On the H^{m}-Regularity for Second Order Elliptic Equations

Subham De

To cite this version:

Subham De. On the H^{m}-Regularity for Second Order Elliptic Equations. 2024. hal-04477849v3

HAL Id: hal-04477849
 https://hal.science/hal-04477849v3

Preprint submitted on 7 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the H^{m}-Regularity for Second Order Elliptic Equations

SUBHAM DE
Department of Mathematics, Indian Institute of Technology, Delhi, India.
Email: mas227132@iitd.ac.in
Website: www.sites.google.com/view/subhamde

Abstract

Our primary objective in this paper is to discuss the H^{m}-Regularity for second order elliptic equations over Sobolev Spaces. We here consider the cases $m=1$ and $m \geq 2$ separately. We revisit some elementary concepts in Functional Analysis and Abstract Harmonic Analysis before providing a proper definiton to the notion of weak solution of a Dirichlet Problem.

While towards the later stages, we shall classify different types of regularity conditions, the main focus lies upon deducing appropriate ellipticity conditions in support of commenting about the existence and uniqueness of the weak solutions to a given problem. Appropriate references are provided in the bibliography section to facilitate further reading for ardent readers and researchers in this field.

Keywords and Phrases: Fourier Transform, Sobolev Space, Schwartz Space, Hilbert Space, Weak Derivative, Trace Theorem, Integration by Parts, Outward Normal, Bounded Domain, Boundary Value Problem, Dirichlet Problem, Weak Solution, Uniqueness, Existence, Interior Regularity, Boundary Regularity, Higher Regularity, Elliptic Equation, Elliptic Operator .

```
2020 MSC: Primary 35A01, 35A02, 35A15, 35J20, 35D30 .
    Secondary 35B65, 35A20, 35J25, 35J35, 58J05 .
```


Contents

1 Introduction 2
1.1 Notations 2
1.2 Important results in Fourier Analysis 3
1.3 Equivalent Norm on $H^{m}\left(\mathbb{R}_{+}^{n}\right)$ 5
1.4 Trace Theorem 5
1.5 Integration by Parts 6
2 Calculus on the Boundary of Sobolev Spaces 7
2.1 Domain with Smooth Boundary 7
2.2 Boundary of Sobolev Spaces 9
3 Boundary Value Problems 11
3.1 Introducing Boundary Conditions on Solutions 11
3.2 Weak Formulation of a Dirichlet Problem 12
3.3 Weak Solution of a Dirichlet Problem 12
3.4 Existence and Uniqueness of Weak Solution 14
$4 \quad H^{m}$-Regularity for Second Order Elliptic Equations 15
4.1 Interior Regularity 15
4.2 Boundary Regularity 17
4.3 A Special Diffeomorphism on Second Order Elliptic Operators 18

1 Introduction

1.1 Notations

We shall use the following notations throughout the article. They are as follows:

- $\mathbb{R}_{+}^{n}:=\left\{\left(x_{1}, x_{2}, \ldots ., x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$.
- A priori given integers, $\alpha_{i} \geq 0 \forall i=1,2, \ldots, n$, we denote,

$$
\begin{aligned}
\alpha & :=\left(\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{n}\right) \\
\alpha^{\prime} & :=\left(\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{n-1}, 0\right) .
\end{aligned}
$$

- For a multi-index α, we define,

$$
\begin{gathered}
|\alpha|:=\alpha_{1}+\alpha_{2}+\ldots .+\alpha_{n} \\
D^{\alpha}=\frac{1}{i^{|\alpha|}} \cdot \frac{\alpha^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots . . \partial x_{n}^{\alpha,}}
\end{gathered}
$$

Where, $i=\sqrt{-1}$.

- For every $1 \leq k \leq n$, and $j \in \mathbb{N}$,

$$
D_{k}^{j}:=\frac{1}{i j} \cdot \frac{\partial^{j}}{\partial x_{k}^{j}}
$$

It is assumed for simplicity that, for $j=1$, we just write D_{k}.

- $C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right):=$ Set of all C^{∞} functions upto the boundary of \mathbb{R}_{+}^{n} and having compact support in $\overline{\mathbb{R}}_{+}^{n}$.

1.2 Important results in Fourier Analysis

We recall the definition of Fourier transform and shall discuss about some of its important properties pertinent to our topic. For further details, one can refer to [2].

Definition 1.2.1. (Fourier Transform) For any $u \in L^{1}\left(\mathbb{R}^{n}\right), v \in L^{1}\left(\mathbb{R}_{+}^{n}\right)$, we define the fourier transforms of u and v as,

$$
\hat{u}(\xi):=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x, \quad \xi \in \mathbb{R}^{n}
$$

and,

$$
\hat{v}\left(\xi^{\prime}, x_{n}\right):=\int_{\mathbb{R}^{n-1}} e^{-i x^{\prime} \cdot \xi^{\prime}} u\left(x^{\prime}, x_{n}\right) d x^{\prime}, \quad \xi^{\prime} \in \mathbb{R}^{n-1}, x=\left(x^{\prime}, x_{n}\right)
$$

Furthermore, for $u \in L^{2}\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$, we have the Parseval Relation,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u(x)|^{2} d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}|\hat{u}(\xi)|^{2} d x \tag{1.1}
\end{equation*}
$$

And,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|D^{\alpha} u(x)\right|^{2} d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left|\xi^{\alpha}\right|^{2}|\hat{u}(\xi)|^{2} d x \tag{1.2}
\end{equation*}
$$

The relations (1.1) and (1.2) yields,

$$
\begin{array}{r}
\int_{0}^{\infty} \int_{\mathbb{R}^{n-1}}\left|v\left(x^{\prime}, x_{n}\right)\right|^{2} d x^{\prime} d x_{n}=\frac{1}{(2 \pi)^{n-1}} \int_{0}^{\infty} \int_{\mathbb{R}^{n-1}}\left|\hat{v}\left(\xi^{\prime}, x_{n}\right)\right|^{2} d \xi^{\prime} d x_{n} \\
\int_{0}^{\infty} \int_{\mathbb{R}^{n-1}}\left|D^{\alpha^{\prime}} v\left(x^{\prime}, x_{n}\right)\right|^{2} d x^{\prime} d x_{n}=\frac{1}{(2 \pi)^{n-1}} \int_{0}^{\infty} \int_{\mathbb{R}^{n-1}}\left|\xi^{\alpha^{\prime}}\right|^{2}\left|\hat{v}\left(\xi^{\prime}, x_{n}\right)\right|^{2} d \xi^{\prime} d x_{n}
\end{array}
$$

A priori given a Schwartz Space \mathcal{S} of rapidly decreasing functions in \mathbb{R}^{n} with its dual as \mathcal{S}^{\prime}, we can deduce the following,

$$
\hat{u}(\phi)=u(\hat{\phi}), \quad u \in \mathcal{S}^{\prime}, \phi \in \mathcal{S}
$$

Remark 1.2.1. An important observation is that, $\hat{u} \in \mathcal{S}^{\prime}$ as well for every $u \in \mathcal{S}^{\prime}$, by properties of Fourier Transform on Schwartz Spaces.

