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Assays for transposase-accessible chromatin sequencing (ATAC-seq) provides an innovative approach to study 6 
chromatin status in multiple cell types. Moreover, it is also possible to efficiently extract differentially accessible 7 
chromatin (DACs) regions by using state-of-the-art algorithms (e.g. DESeq2) to predict gene activity in specific samples. 8 
Furthermore, it has recently been shown that small dips in sequencing peaks can be attributed to the binding of 9 
transcription factors. These dips, also known as footprints, can be used to identify trans-regulating interactions leading 10 
to gene expression. Current protocols used to identify footprints (e.g. pyDNAse and HINT-ATAC) have shown limitations 11 
resulting in the discovery of many false positive footprints. We generated a novel approach to identify genuine footprints 12 
within any given ATAC-seq dataset. 13 
Herein, we developed a new pipeline embedding DACs together with bona fide footprints resulting in the generation of 14 
a Predictive gene regulatory Network (PreNet) simply from ATAC-seq data. We further demonstrated that PreNet can 15 
be used to unveil meaningful molecular regulatory pathways in a given cell type.  16 
 17 
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 19 
1. Introduction 20 
Assays for transposase-accessible chromatin sequencing (ATAC-seq) is an efficient and robust technique requiring very 21 
little starting material (as few as 50,000 cells), making it a reliable tool for studying restricted biological systems (e.g. 22 
embryos).1 Generally, ATAC-seq is used to determine accessible chromatin regions in cells. Recently, it has been shown 23 
to be a promising tool to detect transcription factor binding sites (TFBSs) by screening footprints within peaks called 24 
from ATAC-seq data.2 Footprints are small dips (10-20 bp) observed in read pile-ups (or peaks) and are indicative of 25 
reduced transposase activity that may be associated with TF occupancy.  26 
Combined with RNA sequencing (RNA-seq), these data allow scientists to build gene regulatory networks (GRN) at an 27 
unprecedented level of complexity. Nonetheless, RNA-seq data can be difficult to generate because of sample scarcity. 28 
This limitation prompted the development of a pipeline that can predict multiple levels of gene regulation only from 29 
ATAC-seq data to obtain a comprehensive predictive GRN without further sample preparation (Figure 1A).  30 
Current ATAC-seq pipelines do not extract significantly differentially accessible chromatin (DACs) regions, which are 31 
important to determine remodelling of DNA tertiary structure between cell types. For instance, ATAC2GRN3 only 32 
provides open chromatin regions based on MACS2 program (Figure 1B - blue area). DiffBind4 extracts DACs but not 33 
specifically located to a promoter and TSS of a given gene (Figure1B – red area). Finally, DAStk5 can be used to extract 34 
footprints using HINT-ATAC6 program but not within a DACs (Figure 1B – yellow area). As we can see on Figure 1B, 35 
altogether, the three pipelines aforementioned do not lead to a comprehensive picture of the chromatin status within 36 
cells. 37 
Thus, we decided to combine both the extraction of DACs specifically located to a promoter (PROM-DACs), predictive 38 
of a potentially active gene, together with their associated footprints, predictive of a TF bound to the promoter, to build 39 
a two-level Predictive Network (PreNet): TFs regulating genes expression at the promoter.  40 
Moreover, PreNet comes with a solution to calculate Fold Changes (FC) and p.values associated to DACs between cell 41 
types. In addition, we describe that current footprinting tools, such as pyDNAse7 or HINT-ATAC,6 produce an important 42 
number of false positive footprints which can lead to misinterpretation, hence the devaluation of the data. To prevent 43 
this, we developed a False Discovery Rate (FDR) method to eliminate these artefact footprints. Combining both 44 



