 1977). 268 

We compared each environmental condition of the prediction grid cell with the environmental condition 269 

collected by the sampling scheme and used for model calibration. When a prediction cell depicted signs of 270 

NT1 extrapolation and its estimated abundance was considered as an outlier, we trimmed the predicted 271 

grid cell abundance to the Tukey fences value. 272 

Comparison of ArGeom and HDS estimated population sizes 273 

For comparable estimates between ArGeom and HDS approaches, we restricted the prediction grid 274 

area species-wise for HDS estimation according to the distribution of their known breeding locations, 275 

collected over a 10x10km grid during the previous French atlas (Issa & Muller, 2015). To estimate breeding 276 

populations of species for which male identification was possible, either male vocalisations or visual 277 

distinctions because of sexual dimorphism, an ad-hoc filter was applied (Table S2.1), resulting in HDS 278 

estimates reflecting the male counts for those species. 279 

As the ArGeom approach estimated species bird population sizes as a number of breeding pairs (Roché 280 

et al., 2013), for species where male identification in the field was impossible (no sexual dimorphism), we 281 

used all available data, after applying the phenological filter, and divided HDS estimates by two for 282 

comparable estimates with ArGeom population sizes. After retrieval of ArGeom estimates from the 283 

previous atlas (Issa & Muller, 2015), we updated these estimates using recent population trend estimates 284 

derived from the French breeding bird survey (FBBS; Jiguet et al., 2012) data spanning 2012-2023 (Table 285 

S2.1). Given the absence of a mean estimate in the ArGeom approach, we approximated it using the 286 

midpoint between the maximum and minimum estimated (Fig 5). 287 

To study the differences between the two approaches, we measured 𝛿𝑚𝑒𝑎𝑛 corresponding to the 288 

percentage of the difference between HDS and ArGeom estimates. 289 

𝛿𝑚𝑒𝑎𝑛 =  
(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝐴𝑟𝐺𝑒𝑜𝑚 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝐻𝐷𝑆)

(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝐴𝑟𝐺𝑒𝑜𝑚 + 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝐻𝐷𝑆)/2
 290 

 291 



 292 

Figure 5 - Population size estimates comparison methodology, ArGeom in red and HDS in blue. ArGeom 293 

estimates for 2012 were obtained through calculations using both arithmetic and geometric means (Roché 294 

et al., 2013) and were then updated to 2023 using specific mean trend estimates from FBBS (Table S2.1). 295 

Flat intervals signify min and max value estimates, while curved intervals signify confidence intervals. 296 

Study of variation of estimated population sizes between the two approaches 297 

As species detectability stems from physical traits and vocalisations, phylogenetic related species tend 298 

to have the same detectability (Johnston et al., 2014; Sólymos et al., 2018). We calibrated a Phylogenetic 299 

Generalised Linear Mixed Model (PGLMM) using the phyloglmm 1.0 (Li & Bolker, 2019) R package. We 300 

study 𝛿𝑚𝑒𝑎𝑛 variations across species while implementing a random effect covariance structured based on 301 

phylogenetic relatedness using phylogenetic distances retrieved from Burleigh et al., (2015). The PGLMM 302 

model was calibrated using (i) extracted detection probabilities from the availability state estimated 303 

through HDS (fig 3 and appendix S5) after model averaging of the final candidate sets models in regards to 304 

AICc scores, and (ii) ArGeom uncertainty as fixed variables. For ArGeom uncertainty, corresponding to the 305 

difference between maximal and minimal estimated values, we relied on the decimal logarithm to limit 306 

variation in 𝛿𝑚𝑒𝑎𝑛  solely due to different population size magnitudes.  307 

Response weights consisted of normalised weights from the inverse of uncertainty around FBBS trends 308 

between 2012 and 2023 (Table S2.1), divided by the mean to limit excessive weight attribution and 309 

facilitate model convergence.  310 



Results 311 

Species trends over 2012-2023 312 

From 2012 to 2023, out of 63 bird species, 15 showed a significant decrease (x = -22.79% ± 14.84) in 313 

total population size, while 16 showed a significant increase (x = 28.02% ± 22.52; see appendix S2 for 314 