Using the above results, we provide a formal definition of the Sobolev Space as follows :
Definition 1.2.2. (Sobolev Space) For every $s \in \mathbb{R}$, we define the Sobolev Space $H^{s}\left(\mathbb{R}^{n}\right)$ as,

$$
\begin{equation*}
H^{s}\left(\mathbb{R}^{n}\right):=\left\{u \in \mathcal{S}^{\prime}: \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} d \xi<\infty\right\} \tag{1.3}
\end{equation*}
$$

It can be verified that, $H^{s}\left(\mathbb{R}^{n}\right)$ is indeed a Hilbert Space with respect to the following inner product defined on it,

$$
<u, v>:=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s} \hat{u}(\xi) \overline{\hat{v}(\xi)} d \xi
$$

Remark 1.2.2. For $s \in \mathbb{N} \cup\{0\}$, we can interpret the above as following,

$$
H^{s}\left(\mathbb{R}^{n}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \text { for }|\alpha| \leq s\right\}
$$

Where, $D^{\alpha} u$ denotes the weak (distributional) derivative of u with an equivalent norm defined on $H^{s}\left(\mathbb{R}^{n}\right)$ as,

$$
\begin{equation*}
\|u\|_{s}^{2}=\sum_{|\alpha| \leq s} \int_{\mathbb{R}^{n}}\left|D^{\alpha} u\right|^{2} \tag{1.4}
\end{equation*}
$$

Important to note that, the above definition has a valid extension to \mathbb{R}_{+}^{n} as,

$$
H^{s}\left(\mathbb{R}_{+}^{n}\right):=\left\{u \in L^{2}\left(\mathbb{R}_{+}^{n}\right): D^{\alpha} u \in L^{2}\left(\mathbb{R}_{+}^{n}\right), \text { for }|\alpha| \leq s\right\}
$$

which in turn forms a Hilbert Space with respect to the inner product,

$$
<u, v>:=\sum_{|\alpha| \leq s} \int_{\mathbb{R}_{+}^{n}} D^{\alpha} u \cdot D^{\alpha} v
$$

For future reference and for simplicity, since we shall be working in the case when $s \in \mathbb{N} \cup 0$, we take, $s=m$, and for notational purposes, we shall consider the Sobolev Space $H^{m}\left(\mathbb{R}_{+}^{n}\right)$ in our future deductions.

1.3 Equivalent Norm on $H^{m}\left(\mathbb{R}_{+}^{n}\right)$

A priori from the definition of norm as mentioned in (1.4) and using the property that, \exists constants $c_{1}, c_{2}>0$ such that,

$$
c_{1}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j} \leq \sum_{\left|\alpha^{\prime}\right| \leq m-j}\left|\xi^{\alpha^{\prime}}\right|^{2} \leq c_{2}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j}, \forall j \in 0,1,2, \ldots m
$$

For every $u \in H^{m}\left(\mathbb{R}_{+}^{n}\right)$, it helps us provide the definition of an equivalent norm on $H^{m}\left(\mathbb{R}_{+}^{n}\right)$, denoted by $|.|_{m}$, and defined as,

Definition 1.3.1.

$$
\begin{equation*}
|u|_{m}^{2}:=\sum_{j=0}^{m} \int_{0}^{\infty} \int_{\mathbb{R}^{n-1}}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j}\left|D_{n}^{j} \hat{u}\left(\xi^{\prime}, x_{n}\right)\right|^{2} d \xi^{\prime} d x_{n} \tag{1.5}
\end{equation*}
$$

Definition 1.3.2. For every, $0 \leq j \leq m-1$, we define, $\gamma_{j}: C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right) \longrightarrow C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$ as,

$$
\begin{equation*}
\left(\gamma_{j} u\right)\left(x^{\prime}\right):=\left(D_{n}^{j} u\right)\left(x^{\prime}, 0\right) \tag{1.6}
\end{equation*}
$$

1.4 Trace Theorem

Theorem 1.4.1. The map γ_{j} (as defined in (1.6)) has in fact an extension from $H^{m}\left(\mathbb{R}_{+}^{n}\right)$ onto $H^{m-j-1 / 2}\left(\mathbb{R}^{n-1}\right)$ as an operator which is both bounded and linear.

Proof. Using 1.5), we can interpret the following for every $u \in C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$,

$$
\left|D_{n}^{j} \hat{u_{n}}\left(\xi^{\prime}, 0\right)\right|^{2} \leq \frac{1}{A} \int_{0}^{\infty}\left|D_{n}^{j+1} \hat{u_{n}}\left(\xi^{\prime}, x_{n}\right)\right|^{2} d t+A \int_{0}^{\infty}\left|D_{n}^{j} \hat{u_{n}}\left(\xi^{\prime}, x_{n}\right)\right|^{2} d t
$$

Where, we take, $A=\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2}$ for the purpose of this proof (in fact any value of A would work in general).

Therefore, multiplying both sides by $\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j-1 / 2}$, we obtain,

$$
\begin{array}{r}
\int_{\mathbb{R}^{n-1}}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j-1 / 2}\left|D_{n}^{j} \hat{u_{n}}\left(\xi^{\prime}, 0\right)\right|^{2} d \xi^{\prime} \leq|u|_{m}^{2} \\
\text { i.e., } \quad\left\|\gamma_{j} u\right\|_{m-j-1 / 2} \leq\|u\|_{m}
\end{array}
$$

Important to note that, such an extension of γ_{j} is unique, since, $C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$ is dense in $H^{m}\left(\mathbb{R}_{+}^{n}\right)$. In order to establish surjectivity, assume any $\rho_{j} \in H^{m-j-1 / 2}\left(\mathbb{R}^{n-1}\right)$ for $j=0 \ldots m-1$. Define, $\chi \in C_{0}^{\infty}(\mathbb{R})$ such that,

$$
\chi=\left\{\begin{array}{cc}
1, & \text { in } B(0,1 / 2) \\
0, & \text { outside } B(0,1)
\end{array}\right.
$$

Now, we define,

$$
\hat{u}\left(\xi^{\prime}, x_{n}\right)=\chi\left(\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2} x_{n}\right) \sum_{j=0}^{m-1} \hat{\rho}_{j}\left(\xi^{\prime}\right) \frac{\left(i x_{n}\right)^{j}}{j!}
$$

