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We propose a simulation-based technique for the parameterization and the stability analysis of parametric

Ordinary Differential Equations. This technique is an adaptation of Statistical Model Checking, often used

to verify the validity of biological models, to the setting of Ordinary Differential Equations systems. The

aim of our technique is to estimate the probability of satisfying a given property under the variability of

the parameter or initial condition of the ODE, with any metrics of choice. To do so, we discretize the values

space and use statistical model checking to evaluate each individual value w.r.t. provided data. Contrary to

other existing methods, we provide statistical guarantees regarding our results that take into account the

unavoidable approximation errors introduced through the numerical integration of the ODE system performed

while simulating. In order to show the potential of our technique, we present its application to two case studies

taken from the literature, one relative to the growth of a jellyfish population, and the other concerning a

well-known oscillator model.

CCS Concepts: • Computing methodologies→Model verification and validation; •Mathematics of
computing → Ordinary differential equations.

Additional Key Words and Phrases: Statistical model checking (SMC), ordinary differential equations (ODEs),

parameterization, stability analysis.
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1 INTRODUCTION
All scientific branches share the common concept of modeling. When scientists study a real-life

system, the first step they go through is to build a model that gathers all the existing knowledge

of the target system. This model is then used as a proxy of the system it represents in order to

analyze it and perform simulation or predictions. In several fields, such as Biology, Chemistry,

Physics or Engineering, models do not represent a single system but are instead an abstraction

for a family of systems that share common traits but might exhibit some internal variability. This

internal variability can either be left out by considering that the model represents the “average”
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individual in the family, or taken into account inside the model through the use of non-determinism,

probabilities or parametricity.

There are twomain factors that can have an important effect on the behavior of a given parametric

model: the value of the parameter and the value of the initial condition. The process of choosing the

right parameter value is called parameterization: it consists in confronting the model with a given

set of observations of the (family of) system(s) it represents in order to find the parameter values

that best fit this (family of) system(s). In most cases, parameterization techniques are deterministic
[40]. They lead to deterministic parameter values that best fit the experimental data, i.e. that produce

the best fit for the “average” individual. In this paper, we instead focus on a technique that allows

to select parameter values that best fit under variability, i.e. that produce the best probabilistic fit
for the whole family. Once an adequate parameter value has been chosen, scientists often study

the impact of the value of the initial condition on the behavior of the model. In this context, one

issue of interest is stability: an equilibrium point 𝑥𝑒 is called stable if the forward orbit of any point

near 𝑥𝑒 stays in its vicinity. Stability may be a local or global property of the state space. In this

paper, we propose a technique that again takes advantage of internal variability in order to study

the stability of a given model.

Symbolic techniques such as parametric model checking [3, 10] are often difficult to use in

practice because they require automata-based models while real-life models are often expressed

either with computer programs or with differential equation models. Statistical Model Checking

(SMC) [26], however, can be applied to any stochastic model for which simulations can be performed.

It is a simulation-based technique that allows to estimate, with formal guarantees, the probability

that a given (probabilistic) model satisfies a given property.

Parameterization, or parameter synthesis has been the topic of many works in the context of

probabilistic systems [11, 16, 17, 19, 25]. SMC has been successfully applied to perform param-

eterization of real-life models expressed using several formalisms such as parametric Markov

chains [4], parametric Python programs [39], or even parametric Ordinary Differential Equation

(ODE) systems [27]. To the best of our knowledge, SMC techniques have never been used in the

context of stability. Nevertheless, symbolic techniques have been used in the context of determinis-

tic or stochastic hybrid systems where they are applied directly on the system [15, 37], or on an

abstraction graph [38], to assess the stability of a given model. By adapting SMC to ODE models,

we enable the analysis of their stability under variability, thus extending the application domain of

model stability analysis to models on which experiments can be performed.

Unfortunately, the formal guarantees obtained through SMC are linked to the simulation space

(i.e. the produced traces) and not to the original model itself. When the model consists in sets of

ODEs, as in [27], numerical integration methods are used in order to solve the ODEs and perform

simulations, which means that the formal guarantees obtained through SMC cannot apply to the

original ODE model because of the approximations introduced in the process.

The resolution of ODE systems has been the subject of extensive study. More precisely, integration

methods such as implicit and explicit Runge-Kutta (which we use in this article) have been validated

[1] to guarantee the precision of the computations and thus the validity of reachability properties

on initial values of the system. Moreover, these techniques may be extended to the set initial
value problem [2], allowing to guarantee the computation on a set of initial values, thus assessing

reachability properties on the whole set. These techniques have been implemented in ODE solvers

such as VNODE-LP and GRKLib [6, 34], which solve ODEs while taking into the account the

approximation errors accumulated in the process. Another approach relies on the property of the

measure of the system’s Jacobian [30]. Finally, rigorous approaches have been developed [41, 43]

to merge SMC techniques with ODE resolution. To the best of our knowledge, in these papers, the

guarantees regarding integration errors are not linked to the integration method or the integration
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step. In this work, in addition to the guarantees regarding integration errors for the whole set of

values, we study the link between the error and the integration step and provide, in some cases, a

way to compute the integration step ensuring a given bound is respected.

In this paper, our contribution is to bridge the gap between the original ODEmodel and the results

of the SMC procedure by combining the statistical guarantees of SMC with the global approximation
error of standard numerical integration methods, both in the case of parameterization and in the case

of stability analysis. As in [27], we consider ODE models with structural parameters. We build on

the logic proposed in [27] to express our properties of interest and also consider expected-reward

properties that might be of interest in practice. We use SMC to evaluate values by estimating

the expectation of a given reward function for these values while taking internal variability into

account. Contrarily to what is done in [27], the accuracy of this estimation is guaranteed w.r.t. the

original ODE model. In the case of structural parameters, it enables the parameterization of the

model, so that the trace of the model fits best with given experimental data by staying within a

tunnel of arbitrary radius around the data. In the case of initial conditions, it enables the study of

the associated Cauchy problem, especially the analysis of the stability of the system w.r.t. the initial

condition; to this end, we introduce a bounded definition of stability by requiring the trace to stay

at an arbitrary distance from the data for an arbitrary amount of time.

To illustrate our results, we perform the parameterization of a state-of-the-art model taken from

the literature using our technique, as well as a study on the stability of the initial condition of a

well-studied oscillator model. In this context, and because modelers are often interested by this

information in practice, we propose a global evaluation of the value spaces that allows us to get a

complete picture of the adequacy of the values w.r.t. the given data. Nevertheless, our results are

generic and could be applied to any search technique, such as the local ones performed in [27].

Intuition. To give an intuition of our contribution, we provide an informal summary of the

method we present in this paper in the context of parameterization, although the method is the

same in the context of stability analysis. Recall that, given a dataset and a parametric ODE system,

the objective is to find a solution to a parametric ODE system (i.e. a parameter value) that satisfies

a property 𝜑 w.r.t. the dataset, which is, given a distance 𝛿 > 0, “the solution stays in a tunnel

of radius 𝛿 around the data”
1
; we also want to acquire statistical guarantees on said result. The

main issue is that we can only simulate our model by solving the ODE system using numerical

integration methods. Hence, we cannot directly verify whether exact solutions (𝑥) of the system

satisfy 𝜑 and instead have to rely on approximate solutions (𝑦). We therefore proceed as follows:

we start by discretizing the set of parameter values into a grid; we then evaluate each point of this

grid using the procedure detailed below; finally, we use the resulting scores to select the “best”

parameter values w.r.t. 𝜑 . The score of a given parameter value 𝝀 is computed as follows, and

illustrated in Figures 1 and 2 in the context of the case study presented in Section 3.4.

(1) We set the parameter value to 𝝀. Through a careful study of the ODE system, we give a bound

on the distance 𝜀 between exact (𝑥) and approximate (𝑦) solutions. We emphasize that this

bound depends on (i) the chosen integration technique and (ii) the chosen integration step.

We show that this distance is uniformly stable w.r.t. internal variability around 𝝀, but also
that it can be uniformly bounded on the global set of solutions (i.e. independently of 𝝀).

(2) We propose two new properties 𝜑− and 𝜑+ that will be verified on the approximate solutions

𝑦, and depend on the above distance. This amounts to changing the size of the tunnel around

the experimental dataset. We compute (estimations of) the respective probabilities 𝑝− and 𝑝+
and prove that the probability 𝑝 that 𝑥 satisfies 𝜑 lies between 𝑝− and 𝑝+.

1
In the context of stability, given an interval [𝑇1,𝑇2 ] of time, the property is “the solution stays in a tunnel of radius 𝛿

around the equilibrium between time points𝑇1 and𝑇2.”
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(3) We provide statistical guarantees of our estimation, i.e. a confidence interval for our estimation

of 𝑝 , and use this estimation as the score for parameter value 𝝀.

Fig. 1. Tunnels corresponding to the properties
𝜑, 𝜑−, 𝜑+ and accepted simulations.

Fig. 2. 𝜑−-accepted, 𝜑+-accepted and rejected sim-
ulations.

It is worth noting that the underlying theory is generic: the integration method as well as the

statistical estimation method can be chosen arbitrarily as long as they provide the usual guarantees.

In this paper, we use Runge-Kutta and Monte-Carlo for the sake of example. We also emphasize that

the nature of the problem is arbitrary: we chose two examples from the literature to have references

regarding the consistency of the results, but this method may be applied to any well-defined ODE

model, including systems for which the symbolic analysis proves too complicated, for instance in

the case of systems of high order. Moreover, the method being generic makes it readily usable for

hybrid systems.

Outline. In Section 2, we introduce the definitions and notations to be used later in this article,

regarding both the logical and mathematical aspect. In Section 3, we state the first of our two

results, i.e. we provide the statistical guarantees for the estimation of the probability of satisfaction

of a property related to the structural parameter of an ODE. In Section 4, we state the second result

of the paper, i.e. we extend the study of the ODE parameter to that of the initial condition of a

Cauchy problem, and provide a method to experimentally exhibit basins of attraction around an

equilibrium. Finally, we conclude in Section 5 and give perspectives for future work.

Remark. This article is an extension of a conference article [24], in which only the parameter-

ization problem was addressed. Here, we extend our study to the context of stability analysis.

In this context, we consider variations of the initial condition of the Cauchy problem associated

with an ODE model instead of the parameter of the model, and show that one can also bound the

approximation error during the ODE integration so that formal guarantees can be obtained and

SMC techniques can be applied.

2 DEFINITIONS AND NOTATIONS
We begin with recalling definitions and introducing notations. Then, we will present the logic used

in this paper and extend it by introducing reward functions.

