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PRENET: PREDICTIVE NETWORK FROM ATAC-SEQ DATA

NAZMUS SALEHIN2, PATRICK P.L. TAM*? | PIERRE OSTEIL*?

1Embryology Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
2School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia

Assays for transposase-accessible chromatin sequencing (ATAC-seq) provides an innovative approach to study
chromatin status in multiple cell types. Moreover, it is also possible to efficiently extract differentially accessible
chromatin (DACS) regions by using state-of-the-art algorithms (e.g. DESeq?2) to predict gene activity in specific samples.
Furthermore, it has recently been shown that small dips in sequencing peaks can be attributed to the binding of
transcription factors. These dips, also known as footprints, can be used to identify trans-regulating interactions leading
to gene expression. Current protocols used to identify footprints (e.g. pyDNAse and HINT-ATAC) have shown limitations
resulting in the discovery of many false positive footprints. We generated a novel approach to identify genuine footprints
within any given ATAC-seq dataset.

Herein, we developed a new pipeline embedding DACs together with bona fide footprints resulting in the generation of
a Predictive gene regulatory Network (PreNet) simply from ATAC-seq data. We further demonstrated that PreNet can
be used to unveil meaningful molecular regulatory pathways in a given cell type.

Keywords: ATAC-seq, Footprints, Gene Regulatory Network

1. Introduction

Assays for transposase-accessible chromatin sequencing (ATAC-seq) is an efficient and robust technique requiring very
little starting material (as few as 50,000 cells), making it a reliable tool for studying restricted biological systems (e.qg.
embryos).! Generally, ATAC-seq is used to determine accessible chromatin regions in cells. Recently, it has been shown
to be a promising tool to detect transcription factor binding sites (TFBSs) by screening footprints within peaks called
from ATAC-seq data.? Footprints are small dips (10-20 bp) observed in read pile-ups (or peaks) and are indicative of
reduced transposase activity that may be associated with TF occupancy.

Combined with RNA sequencing (RNA-seq), these data allow scientists to build gene regulatory networks (GRN) at an
unprecedented level of complexity. Nonetheless, RNA-seq data can be difficult to generate because of sample scarcity.
This limitation prompted the development of a pipeline that can predict multiple levels of gene regulation only from
ATAC-seq data to obtain a comprehensive predictive GRN without further sample preparation (Figure 1A).

Current ATAC-seq pipelines do not extract significantly differentially accessible chromatin (DACSs) regions, which are
important to determine remodelling of DNA tertiary structure between cell types. For instance, ATAC2GRN? only
provides open chromatin regions based on MACS2 program (Figure 1B - blue area). DiffBind* extracts DACs but not
specifically located to a promoter and TSS of a given gene (FigurelB —red area). Finally, DAStk® can be used to extract
footprints using HINT-ATACS® program but not within a DACs (Figure 1B — yellow area). As we can see on Figure 1B,
altogether, the three pipelines aforementioned do not lead to a comprehensive picture of the chromatin status within
cells.

Thus, we decided to combine both the extraction of DACs specifically located to a promoter (PROM-DACS), predictive
of a potentially active gene, together with their associated footprints, predictive of a TF bound to the promoter, to build
a two-level Predictive Network (PreNet): TFs regulating genes expression at the promoter.

Moreover, PreNet comes with a solution to calculate Fold Changes (FC) and p.values associated to DACs between cell
types. In addition, we describe that current footprinting tools, such as pyDNAse” or HINT-ATAC,® produce an important
number of false positive footprints which can lead to misinterpretation, hence the devaluation of the data. To prevent
this, we developed a False Discovery Rate (FDR) method to eliminate these artefact footprints. Combining both
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approaches (DACs FC and p.values together with FPs FDR) into one pipeline allowed for the inferring of a more reliable
predictive GRN from ATAC-seq data.

To illustrate the utility of PreNet, we used a well-known differentiation model from mouse Embryonic Stem Cells
(mESCs) to the Definitive Endoderm (DE).8 We further compared footprints analysis to ChlP-seq data in similar cell
types and benchmark the new FDR filtering against ATAC2GRN by comparing Positive Predictive Value (PPV).
Runtimes against the only available pipeline achieving a similar outcome (ATAC2GRN) further illustrate the increased
power of the PreNet pipeline. PreNet can be used with any given set of ATAC-seq data and its respective reference
genome. On top of providing a program requiring only ATAC-seq data, we improved the statistical analysis for genuine
DACs and FPs leading to an increase of predictiveness as demonstrated here.

