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Note: These appendices are mostly a rewriting of Appendix A and B in the context of initial

conditions. The arguments provided to prove Lemma 4.3 and Theorem 4.4 are very similar to those

provided to prove Lemma 3.3 and Theorem 3.4, respectively. We will highlight the differences,

which are mostly constants, in blue.

1 PROOF OF LEMMA 4.3
Again, we recall the definition of stability of an approximation method:

Definition 1.1 (Method stability). We say that the approximation method determined by Equa-

tion (8) is stable if there exists a constant K > 0, called stability constant, such that, for any

two sequences (𝑦𝑘 )0≤𝑘≤ 𝐽 and (𝑦𝑘 )0≤𝑘≤ 𝐽 defined as 𝑦𝑘+1 = 𝑦𝑘 + ℎ Φ(𝜏𝑘 , 𝑦𝑘 , ℎ) and 𝑦𝑘+1 = 𝑦𝑘 +
ℎ Φ(𝜏𝑘 , 𝑦𝑘 , ℎ) + 𝜂𝑘 respectively, (0 ≤ 𝑘 < 𝐽 ), with 𝜂𝑘 ∈ R, we have

max

0≤𝑘≤ 𝐽
∥𝑦𝑘 − 𝑦𝑘 ∥R𝑛 ≤ K

(
∥𝑦0 − 𝑦0∥R𝑛 +

∑︁
0≤𝑘≤ 𝐽

|𝜂𝑘 |
)
. (1)

Note that this stability is relative to the method: it does not imply stability of the studied system

itself.

It is well-known that if Φ is 𝜅-Lipschitz w.r.t. 𝑦, that is if ∀𝑡 ∈ [0,𝑇 ], ∀𝑦1, 𝑦2 ∈ R, and ∀ℎ ∈ R,
∥Φ(𝑡, 𝑦1, ℎ) − Φ(𝑡, 𝑦2, ℎ)∥R𝑛 ≤ 𝜅 ∥𝑦1 − 𝑦2∥R𝑛 , then stability is ensured (see for instance [1] or [2]).

Now, we fix 𝑥0, 𝑥0 ∈ B𝑥∗
0

, and we consider the approximate solutions (𝑦𝑥0
𝑘
)0≤𝑘≤ 𝐽 , (𝑦𝑥0𝑘 )0≤𝑘≤ 𝐽 to

Equation (22) relative to 𝑥0 and 𝑥0{
𝑦
𝑥0
0

= 𝑥0,

𝑦
𝑥0
𝑘+1 = 𝑦𝑘 + ℎ Φ(𝑡𝑘 , 𝑦𝑘 , ℎ)

,

{
𝑦
𝑥0
0

= 𝑥0,

𝑦
𝑥0
𝑘+1 = 𝑦

𝑥0
𝑘

+ ℎ Φ(𝑡𝑘 , 𝑦𝑥0𝑘 , ℎ).
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We recall that the exact solutions to Equation (22) relative to 𝑥0 and 𝑥0 are denoted 𝑥
𝑥0

and 𝑥𝑥0

respectively. For 𝑥0 ∈ B𝑥∗
0

and 0 ≤ 𝑘 ≤ 𝐽 , we adapt the consistency error defined in Equation (36)

to the initial condition:

𝜀ℎ,𝑘 (𝑥0) = ∥𝑥𝑥0 (𝜏𝑘 ) − 𝑦𝑥0 (𝜏𝑘 )∥R𝑛 (2)

The consistency errors satisfy 𝜀ℎ (𝑥0) = max0≤𝑘≤ 𝐽 𝜀ℎ,𝑘 (𝑥0), where 𝜀ℎ (𝑥0) is the global approxima-

tion error (defined in Equation (26)). The proof of Lemma 4.3 can be derived from the following

theorem:

Theorem 1.2. Assume that the function Φ defined in Equation (8) is 𝜅1-Lipschitz w.r.t. 𝑦. Then, the
approximation method is stable w.r.t. the consistency error, i.e. there exists K > 0 such that

∀𝑥0, 𝑥0 ∈ B𝑥∗
0

, max

𝑂≤𝑘≤ 𝐽

��𝜀ℎ,𝑘 (𝑥0) − 𝜀ℎ,𝑘 (𝑥0)
�� ≤ K ∥𝑥0 − 𝑥0∥R𝑛 .