Where, $\hat{\rho}_{j}\left(\xi^{\prime}\right)=D_{n}^{j} \hat{u}\left(\xi^{\prime}, 0\right)$.
We claim that, $u \in H^{m}\left(\mathbb{R}_{+}^{n}\right)$.
A priori using Leibniz Rule, we can justify that, \exists constants $C_{k l}$ satisfying,

$$
D_{n}^{k} \hat{u}\left(\xi^{\prime}, x_{n}\right)=\sum_{l=0}^{k} C_{k l} D_{n}^{k-l}\left\{\chi\left(\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2} x_{n}\right)\right\}\left\{\sum_{j=l}^{m} \hat{\rho}_{j}\left(\xi^{\prime}\right) \frac{j(j-1) \ldots(j-l)}{j!}\left(i x_{n}\right)^{j-l}\right\} .
$$

Again, on $\operatorname{Supp}(\chi)$, we have, $\left|x_{n}\right| \leq \frac{1}{\left(1+\left.\left|\xi^{\prime}\right|\right|^{2}\right)^{1 / 2}}$. Thus, we get,

$$
\left|x_{n}^{j-l} D_{n}^{k-l}\left(\chi\left(\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2} x_{n}\right)\right)\right| \leq\left(1+\left|\xi^{\prime}\right|^{2}\right)^{(k-j) / 2}
$$

Hence, \exists a constant $c>0$ such that,

$$
\begin{array}{r}
\int_{\mathbb{R}^{n-1}} \int_{0}^{\infty}\left|D_{n}^{k} \hat{u}\left(\xi^{\prime}, x_{n}\right)\right|^{2}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-k} d x_{n} d \xi^{\prime} \leq c \int_{\mathbb{R}^{n-1}}\left|\hat{\rho}_{j}\left(\xi^{\prime}\right)\right|^{2}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{m-j-1 / 2} d \xi^{\prime} \\
\leq c\left\|\rho_{j}\right\|_{m-j-1 / 2}^{2}
\end{array}
$$

It helps us conclude that,

$$
|u|_{m} \leq c \sup _{0 \leq j \leq m-1}\left\|\rho_{j}\right\|_{m-j-1 / 2}
$$

Hence our proof is complete.

1.5 Integration by Parts

Theorem 1.5.1. Assume any $u, v \in H^{1}\left(\mathbb{R}_{+}^{n}\right)$. Then,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}}\left(D_{n} u\right) v d x=-\int_{\mathbb{R}_{+}^{n}} u D_{n} v d x-i \int_{\mathbb{R}^{n-1}} \gamma_{0}(u) \gamma_{0}(v) d x^{\prime} \tag{1.7}
\end{equation*}
$$

Proof. Choose any two sequences $u_{k}, v_{k} \in C_{0}^{\infty}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$ satisfying, $\left|u_{k}-v_{k}\right| \longrightarrow 0$ as $k \rightarrow \infty$.
Therefore, we obtain,

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{n}}\left(D_{n} u_{k}\right) v_{k} d x=i \int_{\mathbb{R}^{n-1}}\left\{\int_{0}^{\infty} \frac{\partial u_{k}}{\partial x_{n}} v_{k} d x_{n}\right\} d x^{\prime} \\
= & -\int_{\mathbb{R}_{+}^{n}} u_{k} D_{n} v_{k} d x-i \int_{\mathbb{R}^{n-1}} u_{k}\left(x^{\prime}, 0\right) v_{k}\left(x^{\prime}, 0\right) d x^{\prime}
\end{aligned}
$$

A priori from the fact that, $u_{k} \rightarrow u, v_{k} \rightarrow v, D_{n} u_{k} \rightarrow D_{n} u, D_{n} v_{k} \rightarrow D_{n} v, u_{k}\left(x^{\prime}, 0\right) \rightarrow \gamma_{0}(u)$, $v_{k}\left(x^{\prime}, 0\right) \rightarrow \gamma_{0}(v)$ as $k \rightarrow \infty$ in L^{2}. Hence, we obtain our desired result.

As a corollary to the above theorem, we can indeed deduce the following.
Corollary 1.5.2. Suppose, $H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right):=\left\{u \in H^{1}\left(\mathbb{R}_{+}^{n}\right): \gamma_{0}(u)=0\right\}$. Then, $C_{0}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ is dense in $H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$.

2 Calculus on the Boundary of Sobolev Spaces

2.1 Domain with Smooth Boundary

Suppose, for $1 \leq i \leq n \& r_{1}, r_{2}>0$, and every $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we denote,

$$
x^{\prime}:=\left(x_{1}, x_{2}, . ., x_{i-1}, x_{i+1}, \ldots x_{n}\right) \in \mathbb{R}^{n-1}
$$

We define the following sets in \mathbb{R}^{n-1} as,

$$
\begin{gathered}
B_{i}\left(x^{\prime}, r_{1}\right):=\left\{y \in \mathbb{R}^{n-1}:\left|x^{\prime}-y\right|<r_{1}\right\} \\
V_{i}\left(x, r_{1}, r_{2}\right)=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}:\left|x^{\prime}-y^{\prime}\right|<r_{1},\left|x_{i}-y_{i}\right|<r_{2}\right\}
\end{gathered}
$$

Using the above notations, we explain the concept of a domain with smooth boundary as follows.
Definition 2.1.1. $\Omega \subset \mathbb{R}^{n}$ is defined to be a domain with smooth boundary if for every $x_{0} \in \partial \Omega, \exists r_{1}, r_{2}>0, i \in 1,2, \ldots, n$ and a smooth function, $\psi_{i}: B_{i}\left(x^{\prime}, r_{1}\right) \rightarrow \mathbb{R}$ satisfying,

$$
\begin{equation*}
V_{i}\left(x_{0}, r_{1}, r_{2}\right) \cap \Omega=\left\{x \in V_{i}\left(x_{0}, r_{1}, r_{2}\right): \psi_{i}\left(x^{\prime}\right)<x_{i}\right\} \tag{2.1}
\end{equation*}
$$

or,

$$
\begin{equation*}
V_{i}\left(x_{0}, r_{1}, r_{2}\right) \cap \Omega=\left\{x \in V_{i}\left(x_{0}, r_{1}, r_{2}\right): \psi_{i}\left(x^{\prime}\right)>x_{i}\right\} \tag{2.2}
\end{equation*}
$$

and,

$$
\begin{equation*}
V_{i}\left(x_{0}, r_{1}, r_{2}\right) \cap \partial \Omega=\left\{x: \psi_{i}\left(x^{\prime}\right)=x_{i}\right\}=\left\{\left(x_{1}, \ldots, x_{i-1}, \psi_{i}\left(x^{\prime}\right), x_{i+1}, \ldots, x_{n}\right): x^{\prime} \in B_{i}\right\} \tag{2.3}
\end{equation*}
$$

Example 2.1.1. Consider $\Omega=\mathbb{R}_{+}^{n}$. Then, $\psi_{n}\left(x^{\prime}\right)=0$, where, $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. Furthermore, we can deduce that, $r_{1}=r_{2}=\infty$.

