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Abstract
In this paper, we introduce a phrase and language-independent
utterance verification system. The objective of an utterance
verification system is to confirm whether the linguistic content
of two speech utterances is the same or not. Our proposed
approach is phrase and language-independent, therefore it can
generalize for unseen phrases and even unseen languages. The
proposed framework is based on a ResNet embedding extractor
trained on the Common Voice dataset which is optimized by
a linguistic content classification task.The proposed approach
can be used in text-dependent speaker recognition systems,
passphrase verification systems, and keyword spotting systems.
Our system is tested on several protocols including Deepmine
for text-dependent speaker verification and Speech Commands’
keyword-spotting benchmarks. Obtaining high performance for
unseen phrases and languages makes our approach plausible for
utterance verification in low-resource and even zero-resource
languages. For example, the EER for a protocol on Common
Voice English is 0.16 while for Common Voices French without
using French training data the EER is 1.23.

Key terms: utterance verification, linguistic-content em-
beddings, text-dependent speaker verification, keyword spotting

1. Introduction
A phrase recognizer or an utterance verification system con-
firms whether two utterances contain the same linguistic con-
tent or not [1, 2]. Utterance verification systems can be utilized
in various speech technologies such as text-dependent speaker
recognition systems, passphrase verification systems, command
systems, and keyword spotting systems. A speech signal en-
codes different kinds of information such as speaker, language,
emotion, and linguistic content. Obtaining disentangled repre-
sentations that encode a particular aspect of information is used
in different speech technologies such as speaker recognition [3],
language identification [4], and emotion recognition [5]. In this
paper, we propose a new approach for utterance verification that
is based on fixed-length embeddings that capture linguistic con-
tent.

The previous work on phrase/utterance verification is
mainly limited to a close set of sentences [1, 2]. In a close-
set setup, the verification of new utterances requires preparing
new data and system modification which leads to less flexibility,
less reusability, and more time and money consumption. In this
paper, we introduce a phrase and language-independent utter-
ance verification system that extends the previous work in sev-
eral ways. The proposed system makes it possible to generate
an embedding characterizing the linguistic content regardless of

the sentence pronounced, even when it has never been seen in
the training data. From this perspective, we call the proposed
system phrase-independent. Furthermore, we will show that
with a relatively small performance degradation, it can be used
even for new languages without training data for that language.
In this sense, we call our approach language-independent.

A common application for an utterance verification system
is speaker recognition systems. Utterance verification is used
in text-dependent speaker recognition systems in two ways.
Firstly it can be used to filter out the trials containing different
linguistic content. By doing so, the linguistic variability can be
controlled which leads to higher performance in severe acousti-
cal conditions [6, 7]. Also, passphrase verification can be used
as a secondary metric alongside the speaker characteristics to
make the speaker recognition systems more robust [8]. The
previous work in this direction is mainly focused on passphrase
verification for a small pool of sentences. The RSR2015 [6]
contains 30 unique sentences in the training part; Deepmine is
another well-known dataset that contains 5 English and 5 Per-
sian phrases for text-dependent speaker recognition [9]. Our
proposed approach can exempt us from the time and money-
consuming tasks of preparing text-dependent training datasets.

Keyword spotting systems and command systems are be-
coming more popular in speech assistants. The goal of such sys-
tems is to recognize specific content in an audio stream to pro-
cess a command [10]. The main configuration of keyword spot-
ting systems is based on classifying a close set of words/phrases
[10]. Similar to text-dependent speaker recognition systems
the benchmarks are limited to a small number of sentences or
words [11]. For example, Speech Commands is a known key-
word spotting benchmark that contains 35 unique words com-
monly used as commands in speech assistants. Also, the major-
ity of datasets are devoted to high-resource languages such as
English or Mandarin [10]. The fact that our approach is phrase-
independent and language-independent makes it a more flexible
and reusable keyword-spotting system. Indeed, the users can
define their commands for voice assistants without having the
written or transcribed data in their language. Also, it lets them
personalize the commands for the voice assistants.

Wake word detection is a particular command recognition
system that aims to activate a speech assistant by a specific com-
mand like ”Hi Alexa” [12, 13]. In practice, such systems run on
low-resource devices and listen continuously for a specific wake
word. Similar to the aforementioned applications wake-word
detection is constrained to recognizing a close set of phrases
which makes the use of speech assistance more difficult for non-
English speakers or underrepresented languages.

As it is described, the majority of available utterance veri-
fication systems are constrained to a small close set of phrases.