species-related FBBS trends). 315 

 316 

HDS population size estimations 317 

Out of the 54 species with acceptable values of overdispersion (�̂�) using the HDS approach, we excluded 318 

eight species showing large discrepancies in population size estimates (Appendix S2, Table S2.3) between 319 

pre- and post-prediction treatment (Fig. 2.).  320 

Out of the remaining 46 species used for comparison between ArGeom and HDS estimates, HDS models 321 

showed acceptable values of overdispersion (�̂�) ranging from 0.94 to 1.2 (�̅� = 1.07 ± 0.06) for 38 species 322 

calibrated using a Poisson distribution and 1.09 to 1.47 (�̅� = 1.27 ± 0.13) for eight species calibrated using 323 

a Negative binomial distribution. 324 



 325 

Figure 6 - Examples of resulting abundance maps for the (A) Blackcap (Sylvia atricapilla), and (B) Eurasian 326 

Hoopoe (Upupa epops). Estimations correspond to the number of male, or potential pairs (see Table S2.3) 327 

over a 4 km-squared area. Grid cell predictions are categorised into three groups: (1) those with estimated 328 



abundance not considered as outliers depicted with a green colour step gradient and its distribution 329 

histogram ; (2) those with estimated abundance considered as outliers and not subject to NT1 330 

extrapolation, displayed in a blue-to-red gradient, along with their distribution density; and (3) those with 331 

estimated abundance considered as outliers with novel environmental conditions subject to NT1 332 

extrapolation highlighted in pink with the Tukey value used for trimming in the post-prediction treatment. 333 

 334 

Population size comparison between ArGeom and HDS 335 

Across all species, estimated mean density ranges from 0.09 to 27.51 individuals per square kilometre, 336 

while ArGeom range uncertainty varies from 3.9 to 6.69 on the decimal logarithm scale corresponding to 337 

variations from 7,920 to 4,850,000 in estimated number of pairs. See Table S6.1-3 for more details about 338 

species estimated population size according to ArGeom and HDS approaches. 339 

A comparison between updated ArGeom and HDS estimated population sizes showed that HDS 340 

estimates were higher than ArGeom for 30 of the 46 species tested (Table S6.1). Our results suggest lower 341 

estimates from ArGeom (𝛿𝑚𝑒𝑎𝑛  < -0.2), either for open habitat specialists such as European Stonechat 342 

(Saxicola rubicola), European Goldfinch (Carduelis carduelis) or Eurasian Linnet (Carduelis cannabina) than 343 

for forest generalists such as Great Spotted Woodpecker (Dendrocopos major), Blue Tit (Cyanistes 344 

caeruleus) or Eurasian Blackcap (Fig 6.A) with 𝛿𝑚𝑒𝑎𝑛  = -0.629 ± 0.4, over 22 species. Species whose 345 

estimations were similar (𝛿𝑚𝑒𝑎𝑛  ∈ [-0.2;0.2], with on average 𝛿𝑚𝑒𝑎𝑛= -0.006 ± 0.096, over 17 species) 346 

between ArGeom and HDS included species such as Eurasian Wren (Troglodytes troglodytes), Great Tit 347 

(Parus major), European Robin (Erithacus rubecula) and European Nuthatch (Sitta europea). Fewer species, 348 

mainly characterised by greater maximal observation distances, such as Common Cuckoo (Cuculus 349 

canorus), Eurasian Hoopoe (Fig 6.B) and European Blackbird (Turdus merula) had higher population sizes 350 

estimated by ArGeom approach compared to HDS (𝛿𝑚𝑒𝑎𝑛 > 0.2, with on average 𝛿𝑚𝑒𝑎𝑛  = 0.41 ± 0.148, 351 

over 7 species; see Appendix S6 for population size comparison table). 352 

Results from the PGLMM (Fig 7.A) showed an overall significantly lower ArGeom population size 353 

estimates (-0.209, with 95% CI : [-0.321;-0.097], Pval = 0.001), as well as a significant positive effect of 354 

ArGeom range intervals (0.167, with 95% CI : [0.059;0.276], Pval = 0.003) on the differences between the 355 

two approaches. Species detection probabilities had no significant effect (0.097, with 95% CI : [-356 