2.1 ODE preliminaries
In this paper, we consider evolution problems described by an Ordinary Differential Equation (ODE)

of the form

d𝑥 (𝑡)
d𝑡

= 𝑓
(
𝑥 (𝑡),𝝀

)
, 𝑡 > 0. (1)
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In Equation (1), the unknown function 𝑥 is defined in R+ with values in R𝑛 ; 𝝀 ∈ R𝑚 is a parameter

vector of real values; 𝑓 is a function defined on R𝑛 × R𝑚 with values in R𝑛 , whose regularity will

be detailed below; 𝑛,𝑚 are positive integers. In the following, we write 𝑥𝑖 (𝑡), 1 ≤ 𝑖 ≤ 𝑛, for the

projection of 𝑥 (𝑡) on its 𝑖th component. As mentioned in our introduction, Equation (1) can model

various real-world problems arising in life sciences. Our goal is to study some properties of the

trajectories determined by Equation (1), by developing an innovative statistical model-checking

framework suitable for the continuous dynamics of ODEs. It consists mainly in the comparison of

two sets of points: a data set—which may or may not be experimental data—, and the set of states

computed from traces of the model. Hence, these methods not only apply to the parameterization

of models and comparison with data (as seen in Section 3.4), but also to the comparison with

theoretical studies (as seen in Section 4.3).

Standard results of the theory of differential equations (see for instance [35]) ensure that, for

any value of the parameter 𝝀 ∈ R𝑚 , the Cauchy problem determined by Equation (1) and an

initial value 𝑥 (0) = 𝑥0 ∈ R𝑛 admits a unique solution, provided 𝑓 is 𝐶1
on R𝑛 × R𝑚 ; we denote by

𝑥 (𝑡, 𝑥0,𝝀) the corresponding trajectory, which we assume to be defined on [0,𝑇 ] with 𝑇 > 0. If

the context is sufficiently clear, we may write 𝑥 (𝑡) for short. As before, we write 𝑥𝑖 (𝑡, 𝑥0,𝝀) (resp.
𝑥𝑖 (𝑡)), 1 ≤ 𝑖 ≤ 𝑛, for the projection on its 𝑖th component. We assume that the component 𝜆 𝑗 of

the parameter vector 𝝀 ∈ R𝑚 (1 ≤ 𝑗 ≤ 𝑚) satisfies 𝜆 𝑗 ∈ [𝐿𝝀
𝑗
,𝑈 𝝀

𝑗
], with real coefficients 𝐿𝝀

𝑗
< 𝑈 𝝀

𝑗
,

and that the trajectories of Equation (1) admit a rectangular invariant region, uniform w.r.t. the

parameter 𝝀, that is 𝑥𝑖 (𝑡,𝝀) ∈ [𝐿𝑖 ,𝑈𝑖 ] for 𝑡 ∈ [0,𝑇 ], with real coefficients 𝐿𝑖 < 𝑈𝑖 , for any parameter

𝝀 and for 1 ≤ 𝑖 ≤ 𝑛. The global invariant region for 𝑥 is written V, the parameter space is written

W. These spaces, along with a new set INIT, are defined as follows:

V =

𝑛∏
𝑖=0

[𝐿𝑖 ,𝑈𝑖 ] (2) W =

𝑚∏
𝑗=0

[𝐿𝝀𝑗 ,𝑈 𝝀
𝑗 ] (3) INIT = V ×W. (4)

For 𝑎 ∈ V, we consider the Euclidian norm defined on R𝑛 by ∥𝑎∥R𝑛 =
(∑𝑛

𝑖=1 𝑎
2

𝑖

) 1

2
. Similarly, for

𝝀 ∈𝑊 , we consider the Euclidian norm defined on R𝑚 by ∥𝝀∥R𝑚 =

(∑𝑚
𝑗=1

��𝜆 𝑗 ��2) 1

2

.

Finally, we write TRAJ for the set of all potential trajectories of the solutions to our ODE system.

Formally, TRAJ = {𝑥 (𝑡, 𝑥0,𝝀) | 𝑥0 ∈ V,𝝀 ∈ W and 𝑥 is a solution to Equation (1)}.
It is well-known that Equation (1) determines time continuous trajectories, which moreover

depend continuously on a variation of the initial condition 𝑥0 ∈ V and of the parameter 𝝀 ∈ W (see

for instance [35]). In Section 3, we will be interested in the variation of those trajectories under a

variation of the parameter 𝝀 ∈ W, while in Section 4 we will be interested in the variation of those

trajectories under the variation of the initial condition 𝑥0 ∈ V. We now move to the description of

the Σ-algebra used for the statistical verification of our models.

2.2 Definition of the Σ-algebra
As explained in the introduction, our aim is to study the behavior of an ODE system under the

variation of its structural parameter or its initial condition (i.e. its initial state). This consists in

verifying that the studied model satisfies a given property. Since our verification is intrinsically

experimental, we have to define a finite set of time points at which we will check the satisfaction

of said property, in the following manner:

T = {0 = 𝑡0, 𝑡1, . . . , 𝑡𝑘 = 𝑇 }. (5)

Furthermore, we assume the existence of a set of 𝑞 observations—numerical values—for each

time point 𝑡 ∈ T and for each coordinate 0 ≤ 𝑖 ≤ 𝑛. We assume, in practice, that T indeed includes

all the time points where observations are available. Remark nonetheless that T is not necessarily
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limited to this set, as we could have an empty set of observations for a number of 𝑡 ∈ T . Since

T = {𝑡0, . . . 𝑡𝑘 } is finite, we abuse notations and substitute it, when convenient, with the integer

set T = {0, . . . 𝑘}.
We call “property” a measurable set of traces. In this paper, we consider a property Ψ given

along with a decision procedure regarding its satisfiability, and we identify through models(Ψ) =
{𝑥 ∈ TRAJ | 𝑥 ∈ Ψ} the set of trajectories which satisfy Ψ. Note that since Ψ can be seen as both a

property and a set of trajectories, we sometimes use the wording “𝑥 satisfies Ψ” instead of “𝑥 ∈ Ψ”,
depending on the context.

Since our aim is to consider variability on the ODE models of interest, we may use statements of

the form P≥𝑝 (Ψ), whose interpretation is expressed as follows: “the probability that a trajectory in

TRAJ is in models(Ψ) is greater than 𝑝”. In this regard, we need to define a probability measure P
over TRAJ.
We notice that the pair (𝑥0,𝝀) completely determines the trajectory 𝑥 (𝑥0,𝝀) ∈ TRAJ (see [18]).

Consequently, TRAJ can be completely identified with INIT, defined in Equation (4). Formally, we

defineModels(Ψ) ⊆ INIT as the set

{(𝑥0,𝝀) ∈ INIT | 𝑥 (𝑡, 𝑥0,𝝀) ∈ models(Ψ)} (6)

and consider the Σ-algebra B generated by the (𝑛 ×𝑚)-dimensional open intervals of INIT. As
expected, B is an adequate support to prove the measurability of Models(Ψ) for a property Ψ
expressed through classical logics.

Depending on the context, we will use the Σ-algebra BW
when studying the parameter values

𝝀 ∈ W, in which case INIT = {𝑥0} × W for a fixed 𝑥0 ∈ V, and BV
when studying the initial

conditions 𝑥0 ∈ V, in which case INIT = V × {𝝀} for a fixed 𝝀 ∈ W.

In the following, we will consider a number of probability distributions P on B (one for each

parameter pair (𝑥0,𝝀)), and use these probability distributions to evaluate whether our ODE model

meets a specification of the form P≥𝑝 (Ψ). This will amount to checking whether P(Models(Ψ)) ≥ 𝑝 :

we will use SMC to estimate the proportion of satisfactory trajectories in INIT.
In our context, each pair (𝑥0,𝝀) ∈ INIT will give rise to a probability distribution P taking into

account internal variability either on the parameter 𝝀 ∈ W or the initial condition 𝑥0 ∈ V. For
convenience, and since we study only one member of a pair at once, we will identify each pair with

the relevant member, and anotate the probability P accordingly: P𝝀 when we study the influence of

the structural parameter 𝝀, and P𝑥0 when we study the influence of the initial condition 𝑥0.

This probability distribution will be used to evaluate the model against the property Ψ, which
will yield a score written grade(𝑥0,𝝀) that represents the adequacy of the trace induced by the pair

(𝑥0,𝝀) w.r.t. the given data while taking into account internal variability.

However, it might happen that many of the pairs (𝑥0,𝝀) in the INIT set have a maximal score

grade(𝑥0,𝝀) = 1, i.e. satisfy the formula P≥1 (Ψ). This could be the case if all the traces generated

using P satisfy the property Ψ. In this case, we will need to consider more complex properties to

sort those values and filter them. To this purpose, we introduce the notion of reward function.

2.3 Reward functions
The purpose of statistical model checking in general, and the Monte-Carlo method in particular,

which will be presented in detail in Section 3.2, is to estimate with formal guarantees the expected

value of a given function on a measurable set. In the context of model checking, this procedure is

used to estimate the probability that a given model satisfies a property. To do this, a great number

of samples is produced, each sample of the system is checked against the property and a Boolean

reward is computed accordingly (i.e. 1 if the property is satisfied and 0 otherwise). Statistical model
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checking then amounts to estimating the expected value of this particular reward function on the

measurable set of traces of the model at hand.

In our case, this boils down to defining a reward function 𝑟Ψ : TRAJ → {0, 1} that evaluates to 1

on a trajectory 𝑥 ∈ TRAJ if the trajectory satisfies Ψ and 0 otherwise. Statistical model checking

will then compute an estimation of the expected value of 𝑟Ψ on the set of traces TRAJ under the
probability distribution P, which in the end will be an estimation of the measure of Models(Ψ) for
the pair (𝑥0,𝝀).
In order to evaluate the pair (𝑥0,𝝀) in a more discriminating way, we allow the use of non-

Boolean reward functions. This allows us to express more powerful properties than those that

can be defined using classical logics. For instance, one can use those reward functions in order

to measure the number of time points for which the current trace does not agree with the given

observations, or to measure the cumulative distance between the trace and the observations at all

time points.

In the following, we will therefore consider a given reward function 𝑟 : TRAJ → R and use

statistical model checking to estimate its expected value on the trajectories of our model under a

given probability distribution P. When convenient, we will identify a given property Ψ with its

associated reward function obtained through the above construction 𝑟Ψ.

3 STATISTICAL MODEL CHECKING FOR PARAMETERIZATION
In this section, we state our first result: we provide statistical guarantees on the verification

of specific properties under variation of the parameter 𝝀. More specifically, given a property 𝜑

(resp. the corresponding reward function 𝑟𝜑 ) on the trajectories of Equation (1), we will establish

confidence intervals regarding the estimation of the probability of satisfaction of that property

(resp. the expected value of 𝑟𝜑 ), which shall be computed using approximate solutions to Equation (1),
as well as a bound on the errors w.r.t. the exact probability corresponding to the exact solutions
to Equation (1). We then illustrate our approach with a case study taken from the literature, by

parameterizing the proposed model.

Note that we focus on the structural parameter 𝝀 : from here and until the end of the section,

we declare 𝑥0 to be a constant equal to the first observation of the studied system. As indicated in

Section 2.2, we will identify the pair (𝑥0,𝝀) ∈ INIT to 𝝀.