In this paper, we propose a general phrase and language-
independent utterance verification system by training discrim-
inant linguistic content embeddings. In a similar approach
to text-independent speaker recognition systems, we train a
ResNet embedding extractor that captures discriminant linguis-
tic content representations at the utterance level. To do so, it is
required to have a transcribed/labeled speech dataset with mul-
tiple repetitions for each utterance. Driving a dataset for utter-
ance verification from Common Voice is another contribution of
this work. The details about the training dataset are presented
in Section 3. To the best of our knowledge, this methodology is
not previously used to achieve linguistic content representations
for speech utterances.

The rest of the paper is organized as: in section 2 the con-
figuration of the proposed utterance verification system and the
architecture of the embedding extractor are described. In sec-
tion 3 the training and evaluation datasets are presented, and
section 4 discusses the obtained results.

2. Utterance verification system
Different kinds of information such as speaker characteristics,
recording devices, recording environment, and linguistic con-
tent are encoded in a speech signal. Finding a compact repre-
sentation for a variable-length speech signal for different tasks
such as speaker recognition [3], language identification [4], and
emotion recognition [5] is explored. In this paper, we propose
an approach to learn representations that captures linguistically
discriminant characteristics. The idea of the proposed system
is taken from speaker embedding extractions [3, 14, 15]. Our
proposed system is depicted in Figure 1. The training and ap-
plication parts of the proposed configuration are described in
the following.

2.1. System configuration

2.1.1. Training phase

The training phase is composed of three steps. Firstly the acous-
tic features are extracted. After that, we have an utterance em-
bedding extractor. In our case, we used ResNet34 which is de-
scribed in Table 1. Finally, there is an utterance classification
that classifies the utterances based on their linguistic content.
By imposing on the output of the embedding extractor to gen-
erate linguistically discriminant representations, the embedding
extractor captures the linguistic content information.

2.1.2. Application phase

In the application phase, we use the trained utterance embed-
ding extractor to generate a linguistic content discriminant rep-
resentation. The obtained representations are expected to en-
code the linguistic content characteristics independent of their
language and spoken phrase. In this step, the classifier is re-
moved and the given representations by the trained embedding
extractor are used for utterance verification. For a pair of given
embeddings, a decision on their sameness in terms of content
will be taken based on the similarity between the embeddings.
We are using the cosine distance to compare each pair of repre-
sentations, if this distance is smaller than a threshold the embed-
dings are considered to have the same linguistic content, other-
wise, they will be considered to have different content.

As we mentioned in Section 1, the proposed utterance
verification can be used for several applications including
passphrase verification, text-dependent speaker recognition,

command recognition, and word wake detection.

• Passphrase verification: Authenticating the user’s lin-
guistic content as a secondary metric alongside the
speaker characteristics can improve the reliability of
speaker recognition systems. In this application for each
registered user, both speaker characteristics and spoken
phrases (passphrases) should be authenticated. Since our
proposed approach is phrase-independent, the users can
change their passphrase. In this configuration, if the
passphrase is not revealed the speaker recognition sys-
tem remains safe facing some spoofing attacks including
the replaying attack, voice conversion, and personifica-
tion attacks [16].

• Text-dependent speaker verification: In text-
dependent speaker recognition systems, only specific
phrases are accepted that lead to reducing the linguistic
variability and higher performance of speaker recogni-
tion systems [6]. Our utterance verification systems can
be used as a preprocessing step to filter out the undefined
phrases in the system.

• Command recognition: In this case, there is a set of
registered commands [11]. Our proposed approach can
support both open and closed set commands. Therefore,
the user can add or customize the voice commands. The
generalizability of the proposed approach to new lan-
guages without having training data can make the speech
assistants more user-friendly and available for a bigger
community.

• Word wake detection: In this case there is normally one
registered command that wakes up the speech assistant.
This configuration is a special case of a command recog-
nition system. Having a phrase-independent utterance
verification system, the user can define a personalized
wake word for the speech assistants.

2.2. Speaker embedding extractor

The embedding extractor used in this paper is a variant based
on ResNet [14]. The ResNet model for extracting embeddings
consists of three modules: a set of ResNet Blocks, a statistics-
level layer, and segment-level representation layers.

• ResNet (Residual Network) uses stacks of many Resid-
ual Blocks. A Residual Block is made up of two 2- two-
dimensional convolutional Neural Network (CNN) lay-
ers separated by a non-linearity (ReLU). The input of
the residual block is added to its output to constitute the
input of the next block.