0.043;0.237], Pval = 0.176) on 𝛿𝑚𝑒𝑎𝑛 variation. 357 

Marginal effect plots from the PGLMM model showed that the mean response of 𝛿𝑚𝑒𝑎𝑛 over species 358 

detection probability was predominantly negative, ranging from -0.45 to -0.1 (Fig 6.B), for ArGeom 359 

uncertainty. This showed that 𝛿𝑚𝑒𝑎𝑛 tended towards the convergence of population size estimates (Fig 360 

7.C) for species with larger estimated interval ranges. There were no signs of multicollinearity (VIF < 5; 361 

James et al., 2013) between the two variables. 362 



 363 

Figure 7 - Results from the PGLMM. (A) Confidence intervals of the model coefficient, parameters, 364 

coefficients significantly different from 0 are represented in blue. Marginal effect plots of population size 365 

estimate differences (𝛿𝑚𝑒𝑎𝑛) responses. 𝛿𝑚𝑒𝑎𝑛responses are predicted over gradients of focal terms, 366 

either species detection probabilities (B) or ArGeom reported uncertainties (C), while other covariates are 367 

held constant at their mean. Species detection probabilities and ArGeom uncertainty are represented on 368 

their natural scales, after inverse logit and inverse decimal logarithm transformation, respectively. Dot-369 

dash line corresponds to a 𝛿𝑚𝑒𝑎𝑛  of 0, signifying estimated population size convergence by the two 370 

approaches, negative and positive values of 𝛿𝑚𝑒𝑎𝑛 reflect lower and higher population size estimates of 371 

ArGeom relative to those obtained using HDS. 372 

Discussion 373 

Our results showed that bird population size estimates from the previous ArGeom approach, not 374 

accounting for the observation process nor habitat affinity covariates, are predominantly lower than 375 

population sizes estimated from the HDS approach, up to 65% of species. While we found that the prior 376 

estimated uncertainty ranges from ArGeom had a positive effect on the convergence of population sizes 377 

estimated by the two methodological approaches (expert estimates based on atlas data vs predicted 378 

estimates from modelled citizen science data accounting for detection probabilities), we did not find a 379 

significant effect of species detection probabilities which could explain the differences between the two 380 

approaches. We show that ArGeom produces population sizes that are largely lower than those obtained 381 

by HDS (𝛿𝑚𝑒𝑎𝑛 < 0.2) regardless of habitat specialisation or affinity. This is likely due to the methodology 382 



used for ArGeom that did not account for the detection process nor for species-habitat relationships when 383 

extrapolating locally known abundances to unsampled locations. 384 

Despite the lack of significant evidence for the effect of species detection probabilities on population 385 

size estimations, our results tend to corroborate previous studies where ignored detection processes had 386 

likely biassed ecological inferences, including species distribution models (Kéry et al., 2010), population 387 

trends (Norvell et al., 2003; Schmidt et al., 2013) and population sizes (Kéry et al., 2005). This lack may be 388 

especially true in a context of global change, where avian breeding phenology showed evidence of shifts 389 

towards earlier breeding over the years (Parmesan, 2007; Devictor et al., 2012; Gaüzère & Devictor, 2021) 390 

to synchronise with their food sources (Visser et al., 2006; Michel et al., 2016). Such shifts induce diverse 391 

species-related seasonal and inter-annual changes in detectability that need to be accounted for, 392 

particularly for schemes spanning over multiple species (Lehikoinen, 2013). 393 

In France, the ArGeom approach was developed in the context of moderate semi-quantitative data 394 

collection with an acknowledged uneven participation across the territory (Roché et al., 2013; Issa & 395 

Muller, 2015). The semi-quantitative data collection was based on the estimation of the number of 396 

breeding pairs over 10x10km grids derived from a mixture of count prospects and expert opinions collected 397 

over 1953 out of 5879 10x10km grids (Issa & Muller 2015). As the primary goal of this approach was to give 398 

a likely magnitude of population size across the territory (Roché et al., 2013), ArGeom intervals were 399 

produced by the extrapolation from the initially prospected 10x10km grids to all metropolitan grid cells 400 

considered suitable for breeding, after the detection of potential and confirmed breeding evidence. 401 

