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A one-dimensional mechanism of deflagration to detonation transition (DDT) is identified
and investigated by an asymptotic analysis in the double limit of large activation energy
and small Mach number of the laminar flame velocity. The unsteady analysis concerns the
self-accelerating tip of an elongated flame in a smooth walled tube. The flame on the tip,
considered as plane and orthogonal to the tube axis, is pushed from behind by the longitudinal
back-flow resulting from the cumulative effect of the radial flows of burned gas issued from
the lateral flame of the finger-like front. The analysis of the one-dimensional dynamics
is performed by coupling the flame structure with the downstream-running compression
waves propagating in the external flows. A critical elongation is identified from which the
slightest increase in elongation leads to a pressure run-away producing the flame blow-off.
The dynamics of the inner structure of the laminar flame on the tip which is accelerated by
the self-induced back-flow is characterized by a finite-time singularity of the reacting flow
in the form of a dynamical saddle-node bifurcation.

Key words:

1. Introduction

Deflagration-to-detonation transition (DDT) is observed in tubes filled with energetic gaseous
mixtures such as stoichiometric hydrogen-oxygen or acetylene-oxygen mixtures. DDT is a
fascinating phenomenon of abrupt transition (in less than a microsecond) between two
opposite regimes of propagation, a markedly subsonic flame and a supersonic combustion
wave. A detonation is a supersonic wave consisting in a smooth front of a strong inert
shock followed by a thin reaction zone (including induction) across which viscosity, heat
conduction and molecular diffusion of species are negligible. The overpressure is large, the
pressure ratio ranging from 15 to 50. By comparison, each surface element of the brush of a
turbulent flame is a quasi-isobaric reaction-diffusion wave whose velocity relative to the gas
(laminar flame velocity) is much smaller than the sound speed, typically by a factor 1072
However, due to the increase in surface area of the wrinkled front, the speed of the flame
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brush (measured in the laboratory frame) becomes large, not far from the sound speed near
the transition.

The pioneering experiments of Urtiew & Oppenheim (1966) have shown that the DDT
onset is a local phenomenon occurring in a "small explosion center" either on a surface
element of the flame brush or in the viscous boundary layer ahead of the flame. We will not
consider the latter case for which the DDT is more likely due to the gradient mechanism
of Zeldovich (1980) reinforced by compressional heating, as discussed p. 260 in Clavin &
Searby (2016) and observed in sub-millimeter tubes by the numerical simulation of Houim
et al. (2016). In the following, the attention is focused on the first case for which the
explosion center is on the flame outside the boundary layer. The origin and nature of the
explosion centers remained unexplained. After more than a century of experimental works
and decades of numerical studies, DDT is not yet understood, see textbooks, Lee (2008)
and Clavin & Searby (2016) for example. Despite various attempts, there is no fundamental
mechanism that is generally agreed upon as being universal. Neither the role of turbulence
mentioned by Shchelkin & Troshin (1965) nor the gradient of induction time of Zeldovich
(1980) are involved in the experiments and numerical simulations of Liberman et al. (2010),
Kuznetsov et al. (2010) and Ivanov et al. (2011). These seminal works concern DDT of
flames propagating in smooth walled tubes in which the induced flow of unburned gas is
laminar in the bulk, the 3 mm boundary layer staying stuck at the wall near the flame, see
p- 692 in Liberman et al. (2010). The detonation onset in these experiments is a local and
sudden phenomenon occurring in a "small explosion center" on the flame front outside the
boundary layer without any reflected shock (long tubes). Therefore the transition appears to
be an intrinsic mechanism of a laminar flame accelerated by a self-induced flow. The DDT
was also observed by Wu et al. (2007) and Wu & Wang (2011) in micro-scale tubes (0.5 mm
radius) in which the transition concerns very elongated fronts of laminar flame. Kuznetsov
et al. (2010), Ivanov et al. (2011) and Bykov et al. (2022) mentioned that the shocks formed
in the immediate proximity ahead of the self-accelerating flame are suddenly overtaken by
the reaction front. A striking observation is that the Mach number of these shocks is not larger
than 2.5 so that the temperature of the compressed gas is not large enough for self-igniting
the reactive mixture, ruling out the both DDT mechanisms of Shchelkin & Troshin (1965)
and Zeldovich (1980).

A key mechanism underlying the DDT was identified long ago by Deshaies & Joulin
(1989). Treating a turbulent flame brush as a planar discontinuity propagating at a subsonic
velocity equal to the laminar flame velocity multiplied by a wrinkling factor o, Deshaies
& Joulin (1989) investigated the self-similar solutions characterized by a constant velocity
of the weak shock ahead of the flame. They showed that, due to a laminar flame velocity
highly sensitive to temperature changes, the self-similar solutions no longer exist above a
critical value of o close to ten. The assumption of a weak shock used by Deshaies & Joulin
(1989) can be easily removed without modifying qualitatively the result. The turning point
of the curve "self-similar solution versus o" is due to a nonlinear thermal feed-back loop: the
laminar flame velocity is a function of the temperature which increases with the strength of
the lead shock, the latter increasing in turn with the flame velocity. This pioneering analysis
was overlooked by the combustion community during more than twenty years. A weaknesses
of the self-similar solutions is the steady and uniform state of unburned gas flow between
the flame and the lead shock. A basic ingredient of the DDT is overlooked, namely the
unsteady flow of the compression waves generated by the accelerating flame. The role of the
flame acceleration has been invoked in the past but with no connection to the turning point of
Deshaies & Joulin (1989). However, in a series of articles starting nearly 10 years ago, Kagan
& Sivashinsky (2017), motivated by the work of Deshaies & Joulin (1989), have investigated
numerically the one-dimensional propagation of a laminar flame ignited at the closed-end of
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a tube and sustained by a reaction rate which is increased artificially by a factor o-2. For values
of o above a critical value about 10, namely close to the critical condition of Deshaies &
Joulin (1989), the numerical results of Kagan & Sivashinsky (2017) show a sharp transition
to detonation few time after a quasi-isobaric ignition. An exothermic reaction rate which is
a hundred times larger than the inelastic collision frequency of molecules associated with a
large activation energy cannot describe real flames. Nevertheless, the numerical findings of
Kagan & Sivashinsky (2017) are useful for improving our understanding of DDT: they suggest
a runaway of the one-dimensional structure of "fast" laminar flames, still markedly subsonic,
resulting from the strong interaction near the turning point of Deshaies & Joulin (1989)
between the acceleration-induced compression waves and the reaction-diffusion mechanisms
sustaining a quasi-isobaric combustion wave.

The objective of the present paper is an attempt to describe theoretically such a one-
dimensional DDT mechanism on the tip of a self-accelerating elongated flame using a
combustion rate compatible with the kinetic theory of gas for a one-step Arrhenius law
with a large activation energy. In order to enlighten the essential features, the problem
will be over-simplified, keeping only the key mechanisms responsible for the spontaneous
transition. The one-dimensional model is inspired by the schematic analysis of Clanet &
Searby (1996) who treat the tip of the elongated front as a planar flame orthogonal to the
tube axis while the side of the finger-like flame is quasi-parallel to the adiabatic tube wall.
An essential ingredient for the DDT on the tip is the longitudinal back-flow of burned gas
generated by the cumulative effects of the combustion of the lateral side of the elongated
flame front, see figure 1. This flow hits the flame on the tip from the burned-gas side with
a flow velocity u;, proportional to both the flame elongation and the laminar flame velocity
Up. If the flame on the tip is treated as a discontinuity, the self-similar solutions present a
turning point similar to that of Deshaies & Joulin (1989) for a turbulent wrinkled flame,
the elongation of the finger front playing the role of the wrinkling factor o-. According to
Clavin & Tofaili (2021), the critical condition is in good agreement with the DDT observed
in the experiments of Liberman et al. (2010) and Kuznetsov et al. (2010). The back-flow
up, increasing with the elongation of the finger-like flame, the speed of the tip relatively to
the tube Up = up + Up, increases also. Therefore, the flame acting as a semi-transparent
piston, compression waves are generated in the unburned gas. Still considering the flame as
a discontinuity, the analysis has been recently extended beyond self-similarity to take into
account the acceleration-induced transient flow in the unburned gas, see Clavin (2022) and
Clavin & Champion (2022). A singularity of the flow gradient appears suddenly on the flame
front when the elongation reaches the critical value while the velocity of the flame front, the
pressure and the flame temperature remain finite. Even though no runaway of temperature
and/or pressure is described by these preliminary analyses, the finite-time singularity of the
flow gradient on the flame front suggests the existence of a fundamental DDT mechanism. In
the present article, the analysis is further extended to the inner structure of the laminar flame
by coupling the unsteady reaction-diffusion mechanisms controlling the flame structure to
the downstream-running compression waves in the external flows. The solution demonstrates
that a one-dimensional DDT mechanism exists in the form of a finite-time singularity of the
reacting flow leading to blow off the inner structure of the laminar flame on the tip. More
precisely, the singularity takes the form of a dynamical saddle node bifurcation presented
in classical textbooks of applied mathematics such as Binder & Orszag (1984) or Strogatz
(1994). The key physical mechanism turns out to be the divergence of the flame acceleration
that occurs systematically at the turning point for a small elongation rate as tiny as it may be.
The turning point being associated with the nonlinear thermal feedback mentioned earlier,
the critical condition has nothing to do with the CJ deflagration (sonic condition in the burned
gas flow) mentioned in the DDT literature for turbulent flames in tubes filled with obstacles.
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Figure 1: Sketch of the burned gas flow in an elongated flame. The curved flame front
propagating without deformation in a tube is characterized by dL/d¢ ~ 0 and
dH /dt = Up,. The planar lead shock associated with the constant unburned gas flow u,, is
far away from the flame tip. Downstream running compression waves are launched in the
unburned gas by the accelerating front as soon as the elongation increases so that the gas
temperature is increased on the flame by adiabatic compression. Due to the nonlinear

thermal feedback mentioned in the text, a drastic effect is produced at the critical flame

velocity Up = U}, because the flame acceleration dUp /dt|ys, =U;, diverges even when the

elongation rate is small dL/df < U;' It is shown in this article that a finite time
singularity of the reacting flow occurs on the tip for Up(¢) slightly larger than Ul’;.

Such a sonic condition can never exist on the burned gas side of laminar flames constituting
the turbulent flame brush.

Unfortunately from a theoretical point of view, there is no satisfactory theory for the
unsteady curved flow of burned gas sketched in figure 1. Hopefully a detailed analysis of the
bunt gas flow is not needed for understanding the finite-time singularity. In the following,
a small elongation rate is prescribed and a crude model for the unsteady back-flow is used.
In this context, an asymptotic analysis of the dynamics of the quasi-planar flame on the tip
is then performed in the distinguished limit of large activation energy, small Mach number
of the laminar flame and small elongation rate (smaller than the inverse of the transit time
of fluid particles across the inner structure of the flame), the elongation having the same
order of magnitude as the wrinkling factor in Deshaies & Joulin (1989). A similar analytical
study can also be performed with a multiple-step chemical network representative of gaseous
combustion if the production of the main radical is located in a thin reaction zone inside
the inner flame structure, as it is usually the case. The essential point is the strong thermal
sensitivity of the laminar flame velocity (7/U,)dU,/dT > 1. Considering an elongated
flame as a constitutive element of cellular flames, the DDT scenario could be relevant for
wrinkled flames in tubes as well as for unstable flames expanding freely in open space.

The basic equations are recalled in § 2. The formulation of the problem in presented in
§ 3 where the back-flow models are introduced. The asymptotic method is presented in § 4.
Matching the quasi-isobaric flow in the flame structure (small length-scale) with the external
compressible flows is performed in § 5 where a general relation is obtained linking the flow
in an unsteady flame structure, the pressure and the flame temperature. The normal form of a
dynamical saddle-node bifurcation describing the finite-time runaway of pressure and flame
temperature is first derived in § 6 for a flame structure in steady state. A similar result is
obtained in the more technical analysis of § 7 taking into account the unsteady inner structure
of the laminar flame. Discussion and conclusion are presented in § 8.