• The statistics-level component is an essential compo-
nent in converting a variable-length speech signal into
a single fixed-dimensional vector. We are using the
attentive statistics pooling [17], which aggregates over
frame-level output vectors of the DNN and computes a
weighted mean and weighted standard deviation.

• The segment-level component maps the segment-level
vector to the utterance class. The weighted mean and
weighted standard deviation are concatenated together
and forwarded to the next layers and finally to the soft-
max output layer.

The detailed topology of the used ResNet is shown in Table
1. Batch-norm and ReLU layers are not shown. The dimensions
are (Frequency×Channels×Time). The input is comprised of



Figure 1: The configuration of proposed Phrase and language-independent utterance verification system

Table 1: The baseline ResNet-34 architecture.The last row,
Y is the number of unique utterances. The dimensions are
(Frequency×Channels×Time). The input is comprised of 60
filter banks.

Layer name Structure Output
Input – 60 × 400 × 1
Conv2D-1 3 × 3, Stride 1 60 × 400 × 32

ResNetBlock-1
[
3 × 3, 32
3 × 3, 32

]
× 3 , Stride 1 60 × 400 × 32

ResNetBlock-2
[
3 × 3, 64
3 × 3, 64

]
× 4, Stride 2 30 × 200 × 64

ResNetBlock-3
[
3 × 3, 128
3 × 3, 128

]
× 6, Stride 2 15× 100× 128

ResNetBlock-4
[
3 × 3, 256
3 × 3, 256

]
× 3, Stride 2 8 × 50 × 256

Flatten – 8 × 2048
Pooling – 2048
Dense1 – 256
Dense2 (Softmax) – Y
Total – –

60 filter banks from speech segments. The ResNet is trained
with the Additive Angular Margin Loss (ArCFace)[18] function
(Equation. 1). For n number of training examples and y number
of unique utterances, the network is trained to minimize:

LArcFace = − 1

n

n∑
i=1

log
es · (cos θyi +m)

es. cos (θyi +m) +
∑

j ̸=yi
es.(cos θj)

(1)
Where yi is the ith utterance, s is a scale factor and m is

the margin.

3. Dataset
3.1. Training data

The majority of utterance-verification research is done on lim-
ited task-specific datasets such as text-dependent speaker recog-
nition [2, 19, 20, 21]. The RSR2015 [6] and Deepmine [9] are
two common datasets used in the literature. In this section, we
introduce a new dataset driven from Common Voice 15 to train
a general-purpose phrase and language-independent utterance
verification system.

Training the proposed linguistic content embedding extrac-
tor needs a big transcribed/labeled speech dataset with sev-
eral repetitions per sentence. Common Voice is among the

rare speech recognition datasets that have this specification par-
tially. In our research, we drive the training dataset from the
English part of Common Voice 15 1. To achieve a relatively
balanced training dataset we chose sentences that have more
than 5 and less than 100 repetitions. The resulting dataset com-
prises 15,455 unique sentences. The total number of utterances
is about 505k and 416 hours of speech data. The training data
specifications are presented in table 2.

Table 2: The Common Voice training data specifications for ut-
terances with more than 5 repetitions per sentence.

Item N
Unique utterances 15455

Utterance repetitions >5
Total Utterances ≈ 505k
Total Duration 416h

3.2. Evaluation data

We used several evaluation datasets that are described in this
subsection. In evaluation protocols, target trials are pairs of
utterances with the same linguistic content, and nontarget trials
are pairs with different linguistic content.

• Common Voice English: In this protocol, 1740 unique
utterances with 4 or 5 repetitions for each phrase from
the English part of Common Voice 15 are chosen. There
is no overlap between the chosen files and the training
part described in section 3 in terms of linguistic content.
From these files, 773k trials are generated.

• Common Voice French: In this protocol 225 unique
files with 10 repetitions from the French part of Com-
mon Voice 15 are chosen. In this protocol, there are 381k
trials. The goal of this protocol is to show the general-
ization of the proposed system for new languages.

• Deepmine English: Deepmine is a dataset for text-
dependent speaker recognition. In this protocol, there
are 27k trials generated from the recording of 5 unique
phrases in the Deepmine dataset. This protocol is a case
study of our approach to text-dependent speaker recog-
nition [9].

1https://commonvoice.mozilla.org/en/datasets



• Deepmine Persian: In this protocol there are 25.4k
trials generated from the Persian part of the Deepmine
corpus which includes different recordings for 5 unique
utterances [9]. This protocol shows the generalizability
to another new language.