Although proved useful and relevant to assess population sizes when large-scale quantitative data on 402 

species occurrences are lacking or are unevenly distributed, such a methodology implies greater 403 

uncertainty intervals for abundant and broadly distributed species and smaller intervals for scarce and 404 

narrowly distributed species when not accounting for measurement uncertainty. 405 

Contrary to generalist species, which have widespread distributions due to broader habitat niche 406 

breadths, specialists are generally more localised (Clavel et al., 2011) and typically use a smaller range of 407 

habitats (Julliard et al., 2006). Despite a growing interest in rare species-focused monitoring (Fontaine et 408 

al., 2022), citizen sciences programs are mainly designed for large-scale multi-species surveys (Devictor et 409 

al., 2010). Citizen science schemes balance between a trade-off among data quantity and data quality, 410 

corresponding to either the acquisition of a great quantity of unstructured scheme, or the acquisition of 411 

standardised data implying replicated visits over randomly sampled locations (Devictor et al., 2010). As 412 

such, in the first case, citizen science schemes could be more prone to false-negative errors, resulting in 413 

biassed inferences over habitat cover relations due to omission of the detection process (Johnston et al., 414 

2022). In the second case, given the small habitat range of specialist species and the scale of the territory 415 

sampled (e.g., here the metropolitan French territory), citizen science sampling schemes could be 416 

representative of the entire territory sampled but with a higher risk of missing some key habitats and 417 

associated specialist species. 418 



Potential consequences for community-level assessments 419 

A recent study about long-term effects of climate and land use changes on bird communities (Gaüzère 420 

et al., 2020) showed that both generalist cold-dwelling species, such as the Common Chiffchaff 421 

(Phylloscopus collybita) or the Eurasian Blackcap, and warm-dwelling species, such as the Common 422 

Nightingale (Luscinia megarhynchos) had the most substantial negative and positive contributions to the 423 

trend in Community Thermal Index (CTI), a community-weighted index representing the realised thermal 424 

niche of a community based upon species relative abundance and species thermal indices (STI). In the 425 

present study, these species tended to have lower population sizes estimated when the detection process 426 

was omitted compared to estimates based on our modelling approach. As a result, this could affect the 427 

estimations of their contribution to the calculation of community-weighted mean indices, such as CTI, and 428 

therefore bias the estimation of the trend in community thermal response and subsequent studies of 429 

aggregated indices, which are known to display large regional variation (Rigal & Knape, 2024). We, 430 

therefore, suggest that considering the detection process in studies relying on community-weighted 431 

indexes by species’ relative abundances could be as important as it is for estimating population sizes. 432 

Community indices such as species diversity (Ricotta, 2005) and functional diversity (Villéger et al., 433 

2008; Gaüzère et al., 2019) are commonly use species relative abundance as a basis, without taking into 434 

account the detection process (Pillar & Duarte, 2010), despite multiple studies showing it could affect 435 

community indices inference (Tingley & Beissinger, 2013; McNew & Handel, 2015; Jarzyna & Jetz, 2016; 436 

Richter et al., 2021). 437 

Conservation implications 438 

Our study also suggested that lower or higher population sizes estimated from ArGeom were not 439 

randomly distributed among species according to their conservation status. Out of the 46 species 440 

estimations used in the comparison analysis, 10 had an unfavourable conservation status in France (i.e. 441 

lower than Least Concern, LC; UICN France et al., 2016). 442 

Among these species of conservation concern, two species, European Greenfinch (Carduelis chloris) 443 

and European Turtle Dove (Streptoptelia turtur), showed no signs of difference in their population sizes. By 444 

contrast, five species, European Stonechat, Barn Swallow (Hirundo rustica), Red-backed Shrike (Lanius 445 

collurio), Eurasian Kestrel (Falco tinnunculus) and Willow Warbler (Phylloscopus trochillus) considered as 446 

NT (Near Threatened) and three species, Eurasian Linnet, European Goldfinch and European Serin (Serinus 447 

serinus) considered as VU (Vulnerable) had lower population sizes estimated from ArGeom than from HDS 448 

approach (NT : 𝛿�̅�𝑒𝑎𝑛   = -0.608 ± 0.217 and VU : 𝛿�̅�𝑒𝑎𝑛   = -0.667 ± 0.146). Our results showed that these 449 

species may need a reevaluation of their conservation status and highlight the need to rely on hierarchical 450 

models taking account of the detection process in ecological inferences, given that potential 451 

misclassification of population conservation status may arise from process noise and observation error 452 