Focus on Fluids articles must not exceed this page length
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2. The basic equations

A one-dimensional time-dependent combustion flow of an ideal gas is considered in a planar
geometry with x denoting the coordinate in the flow direction and 7 the time. The propagation
is from left to right.

2.1. Conservative form

The equations for mass and momentum are

ap _ _(9(,014) d(pu) _a[p + pu® - uc?uc’)x]
ot ox’ ar ax

where p, p and u are respectively the density, the pressure and the velocity of the flow
in the laboratory frame and w is the viscosity. For the sake of simplicity we will consider
an irreversible one-step exothermal reaction. This simplification can be removed and the
fundamental result does not depend qualitatively on a detailed chemical scheme provided
the laminar flame velocity is highly sensitive to the temperature. Introducing the progress
variable Y, namely the mass fraction of products, ¥ = 0 in the unburned mixture and ¥ = 1
in the burned gas), the chemical heat release per unit mass g,,, the heat conductivity A and
the diffusion coefficient D, the equation for energy, written in conservative form, is

d [p(ch + ”2/2 - QmY)]
ot
6[pu(ch +p/o+u?)2 = quY) — 18T /3x — pudu/0x + gupD 0 Y/(?x]
B ox

with the perfect gas law, p = ¢,(y — 1)pT = nkgT in which kp is the Boltzmann constant
and n the molecular density. The ratio of specific heats y = ¢, /c, is assumed constant for
simplicity. The conservation equation of species for a one-step reaction, written in terms of
the progress variable, Y € [0, 1] reads

(2.1)

= (2.2)

A(pY) _ _6[puY —pDJY/dx
ot ox

with a reaction rate in the form of an Arrhenius law for a large activation energy & > kgT,
proportional to the frequency of binary collisions 1/¢.,1;

+ pW(Y,T) (2.3)

(1-Y)%e8/ksT (2.4)

B
W(Y,T) =
Leoll
These macroscopic equations are solutions of the Boltzmann equation in the hydrodynamic
limit (macroscopic length scales larger than the mean free path and time larger than .,
respectively). The solution shows how the frequency of binary collisions 1/z.,;;, the diffusion
coefficient D and the sound speed a = /yp/p are related in a perfect gas p = nkgT
1 D 8
D= ~a, = \/;az, 2.5)
6\/7 nrg feoll 37
r, being the radius of the molecules. The parameter B, usually called the pre-factor, is the
reduced activation energy times the initial molecular dilution of reactant y;

& D 8yT &
B=y— B— = Y%y,
Y kBT - Leoll 3 Vi

(2.6)
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Equations (2.5)-(2.6) are useful to express the laminar flame velocity in terms of the flame
temperature. For the sake of simplicity the molecules of reactants, products and diluent are
assumed to have the same mass m (p = nm) and the same radius r,,.

According to the asymptotic analysis of Zeldovich-Frank-Kamenetskii (ZFK) in the limit
of large activation energy &/kpT), > 1, the laminar flame velocity U, (7)) relative to the
burned gas denoted by the subscript b (T}, is the flame temperature) takes the form

Dy e ¢/ksTy  where S = Gm__&

) (2.7)
Teoll b cpTp kpThp

1
Up(Tp) = T/z\/SB”
By
showing how small is the Mach number of the laminar flame velocity

e = ﬂ _ 2! 167‘[1/2yi Nl & e—S/ZkBTb’ (28)
ap 3y :813,/2 N kgTp

see a didactic presentation in Clavin & Searby (2016). Typical orders of magnitude in real
flames are Uj/a, ~ 107> — 1072, Equation (2.8) leads to similar values & ~ 107> for
E/kpTy = 10, gm/cpTp = 0.8 and & = 1072 for smaller values of &/kgT}, as it is the case in
energetic mixtures. According to (2.5)-(2.8), the ratio of the laminar flame velocity for two
flames with different temperatures takes the form

Up(Ti1) _ (@)3exp_i (L _ L)
Up(Tp2) \Tp2 2kp ’

Tp1 Tk

The main effect of a complex network of chemical kinetics is to modify the power law in
the Arrhenius pre-factor and to introduce a temperature cutoff 7, € [850 — 1200K] below
which the combustion cannot proceed. In addition, the activation energy & varies with the
temperature for 7 > T.. For a large activation energy &/(kpTp) > 1 and far from the
chemical quenching 7}, > T, the temperature variation of & can be neglected in a limited
range of flame temperature AT, < &/(d&/dT}). The upper bound of AT}, /Tj, for the validity
of this inequality is not small when the relative variation of the activation energy is smaller
than the reduced activation energy (T3 /E)dE /ATy, < E/kpTp. In such conditions, equation
(2.9) is reduced to an Arrhenius law
& (Tbl

L) =00):
kpTpr \Tp> ) 0

(2.9)

Up(Tp1)

~ ex
Ub(Th2)
However in highly reactive mixtures (stoichiometric H, or C; H4 mixtures in pure oxygen)

the flame temperature is large and the reduced activation energy is of order unity so that the
power law (Tp1/ sz)3 in (2.9) cannot be ignored.

B>1,

8/2 (Tbl

— —1]]. 2.10
keTpo \Tp2 )} (210)

2.2. Non-dimensional equations in the Lagrangian form

From now on, the reference state used in the non-dimensional equations is the burned gas of
the steady flame at the initial condition (labelled 7). The latter is a self-similar solution with
the lead shock at infinity. Denoting 7,,; and py,; respectively the temperature of the unburned
gas and the density of the burned gas in the initial state, the reference temperature, velocity,
density and pressure are

Tret = Tpi = Tui + Qm/cp, Uret = Up(Tpi)s Pref = Pbis Pret = (Cp = ¢y)pretTrer. (2.11)

Using the corresponding flame thickness and transit time dief = Dyef/Urer and tef =
dref/Uret = Dret/ Urzef where Dt is the molecular diffusion coefficient in the reference state,
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the following non-dimensional variables are introduced

T = t/tef, & =(X—Xp)/det, where tref = dref/Urer = ref/ ref? (2.12)

u T U
L, v , T L, 6=-——, vp=-",
Pref Uret Pref Tiet Urer

r

(2.13)

where x = Xp(¢) is the instantaneous position of the flame (for example, the maximum
of reaction rate), u(x,t) and Up(t) = dXp/dt are respectively the flow velocity and the
propagation speed of the flame in the laboratory frame (not to be confused with the laminar
flame velocity Uj,). The non-dimensional mass flux across the flame m = p(Up—u)/prefUres
takes the form

m& 1) =r[vp(t)-vETD)] >0, r=n/6. (2.14)

Introducing the Mach number of the laminar flame, the reduced heat release and the reduced
activation energy
Uref dm 3

= ~ 1072 = ~ 0.7, = =4-28, (2.15)
Aref 1 Cp Tiet F kpTiet

and using the relations 1/(prefcpTref) = (y = D/(yprer) = (v - 1)/(prefar26f) and Dyer =
A/(pretcp) = p/pret (Le=1 for simplicity), the non-dimensional Lagrangian form of (2.1)-
(2.4), written in the frame moving with the flame t,.;0/0t — /07 — vpd /&, reads

or Om

Fr _65’ r=mu/6 (2.16)
1 2

ov_ ov__ 1 om oW 2.17)

ot o¢ ye2 ¢ 02

0 0 %Y
—-m—=|Y-— =wY 2.18
I -ml |y - 2% v @.18)
ri—mie -1 +[v —V]i”_
ot o0& y 6‘1’ P o0&
26 av\’
-1 . 2.19
-0 (] e @19
For a large activation energy, the non-dimensional reaction rate takes the form,
,33 p &
0,Y) = trew = —2=L2(] —Y)? 01 2.2
w(l, Y) = tetw = 8 0, —(1 ) exp [k Tref( )] Bref = Tt kpToor (2.20)

the subscript b denoting the burned gas. Eliminating the density by using the perfect gas
law r = 71/, the four equations (2.16)-(2.19) concern four fields v(&, 1), n(¢, 1), Y(&, 7) and
0(¢, 7) plus an unknown function vp(7) appearing in the mass flux m(¢, 7) (2.14).

2.3. Mass-weighted coordinate

The analyzis of the unsteady flame structure is more easily performed using the mass-
weighted coordinate z and the reduced mass flux at the origin (z = 0) m(r) = m(z = 0,7)
with, according to (2.14),

(0, 7)

m(t) =r(0,71) [VP(T) - v(0, T)] = 8(0.7)

[ve(T) = v(0,7)] > 0. (2.21)
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259 Introducing the change of variables (&, 7) — (z,7)

S e 0 0 nd
260 7= L r(f ,T)df , % = I"a—z = ga—z, (222)
o) 0 £ 6r(§ ‘r) ~
o | =) [ | e ] o= o] e - mo) £ (223)
P P P P
262 (v— VP(T))(9§ —m(¢, T)a—z = a_r|§ +(v=vp(n) — 5 = a (T)a—Z (2.24)

263 where the function m(7) in front of the derivative with respect to z depends only on the time.
264 Continuity (2.16) written with the variables (z, T)

om(z, )  9r(z, 1)

or
265 r 7z = 97 +[m(Z’T)_m(T)]6_z (2.25)

266 yields after multiplication by 1/r2

267 %ama(? 0 _6(él)ir) ] —[m(z,7) = m(7)] —— 8(1/r) (2.26)
268 to give, using (2.14) m(z, 7) = —r(z,7)[v(z,T) = vp(T)] > O,
269 6m0,(é’ 0 —[v(z. 1) - VP(T)] — - rg: = Z—Z = a(alir) m(t )8(1/r) (2.27)

270 yielding the gradient of the flow in terms of 1/r = 6(z,7)/n(z, 7). For simplicity, the
271 diffusion coefficient D have been assumed to verify p?D= constant, d(pDd/0x)/0x —

212 (p*D/ P2 Dref)rd? [8z* = ro* 8z Then, (2.16)-(2.19) yield
ov 0
2" 0z [ar m(T )_] T
0o d
=—|=- —0-=|—- — 2.28
o n [67 m(T)az] b n? [67 m(T)az] T 22
ov v 0] 1 on
—- — == 2.29
P [67’ "5 a2 | T Tyt oz (229)
oYy oYy 9%Y|
— - — = Y(z, 0, 1 2.30
276 [6T m(T) 9 92 | w(6,Y), (z,1) € [0, 1] (2.30)
06 00 0%0] (y-ne
_— _ — | = Y -
277 [67 m(‘z’)(9Z 2 | =gqw(6,Y) + —— T x m(t )
5 [OV 2
278 +(y - De” [— (2.31)
0z

279  where the perfect gas law » = 7/6 has been used to eliminate the density. When the dissipative
280 terms (heat conduction, viscosity and reaction rate) are neglected, equation for energy (2.31)
281 takes the form of the entropy wave in an inert gas

1106 a0 ()/ 1)1 on|
282 i [ m(t)— ] 5 [87 m(T)E)_z] =0. (2.32)
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3. Formulation of the problem

Ignited at the closed end of a smooth walled tube, a laminar flame takes an elongated shape
with a curved flow of burned gas striking the flame on the tip from behind (back-flow)
sketched in figure 1. The attention is focused few time after the formation of the tulip flame
when the finger shaped flame front is recovered and evolves slowly. Two basic mechanisms
are involved in the DDT on the tip of the elongated flame: firstly the increase of the back-
flow of burned gas on the tip up(f) with both the elongation and the laminar flame velocity,
and secondly the increase of the laminar flame velocity with the flame temperature. In the
following, the elongation of the finger flame S(7) is a given increasing function of the time
dS(t)/dr > Ostarting at 7 = 0 from a self-similar solution whose elongationis S; = S(0) > 1.
The increase rate is assumed smaller than the inverse of the transit time of a fluid particle
across the flame,

S(t) =[1+ e7]S;, with e<xex 1. (3.1

The relation & < € is useful to take into account unsteady effects while neglecting the terms
of order 2. As we shall see, a finite-time singularity of the flow is predicted for any € > 0,
as small it can be. Under the condition (3.1), the curvature of the flame is negligible and the
compression waves are quasi-planar if the tube radius r is in the range &(r/d) = O(1).