Proof. By assumption, Φ is 𝜅1-Lipschitz w.r.t. 𝑦, so we have, ∀0 ≤ 𝑘 ≤ 𝐽 ,


Φ(𝑡𝑘 , 𝑦𝑥0𝑘 , ℎ) − Φ(𝑡𝑘 , 𝑦𝑥0𝑘 , ℎ)




R𝑛

≤ 𝜅1




𝑦𝑥0
𝑘

− 𝑦
𝑥0
𝑘





R𝑛

It follows that


𝑦𝑥0
𝑘+1 − 𝑦

𝑥0
𝑘+1





R𝑛

≤



𝑦𝑥0

𝑘
− 𝑦

𝑥0
𝑘





R𝑛

+ ℎ



Φ(𝑡𝑘 , 𝑦𝑥0𝑘 , ℎ) − Φ(𝑡𝑘 , 𝑦𝑥0𝑘 , ℎ)





R𝑛

≤



𝑦𝑥0

𝑘
− 𝑦

𝑥0
𝑘





R𝑛

+ ℎ𝜅1



𝑦𝑥0

𝑘
− 𝑦

𝑥0
𝑘





R𝑛

≤ (1 + ℎ𝜅1)



𝑦𝑥0

𝑘
− 𝑦

𝑥0
𝑘





R𝑛

≤ (1 + ℎ𝜅1)𝑘+1



𝑦𝑥0

0
− 𝑦

𝑥0
0





R𝑛
, by immediate recursion

This leads to

max

0≤𝑘≤ 𝐽




𝑦𝑥0
𝑘

− 𝑦
𝑥0
𝑘





R𝑛

≤ (1 + ℎ𝜅1) 𝐽



𝑦𝑥0

0
− 𝑦

𝑥0
0





R𝑛

(3)

Further, it is proved in [2] that if Φ is Lipschitz continuous w.r.t. the initial condition 𝑥0, then the

exact solution 𝑥𝑥0 is also Lipschitz continuous w.r.t. 𝑥0, that is, there exists 𝜅2 > 0 such that

∀𝑥0, 𝑥0 ∈ B𝑥∗
0

,∀𝑇1 ≤ 𝑡 ≤ 𝑇2,




𝑥𝑥0 (𝑡) − 𝑥𝑥0 (𝑡)




R𝑛

≤ 𝜅2∥𝑥0 − 𝑥0∥R𝑛 (4)

Thus, we have��𝜀ℎ,𝑘 (𝑥0) − 𝜀ℎ,𝑘 (𝑥0)
�� ≤ 


𝑥𝑥0 (𝜏𝑘 ) − 𝑦𝑥0 (𝜏𝑘 ) − 𝑥𝑥0 (𝜏𝑘 ) − 𝑦𝑥0 (𝜏𝑘 )





R𝑛

≤



𝑥𝑥0 (𝜏𝑘 ) − 𝑥𝑥0 (𝜏𝑘 )





R𝑛

+



𝑦𝑥0 (𝜏𝑘 ) − 𝑦𝑥0 (𝜏𝑘 )





R𝑛

≤ K∥𝑥0 − 𝑥0∥R𝑛 ,

where K = (1 + 𝜅1) 𝐽 + 𝜅2, which completes the proof for Equation (1.2). □

It remains to show that Theorem 1.2 implies Lemma 4.3.

Proof of Lemma 4.3. Let 𝜀 > 0, then (ℎ𝑖 )𝑖≥0 be a sequence of discretization steps such that

lim𝑖→∞ = 0. Since the approximation method given by Equation (8) is assumed to be convergent,

each function 𝜀ℎ𝑖 (·) defined in Equation (26) is pointwise convergent to 0. Furthermore, we recall

that Φ is Lipschitz continuous w.r.t. the initial condition 𝑥0 ∈ B𝑥∗
0

. Hence, Theorem 1.2 implies that

the functions

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 are also Lipschitz continuous, with uniform Lipschitz constant K :��𝜀ℎ𝑖 (𝑥0) − 𝜀ℎ𝑖 (𝑥0)