Definition 2.1.2. (Outward Normal) Suppose, $x_{0} \in \partial \Omega$ and, $r_{1}, r_{2}>0$, such that, 2.1) holds true.

For every $x \in V_{i}\left(x_{0}, r_{1}, r_{2}\right) \cap \partial \Omega$, we define,

$$
\begin{equation*}
\nu(x)=\frac{\nabla\left(-x_{i}+\psi_{i}\left(x^{\prime}\right)\right)}{\left|\nabla\left(-x_{i}+\psi_{i}\left(x^{\prime}\right)\right)\right|}=\frac{\left(\frac{\partial \psi_{i}}{\partial x_{1}}, \ldots, \frac{\partial \psi_{i}}{\partial x_{i-1}},-1, \frac{\partial \psi_{i}}{\partial x_{i+1}}, \ldots, \frac{\partial \psi_{i}}{\partial x_{n}}\right)}{\sqrt{1+\left|\nabla \psi_{i}\right|^{2}}} \tag{2.4}
\end{equation*}
$$

Subsequently,

$$
\begin{equation*}
\left|\nabla \psi_{i}\right|^{2}=\left|\frac{\partial \psi_{i}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial \psi_{i}}{\partial x_{2}}\right|^{2}+\ldots+\left|\frac{\partial \psi_{i}}{\partial x_{i-1}}\right|^{2}+\left|\frac{\partial \psi_{i}}{\partial x_{i+1}}\right|^{2}+\ldots+\left|\frac{\partial \psi_{i}}{\partial x_{n}}\right|^{2} \tag{2.5}
\end{equation*}
$$

ν is denoted as the unit outward normal to $\partial \Omega$ at the point x.
Definition 2.1.3. (Measure on $\partial \Omega)$ We define the measure $d \sigma$ on $V_{i}\left(x_{0}, r_{1}, r_{2}\right) \cap \partial \Omega$ as follows,

$$
\begin{equation*}
d \sigma=\sqrt{1+\left|\nabla \psi_{i}\right|^{2}} d x_{1} d x_{2} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n} \tag{2.6}
\end{equation*}
$$

We can use the Integration by Parts (Theorem (1.5.1)) to infer about the relation of ν and $d \sigma$ as defined above with the smooth boundary of a domain Ω.

Lemma 2.1.2. For any $\Omega \subset \mathbb{R}^{n}$, the unit outward normal, ν and the measure d σ as defined earlier are in fact independent of the description of $\partial \Omega$.

Theorem 2.1.3. In any bounded domain $\Omega \subset \mathbb{R}$ with smooth boundary, we choose any $u, v \in$ $C^{1}(\Omega) \cap C^{0}(\bar{\Omega})$. Then,

$$
\begin{equation*}
\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x=-\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x+\int_{\partial \Omega} u v \nu_{i} d \sigma \tag{2.7}
\end{equation*}
$$

Where, $\nu(x)=\left(\nu_{1}(x), \nu_{2}(x), \ldots ., \nu_{n}(x)\right)$ is the unit outward normal to $\partial \Omega$ and $d \sigma$ is the measure on $\partial \Omega$.

Proof. We shall introduce two important results which shall be used to prove this theorem.
Lemma 2.1.4. Assume K to be the support of u as defined in the statement of the theorem, such that, K is compact in Ω.. Furthermore, let, $\phi \in C_{0}^{1}(\Omega)$ be such that, $\phi=1$ on K. Also, let $v_{1}=\phi v$. Hence, $u, v_{1} \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ and $\operatorname{Supp}(u), \operatorname{Supp}\left(v_{1}\right) \in \Omega$, and

$$
\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x=-\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x
$$

Lemma 2.1.5. Let $x_{0} \in \partial \Omega$, and, $r_{1}, r_{2}>0,1 \leq i \leq n$. A priori using the notations ψ_{i}, V_{i} as defined before,let us take, $\eta_{1}<r_{1}, \eta_{2}<r_{2}$ and, $u, v \in C^{1}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfying, $u \subset V\left(x_{0}, \eta_{1}, \eta_{2}\right) \subset V\left(x_{0}, r_{1}, r_{2}\right)$. Then,

$$
\int_{\Omega} \frac{\partial u}{\partial x_{j}} v d x=-\int_{\Omega} u \frac{\partial v}{\partial x_{j}} d x+\int_{\partial \Omega} u v \nu_{j} d \sigma
$$

Now we an indeed proceed to the proof of the main theorem.
Clearly, $\bar{\Omega}$ is compact, hence, it has a finite cover, say, $\bar{\Omega} \subset V^{0} \cup_{\alpha=1}^{l} V^{\alpha}$, where, $\bar{V}^{0} \subset \Omega$ is compact and, $V^{\alpha}=V_{i}^{\alpha}\left(x^{\alpha}, r_{1}^{\alpha}, r_{2}^{\alpha}\right), x^{\alpha} \in \partial \Omega$.

Suppose, $\left\{\chi_{i}\right\}_{i=0}^{l}$ be a partition of unity subordinate to this cover. Therefore, $u=\sum_{\alpha=0}^{l} u \chi_{\alpha}=\sum_{\alpha=0}^{l} u_{\alpha}$, where, we define, $u_{\alpha}=u \chi_{\alpha}$. As a result, $\operatorname{Supp}\left(u_{0}\right) \subset V^{0} \subset \Omega$ and, $\operatorname{Supp}\left(u_{\alpha}\right) \subset V^{\alpha}$.

From the results mentioned in Lemmas (2.1.4) and (2.1.5), we obtain,

$$
\begin{gathered}
\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x=\sum_{\alpha=0}^{l} \int_{\Omega} \frac{\partial u^{\alpha}}{\partial x_{i}} v d x \\
=\sum_{\alpha=0}^{l}\left(-\int_{\Omega} u^{\alpha} \frac{\partial v}{\partial x_{i}} d x\right)+\sum_{\alpha=0}^{l}\left(\int_{\partial \Omega} u^{\alpha} v \nu_{i} d \sigma\right) \\
=\int_{\Omega}\left(\sum_{\alpha=0}^{l} u^{\alpha}\right) \frac{\partial v}{\partial x_{i}} d x+\int_{\partial \Omega}\left(\sum_{\alpha=0}^{l} u^{\alpha}\right) v \nu_{i} d \sigma \\
=-\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x+\int_{\partial \Omega} u v \nu_{i} d \sigma
\end{gathered}
$$

And, the proof is done.