3.1. Back-flow models

The flame on the tip is treated as planar and orthogonal to the propagation axis. Following
Clanet & Searby (1996), the longitudinal gradient of burned gas flow on the tube axis u(x, t)
is roughly modeled by a source term of mass whose origin is the burning of the lateral flame
parallel to the wall. Denoting the laminar flame velocity (relative to the burned gas) of this
lateral flame Uy, (X, 1), the gradient of the flow on the tube axis u(x, t) is approximated by a
one-dimensional mass conservation in an incompressible flow

ou 2

— ==U t 32

9x R bw(X, 1) (3.2)
where R is the radius of the tube. The longitudinal back-flow u(#) impinging the tip from
behind is obtained by integration along the axis of the finger flame. For a closed-end tube on
the burned gas side, assuming that the incompressible flow of burned gas is at rest behind
the elongated flame, one gets

Xp
up(t) = u(x = X,(1),1) = E/x Upw (X, 1)dx (3.3)

R Jx,-L
where X,(¢) is the position of the tip and L(¢) the length of the elongated flame. Neglecting
both the heat loss on the wall and the unsteadiness of the burned gas flow treated as
incompressible, Up,, is uniform along the lateral flame and equal to the laminar flame
speed on the tip at the same time Uy, = Uj(t). Moreover, if the unsteadiness of the inner
flame structure is negligible, Uy (¢) is given by (2.7)-(2.10) Up(t) = U, (Tp(1)). Under these
approximations, the back-flow takes the form introduced by Clavin & Tofaili (2021),

instantaneous back-flow model: up,(t) = S(1) Up(t),  Up(t) = Up (T (1)), (3.4)

where S is the elongation of the finger flame (S = 2L/R in cylindrical geometry) and
Tp(t) = Ty (t) + Q/cp where T,(t) is the temperature of the fresh mixture just ahead of the
flame.

Unsteadiness of the flow of burned gas in an elongated flame is too complicated to
be described analytically. Hopefully a detailed study is not useful in the following. This



325
326

327

328
329

330

331

332

333

334

335
336
337
338

339

340
341

342
343

344

345

346
347
348
349

350
351

352
353

10

unsteady effect will be roughly modeled by a delay A#(Xp — x) for transferring to the tip the
flow of burned gas issued from the lateral flame at a distance X,, — x from the tip,

up(t) ~ —

Xp
/ Up(t — At(Xp — x))dx. (3.5)
R Jx

p-L
Assuming a slow evolution of the laminar flame velocity Uy /(dUp /dt) > At(L) = At(Xp —
x), a Taylor expansion yields

_2L(1) 2 du, /XP
X

up(t) = R Ub(t)—ﬁ 5

At(Xp - x)dx. (3.6)
p—L

Assuming that the variation of the radial burned gas out of the lateral flames is propagated by
the downstream-running compression waves with a quasi-constant sound speed a, At(Xp —
x) ~ (Xp = x)/a,

Xp
/ At(Xp — x)dx ~ L?/2a,
Xp-L
equation (3.6) yields, after introducing the overall delay At,, ~ (1/2)L/a,

dau,
delayed model of back-flow:  up(r) = S(¢) [Ub(t) - Atwd—tb} ~ S(t) Up(t — Aty,),(3.7)
in which the variation with the time of At,, is a negligible second order effect.

3.2. Limit of large activation energy

The ZFK analysis in the limit of large activation energy, has been extended more than
forty years ago to unsteady structure of flames, see Clavin & Searby (2016) for a didactic
presentation. Choosing the instantaneous position of the reaction sheet as the origin on the
z-axis and introducing the notation

B = E/kpTt, Op(1) = Tp(t)/Tres (3.8)

for the reduced activation energy and the reduced flame temperature, the jump conditions on
the reaction sheet take the form,

z<0: Y=1,
2=0:  Y=1, 6=6y(r) @-1)=0(1/8), (3.9
Y,
B> 1, BBy —1)=0(1) : a_| = _gexp [é @) — 1)] +o(1/B),  (3.10)
Z lz=0* 2
90, _96) _ oY 2
Bzlez0- = dzl=or ~ 457 L=o+ +OU/B,  G.1)

z = 0% and z = 0~ denoting respectively the preheated zone side of the reaction zone and

the exit on the burned-gas side. Equation (3.10) is valid to order unity while (3.11) is valid

up to first order 1/8 < 1 (included). The back-flow of burned gas is applied on the reaction
sheet so that a boundary condition concerning the flow velocity is added

z=0 7>0: v=vu(1) (3.12)

7<0: v=vp0) =S5, (3.13)

To leading order in the limit 8 > 1, the variation of flame temperature is retained in the

Arrhenius factor of (2.10) only. Therefore, when the inner flame structure is in steady state

Rapids articles must not exceed this page length
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(denoted by an overbar), the laminar flame velocity is,
B> 1, By —1)=0(1): Up(Ty)/Ures = =exp | (85— 1) /2| + 0(1/8) 3.14)

where 6, (1) = 6,(t) + ¢ is the flame temperature and 6,,(t) = T,,(7)/Ti the instantaneous
temperature of unburned gas just ahead of the flame. The instantaneous back-flow (3.4),
written in non-dimensional form, then yields

Vp(7) = S(T)m = [1 + e7]S; exp (B[0u(7) + ¢ — 1] /2), (3.15)
and the delayed back-flow model (3.7) reads

Atw do,
dr

L
B>1 120: vp(r)=vp(1) [1 - }, Aty = 2 (3.16)
a

When the unsteadiness of the inner structure of the flame (studied in § 7) is taken into
account, the mass flux m in (3.16) is replaced by its unsteady version m(7) = m + dm,
Vp = S(r)m — S(t)m(t), the reduced back flow including the two unsteady effects (in the
burned gas and in the inner flame structure) takes the form,
om(T)
m(7)

om(t) being computed preliminary by the unsteady analysis of the inner structure.

At,, d6,
tef dT

B>1 1>0: wh):ﬂﬂfmﬁ*WQP ][ - (B/2) (3.17)

3.3. Initial condition

Before the elongation starts to increase, the initial condition is a self-similar solution (constant
elongation, steady flame structure, 65(0) = 1) with a constant back-flow (3.13) v;(0) = S;
and a uniform flow ahead of the flame 6 = 1 — g, v = v;(0) + ¢, the lead shock far ahead from
the flame front being considered at infinity. The problem being hyperbolic in the unburned
gas outside the flame structure, the downstream boundary condition far away from the flame
for solving the unsteady problem is given by the the initial solution,

oo ma1+0(E), Y =0, 6=1-q+0(),
v =35 +q+0(&). (3.18)

The neglected terms are of the same order of magnitude as the pressure jump across a laminar
flame 6p/p = O(?), according to the steady-state version of (2.29).

4. Asymptotic method

The problem is solved in the double limit of large activation energy 8 > 1 and small Mach
number of the laminar flame € <« 1. A first quick look to the compressible flow of unburned
gas ahead of the accelerating flame enlightens the multiple length-scale problem.

4.1. Preliminary insights into the unburned gas flow ahead of the flame

When the flame accelerates the flame acts a semi-transparent piston so that simple com-
pression waves are sent in the unburned gas. The dissipative mechanisms being negligible
in this external flow, the entropy wave (2.32) propagates from right to left in the reference
frame attached to the flame since the flame runs from left to right faster than the flow in
the laboratory flame, m(7) > 0. Therefore, as long as no new shock wave is formed on the
leading edge of the compression wave, the entropy is constant ahead of the flame and equal to
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the downstream entropy (z — o). The isentropic condition 7 = /¢~ for small pressure
variations, 6 = 6;(z) + 660, m = 1 + 0x, lim, 6; = 1 — g, yields,

on<l1: 60/0;(z2)=[(y—-1)/y]on, 4.1)

the subscript i denoting the initial unperturbed flow 7 = 0 : 71; = 1. Anyway, in the limit of
small Mach number of the laminar flame € <« 1, the shocks that could be produced by the
accelerating flame are weak so that the small entropy jump across the shock is of order of
magnitude &> and thus is negligible when the analysis is limited to -term. Then, according
to continuity (2.28),

ov 0 0 110 0
om = 0O(e), l: —=|—- — | [60 — 0;0m] = —0;— | — — — | om. (4.2
m=0(e). 2> 1 o [6T m(r)az}[ =0 [aT ’"%Z] r. (42)
The viscosity being negligible ahead of the flame, equation (2.29) yields
0 0 1 dor
0 1: — - —|V=-—S— 4.3
= [6‘1’ m(T)(?z] v ve? 0z (4-3)

The flow v(z, 7) can be eliminated from (4.2 ) and (4.3) to give in the linear approximation

(1-¢q)[ o a1° 1 92
7'[2 T 67T:§a—Z267T.

4.4)

Therefore, considering a time scale of order of the transit time of fluid particles across the
flame, d/0t = O(1), the pressure varies in space with a length scale larger than the flame
thickness by a factor of order 1/¢,

0on/dz

—F—F— =0(¢). 4.5

oon /ot ) (4.5)
The unsteady term of (4.4) balances the second derivative with respect to space on the right-
hand side since the term [mdn/dz] is negligible in front of [(1/&)dn/dz] for m = O(1).
Therefore, the pressure fluctuation satisfies the linear wave equation

d%*sm _ (I-9) 6267r; =9 = 0*6n ) 6267r,
or? g2 072 e or? ' ox2
written in the original variables using (2.12) and (2.22). Therefore, in the limit ¢ < 1, the

external flow of unburned gas ahead of the flame is governed by the linear acoustics with a
negligible Doppler effect m(9dn/0z)/(06n/dT) = O(¢) leading to the scalings

7=0(1) = ez=0(1). 4.7)

According to the continuity equation (4.2), dv/dz is of order déx/d7. Anticipating that the
change in flow velocity is of order S; times the laminar flame velocity 6v = O(S;), 6v and the
pressure varie on the large length scale dv/dz = O(&S;), the variation of the non-dimensional
pressure o in the external zone is of order €S;. In the external zone ahead of the flame, the
pressure takes the form

ex1: (4.6)

m=1+em(ez 1), w1 = 0(S;). (4.8)
The nonlinear solution of the compression wave obtained by Clavin & Champion (2022)
confirms that the limit £ < 1 leads to the linear wave (4.6)-(4.8).

4.2. Distinguished limit

According to (4.8), the spatial variation of pressure in the external flow 67 = enr; = O(&S;),
is larger than in the inner structure of the flame by a factor 1/ since 7, — 7, = y&(v,, —Vvp) m
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where the subscript u denotes the unburned state just ahead of the flame. Neglecting terms of
order &2, the pressure is treated as uniform inside the preheated zone of the flame structure
z=0(1): 1 — = O(¢?). This is also the case in the thin reaction zone z = O(1/p) across
which the gradient of the flow velocity varies of order unity so that, according to (2.29),
0°v]0z> ~ (0n]0z)]ye? = Bv/ﬁzlg ~ ﬂ|0+/ys o) = 7r|8:r = O(g?). According
to (3.14) in the limit of large activation energy 8 >> 1, the compressional heating (4.1)
influences the laminar flame velocity and the flame structure as soon as the compression-
induced increase of the flame temperature is of the same order of magnitude as the inverse
of the activation energy (y — 1)én = O(1/8) = (y — 1) &6S; = O(1/B). Therefore, as in
the previous analysis of Clavin (2022), the distinguished limit to be considered in the DDT
study is similar to that in Deshaies & Joulin (1989)

e—>0, Booo: (y=1)BeS;=0(). 4.9)

The comparison with the Zeldovich-Frank-Kamatskii expression (2.8) of ¢ yields the order
of magnitude of S;, typically between 5 and 10.