2. Methods
The PreNet pipeline is summarized in Figure 1B.

2.1. Availability of data and materials
PreNet can be downloaded from the project code repository
https://github.com/ChildrensMedicalResearchlinstitute/PreNet. PreNet is provided as a series of snakemake pipelines.
The initial set up for the pipeline requires the tools found in Table 1. Set up for these tools must be completed in the
config.snakemake file. The default configuration assumes the tools are present in the current PATH but can be modified
to point directly to the tool location.
For input, the snakemake pipeline requires the following (placed in config.snakemake):
1) The trimmed paired-end sequencing files for an ATAC-seq experiment in gzipped FASTQ format, within a
“‘FASTQ” directory.
2) The bowtie2? index for the genome of interest. These may be downloaded from NCBI Genbank or manually
created.
3) A list of chromosomes to keep for final analyses along with the size of each of the chromosomes
(xxxx.chrom.sizes). The default list contains the non-mitochondrial chromosomes for the mouse genome (chr
1-20, chr X, chr Y). The chrom.sizes file can be found from ENCODE, UCSC or made custom.
4) A blacklist of regions to exclude in BED format. The mouse blacklist (ENCFF547MET.bed) can be found on
ENCODE and a similar blacklist exists for the human genome.
5) Theregions of interest in SAF format. In this case, promoter regions based on the mm10 reference genome are
provided.
6) Transcription factor position-weighted matrix file in MEME format for FIMO° allocation. These can be
downloaded from a transcription factor database of choice.

Table 1. Software requirements for PreNet

Tool Version tested Website
Samtools * 1.8 https://www.htslib.org/

http://bowtie-
Bowtie2 ° 2.2.6 bio.sourceforge.net/bowtie2/index.shtml
Sambamba 2 0.6.7 https://lomereiter.github.io/sambamba/
MACS2 3 2.1.1.20160309 https://taoliu.github.io/MACS/

https://github.com/kundajelab/atac_dnas
Accessed April  e_pipelines/commits/master/utils/assign

assign_multimappers.py 3, 2018 _multimappers.py

featureCounts 1.5.3 http://subread.sourceforge.net/
deeptools ° 254 https://github.com/deeptools/deepTools
UCSC kentUTtils 16 4 http://genome.ucsc.edu/

R Statistical Software 351 https://www.R-project.org/

https://bioconductor.org/packages/releas
DESeq2 V' 1.22.1 e/bioc/html/DESeq2.html
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https://cran.r-
project.org/web/packages/tidyverse/inde

Tidyverse libraries 1.2.1 x.html
HINT-ATAC ¢ 0.21.1 http://www.regulatory-genomics.org/hint/
FIMO 10 4.11.2 http://meme-suite.org/doc/fimo.html

2.2.Raw data extraction and alignment to reference genome

The pipeline can be started from either raw reads or aligned and filtered files. Within this paper, data from Simon and
colleagues® (GSE94249) were downloaded from the Gene Expression Omnibus repository and analysed completely
using the snakemake pipeline. Paired-end reads were aligned to the GRCm38/mm10 M. musculus reference genome
using bowtie2° (-k 4 -X 2000 —local -mm), allowing for a maximum of 4 multimapping locations per read. Multimapping
reads were then assigned randomly using assign_multimappers.py from the ENCODE project.1® From the aligned data,
unpaired and low-quality reads were excluded using samtools,** deduplicated using sambamba?? and filtered to remove
mitochondrial reads.

2.3.Differential Open Chromatin regions analysis of Promoter region

Aligned pairs were converted to pseudo-single ended reads and only the 5’-end was used for differential analysis. This
represents the site of Tn5 transposase activity. Regions of open chromatin were identified using MACS213 (-q 0.05 --
no-model --shift -100 --extsize 200) on pooled replicates. Tn5 transposase events within the promoter (-5 kb to TSS)
and TSS (-1 kb to +l kb) regions (Figure 2A) were estimated using the number of 5’-ends within the region. This was
achieved using featureCounts!* (--read2pos 5) and raw counts were imported into R for analysis with DESeg2.1"
Differentially accessible regions were visualised using deeptools2 (Figure 2C) .15

2.4.Footprinting analysis

Aligned reads were combined to give one file per biological condition. De novo footprint analysis in promoter regions (-
5kb to TSS) was performed using HINT-ATAC.® Sequences from identified footprints, extracted using bedtools, were
assigned to a transcription factor using FIMO° from the MEME Suite, utilising the JASPAR 2018 vertebrate database?®
as a reference for transcription factor (TF) position weight matrices. Regions of predicted TF activity were assigned
based on the initial promoter SAF file.