2.2 Boundary of Sobolev Spaces

Suppose, Ω be a bounded domain with a smooth boundary. Let, $\partial \Omega \subset \cup_{\alpha=1}^{l} V^{\alpha}$, where, $V^{\alpha}:=V_{i}^{\alpha}\left(x^{\alpha}, r_{1}^{\alpha}, r_{2}^{\alpha}\right)$ and assume $\exists \psi_{i}^{\alpha}: B\left(x^{\alpha^{\prime}}, r_{1}^{\alpha}\right) \longrightarrow \mathbb{R}$ describing $\partial \Omega$ as in 2.1.1. Furthermore, let $\left\{\chi_{\alpha}\right\}$ be a C^{∞}-partition of unity subordinate to this cover. $u: \partial \Omega \rightarrow \mathbb{R}$ be a function. A priori under the assumptions as discussed in the previous section, we can infer that,
$u=\sum u_{\alpha}$, where $u_{\alpha}=\chi_{\alpha} u$ has support in $V_{i}^{\alpha}\left(x^{\alpha}, r_{1}^{\alpha}, r_{2}^{\alpha}\right)$. Hence, we define another function \tilde{u}_{α} on \mathbb{R}^{n-1} by,

$$
\tilde{u}_{\alpha}(x)=u_{\alpha}\left(x_{1}, \ldots, x_{i-1}, \psi_{i}^{\alpha}\left(x^{\prime}\right), x_{i+1}, \ldots, x_{n}\right)
$$

Then, we give the follwing definition.
Definition 2.2.1. $u \in H^{s}(\partial \Omega)$ iff $\tilde{u}_{\alpha} \in H^{s}\left(\mathbb{R}^{n-1}\right)$ and,

$$
\|u\|_{s}=\sum_{\alpha=1}^{l}\left\|\tilde{u}_{\alpha}\right\|_{s}
$$

Remark 2.2.1. Important to observe that, the norm as defined above depends upon the partition of unity and the cover $\left\{V^{\alpha}\right\}$ and any such two norms obtained by different covers and partitions of unity are in fact equivalent.

Using the definition of $H^{s}(\partial \Omega)$ and the Trace Theorem (Theorem (1.4.1) in \mathbb{R}_{+}^{n}, the following theorem follows.

Theorem 2.2.2. For a bounded domain Ω with smooth boundary, we define $\gamma_{j}: C^{\infty}(\bar{\Omega}) \rightarrow$ $C^{\infty}(\partial \Omega)$ as,

$$
\begin{array}{r}
\gamma_{0} u=\left.u\right|_{\partial \Omega} \text { if, } j=0 \\
\gamma_{j} u=\left.\frac{\partial^{j} u}{\partial^{j} \nu}\right|_{\partial \Omega} i f, j>0
\end{array}
$$

Where, $\frac{\partial}{\partial \nu}=\sum_{l=1}^{n} \nu_{l} \frac{\partial}{\partial x_{l}}, \nu(x)$ being the unit outward normal to $\partial \Omega$ at x.
Let, $m \in \mathbb{N}$ and $0 \leq j \leq m-1$, therefore, γ_{j} extends to a continuous surjective map from $H^{m}(\Omega)$ to $H^{m-j-1 / 2}(\partial \Omega)$. Moreover, if

$$
H_{0}^{m}(\Omega)=\left\{u \in H^{m}(\Omega): \gamma_{j} u=0,0 \leq j \leq m-1\right\}
$$

Then, $C_{0}^{\infty}(\Omega)$ is dense in $H_{0}^{m}(\Omega)$.
Corollary 2.2.3. Suppose, $u, v \in H^{1}(\Omega)$, then,

$$
\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x=-\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x+\int_{\partial \Omega} \gamma_{0}(u) \gamma_{0}(v) \nu_{i} d \sigma
$$

i.e., if, $u \in H_{0}^{1}(\Omega)$, then,

$$
\int_{\Omega} \frac{\partial u}{\partial x_{i}} v d x=-\int_{\Omega} u \frac{\partial v}{\partial x_{i}} d x
$$

Remark 2.2.4. The above formula in Corollary (2.2.3) holds true for C^{1}-functions and thus by approximation process, the same holds for $H^{1}(\Omega)$.

3 Boundary Value Problems

3.1 Introducing Boundary Conditions on Solutions

Let, $\Omega \subset \mathbb{R}^{n}$ be open, and $a_{i j} \in C^{1}(\bar{\Omega}), c \in C^{0}(\bar{\Omega})$. Furthermore, suppose, $a_{i j}=a_{j i}$, and they satisfy the uniform ellipticity condition,

$$
\begin{equation*}
m|\xi|^{2} \leq \sum a_{i j}(x) \xi_{i} \xi_{j} \leq M|\xi|^{2}, \forall x \in \bar{\Omega}, \xi \in \mathbb{R}^{n} \tag{3.1}
\end{equation*}
$$

for some $m, M>0$. Let, $f \in C^{0}(\bar{\Omega}), g \in C^{1}(\partial \Omega)$, and $u \in C^{2}(\bar{\Omega})$ be satisfying the following,

$$
\begin{equation*}
\mathcal{L} u+c(x) u=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c(x) u=f \tag{3.2}
\end{equation*}
$$

with the following two kinds of boundary conditions imposed on $\partial \Omega$ as follows,

$$
\begin{equation*}
\text { (1) } u=g \quad \text { on } \partial \Omega \text { (Dirichlet Boundary Condition) } \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\text { (2) } \frac{\partial u}{\partial \nu_{\mathcal{L}}}=\sum a_{i j} \nu_{i} \frac{\partial u}{\partial x_{j}}=g \quad \text { on } \partial \Omega \text { (Neumann Boundary Condition) } \tag{3.4}
\end{equation*}
$$

Therefore, multiplying (3.2) by $v \in H^{2}(\bar{\Omega})$ and integrating by parts, it yields,

$$
\begin{aligned}
& \int_{\Omega} f v=-\sum_{i, j=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right) v+\int_{\Omega} c(x) v \\
& =\sum_{i, j=1}^{n} \int_{\Omega} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\int_{\Omega} c(x) u v-\int_{\partial \Omega} \frac{\partial u}{\partial \nu_{\mathcal{L}}} v d \sigma
\end{aligned}
$$

Interested readers may ask certain questions like, whether a solution to (3.2) really exists for given f, g and under the so called boundary conditions as descibed in (3.3) and (3.4). Furthermore, if a solution does in fact exists, one might also raise a question as to whether it is unique!
Remark 3.1.1. Existence of solutions to (3.2) in $C^{2}(\bar{\Omega})$ is not true in general. Hence, we relax the condition to a certain extent and look for solution in a much bigger space, i.e., the Sobolev Space. There, we consider only the Dirichlet Problem and the other boundary conditions can bemodified in a similar manner.