�� ≤ K∥𝑥0 − 𝑥0∥R𝑛 , ∀𝑥0, 𝑥0 ∈ B𝑥∗
0

, ∀𝑖 ∈ N.
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Consequently, the function

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 are uniformly equicontinuous. Then, Arzelà-Ascoli Theo-

rem [3] implies that the sequence

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 converges uniformly to 0 on B𝑥∗

0

: there exists 𝑖∗ ∈ N
such that

𝜀ℎ𝑖 (𝑥0) < 𝜀,∀𝑖 ≥ 𝑖∗,∀𝑥0 ∈ B𝑥∗
0

.

and Lemma 4.3 is proved. □

2 PROOF OF THEOREM 4.4
First step. We begin the proof of Theorem 4.4 by showing how to compute an estimator 𝑝𝜀− of

the probability 𝑝𝜀− defined in Equation (28).

Let (𝑥0,𝑖 )𝑖∈N be a sequence of values in the ball B𝑥∗
0

. We write 𝐵𝑖 the random variable correspond-

ing to the test “Γ𝜀− (𝑥0,𝑖 ) holds”: all the 𝐵𝑖 are i.i.d. variables and follow a Bernoulli’s law of parameter

𝑝𝜀− . We write 𝑏𝑖 the evaluation of 𝐵𝑖 . We introduce the transfer function 𝑔− : B𝑥∗
0

→ {0, 1} corre-
sponding to the test regarding Γ𝜀− (𝑥0,𝑖 ), defined by 𝑔− (𝑥0,𝑖 ) = 1 if Γ𝜀− (𝑥0,𝑖 ) holds, 0 otherwise. Next,
we consider

𝐺 = E(𝑔− (𝑋 )) =
∫
B𝑥∗

0

𝑔− (𝑠) 𝑓𝑋 (𝑠)d𝑠, (5)

where 𝑓𝑋 is defined by a uniform distribution, that is, 𝑓𝑋 (𝑠) = 1���B𝑥∗
0

��� , 𝑠∈ B𝑥∗
0

. We produce a sample

(𝑥0,1, 𝑥0,2, . . . , 𝑥0,𝑁 ) of the variable 𝑋 in B𝑥∗
0

, and use it to compute the Monte-Carlo estimator 𝐺 .

By virtue of the Law of Large Numbers, the sample mean satisfies: 𝑔𝑁 = 1

𝑁

∑𝑁
𝑖=1 𝑔− (𝑠0,𝑖 ). The

Central Limit Theorem states that the variable 𝑍 =
𝑔𝑁 −𝐺
𝜎𝑔𝑁

approximately follows a Standard Normal

Distribution N(0, 1); hence, for a risk 𝜃 , we can bound the error |𝛼𝑁 | of swapping 𝐺 with 𝑔𝑁 by

building confidence intervals:

P

(
|𝛼𝑁 | ≤ 𝜒

1− 𝜃
2

𝜎𝑔−√
𝑁

)
= 1 − 𝜃, (6)

where 𝜒
1− 𝜃

2

is the quantile of the Standard Normal Distribution N(0, 1) and 𝜎𝑔− is the variance of

𝑔− .
Since we are interested in finding 𝑝𝜀− with a certain confidence, we can perform this process

after setting the desired target error 𝛼 and risk 𝜃 , knowing how many simulations must be ran

using Hoeffding’s inequality [4]:

𝜃 = P(𝑔𝑁 ∉ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]) ≤ 2 exp(−2𝛼2𝑁 ),

or equivalently 𝑁 ≥ log(2/𝜃 )
2𝛼2

. Here, it is worth emphasizing that 𝑁 can be chosen independently of

𝜀.

Further, the variance of 𝑔𝑁 can be expressed with the variance of 𝑔− (𝑋 ):

𝜎2

𝑔− = E
(
[𝑔− (𝑋 ) − E(𝑔− (𝑋 ))]2

)
=

∫
B𝑥∗

0

(𝑔− (𝑠))2 𝑓𝑋 (𝑠)d𝑠 −𝐺2 .