2.5.False discovery rate filtering for footprints

Footprints were called using HINT-ATAC (Figure 3A) on all promoter regions and subsequently segregated into those
falling either within or outside the called peaks (Figure 3C). HINT-ATAC footprint scores were placed in descending
order based on the footprint score. The footprints were filtered based on the proportion of footprints found in inaccessible
regions of the genome, outside of ATAC-seq peaks (Figure 3B). For an FDR value of 1, the subset of top footprints is
returned such that the proportion of footprints outside of ATAC-seq peaks are equal to T; these are subsequently filtered
for footprints that lie within peaks only. To achieve this, FPs lying outside peaks (“outP”) were allocated as false positive
footprints and a footprint score cut-off was generated by ranking all FPs, then selecting the lowest score that would
provide a final list containing less than 1% of FPs located outside of a peak (in other words, less than 1% of false positive
FPs). The goal here is to eliminate FPs in a peak that have a lower score than the 1% FPs detected from a region
outside of a peak as they are not more significant, hence meaningful, than a FP found between two single isolated
reads.

2.6.Benchmarking

Comparison against ATAC2GRNS? was performed using version 2 of the optimised ATAC2GRN bash pipeline for paired-
end experiments. The shell script was modified to run on the benchmarking system. Subsequent allocation of promoter
footprints to a transcription factor was done using the PreNet pipeline as ATAC2GRN does not provide an allocation
pipeline (only genomic location). The runtime benchmark was performed on a server running Centos 7, Linux kernel
version 4.6 and 24 threads running at 2.90GHz. Where applicable, 64-bit versions of the programs have been used.
Running times are given as user time as measured by the shell command time.
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2.7.ChlIP-seq validation

Where peak files are available for pipelines, no further analysis was carried out before comparison (GSM1288315,
converted to GRCm38/mm10 M. musculus genome using liftOver). Otherwise (GSM1782914), reads were aligned to
GRCm38/mm10 genome using Burrow-Wheeler Aligner?® and filtered to remove duplicates, unaligned and blacklist
region reads. Peaks were called using MACS2 (-q 0.05). Peak files were then filtered to only include peaks within
promoter regions (-5kb to TSS). Regions where transcription factors were assigned to footprints via PreNet were
compared to ChlP-seq peaks to determine the Positive Predictive Value (PPV) of PreNet pre- and post-FDR filtering.

2.8.Cytoscape GRN generation

Final output from the snakemake pipeline, interactions between FPs filtered by FDR < 0.01 and target DACs, were
imported into Cytoscape?' compatible file format for gene network visualisation. Each GRN comprises of FPs located
within a DAC with an open TSS. Nodes with no interactions were excluded from the GRN. Gene ontology search on
developmental pathway was conducted using Panther v14.22

2.9.Scalability of PreNet

The snakemake pipeline allow for the allocation of threads for the respective processes. As defaults, threaded processes
are allocated 4 threads; therefore, for the processing of 6 files, as in the paper, the pipeline can utilise up to 24 cores.
This can be scaled up or down as required. The pipeline allows for the comparison of any number of biological replicates
for 2 conditions.

3. Results
3.1.DACs at promoters are predictive of active genes.

We analysed bulk ATAC-seq dataset from Simon and colleagues® on mESC (n=3) differentiation toward DE (n=3).
Firstly, we evaluated whether the promoter regions (Figure 2A and 2B) were differentially opened or closed between
the two cell states for both strands of DNA (annotated “+” or “-”) (Figure 2C); these regions are annotated as PROM-
DACs. We restricted our analysis to promoter regions as there is still strong debate on how to properly annotate
enhancer targets (e.g. HiC, methylation...) and how they regulate gene expression. We uncovered 1041 differential
opening and 1489 differential closing of PROM-DACs during the mESC to DE differentiation (Figure 2B). This method
leads to the detection of false positive regions, such as DACs between two samples that do not present proper
enrichment - peaks as defined by MACS2*2 -, or, in other words, DACs between two closed chromatin regions. To
segregate positive regions, we filtered out PROM-DACSs on the criterion that at least one of the cell types should display
an open chromatin region (i.e., a “peak”) based on the threshold applied by MACS2 algorithm. From this analysis, we
excluded 28% (422/1489) and 46% (475/1041) of regions in ESC and DE samples respectively (Figure 2B — grey circle),
indicating that a large proportion of the DACs was firstly selected from solely closed chromatin regions in both samples.
Genuine PROM-DACs were plotted into a heatmap (Figure 2C). As we can see, selected regions display differential
accessibility between both samples after applying our filtering method.