3.2 Weak Formulation of a Dirichlet Problem

A priori from the fact that, the operator \mathcal{L} maps $H^{2}(\Omega)$ into $L^{2}(\Omega)$ and γ_{0} maps $H^{2}(\Omega)$ into $H^{3 / 2}(\partial \Omega)$. It allows us to reformulate the problem in the following manner:

Given $f_{1} \in L^{2}(\Omega), g \in H^{3 / 2}(\partial \Omega)$, we intend to find a $u_{1} \in H^{2}(\Omega)$ satisfying,

$$
\left\{\begin{array}{cc}
\mathcal{L} u_{1}+c(x) u_{1}=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u_{1}}{\partial x_{j}}\right)+c(x) u_{1}=f_{1} & \text { in } \Omega \\
\gamma_{0} u_{1}=g & \text { on } \partial \Omega .
\end{array}\right.
$$

As $\gamma_{0}: H^{2}(\Omega) \rightarrow H^{3 / 2}(\partial \Omega)$ is surjective, thus, $\exists u_{0} \in H^{2}(\Omega)$ with $\gamma_{0} u_{0}=g$. Suppose, $u=u_{1}-u_{0}$.

Hence, u satisfies,

$$
\left\{\begin{array}{cc}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c u=f_{1}-\mathcal{L} u_{0}-c u_{0} & \text { in } \Omega \\
\gamma_{0} u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Thus, putting $f=f_{1}-\mathcal{L} u_{0}-c u_{0}$, the problem further reduces to obtaining one such $u \in H^{2}(\Omega)$ such that,

$$
\left\{\begin{array}{cc}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c u=f & \text { in } \Omega \\
\gamma_{0} u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

It suffices to look for a solution to the problem,

$$
\left\{\begin{array}{c}
u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{i}\\
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c u=f \quad \text { in } \Omega
\end{array}\right.
$$

Multiplying (i) by $v \in H_{0}^{1}(\Omega)$ and applying Integration by Parts, we obtain,

$$
\begin{equation*}
\int_{\Omega}\left(a_{i j} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}}+c u v\right) d x=\int_{\Omega} f v \tag{3.5}
\end{equation*}
$$

Important to note that, u is a solution of (i) iff (3.5) is satisfied for every $v \in H_{0}^{1}(\Omega)$.

3.3 Weak Solution of a Dirichlet Problem

Using the above concept, we can introduce the notion of weak solution for a boundary value problem as follows.

Definition 3.3.1. (Weak Solution) Suppose, $u \in H_{0}^{1}(\Omega)$. We define u to be a weak solution of the problem,

$$
\left\{\begin{array}{cc}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c u=f & \text { in } \Omega \\
\gamma_{0} u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

iff $\forall v \in H_{0}^{1}(\Omega)$, 3.5) holds true.
Remark 3.3.1. In case for weak solution, the assumption that, $u \in H^{2}(\Omega)$ can be relaxed.
Further, using the above definition, we can in fact search for answers to some critical questions related to the existence and uniqueness of a weak solution. Even, one can comment on some regularity properties of the weak solution in $H^{2}(\Omega)$.

We shall introduce the following results in order to discuss these concepts in the next section.
Lemma 3.3.2. (Poincare's Lemma) \exists a constant $c>0$ which satisfies the following relation for every $u \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}|u|^{2} d x \leq c \int_{\Omega}|\nabla u|^{2} d x \tag{3.6}
\end{equation*}
$$

Proof. A priori from the fact that, Ω is bounded, $\exists M>0$ such that,

$$
\Omega \subset\left\{x:-M \leq x_{i} \leq M, i=1,2, \ldots, n\right\}
$$

Suppose, $u \in C_{0}^{\infty}(\Omega)$, thus, for $x \in \Omega$,

$$
u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{-M}^{x_{1}} \frac{\partial u}{\partial t}\left(t, x_{2}, \ldots, x_{n}\right) d t
$$

Hence,

$$
|u|^{2} \leq\left(x_{1}+M\right) \int_{-M}^{x_{1}}\left|\frac{\partial u}{\partial t}\right|^{2} d t \leq 2 M\left|\frac{\partial u}{\partial t}\left(t, x_{2}, \ldots, x_{n}\right)\right|^{2} d t
$$

We thus conclude,

$$
\int_{\Omega}|u(x)|^{2} d x \leq(2 M)^{2} \int_{\Omega}|\nabla u|^{2} d x
$$

And the proof is complete.
As a corollary to the above result, we can infer the following.

Corollary 3.3.3. Given any $u, v \in H_{0}^{1}(\Omega)$ and, $c(x) \geq 0, c \in L^{\infty}(\Omega)$, suppose,

$$
a(u, v)=\int_{\Omega}\left(a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+c u v\right) d x
$$

Then, a satisfies the following conditions:
(i) (Symmetry) $a(u, v)=a(v, u)$.
(ii) (Continuity) $\exists c_{1}>0$ such that, $|a(u, v)| \leq c_{1}\|u\|_{1}\|v\|_{1}$.
(iii) (Coercive) $\exists c_{2}>0$ such that, $a(u, u) \geq c_{2}\|u\|_{1}^{2}$, where, $\|.\|_{1}$ is the norm defined on $H_{0}^{1}(\Omega)$.

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a: $H \times H \rightarrow H$ be symmetric, continuous bilinear map. Furthermore, let us assume that, $\exists c>0$ such that,

$$
a(u, u) \geq c\|u\|^{2} \quad \forall u \in H
$$

Then, for every $l \in H^{*}, \exists!u_{0} \in H$ satisfying,

$$
a\left(u_{0}, v\right)=l(v)
$$

$\forall v \in H$.
Proof. H being an inner product space with respect to the bilinear form $a(.,$.$) , which also$ happens to be both continuous and coercive (Corollary (3.3.3)), we can conclude that, the two norms, $\|$.$\| and \|.\|_{1}$ are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.
Applying Riesz Representation Theorem, for every $l \in H^{*}, \exists u_{0} \in H$ such that,

$$
a\left(u_{0}, v\right)=l(v) \quad \forall v \in H \text { holds true. }
$$

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any $a_{i j}, c \in L^{\infty}(\Omega)$, such that, $\exists m, M>0$ satisfying,
(a) $c \geq 0$.
(b) $m|\xi|^{2} \leq \sum a_{i j}(x) \xi_{i} \xi_{j} \leq M|\xi|^{2}, \quad \forall x \in \Omega, \xi \in \mathbb{R}^{n}$.