4.3. Equations in the limit ¢ < 1

According to (4.8), the pressure disturbance is small and varies in space on the rescaled
coordinate z; = €z = O(1)

on)dz = O(*S;)), m=1+em(z,1), m=0(S), zi=eéz (4.10)

Outside the thin reaction sheet, neglecting second order terms O(&?), equations (2.28)-(2.31)
take the form

ov 0 6
n=1+em: a—z—[—— ()— v om’ 4.11)
e<x1: ? [1-enm] [— —m(T)—] - &b [67” m(T )6”1] +0(g%),
z
ov v O] 110m
g "V ez | T e e 12
i) 4 oYy 9%Y|
[E - m(T)a—Z - a_Zz_ - Oa Y(Z9 T) € [Oa 1] (413)
96 90  9%0| =D [om om
[E _m(T)a_Z — 6_Z2 = ¥ 87- ( )— +0( ) (414)

Equation (4.14) shows how the effect of compressional heating in the unburned gas outside
the flame thickness (z > 1: [1/0]00/0t = &[(y — 1)/y]0n;/07) is transmitted to the
reaction sheet (z = 0) by the entropy wave, as it is modified by the heat conduction inside
the preheated zone (second derivative on the left-hand side). According to (4.10), the terms
involving dx;/dz = O(g) in (4.11) and (4.14) are negligible in the inner structure of the
flame(of order £7)

0z or

2
ae i ) a6 %6 ] _ =D om +0(D). “.16)
0z 3Z T

— =[1-¢m] [i - m(T)i} PRI 0(g?), (4.15)
or z
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Introducing (4.16) into (4.15), the flow gradient inside the flame structure is expressed in
terms of the heat flux and the time-derivative of the pressure

ov 3% 6 1 _dm 2

rri [1 8”1]812 879 37 + 0(&). 4.17)
To summarize, in the distinguished limit (4.9), the problem consists in solving (4.12)-(4.13)
and (4.16)-(4.17) with the jump conditions (3.9)-(3.15) on the reaction sheet and the boundary
conditions (3.18) at infinity.

In the present aricle, the problem is solved analytically in the frame attached to the reaction
sheet by an asymptotic method. The corresponding one-dimensional numerical analysis to
be performed later for the purpose of comparison is not straightforward. Solving the basic
equations for a reaction rate given W(Y, T) as an initial value problem would require to apply
a boundary condition at the exit of the moving reaction zone, which is not so usual, see the
text below (7.16).

5. Matching conditions. Flow in the unsteady flame structure
5.1. Back to the external flow ahead of the flame

Denoting the external flow ahead of the flame by the subscript ext, the initial condition takes
the form

T=0: Oexr,=1-¢q Vext, =Si+q, n=1 (7 =0).
Using the rescaled coordinate z; = £z in (4.10), equations (4.1) and (4.8) yield

9exr+(Z1, T) = (1 - LI) I+ 83/ ﬂl(ZI’T) + 0(82)‘ (5.1)

and quation (4.17) takes the form

6Vex + 0 0 on
6—; =[1-em] [E - m(T)a_z] Oext, — 8Qext+a__l_1 + 0(82)
a ex b 1 )
yielding ~ Dew@ D 10mG@) o0 (5.2)
0z1 0% ot
Combined with the leading order of (4.12) in the external flow
6 ex ] 1 ’
Vext.(z7) __10mi(z1,7) +0(e). (5.3)
ot y 0z

the derivative of (5.2) with respect to 7, after elimination of v.y;, , leads to the wave equation
(4.6) for the pressure

Pmzit) 1 8mzL1)
a7? l-q 822

e<1: + O(e) (5.4)

where, in the mass-weighted coordinates, the non-dimensional sound speed in the external
zone is 1/4/1 — g. This is easily confirmed as follows

21 = €2 = [Uret/ aret] [0/ pret]1X/ [Ureftret ],

using T = f/tef, the ratio z;/7 takes the form z;/7 = [x/at]pa/|prefaref] to give, using
paflpretare] = [p/preilNTeet/T, (21/7) = [(x/at)/VB][1 + O(s)] with, according to (5.1),
0=1—-q+0(e).

The flow of unburned gas being uniform and steady far ahead from the flame, the external
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flow is a downstream-running compression wave (propagating in the same direction as the
flame) with a leading edge in the form of a weak singularity propagating with the sound speed
relative to the flow. Then, according to (5.4), m1(z1, 7) and Ve, (21, T) = Si + g+ 0Vexs, (21, T)

are functions of a single variable 7 — /1 — g z;

27 <T/Jl=q: m=m(t—+1-qz1), OVext, = Ot — /1 =qz1), (5.5

with ﬂu(T) =T |21:0, ﬂu(o) = 0» (D(T) = (Svexbr |Z1:0, (D(O) =0

so that the quasi-uniform pressure in the flame structure is 1 + em, (7). Using (5.5) in the
form 0Vexs, /021 = =1 — q OVexs, /0T, equation (5.3) yields

aVeszr _ VI_QE_'_

P T O(e). (5.6)

in agreement the linear relation 6p = pa du of an acoustic wave propagating from left to
right. The flow field v, (21, T) is obtained by integrating (5.6) from the leading edge of the
compression wave where, to leading order, the boundary conditions (3.18) vey:, = S; + ¢
and r; = 0 hold

V- V-
qm(zl,T) +0(g), OVexs, = 1

mi(z, 7). (5.7)

Vexu(zls T) - (Sl + LI) =

According to (5.5) and (5.7), the relation linking the flow to the pressure just ahead of the
flame (z; = 0) takes the form

Vew. (21 = 0,7) = Si + ¢ + —”yqnu(r) +0@E) (58)

3 _mdﬂu(‘r) = OVext, _ (I -g)dm,(7) +0(e) (5.9)

4=0 dr dz1 lz=0 vy dr

om
071

in agreement with (5.2). These relations are useful for matching the flow of the inner structure
with the external flow of unburned gas in § 5.3.

5.2. Matching the temperature
From now on, the superscript (i) denotes the solution in the preheated zone of the flame
structure (z > 0). Inside the flame structure, the spatial variation of pressure introduces a
negligible term of order &2 so that dzr; /A7 in (4.16)-(4.17) can be replaced by the function
dn,(7)/dt = dn1/07|;,=0 describing the coupling of the flame structure with the external
solution on the cold gas. Therefore, (4.16) can be written as

96 a9M 529 (y-1)
—-m(T - =&
ot 0z 072

dm, (1)

69 (z, D= 0 (5.10)

z20

where m,(T) = m|;=0. The boundary condition at infinity on the cold gas side of the
preheated zone (z = O(1), z — o) is obtained by matching the preheated zone 6)(z, 7) and
the external flow O, (21, 7)

lim 07z, 7) = fexr, (21, D)lzy=0, Jim 960 /02 = £96cxt, 021|210 = O(&?),

Z—00

where, according t0 (5.1) Oexr, = (1-g)+e(1-g)[(y — D/y]mi(z1,7)+ O(&2), 00¢xs, 021 =
O(g) so that lim,_,, 38" /8z = O(&?) is negligible to first order in a perturbation analysis
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for small ¢,
) y-1 : (@)
lim 6% (z,7) - (1 —q) = (1 — q) m, (1), lim 06" /dz = 0. (5.11)
Z—00 Z—00
Equations (4.13) and (5.10) have to be solved using (5.11) and the boundary conditions (3.9)-

(3.11) on the reaction sheet (z = 0) in the distinguished limit (4.9). Equation (3.10) involves
the flame temperature 6,(7) — 1 = 69(z,7)|,—0 — 1 = O(1/B) which is a time-dependent
eigenvalue of the problem, obtained by the jump condition (3.11). In the fully unsteady
problem, the solution in the burned gas side of the reaction sheet z < 0 is required in (3.11).
We will come back to this question later.

5.3. Matching the flow velocity

Matching the flow velocity in the preheated zone with the external flow of cold gas yields

Jim vO(2,7) = Vexr, (21, Tler=0 = i + 4 + (1) + O(e), (5.12)
aV(i) 8Vext (1 - Q) dﬂu(T) 2

i = : =—s———""+0 5.13

zl—>nf>10 82 & 6Z1 z1=0 € Y dr * (8 ) ( )

where (5.8)-(5.9) have been used. Equations (5.12)-(5.13) yield

Vi-¢g 8Z(1_Q)dﬂu(7)

lim v(z, 1) > S; + g + —— (1) — +0(%). (5.14)
z—00 0% dr

Integration of (4.17), written in the preheated zone in the form

6V(’) 92 e<l> 1y dm, (1) 1 dyr (T)
= [1-em(] S e 00 - (1= 0| T e -9 ZE 1 06
0% dr
from the reaction sheet z = 0 : v\ = v, (1) yields
. 56 a 1)
z=0(1): vO(z,7) = vp(1) = [1 - em,(7)] ( ) (5.15)
dz Bz lz=0*
ld u ; 1 dm,
P 7T (T) [0(!) (1 _ q)]dz _ 3Z(1 _ ) 4 (T) 0(82).
Yd b

Thanks to (5.11) lim,_,., 8®(z, 7) = (1 — g) + O(¢), the leading order of the integral on the

right-hand side of (5.15) is well defined in the limit z — oco and is of order unity. Then, using

(5.14), the limit z — oo of (5.15) yields

Vi-¢g
Y

Si+qg+

vp(T) —

ﬂu(T)} =

(i) oo
om0 S| 4o D [0 - (- glaz + 06 5110
0z lz=0+ vy dr  Jo

where the thermal flux out of the reaction sheet d 8)/dz|,—o+ is obtained in terms of the
flame temperature ;, by the jump condition (3.10). The integral term on the right-hand side
of (5.16) is meaningful as soon as dm,(7)/d7 < &.
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5.4. Master equation
Using the jump relation (3.10), equation (5.16) yields

vp(T) — [Si +q+ —qﬂu(‘z’)l (5.17)

B Ldr,(t) [
~q[1 = em(Dlexp |5 05— 1) | + o i /0 69 — (1 - g)ldz + O(&?).

Anticipating that (0, — 1) is of order unity in the distinguished limit (4.9) and neglecting &
terms, equation (5.17) gives a general equation of order unity, called the master equation

N
Y

Vp(T) = |Si +q +

nu(T)} = —gexp (§ [65(7) — 1]) +0(e).  (5.18)

This equation is valid for the ZFK model of flames even if the inner structure is unsteady.
Under the quasi-steady approximation, , equation (5.18) can be obtained more directly by the
conservation of mass across the flame | U, / U,=Tp /T,, combined with the relation between
the laminar flame velocities Uj, and Uy, and the flows in the unburned mixture ahead of the
flame u,, and in the burned gas up, Uy — u, = Up—Up = [(Tb -T, )/Tb]Ub The latter
expression takes the form u,, — 1, = q Up[1 + O(1/p)] in the limit of large activation energy,
the relative variation of the flame temperature T, (7)/T;(0) — 1 being of order 1/3. Using
(5.12) up (1) = S + ¢ + [T = q/y]mu(r) and (2.9) Uy, ~ Up(0)eB@~1/2 equation (5.18) is
recovered. Although the laminar flame velocity Uy, (2.9) is no longer valid for an unsteady
flame structure, equation (5.18) is still valid when the unsteady flame temperature 0 (7)
computed from the unsteady flame structure is used on the right-hand side.