 

approaches (DACs FC and p.values together with FPs FDR) into one pipeline allowed for the inferring of a more reliable 45 
predictive GRN from ATAC-seq data.  46 
To illustrate the utility of PreNet, we used a well-known differentiation model from mouse Embryonic Stem Cells 47 
(mESCs) to the Definitive Endoderm (DE).8 We further compared footprints analysis to ChIP-seq data in similar cell 48 
types and benchmark the new FDR filtering against ATAC2GRN by comparing Positive Predictive Value (PPV). 49 
Runtimes against the only available pipeline achieving a similar outcome (ATAC2GRN) further illustrate the increased 50 
power of the PreNet pipeline. PreNet can be used with any given set of ATAC-seq data and its respective reference 51 
genome. On top of providing a program requiring only ATAC-seq data, we improved the statistical analysis for genuine 52 
DACs and FPs leading to an increase of predictiveness as demonstrated here.   53 
 54 
2. Methods 55 
The PreNet pipeline is summarized in Figure 1B.  56 
 57 
2.1. Availability of data and materials 58 
PreNet can be downloaded from the project code repository 59 
https://github.com/ChildrensMedicalResearchInstitute/PreNet. PreNet is provided as a series of snakemake pipelines.  60 
The initial set up for the pipeline requires the tools found in Table 1. Set up for these tools must be completed in the 61 
config.snakemake file. The default configuration assumes the tools are present in the current PATH but can be modified 62 
to point directly to the tool location. 63 
For input, the snakemake pipeline requires the following (placed in config.snakemake): 64 

1) The trimmed paired-end sequencing files for an ATAC-seq experiment in gzipped FASTQ format, within a 65 
“FASTQ” directory. 66 

2) The bowtie29 index for the genome of interest. These may be downloaded from NCBI Genbank or manually 67 
created. 68 

3) A list of chromosomes to keep for final analyses along with the size of each of the chromosomes 69 
(xxxx.chrom.sizes).  The default list contains the non-mitochondrial chromosomes for the mouse genome (chr 70 
1-20, chr X, chr Y).  The chrom.sizes file can be found from ENCODE, UCSC or made custom. 71 

4) A blacklist of regions to exclude in BED format. The mouse blacklist (ENCFF547MET.bed) can be found on 72 
ENCODE and a similar blacklist exists for the human genome. 73 

5) The regions of interest in SAF format. In this case, promoter regions based on the mm10 reference genome are 74 
provided. 75 

6) Transcription factor position-weighted matrix file in MEME format for FIMO10 allocation.  These can be 76 
downloaded from a transcription factor database of choice. 77 

 78 

Table 1.  Software requirements for PreNet 79 

Tool Version tested Website 

Samtools 11 1.8 https://www.htslib.org/ 

Bowtie2 9 2.2.6 

http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml 

Sambamba 12 0.6.7 https://lomereiter.github.io/sambamba/ 

MACS2 13 2.1.1.20160309 https://taoliu.github.io/MACS/ 

assign_multimappers.py 

Accessed April 

3, 2018 

https://github.com/kundajelab/atac_dnas

e_pipelines/commits/master/utils/assign

_multimappers.py 

featureCounts 14 1.5.3 http://subread.sourceforge.net/ 

deeptools 15 2.5.4 https://github.com/deeptools/deepTools 

UCSC kentUtils 16 4 http://genome.ucsc.edu/ 

R Statistical Software 3.5.1 https://www.R-project.org/ 

DESeq2 17 1.22.1 

https://bioconductor.org/packages/releas

e/bioc/html/DESeq2.html 

https://github.com/ChildrensMedicalResearchInstitute/PreNet


 

Tidyverse libraries 1.2.1 

https://cran.r-

project.org/web/packages/tidyverse/inde

x.html 

HINT-ATAC 6 0.21.1 http://www.regulatory-genomics.org/hint/ 

FIMO 10 4.11.2 http://meme-suite.org/doc/fimo.html 

   

   