(Connors et al., 2014). As conservation policy decisions depend on uncertainty levels (Williams, 2003; 453 



Freckleton, 2020), assessing measurement error through the integration of the detection process (Nichols 454 

et al., 2011) could provide more reliable ecological inferences (Guillera-Arroita et al., 2014). CS schemes 455 

are becoming more and more a reliable source of data to ensure biodiversity monitoring (Chandler et al., 456 

2017) and can, through standardisation (Buckland & Johnston, 2017; Johnston et al., 2019), contribute to 457 

the calibration of data-hungry models such as hierarchical models for reliable ecological inferences (Isaac 458 

et al., 2020; Kéry & Royle, 2021; Johnston et al., 2022). 459 

Comparison to other European countries 460 

Another way to assess the relevance of the two estimation approaches would be to compare their 461 

population size estimates to the ones obtained from other European countries, using a ratio between 462 

countries to produce comparable estimates. Such an approach should however be used with caution 463 

because it would be limited by comparability in habitat repartitions or biogeographical considerations 464 

among different European countries. To go further into inter-country comparisons, we relied on the 465 

German population sizes estimated for the previous European Bird Directive (BirdLife International, 2021) 466 

obtained from both point count and territory mapping methods (Gedeon et al., 2015). For abundant 467 

species such as the Blackcap (𝛿𝑚𝑒𝑎𝑛  = -0.29; German population size expressed in millions of pairs = [7.17 468 

- 9.49]), both approaches led to similar results than German population estimates, while HDS estimates 469 

were closer to German population sizes for the Firecrest (Regulus ignicapilla; 𝛿𝑚𝑒𝑎𝑛 = -0.46; [1.92 - 2.85]) 470 

and the Blue Tit (𝛿𝑚𝑒𝑎𝑛 = -0.42; [5.01 - 7.41]). For species with higher population sizes estimated by ArGeom 471 

than HDS (𝛿𝑚𝑒𝑎𝑛 > 0.2), the Common Cuckoo (𝛿𝑚𝑒𝑎𝑛 = 0.25; [0.58 - 0.95]) and the Corn Bunting (Emberiza 472 

calandra; 𝛿𝑚𝑒𝑎𝑛 = 0.6; [0.25 - 0.44]) showed estimates of German populations closer to the HDS than the 473 

ArGeom approach. Finally, for the Common Whitethroat (Curruca communis; 𝛿𝑚𝑒𝑎𝑛 = 0.42; [0.93 - 1.47]), 474 

the German population size is closer to ArGeom estimates (see appendix S6.4 for additional information). 475 

Regarding magnitudes, both approaches produced similar estimates compared to German ones. 476 

However, due to different sampling and modelling methods used, these formal comparisons, although 477 

informative, need to be more fully satisfying and highlight the discrepancies in sampling and analytical 478 

methods across the European continent (Keller et al., 2020). Such differences could be accounted for, 479 

either by (i) a global standardisation of schemes, as promoted by the PECBMS (Pan-European Common Bird 480 

Monitoring Scheme; Brlík et al., 2021) for species trends, but also (ii) through the use of Integrated Models 481 

(IM) capable of mobilising data from multiple and somewhat heterogeneous sources (Isaac et al., 2020; 482 

Zipkin et al., 2021a).  483 



Study limitations 484 

Our approach relies on data collected from the EPOC-ODF structured CS schemes, providing data with 485 

repeated visits. However, as is, the frequentist framework of unmarked R package (Kellner et al., 2023) 486 

does not permit inferences on social species occurring in large flocks. Taking account of social species 487 

during the breeding season (corresponding to 1/10th of the scheme targeted species) would therefore 488 

require a Bayesian framework to include the effect of flock size on species detectability (Clement et al., 489 