Furthermore, if $f \in L^{2}(\Omega)$, then \exists ! weak solution $u \in H_{0}^{1}(\Omega)$ of the problem,

$$
\left\{\begin{array}{cc}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c u=f & \text { in } \Omega \\
\gamma_{0} u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Proof. Let us choose, $v \in H_{0}^{1}(\Omega)$ and,

$$
\begin{gathered}
a(u, u)=\int_{\Omega}\left(\sum a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+c u\right) \\
l(v)=\int_{\Omega} f v
\end{gathered}
$$

Hence, we have,

$$
|l(v)| \leq|f|_{L^{2}(\Omega)}|v|_{L^{2}(\Omega)} \leq|f|_{L^{2}(\Omega)}\|v\|_{1}
$$

This implies, $\left.l\right|_{H_{0}^{1}(\Omega)}$ is a continuous linear mapping. From the Lax-Milgram Lemma (Lemma (3.3.4), we can infer that, a is symmetric, continuous and coercive bilinear form on $H_{0}^{1}(\Omega)$, hence, \exists ! $u_{0} \in H_{0}^{1}(\Omega)$ saatisfying, $a\left(u_{0}, v\right)=l(v)$, for every $v \in H_{0}^{1}(\Omega)$.

Therefore, we conclude that u_{0} is the desired unique weak solution to the given Dirichlet Problem.

$4 \quad H^{m}$-Regularity for Second Order Elliptic Equations

In this section, we shall discuss the existence of the weak solution, $u \in H_{0}^{1}(\Omega)$ in the space $H^{m}(\Omega)$. For our simplicity, we shall consider a special case, $m=2$ for our analysis.

4.1 Interior Regularity

Given $h \in \mathbb{R}, e_{i}:=(0,0, \ldots ., 0,1,0, \ldots, 0)$, for $1 \leq i \leq n$. Moreover, for every $u \in \mathbb{R}^{n}$, we define,

$$
\begin{equation*}
\left(\tau_{h}^{i} u\right)(x):=\frac{u\left(x+h e_{i}\right)-u(x)}{h} \tag{4.1}
\end{equation*}
$$

Lemma 4.1.1. (I) For every $u \in H^{1}\left(\mathbb{R}^{n}\right)$, and $1 \leq i \leq n$,

$$
\left\|\tau_{h}^{i} u\right\|_{L^{2}} \leq\|\nabla u\|_{L^{2}}
$$

(II) For every $u \in H^{1}\left(\mathbb{R}_{+}^{n}\right)$, and $1 \leq i \leq n-1$,

$$
\left\|\tau_{h}^{i} u\right\|_{L^{2}} \leq\|\nabla u\|_{L^{2}}
$$

Theorem 4.1.2. (Interior Regularity) A priori given $a_{i j} \in C^{1}\left(\mathbb{R}^{n}\right), u \in H^{1}\left(\mathbb{R}^{n}\right)$ such that, $\operatorname{Supp}(u)$ is indeed compact in \mathbb{R}^{n}. Then, $f \in L^{2}\left(\mathbb{R}^{n}\right)$, and moreover, $\exists m>0$ satisfying,
1.

$$
m|\xi|^{2} \leq \sum a_{i j}(x) \xi_{i} \xi_{j}, \quad \forall x \in \bar{\Omega}
$$

Where, Ω is an open set such that, $\operatorname{Supp}(u) \subset \Omega$.
2. $\forall v \in H^{1}\left(\mathbb{R}^{n}\right)$,

$$
\sum_{i, j} \int_{\mathbb{R}^{n}} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}=\int_{\mathbb{R}^{n}} f v
$$

Then, $u \in H^{2}\left(\mathbb{R}^{n}\right)$.
Proof. To prove the above Theorem, one can in fact proceed through the following steps systematically, using the results and concepts which we shall briefly discuss below.

Lemma 4.1.3. $\exists c, c_{0}>0$ satisfying,

$$
\left\|\tau_{h}^{i} \frac{\partial u}{\partial x_{j}}\right\| \|_{L^{2}} \leq c, \quad \forall 0<|h|<c_{0}, \quad 1 \leq i, j \leq n
$$

From the above Lemma (4.1.3), we can observe that, $\left\{\tau_{h}^{i} \frac{\partial u}{\partial x_{j}}\right\}_{0<|h|<c_{0}}$ is indeed bounded in L^{2}. Thus, for any subsequence, $\tau_{h_{k}}^{i} \frac{\partial u}{\partial x_{j}}$ converging weakly to v_{j}^{i} in $L^{2}\left(\mathbb{R}^{n}\right)$, and for every $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we shall have,

$$
\int_{\mathbb{R}^{n}} \tau_{h_{k}}^{i} \frac{\partial u}{\partial x_{j}} \phi d x=\int_{\mathbb{R}^{n}} \frac{\partial u}{\partial x_{j}}\left\{\frac{\phi\left(x-h_{k} e_{i}\right)-\phi(x)}{h_{k}}\right\} d x
$$

As $k \rightarrow \infty$, we apply dominated convergence theorem to deduce,

$$
\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=v_{j}^{i} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Hence, we conclude that, $u \in H^{2}\left(\mathbb{R}^{n}\right)$, and the proof is complete.
We can indeed generalize the above result to comment on the H^{m}-Interior Regularity for a Dirichlet problem.

Corollary 4.1.4. Assume that, $a_{i j} \in C^{m+1}\left(\mathbb{R}^{n}\right), f \in H^{m}\left(\mathbb{R}^{n}\right), u \in H^{1}\left(\mathbb{R}^{n}\right), \forall \quad 1 \leq i, j \leq n$ satisfy the same hypothesis as described in Theorem 4.1.2). Then, $u \in H^{m+2}\left(\mathbb{R}^{n}\right)$.

In addition, one can further deduce the following.
Corollary 4.1.5. If $a_{i j}, f \in C^{\infty}\left(\mathbb{R}^{n}\right), \forall 1 \leq i, j \leq n$, then, $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

4.2 Boundary Regularity

Theorem 4.2.1. Suppose, $a_{i j} \in C^{1}\left({\overline{\mathbb{R}_{+}}}^{n}\right), u \in H_{0}^{1}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$ satisfying, Supp (u) is compact in ${\overline{\mathbb{R}_{+}}}^{n}$. Moreover, let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\exists m>0$ such that,
1.

$$
m\left|\xi^{2}\right|^{2} \leq \sum a_{i j}(x) \xi_{i} \xi_{j}, \quad \forall x \in \bar{\Omega}
$$

Where, Ω is an open set in ${\overline{\mathbb{R}_{+}}}^{n}$ such that, $\operatorname{Supp}(u) \subset \Omega$.
2. $\forall v \in H^{1}\left(\mathbb{R}^{n}\right)$,

$$
\sum_{i, j} \int_{\mathbb{R}_{+}^{n}} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}=\int_{\mathbb{R}_{+}^{n}} f v
$$

Then, $u \in H^{2}\left(\overline{\mathbb{R}}_{+}^{n}\right)$.
Proof. Suppose, $0<|h|<\epsilon_{0}$ satisfies that, for $i \leq k \leq n-1$, the support of $x \mapsto u\left(x+h e_{k}\right)$ is in fact contained in $\bar{\Omega}[$ Since, $k \leq n-1]$.