 80 
 81 

2.2. Raw data extraction and alignment to reference genome 82 
The pipeline can be started from either raw reads or aligned and filtered files. Within this paper, data from Simon and 83 
colleagues8 (GSE94249) were downloaded from the Gene Expression Omnibus repository and analysed completely 84 
using the snakemake pipeline.  Paired-end reads were aligned to the GRCm38/mm10 M. musculus reference genome 85 
using bowtie29 (-k 4 -X 2000 –local -mm), allowing for a maximum of 4 multimapping locations per read. Multimapping 86 
reads were then assigned randomly using assign_multimappers.py from the ENCODE project.18 From the aligned data, 87 
unpaired and low-quality reads were excluded using samtools,11 deduplicated using sambamba12 and filtered to remove 88 
mitochondrial reads. 89 
  90 
2.3. Differential Open Chromatin regions analysis of Promoter region 91 
Aligned pairs were converted to pseudo-single ended reads and only the 5’-end was used for differential analysis. This 92 
represents the site of Tn5 transposase activity. Regions of open chromatin were identified using MACS213 (-q 0.05 --93 
no-model --shift -100 --extsize 200) on pooled replicates. Tn5 transposase events within the promoter (-5 kb to TSS) 94 
and TSS (-1 kb to +l kb) regions (Figure 2A) were estimated using the number of 5’-ends within the region. This was 95 
achieved using featureCounts14 (--read2pos 5) and raw counts were imported into R for analysis with DESeq2.17 96 
Differentially accessible regions were visualised using deeptools2 (Figure 2C) .15  97 
 98 
2.4. Footprinting analysis 99 
Aligned reads were combined to give one file per biological condition. De novo footprint analysis in promoter regions (-100 
5kb to TSS) was performed using HINT-ATAC.6 Sequences from identified footprints, extracted using bedtools, were 101 
assigned to a transcription factor using FIMO10 from the MEME Suite, utilising the JASPAR 2018 vertebrate database19 102 
as a reference for transcription factor (TF) position weight matrices. Regions of predicted TF activity were assigned 103 
based on the initial promoter SAF file.  104 
 105 
2.5. False discovery rate filtering for footprints 106 
Footprints were called using HINT-ATAC (Figure 3A) on all promoter regions and subsequently segregated into those 107 
falling either within or outside the called peaks (Figure 3C). HINT-ATAC footprint scores were placed in descending 108 
order based on the footprint score. The footprints were filtered based on the proportion of footprints found in inaccessible 109 
regions of the genome, outside of ATAC-seq peaks (Figure 3B). For an FDR value of τ, the subset of top footprints is 110 
returned such that the proportion of footprints outside of ATAC-seq peaks are equal to τ; these are subsequently filtered 111 
for footprints that lie within peaks only. To achieve this, FPs lying outside peaks (“outP”) were allocated as false positive 112 
footprints and a footprint score cut-off was generated by ranking all FPs, then selecting the lowest score that would 113 
provide a final list containing less than 1% of FPs located outside of a peak (in other words, less than 1% of false positive 114 
FPs). The goal here is to eliminate FPs in a peak that have a lower score than the 1% FPs detected from a region 115 
outside of a peak as they are not more significant, hence meaningful, than a FP found between two single isolated 116 
reads.  117 
 118 
2.6. Benchmarking 119 
Comparison against ATAC2GRN3 was performed using version 2 of the optimised ATAC2GRN bash pipeline for paired-120 
end experiments. The shell script was modified to run on the benchmarking system. Subsequent allocation of promoter 121 
footprints to a transcription factor was done using the PreNet pipeline as ATAC2GRN does not provide an allocation 122 
pipeline (only genomic location). The runtime benchmark was performed on a server running Centos 7, Linux kernel 123 
version 4.6 and 24 threads running at 2.90GHz. Where applicable, 64-bit versions of the programs have been used. 124 
Running times are given as user time as measured by the shell command time. 125 



 