6. Pressure and flame temperature runaway.

In this section the inner structure of the flame is assumed in steady state. The essential
mechanism of the pressure runaway is more easily revealed under this approximation. The
latter is removed in section § 7 leading to the same phenomenology as in § 6.3.

6.1. Quasi-steady inner structure.

If the inner structure of the flame is in steady state (denoted by an overbar), the terms 96 /9t
and edr, (7)/dr are neglected in (5.10) leading to

>0:V=e7, 871 = [ab - eu] e 4 0,
2<0:7=1, 6" = 8,(v) 6.1)
where the short notation

Hu(T) = (1 _LI) 1+8y

— lnu(r)] , (6.2)

has been introduced for the gas temperature just ahead of the flame as it is modified by the
downstream-running acoustic wave in the unburned gas, see (5.11). Introducing the parameter
b of order unity in the distinguished limit (4.9)

b=

@(1 - q)@, >0, Booo: bSi=0(1), (6.3)

2
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the jump conditions acrosss the reaction sheet (3.10)-(3.11) yield

— — -1

Oy(7) = 0, + q, by -1 =&(l - )L —n, + 0D, (6.4)
Y
BO»~1)/2=Bl0u+q~11/2=bry, T =e"+0(1/B), (6.5)
—(i o -1
5 )(z, T)=ge"*+(1—-q)|1+ et nu(‘r)] . (6.6)
6.2. Back flow.

In the quasi-steady approximation, the back-flow reduces to the instantaneous model (3.15),
vp(1) = St = S(r) e, (6.7)
Introducing (6.7) into the master equation (5.18) yields the same transcendental equation for

the flame pressure 7, = 7 |;,=0 = [P/Pretlz;=0 — 1]/& = O(1) (or the flame temperature) as
obtained when the flame is considered as a discontinuity, see Clavin (2022)

(S +q)e™ =8 + g+ (V1 -q/7) 7. (6.8)

6.2.1. Turning point.
Introducing the notation

¥ = b, = 0(1), l=8+g, (1) =1 +e1)S; +q, (6.9)
b=by/\1-q=(Be/2)(y- Dyl -q=00/s) (6.10)

equation (6.8) takes the reduced form
ce? — ¢ —9/b=0; t7=0: (=4=8+q ©=0. (6.11)
The solution yields the pressure in terms of the elongation ©#({). The solution depends on the

initial elongation ¢; and involves a single parameter b. Using the elongation versus the time
in (3.1) S(7) = [1 + e7]S;, the solution #(¢) provides us with the dynamics of the pressure
and/or the flame temperature. The graph of the inverse function {() is a bell-shaped curve
sketched in figure 2, the maximum of which corresponds to ¢ = * and ¢ = 9~

* bgi-1
4 =0: g*eﬁ*zi, P =1-4b>0, g—:e[f ]
dd ly=o+ b G b¢;
the inequality £*/; > 1 being valid for all the reactive gaseous mixtures (0 < b{; < 1),
see Clavin (2022). The dynamics of the flame is represented by the C—shaped curve 9(¢)
with a turning point at the critical elongation S*, {* = S* + ¢, di#/d{|s=z+ = oo. There is
no more solution to (6.11) for ¢ > *, For { < (7, there are two branches of solutions
G = 9 220 =) 9. =9 <0 < 9, — 0, dI_/d¢ > 0 and dd, /d¢ < O for the
other, see figure 2. According to the thermodynamics law, the temperature increases during
an adiabatic compression so that the physical branch of solutions is 5_(4“ ).

As noticed in Clavin (2022), the limiting case ; = %, S = S;,,, corresponds to a
universal critical Mach number u,,*/a,* = 2/[B(y — 1)] characterizing the pre-conditioned
flow of unburned gas just before the DDT onset. This critical Mach number of the cold flow
is typically u,*/a,” ~ 0.65 for ordinary flames (8 ~ 8) and becomes slightly supersonic
u,*/a,” > 1 for a very energetic mixture (8 < 4) while the laminar flame velocity remains
very subsonic Uy /a; ~ 0.05, in agreement with the experiments of Kuznetsov et al. (2010)

b
and the numerics of Liberman et al. (2010) and Ivanov et al. (2011).

> 1, (6.12)
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Y

v, 9 ¥ = by,

Figure 2: Sketch of the solutions "elongation { versus pressure #" (not to scale). The two
branches 1 () of solutions of the quasi-steady equation (6.11) in thick line show the
critical elongation ¢*, above which there is no quasi-steady solutions (J_ is the physical
solution). The horizontal arrows in broken line indicate the direction of the trajectories of
(6.23) for €, > 0 showing the stability of the branch of physical solutions of (6.11), see
Strogatz (1994). They are in the opposite direction for &, < 0. The solution of the
dynamical equation (6.23) 9¥(¢) in thin red line shows the finite-time divergence of the
pressure at the elongation {. > {*, lim(;_s, )0~ ¥ = co. The red arrows indicate the
direction of increasing time for an elongation increasing with the time. According to
(6.27), the relative difference in critical elongations is small for a small elongation rate

G e< L (L =/ =0((e8i/¢)3).

6.2.2. Finite-time singularity of the flow gradient

According to (6.12) d¢/dt = €S;, the elongation and the flame velocity m = e’ (9 = bry,)
increase first slowly with the time dm/dr = O(€S;), and, according to (6.12), the flame
acceleration diverges abruptly dd/d{|s—¢+ = oo, dm/dt|r—- = €S;m"d®/d{|z=+ = 0o when
the elongation reaches S*, namely when the flame velocity reaches the critical value 771" = ¢””
which is finite (¢* < 1). As in the piston problem considered in Clavin & Tofaili (2021),
equation (6.11) takes a generic form near the critical point dZ/d?|g=g- = 0,

¢
dy? lg=9+

= = g 4 5 5 1(19 -9 (6.13)

(5 -9)

4 o | BT =S)
P -9 ~V2 ,  b(m, —my) =~ S 1o/

(6.14)

obtained by a Taylor expansion. The dynamics of flame pressure and flame temperature near
the critical condition at 7 = 7* takes the form

S;
S*_

P —r) = kVNTF =71 where K= 4/|2€ O(We), (6.15)
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exhibiting the finite-time singularity of the flame acceleration
T/tr=1>0_: 99 =1-4b>0, n, — 7, =9"/b, m—m* =e?(6.16)
dd K/2 dm, k/2b 1 dm K/2
& T Veor & T Vpor mdr Voot
According to (5.2)-(5.9) and (6.15)-(6.17),
6Vext+(Zl,T) ~ _(1 - Q)ﬂ 1
dz1 Y b T*—T+Z]m,
New (2,7) V1= /2 I
ot Y b \/T* -T+2 m

the gradient and acceleration of the external unburned flow diverges on the flame,

6V€xh " (1-¢q)k/2 1 6Ve)cbr - Vl_QK/Z 1
021 lu=0 ¥ b yp—1r 0T lu=0 y b -z

This suggests a finite-time singularity of the flow gradient leading to the formation of a shock
inside the quasi-isobaric flame structure. The DDT mechanism is associated with an even
more violent phenomenon: a catastrophic behavior of the flame structure is predicted below
by the delayed back-flow model.

(6.17)

/" -1 —>0_:

6.3. Delayed back-flow model. Catastrophic dynamics.

The unsteady flow behind the tip of the elongated flame is a too complex problem for an
analytical study. Equation (3.16) is a simplified model for analyzing the main consequence of
this unsteadiness, a detailed expression of the delay At,, is not useful in the following. Only
the order of magnitude of Af,, matters for a clear understanding of the phenomenon. Still
assuming the inner structure of the flame in steady-state m = e?™«() dm/dr ~ m bdn, /dt
the delayed back-flow model (3.16) reads

At dm,
vp = Si(1 + ey |1 = 22 p &y (6.18)
tref dr
. . At dr,
vy & SielTu® 4 oer Sl — g, ebm 2w p S (6.19)
Iref dr

where, considering At,, /t,..; of order unity and dm,/dr of order € < 1, the eb™ term in
the second and third term on the right-hand side has been considered as constant nearby the
turning point for simplicity.

6.3.1. Dynamical equation for the pressure and the flame temperature

Introducing (6.5) and (6.19) into the master equation equation (5.18) yields an ordinary
differential equation (ODE) of first order for 7, (1)

At,,  dm
—b—= —[Si+q+ —qﬂu(T)‘ = —qet™ (@)
Y

Siebﬂ“(ﬂ + €T Sieh”u - Sieb”"
lref dr
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which can be written in the form

— d u
[S:(1 + €7) + gl eP™ @ _ |5, + g + L ra)| = Ko b dru(r) (6.20)
d
.
. At
where K, = S,-eb”ut—w >0 (6.21)
ref

Written with the notation (6.10)-(6.11), a nonlinear ODE for 9¥({) = bm,({) is obatined
- - dY _ -
lexpd—¢ —9/b=K,, @ where K,, =€S;K,, and b=by/+1—-gq. (6.22)

The roots of the left hand-side of the first equation (6.22) are the quasi-steady solutions (6.11)
of the instantaneous back-flow model ¢.({) shown in figure 2. Focusing our attention on the
vicinity of the turning point, following (6.15), a power expansion in (¢ — ") limited to the
quadratic terms yields

(4—5*)+(ﬂ*—ﬁ>2_€ dd
IS 2 A

52 At,,

1

6—* .
{ tref

For { < {*, the sign of the left-hand side of (6.23) is positive for ¢ < J_ and for 9 > 9,
(negative for 9_ < ¥ < ¥.). The trajectories in the phase space of (6.23) show that the

physical branch 9_(¢) is stable since &, > 0. The other branch 9, (¢) is unstable. A finite
time singularity of the solution of (6.23) occurs around the turning point, as shown now.

(6.23)

6.3.2. Dynamical saddle-node bifurcation

Equation (6.23) describes the dynamics nearby a saddle-node bifurcation. Such an equation
was extensively used for sharp transitions in different problems of physics or biophysics. The
theory of catastrophic events based on this equation has been recently revisited and extended
by Peters et al. (2012). Conveniently rescaled

(1/22P)¢" &) P @ = 0") =y, (/201 - 0/e =1 (6.24)
equation (6.23), after multiplication by (¢*/V2é,,)*/?, takes a generic normal form

dy'(t') _

’ ’2 2
o t'+y (6.25)

with two fixed points for ¢/ < 0, the stable one corresponding to the negative root y’ = —v~¢’
(physical banch of solutions). The fixed points collapse at ¢* = 0 and there is no more fixed
point for ¢ > 0 (saddle-node bifurcation). Considering an initial condition on the stable
brancht’ =/ <0:y" = —\/—_tl.’ for —t/ /1 = ylfz/té larger than unity, the asymptotic solution
of (6.25) is obtained in terms of the Airy function to give

’

t
- gc(té —t')+... where 1. ~2.338..., (6.26)

lim y'(¢") =
z—ngy( ) tp—t

see the references in Peters et al. (2012). The finite-time singularity (6.26) is of the same
type as the solution of the Riccati equation dy’/dt’ = y’2. According to (6.26), the pressure
and the flame temperature ¢ = bm,(7) blow up at time 7 = 7, for a finite elongation

le=Si(1+ete)+q, (L =) = (te — T)eS;
le = . N 2€ 2by Ky,
——=— =2338.., bm,—m,)=0-9" =~ = .
(2§*€3v)1/3 (x ) {e—¢ VI-gTe—T

6.27)
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The solution to (6.23) increases above the critical elongation J(7) > ¥ and diverges like

K., /(te—71)where T, — 7" « szv/3/(eSi)1/3, see figure 2. The smaller the elongationrate € < 1,
the closer to the turning point $* the pressure blowup, lime_(S. — $*)/S; o (€S; K, )*/3.