3.1 Approximation method for the numerical integration of the ODE
We recall that an approximation method, which determines the approximate solution 𝑦 (𝑡, 𝑥0,𝝀) to
the ODE induced by parameter 𝝀 and initial condition 𝑥0, can be written

𝑦 (0) = 𝑥0, 𝑦 (𝜏 𝑗+1) = 𝑦 (𝜏 𝑗 ) + ℎ Φ
(
𝜏 𝑗 , 𝑦 (𝜏 𝑗 ),𝝀, ℎ

)
, 0 ≤ 𝑗 < 𝐽 , (7)

where Φ is a continuous function defined in [0,𝑇 ] × R𝑛 × W × R with values in R𝑛 , 𝜏 𝑗 are the
discrete points of definition of 𝑦, and ℎ ∈ R+ is the integration step. Intuitively, those methods

compute each point thanks to the previous one. In this paper, we use the well-known Runge-Kutta

4 method, which is a standard method for ODE integration, though this technique may be extended

to any integration method whose integration step is bounded—which is always the case when

integrating on finite intervals.

For the sake of simplicity, we focus in the following on the theoretical study of 1-dimensional

systems (𝑛 = 1), but our method can be adapted to larger systems (𝑛 ≥ 2) as shown in our second

case study presented in Section 4.3, mostly by adapting the definition of distance introduced below.

As explained in Section 2.2, we consider a set 𝛾 of observations, recorded at (𝑘 + 1, 𝑘 ≥ 0) time

points forming a set T (see Equation (5)) with values in R𝑛 . We start by defining a notion of distance

between functions that will, in the end, allow us to compare the solutions of our ODE model with
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the given set of observations. Given any two functions 𝑔1, 𝑔2 in the set 𝐹T = {𝑔 : 𝐼 → R | T ⊆ 𝐼 },
where 𝐼 denotes an interval included in R, we consider the distance 𝑑 defined by

𝑑 (𝑔1, 𝑔2) = max

𝑡 ∈T
|𝑔1 (𝑡) − 𝑔2 (𝑡) | . (8)

Note that 𝑑 is rigorously only a pseudo-distance, since two functions 𝑔1 and 𝑔2 defined on [0,𝑇 ],
that are distinct on [0,𝑇 ], might coincide on the finite set T , thus could satisfy 𝑑 (𝑔1, 𝑔2) = 0.

Nevertheless, since our purpose is to measure the distance to the set of observations 𝛾 , we do not

need to distinguish such two functions. Moreover, one may use any arbitrary (pseudo-)distance,

since all norms are equivalent in the finite-dimensional space R (R𝑛 in the general setting). In the

rest of the paper, we will abuse notations and use 𝑑 to compare a given function 𝑔 ∈ 𝐹T to 𝛾 , even

though 𝛾 is only defined on T and not on an interval of R.
In most ODE integration methods, the approximation error depends on an integration step. We

therefore introduce a discretization Dℎ of the time interval [0,𝑇 ], which we assume, for simplicity,

to admit a constant step ℎ > 0:

Dℎ = {0 = 𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝐽 = 𝑇 }, (9)

with 𝐽 > 0 and 𝜏 𝑗+1 − 𝜏 𝑗 = ℎ for all 0 ≤ 𝑗 < 𝐽 .

For each parameter value𝝀 ∈ W, the chosen approximation method will compute an approximate

solution to the ODE, which we denote 𝑦𝝀 . Similarly, the exact solution to Equation (1) such that

𝑥 (0) = 𝑥0 is denoted 𝑥
𝝀
.

For the sake of measuring the approximation error between 𝑦𝝀 and 𝑥𝝀 , we use a finer notion of

distance than the one proposed above. Indeed, standard integration methods provide guarantees

that depend on the integration step in the sense that choosing a finer integration step enhances the

quality of the approximation. Our aim here is to be able to take advantage of this fact, which could

not be captured if we used the distance 𝑑 from Equation (8).

Definition 3.1 (Global approximation error). Let ℎ > 0 be the integration step of the chosen

integration method. The global approximation error 𝜀ℎ (𝝀) between the approximate solution 𝑦𝝀

and the exact solution 𝑥𝝀 is defined as follows:

𝜀ℎ (𝝀) = max

𝜏∈Dℎ

���𝑥𝝀 (𝜏) − 𝑦𝝀 (𝜏)
��� . (10)

In the rest of the paper, we make two assumptions on the approximation method. First, we

assume that the set T of time points given by Equation (5), at which the set 𝛾 of observations is

given, satisfies T ⊂ Dℎ . This assumption is quite natural as the set𝛾 is finite, therefore a sufficiently

small ℎ can always be chosen accordingly. Second, we assume that the approximation method is

convergent, which guarantees that for all 𝝀 ∈ W, the global approximation error 𝜀ℎ (𝝀) converges
to 0 when ℎ gets smaller. This assumption is directly satisfied for usual approximation methods

(such as, e.g., Runge-Kutta; see for instance [7]).

3.2 Monte-Carlo method
We now move to our first result, i.e. providing an estimation of the probability that the original

ODE system, with a given parameter value 𝝀∗
, agrees with the experimental data with statistical

guarantees. We then show in Section 3.3 how these results can be extended to reward functions.

Let 𝝀∗ ∈ W be a parameter value. In order to take the internal variability of our system into

account, we will consider that 𝝀∗
can slightly vary. In this regard, we set a constant 𝜌 > 0 and

consider the open ball

𝐵(𝝀∗, 𝜌) = {𝝀 ∈ R𝑚 | ∥𝝀 − 𝝀∗∥R𝑚 < 𝜌}, (11)

where ∥·∥R𝑚 is the Euclidian norm defined in Section 2.1.
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We start by recalling the Monte-Carlo procedure for estimation. This procedure aims at taking

advantage of the Central Limit Theorem and the Law of Large Numbers. In order to estimate the

probability that our system (where 𝝀 can vary inside of 𝐵(𝝀∗, 𝜌)) satisfies a given property 𝜑 , we

will generate a set of 𝑁 samples of values for 𝝀 inside of 𝐵(𝝀∗, 𝜌), and use these values to provide

𝑁 solutions to the ODE system. Each solution will be evaluated, yielding a score of 1 if it satisfies 𝜑

and 0 otherwise. Informally, the Central Limit Theorem (Theorem 3.2) states that the mean value

of the samples 𝑝 is a good estimator for the probability 𝑝 that our system (defined in Equation (1))

satisfies 𝜑 . Moreover, it also provides a confidence interval that solely depends on the number of

samples—provided this number is large enough—and the variance of the initial distribution.

Theorem 3.2 (Central Limit Theorem [36]). Let 𝑋1, 𝑋2, . . . be a sequence of independent and

identically distributed random variables of mean 𝜇 and variance 𝜎2. Then, the distribution of
∑𝑁

𝑖=1 𝑋𝑖−𝑁𝜇

𝜎
√
𝑁

converges to the standard normal distribution as 𝑁 → ∞. That is, for any 𝑎 ∈ R,

lim

𝑁→∞
P

(∑𝑁
𝑖=1𝑋𝑖 − 𝑁𝜇

𝜎
√
𝑁

≤ 𝑎

)
=

1

√
2𝜋

∫ 𝑎

−∞
𝑒−𝑥

2/2𝑑𝑥 .

Let 𝜑 be a property to be checked on an ODE system. We want to compute the probability that

the system satisfies 𝜑 , but we cannot evaluate the exact solutions of the ODE system. Since we have

to rely on approximate solutions, we will define two auxiliary properties 𝜑𝜀
− and 𝜑𝜀

+ that take into
account the global approximation error defined above. We will then use the Monte-Carlo procedure

to estimate two probabilities 𝑝𝜀− and 𝑝𝜀+ using those properties and the approximate solutions, and

propose an estimation of 𝑝 that relies on 𝑝𝜀− and 𝑝𝜀+. We will finally use 𝑝 in order to evaluate the

chosen (central) parameter value 𝝀∗
.

Let T be a set of time points as described in Equation (5). Let 𝛾 be a set of observations and

let 𝛿 > 0 be a precision (tolerance) w.r.t. 𝛾 . Let 𝝀∗ ∈ W be a parameter value, and let 𝜌 > 0 be a

variability setting. Consider the ball B𝝀∗ = 𝐵(𝝀∗, 𝜌) and let P𝝀
∗
be the uniform distribution on this

ball.

Given a function 𝑔 ∈ 𝐹T , we write 𝜑 (𝑔) := 𝑑 (𝑔,𝛾) ≤ 𝛿 for the property that means “the distance

between 𝑔 and 𝛾 is less than 𝛿”. For convenience, if 𝑦𝝀 is an approximate solution to Equation (1)

induced by the parameter 𝝀 ∈ B𝝀∗ , we will identify 𝜑 (𝝀) to 𝜑 (𝑦𝝀).
Given 𝜀 > 0, we introduce the properties:

𝜑 (𝑥𝝀) := 𝑑 (𝑥𝝀, 𝛾) ≤ 𝛿,

𝜑𝜀
− (𝑦𝝀) := 𝑑 (𝑦𝝀, 𝛾) ≤ 𝛿 − 𝜀, and 𝜑𝜀

+ (𝑦𝝀) := 𝑑 (𝑦𝝀, 𝛾) ≤ 𝛿 + 𝜀.

Our aim is to provide an estimation 𝑝 for P𝝀
∗ (𝜑). For convenience, we write P for P𝝀∗

in the rest

of this section.

To this end, we show in Lemma 3.3 that for a small enough integration step ℎ, we have 𝜀ℎ (𝝀) ≤ 𝜀

for all 𝝀 ∈ B𝝀∗ , and therefore

𝜑𝜀
− (𝑦𝝀) ⇒ 𝜑 (𝑥𝝀) ⇒ 𝜑𝜀

+ (𝑦𝝀). (12)

Lemma 3.3. Let (ℎ𝑖 )𝑖∈N ∈ R+ be a sequence of integration steps, such that lim
𝑖→∞

ℎ𝑖 = 0. Then for all

𝜀 > 0, there exists 𝑖∗ > 0 such that

𝜀ℎ𝑖 (𝝀) < 𝜀, ∀𝑖 ≥ 𝑖∗,∀𝝀 ∈ B𝝀∗ . (13)

Roughly speaking, the global error 𝜀ℎ (𝝀) can be uniformly bounded in the closure B𝝀∗ of the

open ball B𝝀∗ . The proof of this lemma is given in Appendix A.
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Remark. Given a target approximation error 𝜀, it is possible, depending on the integration

schema, to compute a satisfactory ℎ such that 𝜀ℎ < 𝜀. In our case, Runge-Kutta schemes have been

thoroughly studied (see [28] for instance) and this approximation error can be bounded in terms of

the successive derivatives of the function 𝑓 involved in Equation (1), up to order 4. Similar methods

can be found for other integration schemes. Here, if there exist 𝐿 and𝑀 such that

∥ 𝑓 (𝑥, 𝑡)∥R ≤ 𝑀, ∥ 𝑓𝑥𝑖𝑡 𝑗 ∥R ≤ 𝐿𝑖+𝑗/𝑀 𝑗−1
(14)

where 𝑓𝑥𝑖𝑡 𝑗 =
𝜕𝑖+𝑗 𝑓
𝜕𝑖𝑥𝜕 𝑗 𝑡

is the (𝑖 + 𝑗)th derivative of 𝑓 with respect to 𝑥 and 𝑡 , it is found that, for a

one-dimensional system,

∥𝜀ℎ ∥R ≤ 73

720

𝑀𝐿4ℎ5. (15)

In practice, it is the case since 𝑓 is a regular function which we study on a compact space. Note that

Equation (14) may be adapted to problems of any dimension by deriving 𝑓 with respect to each

components 𝑥𝑖 of 𝑥 and solving Equation (13) in [28].