We consider i.i.d. samples, hence 𝜎2

𝑔− can be estimated with the variance 𝑆2𝑔− :

𝜎2

𝑔− ≃ 𝑆2𝑔− =
1

𝑁

𝑁∑︁
𝑖=1

(𝑔− (𝑥0,𝑖 )2 − 𝑔2𝑁 ).

It follows that 𝜎𝑔− can be estimated with its empirical counterpart 𝜎̂𝑔− =

√︃
𝑆2𝑔− , which shows that

the error displays a 1/
√
𝑁 convergence.
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Finally, after estimating 𝜎𝑔− , we can find 𝑝𝜀− using the variance of Bernoulli’s law 𝜎̂2

𝑔− = 𝑝𝜀− × (1−
𝑝𝜀−). We conclude that the probability that Γ𝜀− (𝝀) holds is estimated by 𝑝𝜀− = 1

2

(
1 ±

√︃
1 − 4𝜎̂2

𝑔−

)
,

with an error 𝛼 and a risk 𝜃 , provided we perform 𝑁 ≥ log(2/𝜃 )
2𝛼2

simulations. It follows that

P
(
𝑝𝜀− ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]

)
≥ 1 − 𝜃 . (7)

Similarly, we determine an estimator 𝑝𝜀+ of 𝑝𝜀+ by running 𝑁 ≥ log(2/𝜃 )
2𝛼2

additional simulations, and

obtain a confidence interval satisfying

P
(
𝑝𝜀+ ∈ [𝑝𝜀+ − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜃 . (8)

Second step. Now, let us show how a confidence interval for the probability 𝑝 can be derived

from the confidence intervals given in (7), (8), involving the estimators 𝑝𝜀− and 𝑝𝜀+ respectively. The

independence of the samples used to determine the estimators 𝑝𝜀− , 𝑝
𝜀
+ guarantees that

P(𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ + 𝛼]) = P
(
{𝑝 ≥ 𝑝𝜀− − 𝛼}

)
× P

(
{𝑝 ≤ 𝑝𝜀+ + 𝛼}

)
.

By virtue of (7), we have P(𝑝𝜀− ≥ 𝑝𝜀− − 𝛼) ≥ 1 − 𝜃 . Next, the estimate (30) implies P(𝑝 ≥ 𝑝𝜀− − 𝛼) ≥
P(𝑝𝜀− ≥ 𝑝𝜀− − 𝛼) ≥ 1 − 𝜃 . Similarly, we have P(𝑝 ≤ 𝑝𝜀+ + 𝛼) ≥ 1 − 𝜃 , and finally P(𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ +
𝛼]) ≥ (1 − 𝜃 )2 = 1 − 𝜉 , since 𝜃 = 1 −

√︁
1 − 𝜉 .

Third step. Finally, let us prove how Lemma 4.3 guarantees that proper values of ℎ and 𝜀 can be

found, in order to control the distance between 𝑝− and 𝑝+.
Indeed, the continuity of the probability measure P ensures that there exists 𝜀0 > 0 such that��𝑝𝜀− − 𝑝𝜀+

�� ≤ 𝛼 , for 𝜀 < 𝜀0. Next, we write��𝑝𝜀− − 𝑝𝜀+
�� ≤ ��𝑝𝜀− − 𝑝𝜀−

�� + ��𝑝𝜀+ − 𝑝𝜀+
�� + ��𝑝𝜀− − 𝑝𝜀+

�� ,
hence we have, for 𝜀 < 𝜀0:

P
( ��𝑝𝜀− − 𝑝𝜀+

�� ≤ 3𝛼
)
≥ P(

��𝑝𝜀− − 𝑝𝜀−
�� ≤ 𝛼) × P(

��𝑝𝜀+ − 𝑝𝜀+
�� ≤ 𝛼) × P(

��𝑝𝜀− − 𝑝𝜀+
�� ≤ 𝛼)

≥ (1 − 𝜃 )2 × 1 = 1 − 𝜉 .

In parallel, Lemma 4.4 guarantees that for ℎ sufficiently small, the global stability error can be

uniformly bounded on B𝑥∗
0

by 𝜀0. The proof is complete. □
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