To summarize, unsteadiness of the burned gas flow which is modeled by a delay in the back
flow in § 6.3 has a drastic effect on the dynamics, more drastic than the instantaneous back-
flow in § 6.2: the flame structure is blown off as a whole in finite time when the elongation
increases slowly. A strong increase in pressure and flame temperature occurs abruptly with
a sudden shrinking of the flame thickness for an elongation slightly larger than the critical
elongation of the instantaneous back-flow model.

7. Unsteadiness of the flame structure

Due to the singularity of the flame acceleration, the quasi-steady approximation of the inner
structure of the flame on the tip is doubtful at the end of the process. The objective of this
section is to get rid of this assumption.

7.1. Unsteady inner structure of the flame

Introducing the decomposition w = w + 6w where w denotes the quasi-steady approximation
of the inner structure, a perturbation analysis of (4.13) and (4.16) is performed in the
distinguished limit (4.9)

exexl, dr, /dr = O(e), B>1, (y-1DpBeS; =0() (7.1)

retaining unsteady terms of order edn,, /dT = O(ge) in these equation and neglecting smaller
terms, namely those of order &(dx, /dr)? and £2. The first order terms are sufficient to draw
a final conclusion concerning the finite-time singularity.

7.1.1. Preheated zone (z > 0)

Anticipating that (6, — 85) o dm, /dt and %) — E(i) oc g(i)dﬂ'u /dr, the temperature ) can
be replaced by 5(1) in front of the pressure term on the right-hand side of (5.10)

a6 49w 926D (y-1)[ _- dr
>0: - - ~ [ Mz (] = ] “o (72
¢ ot m(z 0z 072 ] Y e+ -a)fe dr (7.2)
. - 56
lim 69(z,7) = (1 —¢) |1+ &% nu(r)], lim —— =0, (7.3)
Z—00 Z—00 Z

where the £2-terms have been neglected in the boundary conditions (5.11). Introducing the
decomposition

00z r) = 8" +609, m(r)=m+om, m=cm (74)

with, according to (6.6),

B i 1w,
dr q y dr’ m dr dr’
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equation (7.2) reads after subtracting 6§(i) /0t and —6m65(i) [0z = gme™"Z6m
366" _ 356" 82590‘)}
0: -m -

m

2
ot 0z 072

~ —gme " 6m (7.6)

= -1) . |d
+q |bmze ™ + 8—(7 )e_mz S
y dr
with, according to the boundary conditions (7.3),
lim 66 =0, lim ds6® /dz = O(?). (7.7)
Z—00 Z—00

Introducing the decomposition ¥ = ¥ + §Y into (4.13) using ¥ = e, —6m Y /dz =
me<6m and 0Y /0t = —m ze b dn, /d7 yields
[aéy _ 95y 9%y

— -mz — —-mz
-m - ~ —me om+mze "b
ot 0z 072 ]

dm,

lim 6Y = 0. (7.8)

Z—00

The equation for 6Z = 66 — ¢6Y is free from the term 6m(t)

Lo, |89z 05z 0%z)  (y-1) mdm
Lz U ot 0z az? el

, liméZ=0. (7.9)
Yy dr ' zow

Anticipating that 6Z is of order & dr,, /dr, neglecting terms of order & (dx,, /d7)?, the reduced
laminar flame speed 71 = e?™« + O(1/p) is treated as constant in (7.9). The unsteady term
A6Z /0t < 6Z can be neglected in front of d6Z/dz and 8?6 Z/dz* since d/dz = O(1). After
integration fz ® dz, this yields

z D1 - dnm,
z220: ﬁ62+86 :sq(y ): -z 4
0z Yy m dr
067 -1)1dn,
o sy + 02| L, =D1dm (7.10)
07 lz=0* y mdr

where the boundary conditions z = 0% : 6Y =0, 6Z = 66,(t) = 60)(z = 0, 7) have been
used. Equation (7.10) can be checked by the small frequency limit of the Fourier transform
of (7.9). Using the relations aé(l)/azL:O_ = 0 and Y|;—9- = 0 on the burned gas side, the
jump condition (3.11) takes the form

a6 a6 366"

- - = =

0z lz=0- 0z z=0* 0z lz=0- 0z

According to (7.10)-(7.11), the unsteadiness-induced modification of flame temperature 665,

0), = ), + 60,, is expressed in terms of the temperature gradient on the burned gas side of
the reaction sheet

oy

ay 357
z=0" qaz

(7.11)

z=0"

860
0z
The right-hand side of (7.12) is part of the perturbation of the flame temperature. The full

first order correction to B(6), — 1) requires to investigate the temperature in the burned-gas
flow (z < 0) for computing 366%)/9z|,—o-.

__(y-1 ldny,
2=0- y mdr’

mooy, + (7.12)

7.1.2. Burned gas z <0

For the analysis of the burned gas, one has to be back to (4.14). According to (6.1) and (6.5),
—=(0)

0 —1 = O(emn,) can be neglected in the factor of the pressure term on the right-hand side
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of (4.14)
96 oM 52 g (y —1) [0 am
<0: - - = —_— - —I([1+0 7.13
‘ [ o MO T A ] Ty [ or MM |LroEl (.13
lim G(i)(z, 7)=1, lim m(z,7)=0, (7.14)
Z——00 Z——®
where the boundary conditions (7.14) at infinity on the burned gas side is given by the

initial condition (hyperbolic problem). Neglecting £97; /0z* in the burned gas, the energy
equation (7.13)-(7.14) can be written as an entropy equation

o _0o 9 N (y=1)
<0:|z=-m—=-—5|s~0, s=[0V-"—len|, lims=1 (7.15
z [67 m(9Z azz}s s [ 5 em Z_1)r11ms ( )
Anticipating that the unsteadiness-induced disturbances are of order edrx,, /dr, the mass flux
m has been replaced by its unperturbed expression m on the left-hand side of (7.15) since
the attention is limited to the leading order. Equation (7.15) shows how the entropy which is
generated across the flame structure during the flame acceleration

sp(1) = 5(z = 0,7) = 6p(7) + 560,(7) = (v = Demu(7) ]y (7.16)

escapes the reaction zone from the hot side (m > 0). This leakage of entropy is the main
difference between a flame pushed from behind by a flow of burned gas and an adiabatic (and
impermeable) piston. The upstream boundary condition lim,_,_, s = 1 can also be viewed
as resulting from the damping of the transient variation of entropy by the heat conduction in
the (inert) burned gas. The solution to (7.15) is easily obtained using the Fourier transform
s — 1 = e'®75,(z) and the two relations (6.4) 6, — 1 = &(1 — ¢)(y — 1)m,/y and (7.16),
sp—1=00p —qly — Dm, /[y

72<0: 3§,()= [6% - qy — eﬁu} expk z, (7.17)
- 1 j 2

k) =3 [—m+\/m2+4l‘w] ~ 2 (7.18)
m m

to give on the reaction sheet, using 95,,/9z|;=0. — k[66), — q(y — 1/y)e#,] and, in the low
frequency limit, k — (1/m)d/dr,

ds 966" (y—1) dm
_ s

1dé6, (y-1D1 dm,
- = x = - —& .
0z lz=0- 0z 1z=0- 9 v 0z m

=0-  m dr i vy m drt

(7.19)

This low frequency result corresponds to the undamped transport by the entropy wave
ds/0t —mds/dz =~ 0. The conduction-induced damping rate is of next order in the limit
of small frequency. This is similar to freely propagating acoustic waves in planar geometry.
In the limit ¢ <« 1, the pressure gradient in the burned gas is negligible, the dominant
effect being through the increase rate in pressure (time derivative). To avoid any cumulative
effect that could induce acoustical instabilities reviewed in Clavin & Searby (2016), the ends
of the tube have been assumed sufficiently far away from the flame. Therefore, neglecting
£0m/0z|;=0-, equation (7.19) reads

d 669 _1.dse, (y—l)lgdzru
0z Lo ~m dr 1Ty mar

burned gas: (7.20)
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7.1.3. Unsteady modification to the flame temperature.
Introducing (7.20) into (7.12) leads

l dob -1 1 d
7660 + b g, DL dmu (7.21)
m dr 0% m dr’

To first order, the time derivative on the left-hand side of (7.21) is negligible,

“D1 d -1 d
50, v 22D L dm 5 07D b e S (7.22)
y m? dr y dr

as it can be checked in the low frequency limit of the Fourier transform of (7.21),

) )1 1 1
50, ~ 20 DL 10 a0,V g, 1 - —iw+0w?)]. (7.23)
m m

Y ml+iw/m? 2

Thanks to the minus sign in front of iw in the bracket, equation (7.23) describes a causal
response of the flame temperature to the time derivative of pressure. However, the causality
condition between the flame temperature 0,(7) = 6,(7) + 60,(7) and the pressure m,(7) is
inverted,

-1 -1 dm,
0y(0) = 1 + &1 — )Lt a0 + 26 ¢ L= exp[-2 b7, ] d” &2), (1.24)
Y T
B0y —1)/2 = b[]‘l’u(T) + (Atg)dm,(7)/dT + ] ~ b, (T + Atg), (7.25)
u 2qg _
B2 o bmu@) |1 4 (A7 )bd”d @] A= l—qe b7 5 0. (7.26)
T -q

where, according to (6.3), b = Be(1 — g)(y — 1)/2y = O(1) and the T-variation of m,, in the
coefficient e™2? 7« in front of drm, /d7 on the right-hand side of (7.24) is negligible since it
introduces a correction of following order. Focusing the attention near the turning point, the
time delay is quasi-constant

2 *
Arg > - 4_o-2bm — 0(1). (7.27)
-q

Equations (7.24)-(7.26) show that the flame temperature and the reaction rate at time 7 are
related to the pressure at a later time 7 + Atg, Aty > 0. As we shall see later, such a non
causal response promotes an instability of the physical branch of the C-shaped curve "flame
velocity versus elongation".

7.1.4. Unsteady modification to the mass flux.

Anticipating that 8Y is of order edr, /dr < 1, the unsteady term on the left-hand side of
(7.8) can be neglected to first order

_ o5y 0%y  _ - — g, dmy,
—m 5 o ~ —me "om+mze b T (7.28)
Integration with the two boundary conditions z = 0 : 6Y = 0 and lim,_,,, 6Y = 0 yields
T dry,
5Y = —e 2 Zom + |e L 4 Ze e | h ok, (7.29)
2 m dr
doYy 1 dny,
e T ey (7.30)
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According to the jump (3.10)-(3.11), the gradients on the flame sheet take the form

EY0) b B 560 or. B
- = —geb™ (1 + £50, + ... ~ —ge’ ™ =60 7.31
57 locor qe + 500+ ... 77 locor e 506 (7.31)
66" Y
= g— +0(1/p8). 7.32
07 lz=0+ q 07 lz=0+ (/B ( :

After simplification by ¢, equations (7.31) and (7.32) read

asY
—etmBsg, = 2F

5 3 |oge T OB, (7.33)

Introducing (7.25) into (7.33) and using (7.30) leads to the unsteady modification to the mass
flux across the reaction sheet defining the instantaneous laminar flame velocity relative to
the burned gas Up(7)

dm, N 1 dn,

1 d
e L 1+q, dr,
m

om ~ e P b

bn
—e”™ ATy b .
© 0 dr 1-¢g dr

(7.34)

The modification of mass flux can be used to compute the variation of the speed of the
reaction sheet Up(f) when the back-flow uj(7) and the flame temperature are known.

7.2. Dynamical effect of the unsteadiness of the inner structure

The dynamics is governed by the ODE for 7, (7) when the expressions of v, and S(6p — 1)
in terms of &, are introduced into the master equation (5.18). The main difference with the
previous analysis of § 6 is that the unsteady flame temperature on the right-hand side of
(5.18) is no longer the temperature of the unburned gas simply shifted by the heat release as
in a steady laminar flame.