Now, we define the probabilities

𝑝 = P
(
𝜑 (𝑥𝝀

∗
)
)
, 𝑝𝜀− = P

(
𝜑𝜀
− (𝑦𝝀

∗
)
)
, and 𝑝𝜀+ = P

(
𝜑𝜀
+ (𝑦𝝀

∗
)
)
. (16)

Note that 𝑝 , 𝑝− and 𝑝+ implicitly depend on 𝛿 . However, we omit this dependence in order to

lighten our notations. Next, it is straightforward that

𝑝𝜀− ≤ 𝑝 ≤ 𝑝𝜀+, ∀𝜀 > 0. (17)

Estimators 𝑝𝜀− and 𝑝𝜀+ of the probabilities 𝑝𝜀− and 𝑝𝜀+ respectively can be determined using the

Monte-Carlo procedure, involving a precision 𝛼 and a risk 𝜃 . Our main result, given in Theorem 3.4

below, establishes a statistical guarantee on the probability 𝑝 of interest with respect to these

estimators 𝑝𝜀− and 𝑝𝜀+.

Theorem 3.4 (Stability w.r.t. structural parameter). Let 𝝀∗ ∈ W be a parameter to be
evaluated, and let ball radius 𝜌 > 0, stability tolerance 𝛿 > 0 and integration error 𝜀 > 0 be the
different simulation settings. For any risk 𝜉 ∈ (0, 1), we define 𝜃 = 1 −

√︁
1 − 𝜉 . Then, for any precision

𝛼 > 0, the probabilities 𝑝𝜀− and 𝑝𝜀+ defined in Equation (16) satisfy

P
(
𝑝𝜀− ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]

)
≥ 1 − 𝜃, P

(
𝑝𝜀+ ∈ [𝑝𝜀+ − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜃, (18)

where the estimators 𝑝𝜀− and 𝑝𝜀+ can each be determined after performing a number 𝑁 ′ = log(2/𝜃 )
2𝛼2

(and

hence a total number 𝑁 = 2× log(2/𝜃 )
2𝛼2

) of simulations of Equation (1) induced by the parameter values
𝝀 sampled uniformly in B𝝀∗ .
Furthermore, there exist 𝜀0 > 0 and ℎ0 > 0 sufficiently small such that, for any integration step

ℎ ≤ ℎ0 and any 𝜀 < 𝜀0, the following statements hold:
• The probability 𝑝 defined in Equation (16) satisfies the estimation

P
(
𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜉 . (19)

• The distance between 𝑝𝜀− and 𝑝𝜀+ satisfies:

P
(��𝑝𝜀− − 𝑝𝜀+

�� ≤ 3𝛼
)
≥ 1 − 𝜉 . (20)

We emphasize that estimations (19) and (20) imply a confidence interval of width 5𝛼 for 𝑝 and

require a number of samples 𝑁 = 2 × log(2/𝜃 )
2𝛼2

. If the analysis were performed directly on the exact

solutions of the ODE, we would have a confidence interval of width 2𝛼 and only require 𝑁 =
log(2/𝜉 )

2𝛼2

samples.

The proof of Theorem 3.4, given in Appendix B, is divided in three main steps. First, using the

Central Limit Theorem and the Law of Large Numbers, we determine estimators 𝑝𝜀− and 𝑝𝜀+ of 𝑝
𝜀
−
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and 𝑝𝜀+, respectively. Then, Equation (16) and the independence of simulations lead to the confidence

interval of 𝑝 . Finally, Lemma 3.3 guarantees that proper values of ℎ and 𝜀 can be found, in order to

control the distance between 𝑝𝜀− and 𝑝𝜀+. It is worth noting that, for some integration methods (such

as Runge-Kutta 4 for example), a value for ℎ can be explicitly determined to guarantee Lemma 3.3

for a given 𝜀 and therefore Equation (19). However, the convergence speed of
��𝑝𝜀− − 𝑝𝜀+

��
is not known

in general, therefore we can only guarantee the existence of a sufficiently small value for 𝜀 to ensure

Equation (20) but not compute it.

3.3 Model checking extension through reward functions
As explained in Section 2.3, our method can be extended to non-Boolean reward functions. Indeed,

these functions may provide not only qualitative results—“does the property hold?”—but also

quantitative ones—“how well does the property hold?”. In our case, this allows to distinguish the

good parameters that induce a suitable solution from the best ones that induce the solutions closest

to the observations.

To use such a real-valued reward function 𝑟 , some conditions are required. First, it must be

assumed that two other reward functions 𝑟− and 𝑟+ can be found, such that they generalize

Equation (17); in other words, the following estimation must hold for any 𝝀 ∈ B𝝀∗ :

𝑟− (𝝀) ≤ 𝑟 (𝝀) ≤ 𝑟+ (𝝀) . (21)

Second, the law of the unconscious statistician must be applicable to these lower and upper

reward functions, i.e. the computation of the expected value
2
must be applicable, so that estimators

𝑟− and 𝑟+, of 𝑟− and 𝑟+ respectively, can be computed.

Moreover, and most importantly, the reward function must be compatible with the global error

defined in Equation (10). Indeed, since we compute a score based on approximated solutions, these

computations must take this approximation into account to provide any significance to the resulting

score. It is worth noting that these conditions are satisfied by all the reward functions we have

considered in this work, such as the total accumulated / maximal / average distance to 𝛾 or the

number of time points where 𝛾 is not respected.

Similarly to Equation (20), the distance between 𝑟− and 𝑟+ must be controlled. Depending on

the order of the approximation method used to compute approximate solutions to the ODEs, this

may be easy to ensure. For instance, in our case the integration method Runge-Kutta 4 ensures

that the approximation error—and thus, the global error as defined in Equation (10)—is of order

5: all derivatives of the integration functions converge at most linearly w.r.t. ℎ5, where ℎ is the

integration step.

3.4 Case study: a study on Aurelia Aurita population growth [31]
In this section, we apply our method to a case study taken from the literature [31] to show its

potential. After presenting the study and its conclusions, we will display our results and discuss

them.

Context. In 2014, Melica et al. [31] published a paper studying the growth of a population of

Aurelia Aurita individuals, a species of jellyfish that is very common in the Adriatic Sea. In that

paper, they compared experimental data, resulting from the culture of Aurelia Aurita polyps, to
simulation models based on the following ODE:

d𝑥 (𝑡)
d𝑡

= 𝑎𝑥 (𝑡) (1 − 𝑥 (𝑡)
𝑏

) (22)

2
See Equation (43) in Appendix B.
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where 𝑡 is time, 𝑥 is the population density, 𝑎 is the maximum rate of population growth, and 𝑏 is

the positive equilibrium. The authors have shown that the dynamics of an Aurelia Aurita polyps
population can, indeed, be modeled by the density-dependent, or Verhulst [42], ODE presented

above. They computed the values for 𝑎 and 𝑏 that ensure the best fitting w.r.t. the experimental

data. More precisely, they chose to minimize the residual least square error 𝜒2 =
∑

𝑘 |𝑥 (𝑡𝑘 ) − 𝑥𝑘 |2 .
These values are presented in Table 1, where HD and LD represent the studies for High and Low
Density, respectively, which were both ran by the original authors. Here, we focused on the High
Density case.

𝐻𝐷 𝐿𝐷

𝑏 5.35 ± 0.11(∗∗∗𝑝 < 0.001) 1.81 ± 0.08(∗∗∗𝑝 < 0.001)
𝑥 (0) 7.59 ± 0.21(∗∗∗𝑝 < 0.001) 0.081 ± 0.017(∗∗∗𝑝 < 0.001)
𝑎 0.130 ± 0.033(∗∗𝑝 = 0.002) 0.137 ± 0.012(∗∗∗𝑝 < 0.001)
𝜒2 0.775 0.056

Table 1. Estimation of parameters of the logistic curve fitting the laboratory experimental data [31].

To illustrate our method, we applied it to the same case study, using Equation (22) as the ODE

system and the provided data as observations.

Experiment. We now briefly recall the experiment. After discretizing the value space W defined

in Equation (3) for the parameter 𝝀, we will evaluate every value in order to select the best ones

w.r.t. the set 𝛾 of observations. To take the internal variability of the model into account, each

chosen parameter value 𝝀∗
is associated with the open ball B𝝀∗ as defined in Equation (11). Once

the SMC parameters 𝛼 and 𝜉 , as well as a small enough value for 𝜀 are chosen, we can compute an

integration step ℎ, as well as a required number 𝑁 of samples such that Theorem 3.4 holds. Then, we

sample 𝑁 values 𝝀 ∈ B𝝀∗ , compute the approximated solutions to the induced ODEs, and compare

them with the set 𝛾 of observations. For each 𝝀∗ ∈ W, we thus estimate the probabilities 𝑝𝜀− and

𝑝𝜀+ defined in the previous section, and define grade(𝝀∗) = 𝑝𝜀− , which is the more constraining

scenario. To better discriminate the best parameter values, we also estimate the expected value

of the reward function 𝑟 : 𝝀 ↦→ 𝑑 (𝑥𝝀, 𝛾) that measures the distance between the ODE simulations

and the experimental data. We implemented our technique in C++ to validate the approach. The

experiments were realized on a 2.1 GHz Intel Xeon Silver 4216 processor, running g++ version 7.5.0

on Ubuntu 18.04. The code is available at https://gitlab.com/davidjulien/smc_for_ode.git, and the

experiments can be reproduced using the right branches, i.e. compute_aurelia to run the experiment

of Section 3.4.

We evaluated parameter values in the ranges 𝑎 ∈ [0, 3], 𝑏 ∈ [0, 9], and discretized this space

with a parameter step equal to 0.01. We set the internal variability of the parameters 𝜌 = 0.005
√
2

and performed 𝑁 = 874 simulations for each parameter value on the discretized space, ensuring a

statistical precision 𝛼 = 0.05 and risk 𝜉 = 0.05, using the Runge-Kutta 4 integration method. We

targeted an error 𝜀 = 0.01, since this is the precision of the provided data. Using Equation (14), we

chose𝑀 = 7 and 𝐿 = 7. Then, we computed ℎ using Equation (15): we found
73

720
𝑀𝐿4ℎ5 ≤ 0.01 ⇔

ℎ ≤ 0.089, and picked ℎ = 0.08. The computations completed in 52 minutes on 56 threads.

Results. In Figure 3, we represent the score of the best parameter values, in which the pink

zones are zones where grade(𝝀∗) = 0. As we can see, the gradient is strong and doesn’t allow

discrimination between values in this area. In order to refine the result, we present in Figure 4 the

estimation of the expected value of the reward function 𝑟 : 𝝀 ↦→ 𝑑 (𝑥𝝀, 𝛾). Figure 4 shows a tighter
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Fig. 3. Heatmap of the score of
the parameters.

Fig. 4. Heatmap of the distance
to 𝛾 .