 126 
2.7. ChIP-seq validation 127 
Where peak files are available for pipelines, no further analysis was carried out before comparison (GSM1288315, 128 
converted to GRCm38/mm10 M. musculus genome using liftOver16). Otherwise (GSM1782914), reads were aligned to 129 
GRCm38/mm10 genome using Burrow-Wheeler Aligner20 and filtered to remove duplicates, unaligned and blacklist 130 
region reads. Peaks were called using MACS2 (-q 0.05). Peak files were then filtered to only include peaks within 131 
promoter regions (-5kb to TSS). Regions where transcription factors were assigned to footprints via PreNet were 132 
compared to ChIP-seq peaks to determine the Positive Predictive Value (PPV) of PreNet pre- and post-FDR filtering. 133 
 134 
2.8. Cytoscape GRN generation 135 
Final output from the snakemake pipeline, interactions between FPs filtered by FDR < 0.01 and target DACs, were 136 
imported into Cytoscape21 compatible file format for gene network visualisation. Each GRN comprises of FPs located 137 
within a DAC with an open TSS. Nodes with no interactions were excluded from the GRN. Gene ontology search on 138 
developmental pathway was conducted using Panther v14.22 139 
 140 
2.9. Scalability of PreNet 141 
The snakemake pipeline allow for the allocation of threads for the respective processes. As defaults, threaded processes 142 
are allocated 4 threads; therefore, for the processing of 6 files, as in the paper, the pipeline can utilise up to 24 cores. 143 
This can be scaled up or down as required. The pipeline allows for the comparison of any number of biological replicates 144 
for 2 conditions. 145 
 146 
 147 
3. Results 148 
3.1. DACs at promoters are predictive of active genes.  149 

We analysed bulk ATAC-seq dataset from Simon and colleagues8 on mESC (n=3) differentiation toward DE (n=3). 150 
Firstly, we evaluated whether the promoter regions (Figure 2A and 2B) were differentially opened or closed between 151 
the two cell states for both strands of DNA (annotated “+” or “-”) (Figure 2C); these regions are annotated as PROM-152 
DACs. We restricted our analysis to promoter regions as there is still strong debate on how to properly annotate 153 
enhancer targets (e.g. HiC, methylation…) and how they regulate gene expression. We uncovered 1041 differential 154 
opening and 1489 differential closing of PROM-DACs during the mESC to DE differentiation (Figure 2B). This method 155 
leads to the detection of false positive regions, such as DACs between two samples that do not present proper 156 
enrichment - peaks as defined by MACS213 -, or, in other words, DACs between two closed chromatin regions. To 157 
segregate positive regions, we filtered out PROM-DACs on the criterion that at least one of the cell types should display 158 
an open chromatin region (i.e., a “peak”) based on the threshold applied by MACS2 algorithm. From this analysis, we 159 
excluded 28% (422/1489) and 46% (475/1041) of regions in ESC and DE samples respectively (Figure 2B – grey circle), 160 
indicating that a large proportion of the DACs was firstly selected from solely closed chromatin regions in both samples. 161 
Genuine PROM-DACs were plotted into a heatmap (Figure 2C). As we can see, selected regions display differential 162 
accessibility between both samples after applying our filtering method.  163 
To enable PreNet to select genuine DACs, we then analysed regions surrounding the TSS (+/- 1kb) and selected for 164 
those with an open TSS, hence with the ability of being transcribed, using MACS2 peak calling software. We assumed 165 
that an active transcription site requires an accessible TSS (TSS-DACs, Figure 2A). This new parameter allowed us to 166 
further eliminate 61 (4%) and 182 targets (17%) in the ESC and DE samples, respectively (Figure 2B – light green 167 
circles). Finally, we calculated the TSS-DAC log2 fold changes (log2FC) from raw reads between the two cell types and 168 
plotted it against the PROM-DAC log2FC (Figure 2D). As expected, the correlation between TSS and PROM region 169 
log2FC in the two cell states was higher than random (r = 0.65) and significant (p < 2.2×10−16) validating that accessibility 170 
of the promoters is linked to that of TSSs. This result is also visible in Figure 2C with most PROM-DACs having an open 171 
TSS (yellow regions surrounding the TSS). Conversely, very few TSSs were inaccessible when the promoter region 172 
was open (5 in the ESC and 4 in the DE cells were further removed from the final list) (Figure 2 – blue circles). PreNet 173 
filtering led to the selection of 1001 DACs in ESCs and 855 in DE (Figure 2B and 2D).  174 
After annotating the DACs regions to genes, we discovered that pluripotency genes were more accessible in mESCs 175 
than in DE cells (e.g. Nr0b1, Dppa2, Dppa4, Zfp42, Prdm5 and Klf5) whilst DE cells displayed a reverse pattern for 176 
mesendodermal genes (e.g. Smad3, Fgf8, Pdx1, and Mesp1) (Figure 2D) which are expected to be expressed in both 177 