To enable PreNet to select genuine DACs, we then analysed regions surrounding the TSS (+/- 1kb) and selected for
those with an open TSS, hence with the ability of being transcribed, using MACS2 peak calling software. We assumed
that an active transcription site requires an accessible TSS (TSS-DACs, Figure 2A). This new parameter allowed us to
further eliminate 61 (4%) and 182 targets (17%) in the ESC and DE samples, respectively (Figure 2B — light green
circles). Finally, we calculated the TSS-DAC log2 fold changes (log2FC) from raw reads between the two cell types and
plotted it against the PROM-DAC log2FC (Figure 2D). As expected, the correlation between TSS and PROM region
log2FC in the two cell states was higher than random (r = 0.65) and significant (p < 2.2x10716) validating that accessibility
of the promoters is linked to that of TSSs. This result is also visible in Figure 2C with most PROM-DACSs having an open
TSS (yellow regions surrounding the TSS). Conversely, very few TSSs were inaccessible when the promoter region
was open (5 in the ESC and 4 in the DE cells were further removed from the final list) (Figure 2 — blue circles). PreNet
filtering led to the selection of 1001 DACs in ESCs and 855 in DE (Figure 2B and 2D).

After annotating the DACs regions to genes, we discovered that pluripotency genes were more accessible in mESCs
than in DE cells (e.g. NrOb1, Dppa2, Dppa4, Zfp42, Prdm5 and KIf5) whilst DE cells displayed a reverse pattern for
mesendodermal genes (e.g. Smad3, Fgf8, Pdx1, and Mesp1l) (Figure 2D) which are expected to be expressed in both



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

cell types. Example of DACs selected by PreNet are shown in gene tracks for NrObl, Dppa2 and Smad3 (Figure 2E).
This result confirms that PreNet selection criteria retain genuine cell-type specific chromatin accessible regions.

3.2.PreNet Pipeline Improve the Quality of Footprints Prediction.

To unveil trans-regulatory elements binding on open chromatin regions within the promoter, we extracted FPs from
promoter regions using HINT-ATAC (see Methods). Predicted protein-DNA interactions were extracted (2,941,546 for
the ESC and 2,978,511 for the DE) (Figure 3A). After investigation we discovered that the majority of these FPs were
false positive for two reasons: 1) HINT-ATAC (used in DAStk and ATAC2GRN) does not make the distinction between
a proper footprint found in a DACs and dips observed at the edge of a peak or two single-reads separated by a small
region (Figure 3B); 2) HINT-ATAC scores FPs based on the flanking reads. That scoring method comes with flaws as
FPs could be assigned to closed chromatin regions. More importantly, there is no method allowing to set up a threshold
to select genuine FPs within a peak. Indeed, FP are scored but there is no probability associated to that score to predict
the presence of these FPs on a promoter in a given cell type.

To overcome these issues, a more stringent method to select FPs was designed based on two criteria:

1) A true positive FP is, by definition, a feature observable within an accessible region (Figure 3B). To visualise
the impact of our selection criteria on the FPs list, incremental top ranking FPs against scores were plotted
(2,941,546 for the ESC - ESC-FPs are shown as an example on Figure 3A). Then FPs in peaks (“inP”) were
represented on a similar plot (Figure 3C). Only 482,979 FPs, corresponding to 16% of all FPs previously found
in mESC (in DE, 714,562 FPs corresponding to 24% of total FPs (Figure 3G)) are detected within a peak.
Surprisingly, some of the false positive targets display either a very high score or a score close to 0 (Figure 3D).
Both these results raise some concerns regarding the reliability of using HINT-ATAC scoring as the sole method
for FPs analysis (Strategy used in ATAC2GRN).