Fig. 5. Traces of models induced
by the ODE from Equation (22)

with different parameter values.

area of values that induce solutions that are very close to the data (down to 0.50 polyps on average),

plotted in dark purple, which contains the parameter value (𝑎 = 0.13, 𝑏 = 5.35) estimated by [31]:

it comforts us in saying that our method provides tangible results. The best parameter found using

our method is the pair (𝑎 = 0.19, 𝑏 = 5.58): it induces the red curve in Figure 5.

4 STATISTICAL MODEL CHECKING FOR STABILITY ANALYSIS
In this section, we extend the result of Section 3 to provide statistical guarantees on properties related

to the initial condition of an ODE system. Namely, given a property Γ (resp. the corresponding

reward function 𝑟Γ) on the initial condition of Equation (23), we will establish confidence intervals

regarding the estimation of the probability of satisfaction of that property (resp. the expected value

of 𝑟Γ), which shall be computed using approximate solutions to Equation (23), as well as a bound on

the errors w.r.t. the exact probability corresponding to the exact solutions to Equation (23).

First, we recall some definitions and propose a definition for stability. Next, we provide a method

for estimating the probability 𝑝 that the exact solution of our ODE system satisfies a given property

Γ, using an estimator 𝑝 that takes the approximation error into account. Finally, we illustrate our

approach with another case study taken from the literature, by experimentally exhibiting the basin

of attraction of a given ODE system.

Note that the numerical integration methods are the same as those defined in Section 3.1. We will

slightly modify some definitions so that they refer to the initial condition 𝑥0 of the system instead

of its structural parameter 𝝀, and provide similar guarantees as in Section 3.2. From here and until

the end of the section, we declare 𝝀 to be a constant, and we identify the pair (𝑥0,𝝀) ∈ INIT to 𝑥0.

To lighten notations, we will remove 𝝀 from the different equations as it is not relevant in this

section.

4.1 Stability
We consider the following Cauchy problem:{

d𝑥 (𝑡 )
d𝑡

= 𝑓 (𝑥 (𝑡)),
𝑥 (0) = 𝑥0 .

(23)

This Cauchy problem is related to an autonomous nonlinear system, where 𝑥 (𝑡) ∈ X ⊆ R𝑛 , X is an

open set, and 𝑓 : X ↦→ R𝑛 is a continuous vector field on X. Suppose that 𝑓 has an equilibrium

𝑥𝑒 ∈ X, such that 𝑓 (𝑥𝑒 ) = 0. We first recall the mathematical definition of two forms of stability,

which we aim at studying:
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Definition 4.1 (Stability). The equilibrium 𝑥𝑒 is said to be Lyapunov stable [29] if, for every 𝜁 > 0,

there exists 𝜌 > 0 such that ∥𝑥 (0) − 𝑥𝑒 ∥R𝑛 < 𝜌 ⇒ ∥𝑥 (𝑡) − 𝑥𝑒 ∥R𝑛 ≤ 𝜁 ,∀𝑡 ≥ 0. The equilibrium

𝑥𝑒 is said to be asymptotically stable if it is Lyapunov stable and there exists 𝜌 > 0 such that

∥𝑥 (0) − 𝑥𝑒 ∥R𝑛 < 𝜌 ⇒ lim𝑡→∞ ∥𝑥 (𝑡) − 𝑥𝑒 ∥R𝑛 = 0.

In order to be able to verify such notions with SMC techniques, we propose a weaker notion of

stability. We start by only considering a finite interval [𝑇1,𝑇2], with 𝑇1 < 𝑇2. Then, we propose the

following notion of (𝜌, 𝜁 )-stability on [𝑇1,𝑇2]:

Definition 4.2 ((𝜌, 𝜁 )-stability). Let 𝑑 (·, ·) be a distance between two functions of R𝑛 . Let 𝜌 > 0

and 𝜁 > 0, then (𝑥, 𝑥0) be a solution to a differential system. This solution is called (𝜌, 𝜁 )-stable if,
given another solution (𝑥 ′, 𝑥 ′

0
) to this system𝑥0 − 𝑥 ′

0


R𝑛

≤ 𝜌 ⇒ 𝑑 (𝑥, 𝑥 ′) ≤ 𝜁 . (24)

Since 𝜁 is the tolerance of the method in the context of stability, we will write it 𝛿 .

Here, the observations consist in the equilibrium 𝑥𝑒 , which we will compare to the trace obtained

for a solution (𝑥, 𝑥0).
In this logic, (𝜌, 𝛿)-stability amounts to checking whether the property Γ holds for all initial

conditions 𝑥0 such that ∥𝑥0 − 𝑥𝑒 ∥R𝑛 ≤ 𝜌 . Computing the probability amounts to measuring the

ratio of accepted initial conditions, i.e. the values which induce models whose trace satisfies

Definition 4.2.

We now move to the computation of this probability and the associated statistical guarantees.

4.2 Upper bound on the approximation error
Let 𝜌 be a positive real number. Similarly to Equation (11), we call 𝐵R𝑛 (𝑎, 𝜌) the open ball of center

𝑎 ∈ R𝑛 and radius 𝜌 for the canonical distance ∥·∥R𝑛 on R𝑛 . In the following, we assume the

existence of an equilibrium 𝑥𝑒 to 𝑓 (defined in Equation (23)). Let 𝑥∗
0
∈ V be an initial condition to

be checked. We lighten the notation and use B𝑥∗
0

= 𝐵R𝑛 (𝑥∗0 , 𝜌), and use the distance 𝑑 (·, ·) defined
in Equation (8).

Given 𝛿 > 0 and 𝜀 > 0, we define the following properties:

Γ(𝑥0) := 𝑑 (𝑥, 𝑥𝑒 ) ≤ 𝛿,

Γ𝜀− (𝑥0) := 𝑑 (𝑥, 𝑥𝑒 ) ≤ 𝛿 − 𝜀, and Γ𝜀+ (𝑥0) := 𝑑 (𝑥, 𝑥𝑒 ) ≤ 𝛿 + 𝜀.
(25)

For any solution (𝑥, 𝑥0) to Equation (23) such that 𝑥0 ∈ B𝑥∗
0

, Γ translates to “the solution (𝑥, 𝑥0) to
Equation (23) is at distance 𝛿 from 𝑥𝑒 , at most.”

As in Section 3, we use the discretization Dℎ introduced in Equation (9) for the time interval

[𝑇1,𝑇2], which we assume, for simplicity, to admit a constant step ℎ > 0:

Dℎ = {𝑇1 = 𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝐽 = 𝑇2}, (26)

where 𝐽 ∈ N∗
and 𝜏 𝑗+1 − 𝜏 𝑗 = ℎ for all 0 ≤ 𝑗 < 𝐽 .

For each initial condition value 𝑥0 ∈ B𝑥∗
0

, the chosen approximation method will compute an

approximate solution to the ODE, which we denote 𝑦𝑥0 . Recall that for any 𝑥0 ∈ B𝑥∗
0

, the exact

solution to Equation (23) such that 𝑥 (0) = 𝑥0 is written 𝑥𝑥0 .

We adapt the definition of global approximation error given in Equation (10), so that it refers to

the initial condition 𝑥0 rather than the structural parameter 𝝀:

𝜀ℎ (𝑥0) = max

𝜏∈Dℎ

|𝑥𝑥0 (𝜏) − 𝑦𝑥0 (𝜏) | . (27)
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Again, the study of the stability of a set of values depends on our ability to find an upper bound

on the global approximation error 𝜀ℎ (𝑥0). Such a bound exists on B𝑥∗
0

thanks to the following

Lemma:

Lemma 4.3. Let 𝑥𝑒 be an equilibrium for 𝑓 in Equation (23), then 𝜌 > 0. Let (ℎ𝑖 )𝑖∈N ∈ R+ be a
sequence of integration steps, such that lim

ℎ→∞
ℎ𝑖 = 0. Then for all 𝜀 > 0, there exists 𝑖∗ such that

𝜀ℎ𝑖 (𝑥0) < 𝜀,∀𝑖 ≥ 𝑖∗,∀𝑥0 ∈ B𝑥∗
0

. (28)

Roughly speaking, Lemma 4.3 states the global approximation error 𝜀ℎ (𝑥0) can be uniformly

bounded in the closureB𝑥∗
0

of the open ballB𝑥∗
0

. The proof is given in Section 1 of the supplementary

materials.

Remark. Following the remark on Lemma 3.3, we can also bound the approximation error for

two-dimensional systems. More precisely, given 𝐿 and𝑀 such that

|𝑓 (𝑥, 𝑡) |R2 ≤ 𝑀, |𝑓
𝑥𝑖
1
𝑥
𝑗

2
𝑡𝑘
|R2 ≤ 𝐿𝑖+𝑗+𝑘/𝑀𝑖+𝑗−1

(29)

where 𝑓
𝑥𝑖
1
𝑥
𝑗

2
𝑡𝑘

=
𝜕𝑖+𝑗+𝑘 𝑓

𝜕𝑖𝑥1𝜕
𝑗𝑥2𝜕

𝑘𝑡
is the (𝑖 + 𝑗 + 𝑘)th derivative of 𝑓 with respect to 𝑥1, 𝑥2 and 𝑡 , it is found

that, for a two-dimensional system,

|𝜀ℎ |R2 ≤
973

720

𝑀𝐿4ℎ5 . (30)

Now, we can define the probabilities as follows:

𝑝 = P
(
Γ(𝑥𝑥∗

0 )
)
, 𝑝𝜀− = P

(
Γ𝜀− (𝑦𝑥

∗
0 )

)
, and 𝑝𝜀+ = P

(
Γ𝜀+ (𝑦𝑥

∗
0 )

)
. (31)

As in Section 3.2, we omit the dependence on 𝛿 for 𝑝 , 𝑝𝜀− and 𝑝𝜀+. Again, estimators 𝑝𝜀− and 𝑝𝜀+
of the probabilities 𝑝𝜀− and 𝑝𝜀+ respectively can be determined using the Monte-Carlo procedure,

involving a precision 𝛼 and a risk 𝜃 ; since it is the same procedure as Section 3.2, we will not go

into details. We introduce the corresponding Theorem 4.4, which establishes a statistical guarantee

on the probability 𝑝 of interest w.r.t. the estimators 𝑝𝜀− and 𝑝𝜀+.

Theorem 4.4 (Stability w.r.t. initial condition). Let 𝑥∗
0
∈ V be an initial condition to be

evaluated, and let 𝜌 > 0, 𝛿 > 0 and 𝜀 > 0 be the different simulation settings. For any risk 𝜉 ∈ (0, 1),
we define 𝜃 = 1 −

√︁
1 − 𝜉 . Then, for any precision 𝛼 > 0, the probabilities 𝑝𝜀− and 𝑝𝜀+ defined in

Equation (31) satisfy

P
(
𝑝𝜀− ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]

)
≥ 1 − 𝜃, P

(
𝑝𝜀+ ∈ [𝑝𝜀+ − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜃, (32)

where the estimators 𝑝𝜀− and 𝑝𝜀+ can each be determined after performing a number 𝑁 ′ = log(2/𝜃 )
2𝛼2

(and

hence a total number 𝑁 = 2 × log(2/𝜃 )
2𝛼2

) of simulations of Equation (23) induced by initial condition
values 𝑥0 sampled in B𝑥∗

0

.
Furthermore, there exist 𝜀0 > 0 and ℎ0 > 0 sufficiently small such that, for any integration step

ℎ ≤ ℎ0 and any 𝜀 < 𝜀0, the following statements hold:

• The probability 𝑝 defined in Equation (31) satisfies the estimation

P
(
𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜉 . (33)

• The distance between 𝑝𝜀− and 𝑝𝜀+ satisfies:

P
(��𝑝𝜀− − 𝑝𝜀+

�� ≤ 3𝛼
)
≥ 1 − 𝜉 . (34)
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Again, the estimations (33) and (34) imply a confidence interval of width 5𝛼 for 𝑝 and require a

number of samples 𝑁 = 2 × log(2/𝜃 )
2𝛼2

. If the analysis were performed directly on the exact solutions

of the ODE, we would have a confidence interval 2𝛼 and only require 𝑁 =
log(2/𝜉 )

2𝛼2
samples.