 

cell types. Example of DACs selected by PreNet are shown in gene tracks for Nr0b1, Dppa2 and Smad3 (Figure 2E). 178 
This result confirms that PreNet selection criteria retain genuine cell-type specific chromatin accessible regions.  179 
 180 
3.2. PreNet Pipeline Improve the Quality of Footprints Prediction.   181 
To unveil trans-regulatory elements binding on open chromatin regions within the promoter, we extracted FPs from 182 
promoter regions using HINT-ATAC (see Methods). Predicted protein-DNA interactions were extracted (2,941,546 for 183 
the ESC and 2,978,511 for the DE) (Figure 3A). After investigation we discovered that the majority of these FPs were 184 
false positive for two reasons: 1) HINT-ATAC (used in DAStk and ATAC2GRN) does not make the distinction between 185 
a proper footprint found in a DACs and dips observed at the edge of a peak or two single-reads separated by a small 186 
region (Figure 3B); 2) HINT-ATAC scores FPs based on the flanking reads. That scoring method comes with flaws as 187 
FPs could be assigned to closed chromatin regions. More importantly, there is no method allowing to set up a threshold 188 
to select genuine FPs within a peak. Indeed, FP are scored but there is no probability associated to that score to predict 189 
the presence of these FPs on a promoter in a given cell type.  190 
To overcome these issues, a more stringent method to select FPs was designed based on two criteria:  191 

1) A true positive FP is, by definition, a feature observable within an accessible region (Figure 3B). To visualise 192 
the impact of our selection criteria on the FPs list, incremental top ranking FPs against scores were plotted 193 
(2,941,546 for the ESC - ESC-FPs are shown as an example on Figure 3A). Then FPs in peaks (“inP”) were 194 
represented on a similar plot (Figure 3C). Only 482,979 FPs, corresponding to 16% of all FPs previously found 195 
in mESC (in DE, 714,562 FPs corresponding to 24% of total FPs (Figure 3G)) are detected within a peak. 196 
Surprisingly, some of the false positive targets display either a very high score or a score close to 0 (Figure 3D). 197 
Both these results raise some concerns regarding the reliability of using HINT-ATAC scoring as the sole method 198 
for FPs analysis (Strategy used in ATAC2GRN).  199 

2) Applying a False Discovery Rate (FDR) calculations of FPs using inP versus outP as true positive versus false 200 
positive qualification, in order to select in a robust manner more genuine FPs. To image our method, FDR was 201 
plotted against cumulative selection of FP (first step = 100 top score FPs, second step = 200 top score FPs, 202 
etc…) (Figure 3E) (see Methods). According to our observation in Figure 3D, we can see that in the 100 top 203 
score FPs 80% are false positive, similarly to when all FPs are selected (step containing all FPs, n= 2,941,547 204 
in Figure 3E). We selected a step containing a maximum of FPs while retaining less than 1% of FPs. By doing 205 
so, 213,271 FPs were shortlisted corresponding to 7% of total ESC-FPs originally found using HINT-ATAC (and 206 
8% for DE-FPs) (Figure 3F and G).  207 

3) Finally, we filtered out the outP’s FPs from the FDR corrected list (Figure 3F).  208 