7.2.1. Instantaneous back-flow model

In a first step, assume for simplicity that the lateral flame (quasi-parallel to the lateral wall) are
quasi-steady, the unsteadiness being limited to the flame structure on the tip of the elongated
front. Neglecting heat loss at the wall, the temperature in the tongues of unburned gas
engulfed near the wall is assumed to be the same as in the flame on the tip of the elongated
front, this temperature being modified by the longitudinal compression wave propagating
ahead of the tip. This is an accurate approximation when the elongation is larger than the
acoustic wavelength. Then, the instantaneous back-flow (3.4) reads

vp(1)/Si = (1 + er)m(r) = (1 + er)e”™ V) x ™) 4 erebmu 4 (7.35)
Introducing (7.26) and (7.35) into (5.18) yields

- qﬂu(r) ~ —qetmu(®) _ g=bm, 2q b dm, (1)

7 l-g¢g dr

Siebﬂ“(‘r) + €T Sieb”'j —|S;i+qg+

which can be written

[Si(1 + e7) + gl eP™ @ — |S; + g +
1-g¢g dr

= :
y qnu(r)l - _ebm 24 (D)
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and, using the notation (6.10)-(6.11),

W i )
Cexpd =g = /b= Ky, whete Ry =eS; e 4 50  (736)
-q
-7 (9 -09)? do -
(§ é’*g ) + ( 2 ) = —gg@, where & = bKpy. (7.37)

The difference with (6.22)-(6.23) is the sign on the right-hand side. The negative sign
obtained for the instantaneous back-flow shows that, according to the trajectories in the phase
space of (7.36)-(7.37), the unsteadiness of the inner flame structure promotes an instability
of the physical branch 5_((,“ ) of the quasi-steady solutions discussed in § 6.2.1. This would
be unfortunate for the study of the DDT when the elongation increases since the physical
branch of quasi-steady solutions could not be followed up to the vicinity of the turning point.
Hopefully, the delay in the back-flow restores the stability as shown now.

7.2.2. Delayed back-flow model

Still assuming that the lateral flames are in steady state, the non-dimensional expression of
the delayed back-flow is the same as (6.19). Introducing (7.26) and (6.19) into the master
equation (5.18) yields a non-dimensional ODE similar to (6.23)

(C-¢), @ -0 _ _db

Iz 5 EE, where € = I;(I?W - Eg), (7.38)

so that the phenomenology is the same as in § 6.3.2 provided K,, > Ky which is typically
the case, see the text below (7.41).

7.2.3. Unsteady structure of the lateral flames

If the inner flame structure of the lateral flames is not in steady state, a delay is involved in the
radial flow of burned gas U}, feeding the longitudinal back-flow on the axis of the elongated
flame front. The unsteady laminar flame velocity U, of the lateral flames is computed with
the first order disturbance of the mass rate across the reaction sheet m(r) in (7.34). The
additional delay in the back-flow pushing the flame tip takes the form

bt b L +qbd7ru

Vp/Si ~ b 4 e el 4 e7bmu
1-¢q dr

(7.39)
Introducing (7.26) and (7.39) into the master equation (5.18) yields an ordinary differential
equation for ¢ = bm,,, namely for the pressure and/or the flame temperature similar to (7.38)
but involving an additional destabilizing term K¢
- _ - - 1+
e=b(Ry-Ro—Ry), Ry =eStetm l—q. (7.40)
—q

The same equation as (6.23) is obtained in which K,, is replaced by K,, — (Kg + Ky) > 0.
The same finite-time singularity as that described at the end of § 6.3.2 is obtained, provided
the delays satisfy the following condition

. _ . L/at Ry [ 1 2¢q 1+g¢g
K,>Kyg+Kr = >e M | ——— ¢ —— (7.41)

v ¢ ! dret/ Uret Si1-qg 1-g¢
which is verified for a length of the finger-like flame sufficiently elongated compared to

the flame thickness L/dr > e 2bm, /e. This is already the case for & = 1072 and a flame

elongation larger than a cell size of few centimetres (tube diameter).
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8. Discussion of the results and conclusion

Starting with a small growth rate of elongation from a self-similar solution (quasi-steady
solution for a constant elongation), the flame structure is suddenly blown off as a whole in
finite time. This occurs for an elongation slightly larger than the critical elongation S* of the
quasi-steady solutions (burned gas flow and flame structure in steady state). In contrast to
the solutions retaining only unsteadiness of the compression waves in the unburned gas, for
which the singularity concerns the flow gradients only, a violent increase in pressure and flame
temperature develops suddenly while the flame thickness shrinks to zero. The corresponding
finite-time singularity is characterized by a dynamical saddle node bifurcation and develops
independently of the precise expression of the delays involved in the unsteady flows provided
the condition (7.41) is satisfied.

The finite time singularity is a consequence of a nonlinear thermal feedback-loop between
the inner structure of the flame and the compressional heating by the downstream-running
compression waves generated in the unburned gas by the accelerating flame acting as a semi-
transparent piston. The acceleration is produced by the elongation-induced increase of the
self-generated flow. The singularity appears systematically in the vicinity of the turning point
whatever the elongation rate, as small as it may be. This is because the flame acceleration
of the quasi-steady solution diverges at the turning point. The pre-conditioned state of
unburned gas just ahead of the flame and just before the abrupt transition is characterized by
a universal critical Mach number of the induced flow of unburned gas which is close to unity,
in agreements with experiments and direct numerical simulations. This critical condition is
all the easier to achieve in very energetic mixtures for an elongation which is not much larger
than the tube radius. This could well be the case for the cellular structure of Rayleigh-Taylor
unstable flame fronts of very energetic mixtures as those involved in supernovae SNla.

The DDT mechanism is related to the finite-time singularity (6.26) of the solution to
(6.25). This equation which is the normal form of a dynamical saddle node bifurcation has
been obtained here by an expansion around the turning point. Therefore, the asymptotic
behavior (6.27) is not guaranteed for the exact solution of equations (4.11)-(4.14) satisfying
the boundary conditions (3.7)-(3.13). Nevertheless, the onset of a finite time singularity is not
doubtful because unsteady terms of higher order than in (6.25) reinforce the singularity. This
is illustrated by the divergence of the acceleration d¢/dr o« 1/V7* — 7 in (6.15) becoming
d¥/dr « 1/(t. — 7)* in (6.26) when unsteadinesses are taken into account. Moreover the
singularity is even stronger when unsteady terms of following order are retained. For example,
the divergence is sharper if the term dy’/d¢’ in (6.25) is replaced by a second order unsteady
term d?y’/dz"? (first Painlevé transcendent), di#/dr o 1/(t. — 7)°. The numerical analyses of
the one-dimensional problem (2.1)-(2.4) for the back flow models (3.4)-(3.7) to be published
soon by Hernandez-Sanchez and Denet confirm the finite time singularity.

The strong shock generated by the pressure runaway should lead quasi-instantaneously
to the DDT. However, molecular dissipation and nonlinearities of the flow are essential
in this ultimate phase of DDT. As for the formation of inert shock waves, microscopic
length and time scales are involved (mean free path and inverse of the elastic collision
frequency). Consequently this ultimate phase cannot be accurately described by macroscopic
equations (2.1)-(2.4). In particular, the maximum shock intensity of the strong overdriven
detonation appearing suddenly at the transition requires to solve the Boltzmann equation. The
transverse extension of the explosion center should also play a role in that respect. However,
once the overdriven detonation is formed, the subsequent relaxation toward the CJ regime
(controlled by the rarefaction wave in the burned gas flow) can be described successfully
by the macroscopic equations using the Rankine-Hugoniot jump conditions across the lead
shock treated as a discontinuity since the induction length and the thickness of the exothermic
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reaction zone behind the shock are macroscopic lengths. It is worth stressing once again
that the singularity of the flame structure results from the generic divergence of the flame
acceleration at the turning point, occurring for any growth rate of elongation (or of flame
wrinkling) as small as it may be.

To summarize, the DDT mechanism presented in this article concerns a one-dimensional
dynamics of reacting flow characterized by a rate of heat release highly sensitive to the
temperature. Although the origin of the self-induced flow is multidimensional (increase in
surface area of the elongated or wrinkled flame front), the DDT onset is a local process of
a one-dimensional nature. This mechanism of transition concerns also turbulent wrinkled
flames and/or unconfined cellular flames, the flame brush being considered as a chaotic array
of elongated flames the tip of which is accelerated by the self-induced flow associated with
the increase in surface area of the flame. In that sense, the DDT mechanism described here
could have a certain degree of universality. This should be confirmed by direct numerical
simulations keeping in mind the present analysis to analyze the results.
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Appendix A. Linear dynamics of the flame for a pressure fluctuation

The objective of this appendix is to study the stability of the two branches of steady state
solutions obtained in § 6.1. To this end, it is worth considering first the response of a
freely propagating planar flame to a uniform pressure fluctuation without limitation on the
characteristic time of the pressure fluctuation. The attention is limited to the ZFK flame
model in the limit of large activation energy 8 > 1.

A.1. Response to a pressure fluctuation
A.l1.1. Formulation

Introducing the notation f (1) = Be[(y —1)/v]m, (1) for the reduced pressure p/pres = 1 + &1,
and assuming B¢ of order unity in the limit 8 > 1, consider the solution to (4.13) and (4.16)

oY ay 8%y

[E 0T Z_} -0 Hem et A
40 0 0%0] o0df

[E _m(T)a_z - a_ZZ} T Bdr (A2

satisfying the boundary conditions (3.9)-(3.11) on the reaction zone and

7—o0: Y=0, %=0, 9=9u(T)=(1—C])+Mf(T) (A3)
0z B

in the unburned gas. The function f(7) = f + 6 f() is a given function of order unity while
the flame velocity m(7) and the flame temperature 6(7) are unknown functions of order
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unity. According to the asymptotic method for large 3, one introduces the decomposition,

9 9
0 =00+ —, bl

n
Y=Y+ —,

m
Op =1+ —, m=mgy+ — (A4)
B B B B
and, according to (3.10)-(3.11),
96, 06,1 06,1 oY1
- — 0p1/2), e Ll = —g— ) A5
77 |z qexp (0p1/2) 32 o = 32 lcor 32 oo (AS)

In the theory of flame, the instantaneous thermal flux on the hot side 96/9z|,—p- to be
introduced into the second jump condition (A 5) is given by the solution for the burned gas
flow (z < 0, Y = 1) which is assumed adiabatic and uniform sufficiently far away from the
flame. Equation (A 2) should then also be solved on the burned gas side for the boundary

condition at infinity

7 — —00: 9=1+%f(7’).