The proof of Theorem 4.4, given in Section 2 of the supplementary materials, is an adaptation of

the proof of Theorem 3.4, and follows the same steps. Note that despite their similarity, we decided

to separate Lemma 3.3 and Theorem 3.4 from Lemma 4.3 and Theorem 4.4 to follow mathematical

conventions. Indeed, mainly for historical reasons, the behaviors of an ODE with respect to a

variation of the parameter (i.e. bifurcation theory) or with respect to the initial condition (i.e.

Lyapunov theory) are usually treated separately.

4.3 Case study: a study on Duffing’s oscillator [13, 23]
Context. Duffing’s oscillator, introduced in his book [13], is a non-linear second order equation

used to model damped and driven oscillators. The equation is:

d
2𝑥 (𝑡)
d𝑡2

+ 𝑎
d𝑥 (𝑡)
d𝑡

+ 𝑏𝑥 (𝑡) + 𝑑𝑥 (𝑡)3 = 𝑐 cos𝑘𝑡, (35)

where 𝑎 controls the amount of damping, 𝑏 controls the linear stiffness, 𝑑 controls the amount

of non-linearity in the restoring force, 𝑐 is the amplitude of the periodic driving force and 𝑘 is

the angular frequency of the periodic driving force. It is a well-studied system [20, 33, 44] and a

primary example of chaotic behavior. In [23], the authors focus on a slightly modified oscillator

equation:

d
2𝑥 (𝑡)
d𝑡2

+ 𝑎
d𝑥 (𝑡)
d𝑡

+ 𝑐𝑥2 d𝑥 (𝑡)
d𝑡

+ 𝑏𝑥 (𝑡) + 𝑑𝑥 (𝑡)3 = 0. (36)

After rewriting it as a first-order system, we obtain the following two-dimensional system:{
d𝑥1 (𝑡 )
d𝑡

= 𝑥2 (𝑡),
d𝑥2 (𝑡 )
d𝑡

= −𝑏𝑥1 (𝑡) − 𝑎𝑥2 (𝑡) − 𝑑𝑥1 (𝑡)3 − 𝑐𝑥1 (𝑡)2𝑥2 (𝑡).
(37)

Experiments. The system exhibits very different behaviors depending on the value of (𝑎, 𝑏, 𝑐, 𝑑),
as we can see in Secttion 4.3.3 ; we will first focus on the study of the behavior for (𝑎, 𝑏, 𝑐, 𝑑) =
(1, 1,−1,−1): this parameter set has already been theoretically studied and induces a system which

has two equilibria located at 𝑥𝑒,1 = (−1, 0) and 𝑥𝑒,2 = (1, 0).
Again, the experiments were realized on a 2.1 GHz Intel Xeon Silver 4216 processor, running g++

version 7.5.0 onUbuntu 18.04. The code is available at https://gitlab.com/davidjulien/smc_for_ode.git,

and the experiments can be reproduced using the right branches, i.e. compute_stability to run the

experiment of Section 4.3.1, and compute_basin to run the experiment of Section 4.3.2. Results

of Section 4.3.3 may be obtained by changing the value of 𝑎 in the branch compute_basin. We

used the Runge-Kutta 4 method to compute approximate solutions. Since the system is very

sensitive, we needed a very low approximation error. We targeted an error 𝜀 = 10
−12

. Using

Equation (29), we chose 𝑀 = 18 and 𝐿 = 2. Then, we computed ℎ using Equation (30): we found

973

720
𝑀𝐿4ℎ5 ≤ 𝜀 ⇔ ℎ ≤ 0.0012. We picked an integration stepℎ = 0.001. The computations completed

in 3 hours and 19 minutes on 56 threads.

4.3.1 Experimental evidence of a basin of attraction. Let 𝑥𝑒 ∈ R𝑛 be an equilibrium for the system

presented in Equation (37). In this section, we want to experimentally exhibit (𝜌, 𝛿)-stability around
𝑥𝑒 , that is, given 𝛿 > 0, finding a radius 𝜌 > 0 such that every 𝑥0 ∈ B𝑥𝑒 = 𝐵R𝑛 (𝑥𝑒 , 𝜌) satisfies the
property Γ defined in Equation (25).

Symbolic analysis predicts that 𝑥𝑒,1 = (−1, 0) and 𝑥𝑒,2 = (1, 0) are such equilibria, so we will

conduct the analysis on those two values even though we could look for stability at any point
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𝑥𝑠 ∈ R2. We picked 𝛿 = 1 and evaluated initial condition values in the balls 𝐵R𝑛 (𝑥𝑒 , 𝜌𝑖 ) for
𝜌𝑖 = 0.001+ 𝑖 × 0.01, 𝜌𝑖 ≤ 2. Note that those values are completely arbitrary. We performed 𝑁 = 874

simulations for each ball, ensuring a statistical precision 𝛼 = 0.05 and a risk 𝜉 = 0.05.

Fig. 6. Heatmap of the score of
the initial conditions, relative to
𝑥𝑒,1 = (−1, 0).

Fig. 7. Heatmap of the score of
the initial conditions, relative to
both 𝑥𝑒,1 and 𝑥𝑒,2.

Results. In Figure 6, the color represents the score grade(B𝑥𝑒 ,𝜌𝑖 ) of the concentric balls B𝑥𝑒 ,𝜌𝑖

regarding the property Γ(𝑥0) = d(𝑥, 𝑥𝑒 ) < 1, where 0 ≤ 𝜌𝑖 ≤ 2, 𝑥0 ∈ B𝑥𝑒 ,𝜌𝑖 and (𝑥, 𝑥0) is a solution
to Equation (35): the darker the circle, the higher the score (i.e. the bigger the ratio of accepted

simulations). The figure shows darker zones around the value 𝑥𝑒,1 = (−1, 0), which highlights that

the system is stable around 𝑥𝑒,1. The lighter zones show balls B𝑥𝑒 ,𝜌 for which grade(B𝑥𝑒 ,𝜌 ) is close
to 0, which indicates that the system is less, if not, stable in such a large zone. The white zones are

zones where we did not perform simulations. After performing the same study on 𝑥𝑒,2 = (1, 0), we
can combine the two studies to depict the stability behavior of the system regarding both equilibria

at once: this is presented in Figure 7. The figure clearly shows the two stable zones around 𝑥𝑒,1
and 𝑥𝑒,2, as predicted in [23]. We also experimentally gained knowledge regarding the basins of

attraction for the system, especially that there are at least two of them, that they are disconnected,

along with a rough estimation of their width.

As in Section 3.4, one can see that there is a small gradient in the areas where the score is positive,

but this not enough to discriminate values. To obtain more precise information on the stability of

the system, we will now present the study regarding the estimation of the distance between the

induced traces and the equilibria.

4.3.2 Experimental delimitation of a basin of attraction. Now that stability is experimentally ex-

hibited, we want to address a more complicated problem from an analytical point of view: getting

the shape of the basin of attraction. To do that, as explained in Section 3.3, we will use reward

functions and perform a study that is similar to what we did in Section 3.4: we will discretize the

space of initial conditions and, for each value, compute the expected distance of the induced trace

to the equilibrium by performing numerous simulations in its vicinity.

This time, we analyzed a portion I = [−2, 2] × [−1.5, 1.5] of the plan, using a discretization step

equal to 0.01. Again, by performing 𝑁 = 874 simulations for each value and for each property, we

guarantee a statistical precision 𝛼 = 0.05 and a risk 𝜉 = 0.05.
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Fig. 8. Heatmap of the sta-
bility of the left equilibrium
𝑥𝑒,1 = (−1, 0).

Fig. 9. Heatmap of the stability
of the right equilibrium 𝑥𝑒,2 =

(1, 0).

Fig. 10. Heatmap of the stabil-
ity of the system, relative to both
𝑥𝑒,1 and 𝑥𝑒,2.

Results. In Figure 8, we represent the estimation of the reward function 𝑟 : 𝑥0 ↦→ 𝑑 (𝑥𝑥0 , 𝑥𝑒 ),
where 𝑑 is the distance defined in Equation (8) and 𝑥𝑒 is the left equilibrium of Equation (37). In

other words, we depict the expected distance to 𝑥𝑒 of the trace induced by each discrete value in I:
the darker the point, the closer the trace of the induced model is expected to be to the equilibrium.

One can see the ovoid shape of dark purple on the left, which is consistent with the expected

behavior of the system in this portion of the space: again, this comforts us in saying that our method

provides tangible results. The same study regarding the right equilibrium is plotted in Figure 9,

which is a point reflection through (0, 0) of Figure 8. Both studies show a darker orange zone a the

position of the converse equilibrium: this was also expected, since in this region the system is also

stable, but w.r.t. the other equilibrium. Thus, the system will stay in the vicinity of said equilibrium,

effectively maintaining its distance to the studied equilibrium.

Finally, Figure 10 shows a combination of the two former studies, exhibiting the minimal expected

distance to either one of the two equilibria 𝑥𝑒,1 and 𝑥𝑒,2, effectively defining the shape of stability

of the system. Again, this is consistent with the theoretical analysis of the system, which predicts a

“bow-tie” shape for the basin of attraction. We emphasize that these shapes are discrete: we may

only have a finite precision on the border of the basin of attraction ; increasing the discretization

step would yield better precision, at the cost of greatly increasing the computation time. Therefore,

we had to settle on a compromise.

4.3.3 Influence of the structural parameter on the shape of the basin of attraction. In this section,

we provide some material on the study of the influence of the structural parameter 𝝀 on the shape

of the basin of attraction. We perform the same analysis as in Section 4.3.2 for different values

of the structural parameter. The results of these analysises are given in Figures 11 to 15, and the

meaning of the colors is the same as in Section 4.3.2: the darker the spot, the closer the induced

trace is expected to be to the equilibria.

Results. As we can see in Figures 11 to 15, the parameter 𝑎 has a direct influence on the shape of

the basin of attraction: the basin of attraction gets narrower as 𝑎 decreases. Again, this is consistent

with the theoretical study [23] of the system. Note that this is preliminary work: we do not have

the mathematical guarantees, regarding the global error 𝜀, offered in the rest of the paper when

both the structural parameter 𝝀 and the initial condition 𝑥0 vary.