The PreNet tool is believed to generate a more genuine list of FPs from a particular ATAC-seq dataset that remains to 209 
be validated.  210 
 211 
3.3. Validation of PreNet and Genuine GRN Construction 212 
Targets of footprints allocated to SMAD2/3 in DE from PreNet were compared to those found from chromatin 213 
immunoprecipitation assay followed by deep sequencing (ChIP-seq) from two independent groups: Wang 2017 214 
(GSM1782914)23 and Yoon 2015 (GSM1288315)24 , also in the DE. We compared the putative FP targets associated 215 
to SMAD2/3 before and after applying FDR correction to the list of targets from the ChIP-seq experiments giving a 216 
Positive Predictive Value (PPV) that is the proportion of SMAD2/3 allocated footprints that are also found in at least one 217 
of the ChIP-seq datasets. Prior to FDR correction, 747 of the 2,794 SMAD2/3 allocated footprints overlap with the ChIP-218 
seq dataset, so a PPV of 26.7%. After applying FDR correction, the PPV climbs to 41.7% (584 out of 1,401 footprints) 219 
(Figure 3H). According to our expectation, PreNet leads to a better prediction of promoter targets physically bound by 220 
SMAD2/3 than using only HINT-ATAC scoring methods.  221 
To further validate the predictiveness of our tool, a GRN was built linking PROM-DACs to FPs across the two cell states 222 
(Figure 2C). Only FPs binding PROM-DACs were plotted. We found that the ESC GRN retained 502 genes, which were 223 
enriched for “LIF stimulation response”, gene set responsible for mESC pluripotency maintenance (Figure 3E). On the 224 
other hand, DE cells showed a more restricted network (n = 112 genes) with an enriched gene set linked to “liver 225 
development”, an endoderm derivative (Figure 3F). 226 
These validation steps (increased PPV and enrichment for meaningful GOs) confirmed that the PROM-DACs selection 227 
tools combined with an FP FDR correction embedded in PreNet led to the generation of a more genuine GRN. 228 
 229 
3.4. Benchmarking PreNet Against Available Pipelines Shows Increased Efficiency.  230 



 