2017). 490 

Given the timeframe and the sampling design, i.e., all sites are not visited every year to maximise the 491 

number of total surveyed locations, it is not possible to estimate species demographic parameters, such as 492 

survival and recruitment (Sollmann et al., 2015; Schmidt & Rattenbury, 2018). We also assumed a sex ratio 493 

of 1:1 for species without sexual dimorphism, during the breeding season, which could potentially bias 494 

estimates for species deviating from this assumption. Taking account of species population structure 495 

requires frameworks such as Integrated Population Models (IPM; Schaub & Ullrich, 2021) and specific data 496 

collection (King, 2014), for instance, bagging or nest surveillance. 497 

As obtaining relevant predictions of species abundance over unsampled environmental conditions was 498 

one of our main methodological challenges, we used environmental data condensing habitat information 499 

(Tredennick et al., 2021). To fit our statistical framework, we assumed that most bird species would interact 500 

with their habitat following a linear relationship (see Fig. 3). We therefore used PCA reduction to 501 

summarise species linear responses to national-scale habitat gradients including forest-to-open-field 502 

cultures, open-field cultures-to-pastures and perennial crop-to-urban habitats (see appendix S3). PCA 503 

reduction permits model convergence by condensing complex habitat structures to a small number of 504 

environmental covariates, though it could bias estimates of species thriving in a specific habitat restricted 505 

to the extreme edge of the sampled gradients. Other methods such as Spatially Varying Covariates models 506 

(SVC; Gelfand et al., 2003) could be used to better account for habitat structure complexity across spatial 507 

gradients (Thorson et al., 2023). 508 

Previous studies have shown that unaccounted variations in species availability, considering a constant 509 

detection probability or unmodelled variations, could lead to substantial bias in estimated abundance (Link 510 

et al., 2018; Barker et al., 2018; Duarte et al., 2018). N-mixture biassed estimations can be linked to non-511 

assessment of the sampled area, where a smaller or greater sampled effective area could lead to under- 512 

or overestimation (Kéry & Royle, 2015). In our study, as we relied on distance sampling methods, we define 513 

an effective sampled area, based upon collected observation distance, but we also assumed that 514 

individuals considered exposed to the sampling (i.e. ‘statistically’ available for modelling) could still be 515 

undetected due to small species home ranges or plot-specific habitat cover (Chandler et al., 2011; see Table 516 

1 and Figure 2, for covariates used to model species detectability and appendix S5 for model formulation). 517 

Despite such consideration, for the HDS model, we assumed that detected individuals were 518 



homogeneously distributed over the sampled area. Violating this assumption could lead to within-sample 519 

variation that needs to be accounted for, otherwise leading to biassed estimates (Mizel et al., 2018). 520 

Another potential drawback relies on the quantity of data collected through this structured CS scheme. 521 

Over the same breeding season, the semistructured scheme EPOC without temporal replicates nor fixed 522 

location requirements collected three times the amount of complete checklists as the structured EPOC-523 

ODF scheme, highlighting CS trade-off of scheme standardisation upon data collection over spatial and 524 

temporal scales (Devictor et al., 2010). One way to address this trade-off would be to apply data integration 525 

methods mobilising multiple data sources to be used for ecological inferences (Zipkin et al., 2019, 2021b), 526 

either by estimating abundance of less recorded species through trait-based associations (Callaghan et al., 527 

2021, 2022; Robinson et al., 2022) or by constructing joint likelihood functions (Fithian et al., 2015; Fletcher 528 

et al., 2019). 529 

Conclusion 530 

Our results suggested an overall lower population size estimate of French common breeding birds 531 

obtained from the last French Breeding Bird atlas methodology than from the Hierarchical Distance 532 

Sampling modelling used in the present work. Using large-scale datasets from citizen science obtained from 533 

standard scheme initiatives allowed us to infer the variation in species abundance, while explicitly 534 

modelling the detection process separately from the ecological one. Not accounting for the observation 535 

process might have resulted in misleading expert-only estimations of population sizes in the previous atlas, 536 

at least for some widespread species not benefitting from exhaustive surveys. In conclusion, our results 537 

advocate for more reliance on the use of statistical tools accounting for the detection process, such as 538 

hierarchical models, which, in association with large-scale citizen science data, could constitute a standard 539 

methodology to estimate reliable abundance from breeding bird atlases or biodiversity surveys deployed 540 

at national or geographically broader scales 541 
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