(A6)

In the linear response problem one consider a small fluctuation of the pressure 6 f(7) and

look for the linear solution §6(z, T) and 6Y(z, T)

f=f+6f, 0=0+60, y=Yy+6Y. (A7)
The unperturbed equations are
Y _oYy o9*Y
— —m—-—|=0, Y(z, 0, 1 A8
L e () elo, 1] (A8)
90 _06 066
— _m—=—| = A9
ot m@z a7? (&9)
— - - 1-—qg)—
1> ow:Y=1, =80, GuE(l—q)+(,‘Tq)f, (A 10)
and the unperturbed solution is the ZFK solution m = e(l-a)f /2
. O _ .Mz ] _ a-mz. . o _ (I-9)= Vv _
z>0: O=qge™+6, Y= z<0: 6=1+ 7 f, Y=1 (All)
the unperturbed flame temperature being z =0: 6 = 6, = 1 + (1 — ¢)f/B.
A.1.2. Solution in the preheated zone
The linear equations in the preheated zone read
sy _asY 9%6Y -
>0: -m - =—-6mme ™%, Al2
¢ [ or "oz ik ] mme (A12)
460 _ 056 956 _ . 6(z)dsf
g _ | =45 mzoy e A1l3
[GT "oz T oz } qomme B dr (A13)
1- 66
o is9= " Dsr sy o zzO:éGz%, 5Y = 0. (A 14)

where the fluctuations of the flame temperature 8(6), — 6) = 6p1(7) and of the mass flux
om(t) (flame velocity) are unknown. To leading order equations in the asymptotic analysis
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for B > 1 the linear equations are

A6Yy _98Yy 0%6Y, =
>0: - - =-6 mz Al5
V4 [67 m PR pys) mome ( )
966y _986y 9?66, =
_ _ - mz A6
[ or "oz ik qomome (& 16)

72— 00:00p=0, 06Y=0; 2=0:00p=0, 6¥p=0. (A17)

Using the Fourier transform §X = ¢/“7 X and the notation «. = m [—1 +4/1 +4diw /mz] /2,
Re(k+) > 0, Re(k-) < 0 the solution in the preheated zone takes the form
e M _ okeZ e MZ _ ok-2

- m g, (A 18
K_—K+[ m+ Ky m+ k- ]qmmo ( )

7220 Op=A_e““+ A+

According to the boundary condition in the unburned gas, A, = [(~K_ — k) + k)| g g
to eliminate the divergence at z — oo and A_ = 6y(0) — A, with 85(0) = 0, so that

e Mz _ eK2 déo

dz

1
T G+ )+ ) -

=0+  m+k*

q¥o = 6o gmmg  (A19)

with, according to the first jump condition in (A 5) dfy/dz|,—o+ = —qgmy1 /2

_ @@,1. (A20)

Therefore the solution requires the 1/8-modification to the flame temperature. The linear
equations at the first order in the 1/ expansion are

asy, _osy;  9*6n Y,

- - = 6mj —, A2l
[ or " 0z 072 } " 0z ( )
960, _086, 0”66, A6 . dsf

- - =6 Mz 4 (1 -q)] ==, A22
[ 70 "5 702 ] m=- +lge™ + (1 -9l (A22)

2> 00:00; =(1-q)sf, Y1 =0, z=0:060; =0, Y =0. (A23)

which can also be written in the form after having introduced Z; = 60; — (1 — ¢)6 f — qgé%1

8Z, _07Z1 9*7Z; e dof

—_——-m— - = mz__- A24

or " 0z 072 a° dr”’ ( )
z—>oo:21:0; z=0:21:9b1—(1—q)6f, (A25)

In Fourier transform Z; = e/“7Z|(z), 6 f(1) = /7 f

d*z dZ g _
w2t w7 = —ge ™ iwf (A 26)
dz? dz
the solution is
~ 1 e M2 _gkeZ  @TMZ _ oKZ ~
z220: Z;=B_e“*+ B.e* - — - — gio f, (A27)
K- — Ky m+ K. m+ k-
—qiwf

B, = B =0y —(1-q)f - By (A28)

(k- = k)M + K1)
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leading to

e ML — ekt

Zy =[0p1 = (1 —g)f]e"* - TnT ) K_)qiwf (A29)

dz, d@, - q¥1) 5 . qiof
—_— =—" =k_[0p1 — (1 - . A30
az Lzo- & o = [0p1 —(1 =) f]+ = T (A 30)
The solution is obtained by the second jump condition in (A 5),
dé iw
TRy P LA (A31)
Z 1z=0 K+
For the flame problem this requires to solve the burned gas flow (z < 0)
A.1.3. Flame response
In the burned gas equation(A 22) reduces to
460, _066, 0%660,] df d*6, _dé, -
<0: - - == —_— — —iwf = - A32
¢ [ or oz 9z? & dz? T (why = ~iwf(A32)
z—)—oo:9~1=f; z2=0:0; =6p. (A33)
The solution is
Y I dé '
2<0: 01— f=(p1 - f)e"s, e = k[Op1 — f] (A34)
Z l1z=0
to give using (A 31)
) iwf
(ke = k)01 = f1 = g f + 9= (A35)
Gy = fr—L |+ 2 |7 (A 36)
Ky — K- m+ Ky
— 1+ 1+ %2 —
~ ~ e 2 =
Op1 = f + CI/’". 3 5 m+ fm —iw| f (A37)
1+ 3w 1+ J1+ “L—‘;‘
m
1im09~b1=f+q(1—2%)[ (1+ﬂ)+—]f+0(w ) (A38)
w—> m
~ w ~
=(1—q)f+2q_—2f+.. (A 39)
m
corresponding to the quasi-steady solution (7.24) obtained by assuming a slow dynamics,
2g dof(T
G (5) = (1 - o (r) + 24 LT (A40)

According to (A 37), there is no effect when the heat release is zero (no gas expansion)
lim,_,o Gp1 = f as it should be. The flame velocity is then obtained from (A 20) g =
(1 + k4)8p1 /2 to give in the small frequency limit lim,, g 179 = [(1 - q)/2][f + (iw/m) f(1 +
q)/(1 — q)] in agreement with (7.34). Equations (A 20) and (A 37) are in agreement with
(4.7) in Clavin et al. (1990).
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A.1.4. Response of the semi-transparent piston model

In this model the gas velocity uj is imposed at the exit of the reaction zone with a zero
gradient of temperature (adiabatic semi transparent piston). Using the ZFK flame model this
is equivalent to impose a zero thermal flux on the burned gas side of the reaction sheet so that
the left-hand side of (A 31) is zero and the disturbance of the flame temperature is simply

ém:(l—q)f—%=(l—q)f+q:;’f (A41)
lim 0,1 = (1-q)f + Liof +0w?) (A42)
w— m

It is worth noticing that, according to (A 40)-(A 42) the flame temperature and also the mass
flux (A 20) fluctuate in advance of the pressure fluctuation at low frequency.

A.2. Back flow induced acceleration

The flame temperature 6, and the flows of burned and unburned gas on both sides of a ZFK
flame (v and v, respectively) are related by the relation

Vp —Vy, = —qeﬁ(g”_l)/z. (A43)

According to the developments in § 5.3, this relation is valid even for an unsteady inner
structure of the flame as soon as the flame Mach number is negligibly small £ < 1. When
the burned gas flow at the exit of the flame is accelerated from a steady state (labelled by the
subscript i) the upstream-running compression wave in the unburned gas makes the increase
in gas temperature and in flow just ahead of the flame related linearly to the pressure on the
flame p/p; — 1 = en, (1)

N

O=D 0 pemae). val®) = (S + )+ ) (A

Ou(7) = (1 —¢) +

where the initial conditions 7 =0 : 7, =0, 0, = (1 —¢g) and v, = S; + ¢ have been used in
the first equation. The first relation in (A 44) is the adiabatic compression formula while the
second one comes from the upstream running compression wave.

A.3. Linear stability of the quasi-steady branches
Using the instantaneous back-flow model (3.4), the master equation (5.18) takes the form

N

Sm—(S; +q+uf) =—qelPD2 = ————
eply - 1)

=0(1). (A45)

A.3.1. The two branches of quasi-steady solutions

When the inner structure of the flame is assumed in quasi-steady state, the flame temperature
is B(0p — 1) = (1 — q)f and the laminar flame speed reads m = eP=1/2 Therefore the

quasi-steady solution ? corresponding to an elongation S is solution to
ST~ (S; + q + uf) = —qePOr~D12, (A 46)
m=ePO-D2  p@, —1)=(1-¢q)f, m=el 2, (A47)
For a flame extension S given, the pressure f is solution of a transcendental equation

(S +q)e D12 _ (S, + g + uf) = 0. (A 48)
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This equation has two steady flame _solutions_?_(S) and f,(S) for S < $* and no solution
for § > §*, §* being a turning point f_(S*) = f,(S*). The critical condition (labelled by the
superscript *) corresponds to the maximum of the curve S(f), dS/df|s=s+ =0

(S + @ P21 —q)2-p=0 = (Si+q+uf)=2u/(1-q). (A49)
Eliminating S; + ¢ from (A 48) and (A 49) yields

1- 1-
(s+am s = LG T (A50)
An expansion of S(f) around ?* limited to the quadratic term yields
-5 x-S PLG TR p=pell- Dy (ASD)

For a fixed elongation S, Si < 8§ < 8%, according to (A 45)-(A 47), the linear perturbation
associated with a pressure disturbance ¢ f satisfies the linear equation

N
eBly - 1)

where the disturbance of the flame temperature 065 is related to ¢ f by the flame response
to pressure fluctuations.

linearisation for S fixed: Sém—uédf = —qgm 60p1/2, u= (A52)

A.3.2. Instability of the semi-transparent piston for m = V=912 (model used by Raiil)

The attention is focused on the unsteadiness on the tip in this section. Assuming that the inner
structure of the lateral flames is quasi-steady, the radial mass flux leaving the flame skirt
is given by the Zeldovich analysis for a flame temperature simply shifted by the adiabatic
compression of the unburned gas. The burned gas flow velocity which is imposed on the
reaction sheet by the semi-transparent piston is Se'!~9//2 = §m [1+(1 —¢) 6 f /2] in the linear
approximation m = m + ém, ém = (1 — q)mé f /2. According to (A 52), a linear perturbann
around any solution corresponding to S < S* (there are two: f_and f 4 fo< f <f +)
reads

linearization for S fixed : Sm (1 —¢q)d0f/2 - udf =—-qmé0p1/2, m= e(l_q)?/z.(A53)

into which the linear relation between the unsteady flame temperature on the tip 6651 and
¢ f should be introduced to determine the stability of the solution. For the semi-transparent
piston model, 665, is given in terms of 6 f by (A 41). Looking for linear solutions in the form
0f =e?7, the dispersion relation controlling the stability of the flow for a fixed elongation
S is, according to (A 41) and (A 53),

e
S(1 - q/2 - = —q(1 - )2 - gor U (A54)
(1 +4/1 +4o-/m2)
- B
(S+q)(1 — qm/2 - u=-2¢"m o /m i = e1=f/12 (A55)

5
(1 +4/1 +4a/m2)

Accordlng to (A 49), the left-hand side of (A 55) is zero at the critical elongation (S = S§¥,
f f ) so that the linear growth rate is zero at the critical condition o |s—g+ = 0 as it should
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be for the usual exchange of stability at a turning point. Moreover, according to the derivative
of (A 48) with respect to f,

ds = 70 (1—
ﬁe(l—q)fﬂ P (S+ q)e(l—q)fﬂ% =0 (A56)

the physical branch of solutions f_(S) which is characterized by dS/df > 0 corresponds to
(S +¢q)1 —¢q)m/2 — p < 0, in agreement with (A 50) for f< 7* Therefore, according to
(A 55), the physical branch of solutions f_(S) is unstable o= > 0.

A.3.3. Instability of the instantaneous back-flow model of flame
According to (A 20), equation (A 52) reads

S (7 + kT)50p1 /2 — S f = —qin 60p1 /2, (A57)
(S + Q)60p1 /2 — S f = —Sk* 601 /2 (A58)

where 06j is given in (A 37) which can be written (iw — o) using the notation s = 40 /ﬁz

~ ~ qgl-1+Vl+s s ~
O0p1 = (1 - =
o1 = q)f+2( V1+s +\/1+s(1+\/1+s))f
~ S ~
=(1- A59
G e ) (459
Then, equation (A 58) yields
—(1-49) —q s
s Sk EA PG !
(S+am— =t +q)m2\/1+s(1+\/1+s)
m s
-S—(V1 - D[ - A 60
4( re- Dl Q)+q\/1+s(l+\/1+s) (A60)
~ - (S+q)m2+sﬂ(1—q)] 2 o) (A61)
47773 —

The left-hand side of (A 61) is zero at the critical elongation, see below (A 56). Then, for the
same reason as before, the physical branch of solutions is unstable o= > 0.
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