 231 
To increase the impact of PreNet, we performed a run time and PPV comparison as the main criteria for assessing the 232 
increased power of PreNet over existing tools using the same datasets. We decided to compare its efficacy against the 233 
only available pipeline, ATAC2GRN.3 234 
The user runtime for PreNet was 80 CPU-hours. This process takes 6 FASTQ files as input and provides both 235 
differentially accessible regions as well as footprints within the promoter. In comparison, ATAC2GRN took 38.8 and 47.5 236 
CPU-hours for each experiment. Allocating the footprints from the whole genome to a transcription factor using the 237 
single-threaded FIMO was stopped at 48h real time. Subset footprints found within the promoter region by ATAC2GRN 238 
were allocated using FIMO; this process took 53.22 min and 53.87 min for each condition in addition to the ATAC2GRN 239 
pipeline running time. In summary, ATAC2GRN is significantly slower than PreNet. 240 
The predictive value of PreNet was benchmarked using SMAD2/3 ChIP-seq data. ATAC2GRN combined with FIMO 241 
allocation resulted in a PPV of 33.3%, wherein 688 out of a total of 2,063 footprints allocated to SMAD2/3 by FIMO 242 
overlapped with at least one of the ChIP-seq datasets (Figure 3K). This result is higher than the unfiltered PPV for 243 
PreNet (26.7%) but less efficient than FDR correction (41.7%).  244 
Overall, the PreNet pipeline is more efficient at predicting bona fide FPs from ATAC-seq data.  245 
 246 
4. Discussion 247 
Current ATAC-seq analysis pipelines include strong biases leading to annotations of false positive hits for accessible 248 
chromatin and potential transcription factors binding on promoter regions. We attempted to solve both issues by firstly 249 
restricting the analysis to the promoter regions and intersecting accessible regions with the accessibility of TSS. This 250 
analysis pinpointed a close correlation between the TSS and promoter accessibility. We used this filtering to correct for 251 
regions that do not have an accessible starting site for transcription, which corresponded to a large proportion of the 252 
dataset.  253 
Secondly, we developed a novel approach to improve the specificity of footprints analyses by removing false positive 254 
hits using scoring method combined with False Discovery Rate filtering. Then, both gene sets were combined to 255 
generate a GRN for each cell type. Genes that could be linked to form a GRN display enrichment for gene ontologies 256 
generally associated with each cell type. Finally, we demonstrated that our approach leads to a more robust positive 257 
predictive score when compared to the only available tool that performs a similar analysis: ATAC2GRN.  258 
Although, only predictive GRN can be inferred from our pipeline, further validation through wet lab techniques are 259 
required, but we believe this approach will help in extracting important information from ATAC-seq datasets by refining 260 
putative targets to further validate.  261 
We herein described an innovative method to analyse ATAC-seq data comprehensively while refining the obtained gene 262 
sets. This allowed us to extract trans-regulation of gene expression using only a single sequencing method. PreNet 263 
could be applied to any ATAC-seq dataset and potentially to single-cell data (not tested here) providing they are 264 
compared between clusters of cells. PreNet is believed to enhance ATAC-seq analysis power.  265 
 266 
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Figure Legend 330 
 331 
Figure 1:  332 
A) Schematic diagram of the PreNet pipeline. B) Flowchart of the PreNet pipeline. Dashed area represents the part of 333 
PreNet pipeline used in other available software (ATAC2GRN (blue), DiffBind (red) and DAStk (yellow)). Only, 334 
ATAC2GRN was used to benchmark PreNet. DAC: Differentially Accessible Chromatin, FP: Footprint, TSS: 335 
Transcription Start Site 336 
 337 
Figure 2:  338 
A) Diagram showing annotations of the different chromatin regions analysed using this pipeline. A region opening during 339 
differentiation was drawn as an example. B) Venn Diagram representing incremental selection process. Grey: all PROM-340 
DACs; light-green: PROM-DACs within a peak; light-blue: PROM-DACs having an accessible TSS; purple: PROM-341 
DACs not having an accessible TSS in ESC; green: PROM-DACs not having an accessible TSS in DE; C) DACs plots 342 
showing open regions in ESC compared to DE cells (left panel) and in DE compared to ESC (right panel). D) Correlation 343 
plot between Log2 fold change in PROM-DACs and TSS-DACs in both cell types. E) Gene track plots of two DAC 344 
regions in ESC Dppa2 and Nr0b1 (Dax1) and one in DE cells, Smad3. DAC: Differentially Accessible Chromatin, DE: 345 
Definitive Endoderm, ESC: Embryonic Stem Cells, FP: footprints, PROM: Promoter, TSS: Transcription Start Site.  346 
 347 
Figure 3:  348 
A) All footprints from HINT-ATAC algorithms ranked based on their score in ESC as an example. B) Diagram illustrating 349 
annotation of footprints using in the PreNet pipeline. True positives are the footprints found within a peak. False 350 
positives, as described herein, are found within closed regions (non-peak-called region) or at the edge of a peak. C) 351 
Footprints falling within a peak (top panel) and D) outside a peak (bottom panel) with a maximum score around 10,000. 352 
E) False Discovery Rate (%) in cumulative selection of Footprints (Step = 100 FPs). Red dashed lines indicate the 353 
threshold used in our study where we selected the highest cumulative step containing a maximum of footprints with less 354 
than 1% FPR. F) Footprints after FDR discovery showing a maximum score just above 4,000. G) Summary table of 355 
footprints after applying peak allocation and FDR corrections. H) Venn diagram showing intersection of targets of 356 
Smad2/3 compared to two ChIP-seq datasets before and after filtering (arrow-head). Black colour indicates FDR 357 
correction in footprints selection. Red colour FDR correction overlap with Smad2/3 ChIP-seq data GSM1288315. Blue 358 
colour FDR correction overlap with Smad2/3 ChIP-seq data GSM1782914. I) GRN generated from ESC data. Red 359 
outline highlights genes related to “Response to LIF”. J) GRN generated from DE data. Red outline highlights genes 360 
related to “Liver development”. K) Venn diagram of ATAC2GRN footprints for comparison to that of PreNet (H). DE: 361 
Definitive Endoderm, ESC: Embryonic Stem Cells, FDR: False Discovery Rate, fp: footprints, GRN: Gene Regulatory 362 
Network, inP: in a peak, outP: oustide a peak, pe: peaks 363 
 364 
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