• Speech Commands: Speech Commands is a widely
used dataset for keyword spotting recognition. In this
protocol, each utterance contains a single word, and the
total number of unique utterances is 35. This protocol is
created from 2000 randomly chosen files from the eval-
uation part of the Speech Commands dataset [11].

Table 3 summarizes the details of evaluation protocols. The
last columns show the average duration of test files in seconds.

Table 3: Evaluation protocols specifications.

Protocol Task trials utterances duration(s)
Common Voice EN General 773k 1740 3.25
Common Voice Fr General 381k 225 3.47

Deepmine En TDSV 27k 5 2.30
Deepmine Fa TDSV 25.4k 5 1.9

Speech command KWS 1m 35 0.73

4. Results and Discussion
The utterance embedding extractor is trained with driven data
from Common Voice 15 discussed in section 3. For each clean
file, four augmented versions are created which leads to 2.5m
samples in the training data. The training data is augmented
with different branches of Musan [22] and RIR files [3] using
the Kaldi toolkit [23]. The embedding extractor is optimized
in 2, 000 iterations, with a learning rate started by 0.2 with a
decay rate of 10−4. The size of each mini-batch is 128 and the
mini-batch files are chosen randomly.

In the test step, the Equal Error Rate (EER) is calculated
based on the cosine distance between pairs of files. If the cosine
distance is lower than a threshold the files will be considered as
same otherwise they have different linguistic content.

4.0.1. Common Voice protocols

As it is presented in Table 4, the EER is 0.16 on the Common
Voice English protocol. The results show a high performance of
the proposed approach. In the second experiment on Common
Voice French, it is shown that extracted embeddings capture dis-
criminant language characteristics regardless of the language.
In this experiment, the EER is 1.2. However, there is relative
performance degradation, but even without fine-tuning, it is a
plausible result.

4.0.2. Utterance verification for text-dependent speaker recog-
nition

In the second group of experiments; we did utterance verifica-
tion on the Deepmine corpus which is a text-dependent speaker
recognition. Similar to Common Voice protocols, the EER for
the English version is 0.16, and for the Persian part, it is 1.9
(Table 4). Since, the Persian language and English versions are
very different in terms of lexicon, syntax, and morphology, the
obtained results prove the feasibility of repeating our approach
for other new languages.

Table 4: Obtained results for evaluation protocols in EER.

Protocol EER
Common Voice En 0.16
Common Voice Fr 1.23

Deepmine En 0.13
Deepmine Fa 1.9

Speech command 6.00

4.0.3. Utterance verification for command verification

Our last experiment is devoted to a command verification proto-
col created on Speech Commands. In this experiment, the EER
increased is 6.0. The obtained result on this dataset is competi-
tive in comparison to reported results on the same dataset [11].
To have a more precise interpretation of the errors in this pro-
tocol we observed that the majority of errors come from trials
where the only phonological difference between two files is one
consonant. For example, there are pairs of ”three” and ”tree” or
”on”, and ”off” trials which are the main resource of the error.

4.0.4. Robustness to duration

In other domains such as speaker recognition, the weakness of
embeddings for short-duration utterances is significant [24]. We
see that in linguistic content embeddings, the duration doesn’t
impact the results significantly. In another experiment, the
Common Voice En protocol is evaluated for test files with dif-
ferent durations. As shown in Table 5, the EER of short duration
between [1, 2] seconds is almost the same as files in the range
of [4, 5] seconds.

Table 5: The impact of duration variability

Duration(s) EER
[1, 2] 0.15
[2, 3] 0.13
[3, 4] 0.12
[4, 5] 0.16

5. Conclusion
In this paper, we proposed an utterance verification system
based on discriminant linguistic content embeddings. The pro-
posed system is phrase-independent and it can generalize to a
high degree to new languages. Our approach is performing well
in different tasks such as text-dependent speaker recognition
and keyword spotting applications. This work can be extended
in several ways. The same idea can be tested in the case of hav-
ing several languages in the training data to capture a broader
phonetic variability. Besides the English version of Common
Voice 15, a part of Welsh, German, Persian, and Kabyle lan-
guages have several repetitions per sentence that can help to
foster the research in this direction. Also replacing the font-end
features with a self-supervised representation such as Wav2Vec
[25] or Whisper [26] is expected to capture linguistic character-
istics more explicitly.
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