5 CONCLUSION
In this paper, we have proposed a statistical method for synthesizing both structural parameter and

initial condition values w.r.t. a given set of observations for an ODE system with internal variability,

while providing formal statistical guarantees that for the first time (to the best of our knowledge)
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Fig. 11. Heatmap of the sta-
bility of the system, 𝝀 =

(−0.8,−1, 1, 1) .

Fig. 12. Heatmap of the sta-
bility of the system, 𝝀 =

(−0.9,−1, 1, 1) .

Fig. 13. Heatmap of the stability
of the system, 𝝀 = (−1,−1, 1, 1) .

Fig. 14. Heatmap of the sta-
bility of the system, 𝝀 =

(−1.1,−1, 1, 1) .

Fig. 15. Heatmap of the sta-
bility of the system, 𝝀 =

(−1.2,−1, 1, 1).

take into account the approximation error introduced through the numerical integration of the

ODEs. To do that, we discretize the value space and define balls around each element of the resulting

(finite) set to take internal variability into account. We then use the Monte-Carlo technique to

estimate the probability that exact solutions to the ODE system are close to the observations for

each ball, and use the result of this estimation to select the best (central) values. In the context

of parameterization, this corresponds to selecting the parameter value that induces a model that

fits best with experimental data under variability; in the context of stability analysis, it allows to

exhibit the basin of attraction of equilibria under variability. Our contributions for parameterization

and stability analysis are Theorems 3.4 and 4.4 respectively, which guarantee the precision of

our estimation for each value to be tested despite the fact that it is performed using numerical

integration techniques that do not give us access to exact solutions of the ODE system. We also

show in the corresponding Lemmas 3.3 and 4.3 that an upper bound on the integration step of the

chosen integration technique exists (and can be computed for standard integration techniques) in

order to make sure that a given statistical precision and risk are respected. In contrast with other

existing works on parameter estimation for ODE systems, like [27], where this problem is left aside,

we show that the number of simulations required for a given precision and risk of the statistical

estimation is more than twice the one needed when working with exact solutions.

One of the limitations of our work is that, in order to prove our results, we rely on a setting 𝜀

that represents the maximal admissible distance between exact and approximate solutions to the

ODE system. While it is possible, for most integration techniques, to compute an integration step

that will guarantee that a given value for 𝜀 is respected 3
, our results only show the existence of a

suitable value for 𝜀 for any statistical setting and do not provide any method to compute this value

3
See Appendix A, and [28].
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in practice. This is due to our lack of guarantees on the convergence speed of the distance between

the two estimators 𝑝𝜀− and 𝑝𝜀+ that appear in Equations 20 and 34. A third limitation exposed in

Section 4.3.3 is that we have no result regarding the study of both the parameter 𝝀 and the initial

condition 𝑥0 at the same time. While the first experiments are consistent with the theoretical

analysis [23], the statistical results obtained in Theorems 3.4 and 4.4 may not be trivially combined,

and their combination deserves a proper analysis.

The inclusion of solvers such as [6, 34] may be of great interest, as it would allow combining

their guarantees regarding floating point computation error with our guarantees on approximation

error. However, since our results are limited to the ODE integration, the comparison would not be

relevant considering the advance of our work.

Our work can be extended by considering hybrid models that exhibit both continuous and

discrete dynamic behavior. Most formal verification tasks on these models are undecidable [21], but

the experimental nature of SMC allows for other kinds of verification. A second extension could

be to use our method to study stochastic models defined with stochastic ODE systems. These two

types of model are, to the best of our knowledge, yet to be theoretically studied so that similar,

if not corresponding, results obtained via experimental methods can be guaranteed. To be able

to study this type of models would allow scientists to get results on stochastic processes such as

Brownian motion in the case of astrophysics [32] or stock prices [5], as well as dynamical hybrid

systems which may be described with stochastic hybrid automata [8].

As mentioned in Section 1, we emphasize that our results are generic and could therefore

be implemented for any system for which we have the sufficient guarantees, including models

which are too difficult to analyze symbolically. Moreover, our technique can be combined with

any exploration strategy for the value space. The global exploration we perform in this paper is

obviously costly but yields global information that is precious when analyzing a complex system.

In the future, we plan on combining a coarse global exploration to identify interesting zones in the

value space with more efficient and detailed search algorithms (such as the one from [27]) limited

to those zones. In this regard, adaptative discretization, as used in [15], looks promising.
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A PROOF OF LEMMA 3.3
First, we recall the definition of stability of an approximation method.

Definition A.1 (Method stability). We say that the approximation method determined by Equa-

tion (7) is stable if there exists a constant K > 0, called stability constant, such that, for any

two sequences (𝑦𝑘 )0≤𝑘≤ 𝐽 and (𝑦𝑘 )0≤𝑘≤ 𝐽 defined as 𝑦𝑘+1 = 𝑦𝑘 + ℎ Φ(𝜏𝑘 , 𝑦𝑘 ,𝝀, ℎ) and 𝑦𝑘+1 = 𝑦𝑘 +
ℎ Φ(𝜏𝑘 , 𝑦𝑘 ,𝝀, ℎ) + 𝜂𝑘 respectively, (0 ≤ 𝑘 < 𝐽 ), with 𝝀 ∈ W and 𝜂𝑘 ∈ R, we have

max

0≤𝑘≤ 𝐽
∥𝑦𝑘 − 𝑦𝑘 ∥R𝑛 ≤ K

(
∥𝑦0 − 𝑦0∥R𝑛 +

∑︁
0≤𝑘≤ 𝐽

|𝜂𝑘 |
)
. (38)

Note that this stability is relative to the method: it does not imply stability of the studied system

itself.

It is well-known that if Φ is 𝜅-Lipschitz w.r.t. 𝑦, i.e. ∀𝑡 ∈ [0,𝑇 ], ∀𝑦1, 𝑦2 ∈ R, ∀𝝀 ∈ W and ∀ℎ ∈ R,
∥Φ(𝑡, 𝑦1,𝝀, ℎ) − Φ(𝑡, 𝑦2,𝝀, ℎ)∥R𝑛 ≤ 𝜅 ∥𝑦1 − 𝑦2∥R𝑛 , then stability is ensured (see for instance [7] or

[9]).

Now, we fix 𝝀∗ ∈ W and 𝝀1,𝝀2 ∈ B𝝀∗ , and we consider the approximate solutions 𝑦𝝀1 , 𝑦𝝀2
to

Equation (1) relative to 𝝀1 and 𝝀2 and starting from 𝑥0.{
𝑦
𝝀1

0
= 𝑥0,

𝑦
𝝀1

𝑘+1 = 𝑦
𝝀1

𝑘
+ ℎ Φ(𝑡𝑘 , 𝑦𝝀1

𝑘
,𝝀1, ℎ),

{
𝑦
𝝀2

0
= 𝑥0,

𝑦
𝝀2

𝑘+1 = 𝑦
𝝀2

𝑘
+ ℎ Φ(𝑡𝑘 , 𝑦𝝀2

𝑘
,𝝀2, ℎ).

We recall that the exact solutions to Equation (1) relative to 𝝀1 and 𝝀2 and starting from 𝑥0 are

denoted 𝑥𝝀1
and 𝑥𝝀2

respectively. For 𝑖 ∈ {1, 2} and 0 ≤ 𝑘 ≤ 𝐽 , we introduce the consistency error

on 𝑦𝝀𝑖
at step 𝑘 :

𝜀ℎ,𝑘 (𝝀𝑖 ) =
𝑥𝝀𝑖 (𝜏𝑘 ) − 𝑦𝝀𝑖 (𝜏𝑘 )


R𝑛

. (39)
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The consistency errors satisfy 𝜀ℎ (𝝀𝑖 ) = max0≤𝑘≤ 𝐽 𝜀ℎ,𝑘 (𝝀𝑖 ), for 𝑖 ∈ {1, 2}, where 𝜀ℎ (𝝀𝑖 ) is the global
approximation error (defined by Equation (10)). The proof of Lemma 3.3 can be derived from the

following theorem:

Theorem A.2 (Stability with respect to consistency error). Assume that the function Φ de-
fined in Equation (7) is𝜅1-Lipschitz w.r.t.𝝀 and𝜅2-Lipschitz continuous w.r.t.𝑦. Then the approximation
method is stable w.r.t. the consistency error, i.e. there exists K > 0 such that

∀𝝀1,𝝀2 ∈ B𝝀∗ , max

0≤𝑘≤ 𝐽

��𝜀ℎ,𝑘 (𝝀1) − 𝜀ℎ,𝑘 (𝝀2)
�� ≤ K ∥𝝀1 − 𝝀2∥R𝑚 . (40)

where ∥ · ∥ is the Euclidean norm defined in Section 2.

Proof of Theorem A.2. By assumption, Φ is 𝜅1-Lipschitz continuous w.r.t. 𝝀:

∀𝑡, 𝑦, ℎ ∈ R,∀𝝀1,𝝀2 ∈ B𝝀∗ , ∥Φ(𝑡, 𝑦,𝝀1, ℎ) − Φ(𝑡, 𝑦,𝝀2, ℎ)∥R𝑛 ≤ 𝜅1 ∥𝝀1 − 𝝀2∥R𝑚 .

It follows that𝑦𝝀1

𝑘+1 − 𝑦
𝝀2

𝑘+1


R𝑛

≤
𝑦𝝀1

𝑘
− 𝑦

𝝀2

𝑘


R𝑛

+ ℎ
Φ(𝑡𝑘 , 𝑦𝝀1

𝑘
,𝝀1, ℎ) − Φ(𝑡𝑘 , 𝑦𝝀2

𝑘
,𝝀2, ℎ)


R𝑛

≤
𝑦𝝀1

𝑘
− 𝑦

𝝀2

𝑘


R𝑛

+ ℎ
Φ(𝑡𝑘 , 𝑦𝝀1

𝑘
,𝝀1, ℎ) − Φ(𝑡𝑘 , 𝑦𝝀1

𝑘
,𝝀2, ℎ)


R𝑛

+ ℎ
Φ(𝑡𝑘 , 𝑦𝝀1

𝑘
,𝝀2, ℎ) − Φ(𝑡𝑘 , 𝑦𝝀2

𝑘
,𝝀2, ℎ)


R𝑛

≤ (1 + ℎ𝜅2)
𝑦𝝀1

𝑘
− 𝑦

𝝀2

𝑘


R𝑛

+ ℎ𝜅1 ∥𝝀1 − 𝝀2∥R𝑚 ,

for 0 ≤ 𝑘 ≤ 𝐽 . We write

𝑦𝝀1

𝑘
− 𝑦

𝝀2

𝑘


R𝑛

= Δ𝑦,𝑘 and ∥𝝀1 − 𝝀2∥R𝑚 = Δ𝝀 , and we get

Δ𝑦,𝑘+1 ≤ (1 + ℎ𝜅2)Δ𝑦,𝑘 + ℎ𝜅1Δ𝝀 . (41)

Applying the discrete Gronwall Lemma (see for instance [12], VIII.2.3), we deduce

max

0≤𝑘≤ 𝐽
Δ𝑦,𝑘 ≤ 𝑒𝜅2𝑇

(
Δ𝑦,0 +

∑︁
0≤ 𝑗≤𝑘−1

ℎ𝜅1Δ𝝀
)

which leads to

max

0≤𝑘≤ 𝐽

𝑦𝝀1

𝑘
− 𝑦

𝝀2

𝑘


R𝑛

≤ 𝑒𝜅2𝑇𝑇𝜅1 ∥𝝀1 − 𝝀2∥R𝑚 ,

since 𝑦
𝝀1

0
= 𝑦

𝝀2

0
= 𝑥0 and ℎ 𝐽 = 𝑇 .