2) Applying a False Discovery Rate (FDR) calculations of FPs using inP versus outP as true positive versus false
positive qualification, in order to select in a robust manner more genuine FPs. To image our method, FDR was
plotted against cumulative selection of FP (first step = 100 top score FPs, second step = 200 top score FPs,
etc...) (Figure 3E) (see Methods). According to our observation in Figure 3D, we can see that in the 100 top
score FPs 80% are false positive, similarly to when all FPs are selected (step containing all FPs, n= 2,941,547
in Figure 3E). We selected a step containing a maximum of FPs while retaining less than 1% of FPs. By doing
S0, 213,271 FPs were shortlisted corresponding to 7% of total ESC-FPs originally found using HINT-ATAC (and
8% for DE-FPs) (Figure 3F and G).

3) Finally, we filtered out the outP’s FPs from the FDR corrected list (Figure 3F).

The PreNet tool is believed to generate a more genuine list of FPs from a particular ATAC-seq dataset that remains to
be validated.

3.3.Validation of PreNet and Genuine GRN Construction

Targets of footprints allocated to SMAD2/3 in DE from PreNet were compared to those found from chromatin
immunoprecipitation assay followed by deep sequencing (ChIP-seq) from two independent groups: Wang 2017
(GSM1782914)% and Yoon 2015 (GSM1288315)%* , also in the DE. We compared the putative FP targets associated
to SMAD2/3 before and after applying FDR correction to the list of targets from the ChlP-seq experiments giving a
Positive Predictive Value (PPV) that is the proportion of SMAD2/3 allocated footprints that are also found in at least one
of the ChIP-seq datasets. Prior to FDR correction, 747 of the 2,794 SMAD2/3 allocated footprints overlap with the ChlIP-
seq dataset, so a PPV of 26.7%. After applying FDR correction, the PPV climbs to 41.7% (584 out of 1,401 footprints)
(Figure 3H). According to our expectation, PreNet leads to a better prediction of promoter targets physically bound by
SMAD2/3 than using only HINT-ATAC scoring methods.

To further validate the predictiveness of our tool, a GRN was built linking PROM-DACSs to FPs across the two cell states
(Figure 2C). Only FPs binding PROM-DACs were plotted. We found that the ESC GRN retained 502 genes, which were
enriched for “LIF stimulation response”, gene set responsible for mESC pluripotency maintenance (Figure 3E). On the
other hand, DE cells showed a more restricted network (n = 112 genes) with an enriched gene set linked to “liver
development”, an endoderm derivative (Figure 3F).

These validation steps (increased PPV and enrichment for meaningful GOs) confirmed that the PROM-DACSs selection
tools combined with an FP FDR correction embedded in PreNet led to the generation of a more genuine GRN.

3.4.Benchmarking PreNet Against Available Pipelines Shows Increased Efficiency.



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280

To increase the impact of PreNet, we performed a run time and PPV comparison as the main criteria for assessing the
increased power of PreNet over existing tools using the same datasets. We decided to compare its efficacy against the
only available pipeline, ATAC2GRN.3

The user runtime for PreNet was 80 CPU-hours. This process takes 6 FASTQ files as input and provides both
differentially accessible regions as well as footprints within the promoter. In comparison, ATAC2GRN took 38.8 and 47.5
CPU-hours for each experiment. Allocating the footprints from the whole genome to a transcription factor using the
single-threaded FIMO was stopped at 48h real time. Subset footprints found within the promoter region by ATAC2GRN
were allocated using FIMO; this process took 53.22 min and 53.87 min for each condition in addition to the ATAC2GRN
pipeline running time. In summary, ATAC2GRN is significantly slower than PreNet.

The predictive value of PreNet was benchmarked using SMAD2/3 ChlP-seq data. ATAC2GRN combined with FIMO
allocation resulted in a PPV of 33.3%, wherein 688 out of a total of 2,063 footprints allocated to SMAD2/3 by FIMO
overlapped with at least one of the ChlP-seq datasets (Figure 3K). This result is higher than the unfiltered PPV for
PreNet (26.7%) but less efficient than FDR correction (41.7%).

Overall, the PreNet pipeline is more efficient at predicting bona fide FPs from ATAC-seq data.