Furthermore, it is proved in [9] that if Φ is Lipschitz continuous w.r.t. 𝝀, then the exact solution

𝑥𝝀 is also Lipschitz continuous w.r.t. 𝝀 that is, there exists 𝜅3 > 0 such that

∀𝝀1,𝝀2 ∈ B𝝀∗ ,∀𝑡 ∈ [0,𝑇 ],
𝑥𝝀1 (𝑡) − 𝑥𝝀2 (𝑡)


R𝑛

≤ 𝜅3 ∥𝝀1 − 𝝀2∥R𝑚 . (42)

Finally, we have��𝜀ℎ,𝑘 (𝝀1) − 𝜀ℎ,𝑘 (𝝀2)
�� ≤ 𝑥𝝀1 (𝜏𝑘 ) − 𝑦𝝀1 (𝜏𝑘 ) − 𝑥𝝀2 (𝜏𝑘 ) − 𝑦𝝀2 (𝜏𝑘 )


R𝑛

≤
𝑥𝝀1 (𝜏𝑘 ) − 𝑥𝝀2 (𝜏𝑘 )


R𝑛

+
𝑦𝝀1 (𝜏𝑘 ) − 𝑦𝝀2 (𝜏𝑘 )


R𝑛

≤ K ∥𝝀1 − 𝝀2∥R𝑚 ,

with K = 𝜅3 +𝑇𝜅1𝑒𝜅2𝑇 , which completes the proof of Theorem A.2. □

It remains to show that Theorem A.2 implies Lemma 3.3.
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Proof of Lemma 3.3. Let (ℎ𝑖 )𝑖≥0 be a sequence of discretization steps such that lim𝑖→∞ ℎ𝑖 = 0.

Since the approximation method given by (7) is assumed to be convergent, each function 𝜀ℎ𝑖 (·)
defined in Equation (39) is pointwise convergent to 0.

Furthermore, we recall that Φ is Lipschitz continuous w.r.t. 𝝀 ∈ W. Hence, Theorem A.2 implies

that the functions

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 defined in Equation (39) are also Lipschitz continuous, with uniform

Lipschitz constant K :��𝜀ℎ𝑖 (𝝀1) − 𝜀ℎ𝑖 (𝝀2)
�� ≤ K ∥𝝀1 − 𝝀2∥R𝑚 , ∀𝝀1,𝝀2 ∈ B𝝀∗ , ∀𝑖 ∈ N.

Consequently, the functions

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 are uniformly equicontinuous. Hence, Arzelà–Ascoli The-

orem [14] implies that the sequence

(
𝜀ℎ𝑖 (·)

)
𝑖≥0 converges uniformly to 0 on B𝝀∗ , thus ∀𝜀 > 0,

∃𝑖∗ ∈ N, ∀𝑖 ≥ 𝑖∗, ∀𝝀 ∈ B𝝀∗ , 𝜀ℎ𝑖 (𝝀) < 𝜀, and Lemma 3.3 is proved. □

We emphasize that Lemma 3.3 can be supplemented by an explicit choice of a sufficiently small

integration step ℎ, provided the integration method comes with appropriate estimates of their

global error. Notably, the accuracy of the Runge-Kutta 4 method, which we use for the numerical

treatment of our case studies, has been thoroughly studied (see [28] for instance), and it is known

that its inherent error can be bounded in terms of the successive derivatives of the function 𝑓

involved in Equation (1), up to order 4.

B PROOF OF THEOREM 3.4
First step. We begin the proof of Theorem 3.4 by showing how to compute an estimator 𝑝𝜀− of

the probability 𝑝𝜀− defined in (16).

Let (𝝀𝑖 )N be a sequence of values in the ball B𝝀∗ . We write 𝐵𝑖 the random variable corresponding

to the test “𝜑𝜀
− (𝝀𝑖 ) holds”: all the 𝐵𝑖 are i.i.d. variables and follow a Bernoulli’s law of parameter

𝑝𝜀− . We write 𝑏𝑖 the evaluation of 𝐵𝑖 . We introduce the transfer function 𝑔− : B𝝀∗ → {0, 1}
corresponding to the test regarding 𝜑𝜀

− (𝝀𝑖 ), defined by 𝑔− (𝝀𝑖 ) = 1 if 𝜑𝜀
− (𝝀𝑖 ) holds, 0 otherwise.

Next, we consider

𝐺 = E(𝑔− (𝑋 )) =
∫
B𝝀∗

𝑔− (𝝀) 𝑓𝑋 (𝝀)d𝝀, (43)

where 𝑓𝑋 is defined by a uniform distribution, that is, 𝑓𝑋 (𝝀) = 1

|B𝝀∗ | , 𝑥 ∈ B𝝀∗ . We produce a

sample (𝝀1,𝝀2, . . . ,𝝀𝑁 ) of the variable 𝑋 in B𝝀∗ , and use it to compute the Monte-Carlo estimator

𝐺 . By virtue of the Law of Large Numbers, the sample mean satisfies: 𝑔𝑁 = 1

𝑁

∑𝑁
𝑖=1 𝑔− (𝝀𝑖 ). The

Central Limit Theorem states that the variable 𝑍 =
𝑔𝑁 −𝐺
𝜎𝑔𝑁

approximately follows a Standard Normal

Distribution N(0, 1); hence, for a risk 𝜃 , we can bound the error |𝛼𝑁 | of swapping 𝐺 with 𝑔𝑁 by

building confidence intervals:

P

(
|𝛼𝑁 | ≤ 𝜒

1− 𝜃
2

𝜎𝑔−√
𝑁

)
= 1 − 𝜃, (44)

where 𝜒
1− 𝜃

2

is the quantile of the Standard Normal Distribution N(0, 1) and 𝜎𝑔− is the variance of

𝑔− .
Since we are interested in finding 𝑝𝜀− with a certain confidence, we can perform this process

after setting the desired target error 𝛼 and risk 𝜃 , knowing how many simulations must be ran

using Hoeffding’s inequality [22]:

𝜃 = P(𝑔𝑁 ∉ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]) ≤ 2 exp(−2𝛼2𝑁 ),

or equivalently 𝑁 ≥ log(2/𝜃 )
2𝛼2

. Here, it is worth emphasizing that 𝑁 can be chosen independently of

𝜀.
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Further, the variance of 𝑔𝑁 can be expressed with the variance of 𝑔− (𝑋 ):

𝜎2

𝑔− = E
(
[𝑔− (𝑋 ) − E(𝑔− (𝑋 ))]2

)
=

∫
B𝝀∗

(𝑔− (𝝀))2 𝑓𝑋 (𝝀)d𝝀 −𝐺2.

We consider i.i.d. samples, hence 𝜎2

𝑔− can be estimated with the variance 𝑆2𝑔− :

𝜎2

𝑔− ≃ 𝑆2𝑔− =
1

𝑁

𝑁∑︁
𝑖=1

(𝑔− (𝝀𝑖 )2 − 𝑔2𝑁 ).

It follows that 𝜎𝑔− can be estimated with its empirical counterpart �̂�𝑔− =

√︃
𝑆2𝑔− , which shows that

the error displays a 1/
√
𝑁 convergence.

Finally, after estimating 𝜎𝑔− , we can find 𝑝𝜀− using the variance of Bernoulli’s law �̂�2

𝑔− = 𝑝𝜀− × (1−
𝑝𝜀−). We conclude that the probability that 𝜑𝜀

− (𝝀) holds is estimated by 𝑝𝜀− = 1

2

(
1 ±

√︃
1 − 4�̂�2

𝑔−

)
,

with an error 𝛼 and a risk 𝜃 , provided we perform 𝑁 ≥ log(2/𝜃 )
2𝛼2

simulations. It follows that

P
(
𝑝𝜀− ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀− + 𝛼]

)
≥ 1 − 𝜃 . (45)

Similarly, we determine an estimator 𝑝𝜀+ of 𝑝𝜀+ by running 𝑁 ≥ log(2/𝜃 )
2𝛼2

additional simulations, and

obtain a confidence interval satisfying

P
(
𝑝𝜀+ ∈ [𝑝𝜀+ − 𝛼, 𝑝𝜀+ + 𝛼]

)
≥ 1 − 𝜃 . (46)

Second step. Now, let us show how a confidence interval for the probability 𝑝 can be derived

from the confidence intervals given in (45), (46), involving the estimators 𝑝𝜀− and 𝑝𝜀+ respectively.
The independence of the samples used to determine the estimators 𝑝𝜀− , 𝑝

𝜀
+ guarantees that

P(𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ + 𝛼]) = P
(
{𝑝 ≥ 𝑝𝜀− − 𝛼}

)
× P

(
{𝑝 ≤ 𝑝𝜀+ + 𝛼}

)
.

By virtue of (45), we have P(𝑝𝜀− ≥ 𝑝𝜀− − 𝛼) ≥ 1 − 𝜃 . Next, the estimate (19) implies P(𝑝 ≥
𝑝𝜀− − 𝛼) ≥ P(𝑝𝜀− ≥ 𝑝𝜀− − 𝛼) ≥ 1 − 𝜃 . Similarly, we have P(𝑝 ≤ 𝑝𝜀+ + 𝛼) ≥ 1 − 𝜃 , and finally

P(𝑝 ∈ [𝑝𝜀− − 𝛼, 𝑝𝜀+ + 𝛼]) ≥ (1 − 𝜃 )2 = 1 − 𝜉 , since 𝜃 = 1 −
√︁
1 − 𝜉 .

Third step. Finally, let us prove how Lemma 3.3 guarantees that proper values of ℎ and 𝜀 can be

found, in order to control the distance between 𝑝− and 𝑝+.
Indeed, the continuity of the probability measure P ensures that there exists 𝜀0 > 0 such that��𝑝𝜀− − 𝑝𝜀+

�� ≤ 𝛼 , for 𝜀 < 𝜀0. Next, we write��𝑝𝜀− − 𝑝𝜀+
�� ≤ ��𝑝𝜀− − 𝑝𝜀−

�� + ��𝑝𝜀+ − 𝑝𝜀+
�� + ��𝑝𝜀− − 𝑝𝜀+

�� ,
hence we have, for 𝜀 < 𝜀0:

P
( ��𝑝𝜀− − 𝑝𝜀+

�� ≤ 3𝛼
)
≥ P(

��𝑝𝜀− − 𝑝𝜀−
�� ≤ 𝛼) × P(

��𝑝𝜀+ − 𝑝𝜀+
�� ≤ 𝛼) × P(

��𝑝𝜀− − 𝑝𝜀+
�� ≤ 𝛼)

≥ (1 − 𝜃 )2 × 1 = 1 − 𝜉 .

In parallel, Lemma 3.3 guarantees that for ℎ sufficiently small, the global stability error can be

uniformly bounded on B𝝀∗ by 𝜀0. The proof is complete. □
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