4. Discussion

Current ATAC-seq analysis pipelines include strong biases leading to annotations of false positive hits for accessible
chromatin and potential transcription factors binding on promoter regions. We attempted to solve both issues by firstly
restricting the analysis to the promoter regions and intersecting accessible regions with the accessibility of TSS. This
analysis pinpointed a close correlation between the TSS and promoter accessibility. We used this filtering to correct for
regions that do not have an accessible starting site for transcription, which corresponded to a large proportion of the
dataset.

Secondly, we developed a novel approach to improve the specificity of footprints analyses by removing false positive
hits using scoring method combined with False Discovery Rate filtering. Then, both gene sets were combined to
generate a GRN for each cell type. Genes that could be linked to form a GRN display enrichment for gene ontologies
generally associated with each cell type. Finally, we demonstrated that our approach leads to a more robust positive
predictive score when compared to the only available tool that performs a similar analysis: ATAC2GRN.

Although, only predictive GRN can be inferred from our pipeline, further validation through wet lab techniques are
required, but we believe this approach will help in extracting important information from ATAC-seq datasets by refining
putative targets to further validate.

We herein described an innovative method to analyse ATAC-seq data comprehensively while refining the obtained gene
sets. This allowed us to extract trans-regulation of gene expression using only a single sequencing method. PreNet
could be applied to any ATAC-seq dataset and potentially to single-cell data (not tested here) providing they are
compared between clusters of cells. PreNet is believed to enhance ATAC-seq analysis power.
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Figure Legend

Figure 1:

A) Schematic diagram of the PreNet pipeline. B) Flowchart of the PreNet pipeline. Dashed area represents the part of
PreNet pipeline used in other available software (ATAC2GRN (blue), DiffBind (red) and DAStk (yellow)). Only,
ATAC2GRN was used to benchmark PreNet. DAC: Differentially Accessible Chromatin, FP: Footprint, TSS:
Transcription Start Site

Figure 2:

A) Diagram showing annotations of the different chromatin regions analysed using this pipeline. A region opening during
differentiation was drawn as an example. B) Venn Diagram representing incremental selection process. Grey: all PROM-
DACs; light-green: PROM-DACs within a peak; light-blue: PROM-DACs having an accessible TSS; purple: PROM-
DACs not having an accessible TSS in ESC; green: PROM-DACs not having an accessible TSS in DE; C) DACs plots
showing open regions in ESC compared to DE cells (left panel) and in DE compared to ESC (right panel). D) Correlation
plot between Log2 fold change in PROM-DACs and TSS-DACs in both cell types. E) Gene track plots of two DAC
regions in ESC Dppa2 and NrObl1 (Dax1) and one in DE cells, Smad3. DAC: Differentially Accessible Chromatin, DE:
Definitive Endoderm, ESC: Embryonic Stem Cells, FP: footprints, PROM: Promoter, TSS: Transcription Start Site.

Figure 3:

A) All footprints from HINT-ATAC algorithms ranked based on their score in ESC as an example. B) Diagram illustrating
annotation of footprints using in the PreNet pipeline. True positives are the footprints found within a peak. False
positives, as described herein, are found within closed regions (non-peak-called region) or at the edge of a peak. C)
Footprints falling within a peak (top panel) and D) outside a peak (bottom panel) with a maximum score around 10,000.
E) False Discovery Rate (%) in cumulative selection of Footprints (Step = 100 FPs). Red dashed lines indicate the
threshold used in our study where we selected the highest cumulative step containing a maximum of footprints with less
than 1% FPR. F) Footprints after FDR discovery showing a maximum score just above 4,000. G) Summary table of
footprints after applying peak allocation and FDR corrections. H) Venn diagram showing intersection of targets of
Smad2/3 compared to two ChlP-seq datasets before and after filtering (arrow-head). Black colour indicates FDR
correction in footprints selection. Red colour FDR correction overlap with Smad2/3 ChIP-seq data GSM1288315. Blue
colour FDR correction overlap with Smad2/3 ChlP-seq data GSM1782914. I) GRN generated from ESC data. Red
outline highlights genes related to “Response to LIF”. J) GRN generated from DE data. Red outline highlights genes
related to “Liver development”. K) Venn diagram of ATAC2GRN footprints for comparison to that of PreNet (H). DE:
Definitive Endoderm, ESC: Embryonic Stem Cells, FDR: False Discovery Rate, fp: footprints, GRN: Gene Regulatory
Network, inP: in a peak, outP: oustide a peak, pe: peaks
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