A priori using concepts similar tothe case for interior regularity, it follows that,

$$
\left\|\tau_{h}^{k} \nabla u\right\|_{L^{2}\left(\mathbb{R}_{+}^{n}\right)} \leq c, \quad 0<|h|<\epsilon_{0}, \quad k \leq n-1 .
$$

Thus, for a subsequence $h_{k} \rightarrow 0$, we obtain,
(i) $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in L^{2}, \forall 1 \leq i, j \leq n-1$.
(ii) $\frac{\partial^{2} u}{\partial x_{n} \partial x_{i}} \in L^{2}, \forall \quad 1 \leq i, j \leq n-1$.

Therefore, it only suffices to prove that, $\frac{\partial^{2} u}{\partial x_{n}^{2}} \in L^{2}$. Let, $\phi \in C_{0}^{1}\left({\overline{\mathbb{R}_{+}}}^{n}\right)$. Hence,

$$
\int_{\mathbb{R}_{+}^{n}} a_{n n} \frac{\partial u}{\partial x_{n}} \frac{\partial \phi}{\partial x_{n}}
$$

$$
\begin{gathered}
=-\int_{\mathbb{R}_{+}^{n}}\left\{\sum_{i, j \leq n-1} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial \phi}{\partial x_{j}}\right\}-\sum_{j \leq n-1}\left\{\int_{\mathbb{R}_{+}^{n}} a_{n j} \frac{\partial u}{\partial x_{j}} \frac{\partial \phi}{\partial x_{n}}+\int_{\mathbb{R}_{+}^{n}} a_{j n} \frac{\partial u}{\partial x_{n}} \frac{\partial \phi}{\partial x_{j}}\right\}+\int_{\mathbb{R}_{+}^{n}} f \phi \\
=\int_{\mathbb{R}_{+}^{n}} F \phi
\end{gathered}
$$

Where,

$$
F=\left\{\sum_{i, j \leq n-1} \frac{\partial a_{i j}}{\partial x_{j}} \frac{\partial u}{\partial x_{i}}+a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \sum_{j \leq n-1} \frac{\partial a_{n j}}{\partial x_{n}} \frac{\partial u}{\partial x_{j}}+\sum_{j \leq n-1} \frac{\partial a_{j n}}{\partial x_{j}} \frac{\partial u}{\partial x_{n}}+2 a_{j n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{n}}+f\right\}
$$

Therefore,

$$
\frac{\partial}{\partial x_{n}}\left(a_{n n} \frac{\partial u}{\partial x_{n}}\right)=F \in L^{2}
$$

i.e.,

$$
-a_{n n} \frac{\partial^{2} u}{\partial x_{n}^{2}}=F+\frac{\partial a_{n n}}{\partial x_{n}} \frac{\partial u}{\partial x_{n}} \in L^{2}
$$

Applying the concept that, $a_{n n}>0$ in $\bar{\Omega}$ and therefore, $\frac{\partial^{2} u}{\partial x_{n}^{2}} \in L^{2}$, and the proof.
As a corollary, one can establish the following.
Corollary 4.2.2. (Higher Regularity) Assuming $a_{i j} \in C^{m+1}, f \in H^{m}\left(\mathbb{R}_{+}^{n}\right), u \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ satisfying similar conditions as above. Then, $u \in H^{m+2}\left(\mathbb{R}_{+}^{n}\right)$.

Corollary 4.2.3. Let, $a_{i j} \in C^{\infty}, f \in C^{\infty}\left(\mathbb{R}_{+}^{n}\right)$, then, $u \in C^{\infty}$.

4.3 A Special Diffeomorphism on Second Order Elliptic Operators

Theorem 4.3.1. Given Ω_{1} and Ω_{2} being bounded open sets, and $F: \Omega_{1} \rightarrow \Omega_{2}$ be a diffeomorphism. We further define, $J(F):=\left(\frac{\partial F_{k}}{\partial y_{i}}\right)_{i, k}$, such that, $J(F)$ and $J^{-1}(F)$ exist $\forall y \in \bar{\Omega}_{1}$ and is continuous there. Then F transforms any second order elliptic operator \mathcal{L} on Ω_{1} to a second order elliptic operator on Ω_{2}.

Proof. A priori given any two bounded domains ω_{1} and Ω_{2}, and a diffeomorphism defined as,

$$
F:=\left(F_{1}, F_{2}, \ldots, F_{n}\right): \bar{\Omega}_{1} \rightarrow \bar{\Omega}_{2}
$$

We an in fact observe that, F is C^{∞}, one-one and onto and the inverse is indeed differentiable.

Furthermore, for any function u on Ω_{2}, we define $\tilde{u}: \Omega_{1} \rightarrow \mathbb{R}$ by,

$$
\tilde{u}(y):=u(F(y)), y \in \Omega_{1}
$$

Consequently,

$$
\frac{\partial \tilde{u}}{\partial y_{i}}=\sum_{k=1}^{n} \frac{\partial u}{\partial x_{k}}(F(y)) \frac{\partial F_{k}}{\partial y_{i}}(y)
$$

and,

$$
\frac{\partial^{2} \tilde{u}}{\partial y_{i} \partial y_{j}}=\sum_{k, l=1}^{n} \frac{\partial^{2} u}{\partial x_{l} \partial x_{k}}(F(y)) \frac{\partial F_{l}}{\partial y_{i}} \frac{\partial F_{k}}{\partial y_{j}}+\sum_{k=1}^{n} \frac{\partial u}{\partial x_{k}}(F(y)) \frac{\partial^{2} F_{k}}{\partial y_{i} \partial y_{j}} .
$$

Let,

$$
\mathcal{L}:=\sum \tilde{a}_{i j}(y) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}+\sum \tilde{b}_{i}(y) \frac{\partial}{\partial y_{i}}+\tilde{c}(y)
$$

be any elliptic differential operator on Ω_{1}. Hence, in Ω_{2}, we can in fact deduce that,

$$
\begin{equation*}
\mathcal{L}:=\sum a_{i l}(y) \frac{\partial^{2}}{\partial x_{k} \partial x_{l}}+\sum b_{k}(y) \frac{\partial}{\partial x_{k}}+c(x) . \tag{4.2}
\end{equation*}
$$

Where,

$$
a_{k l}(x)=\sum_{i, j} \tilde{a}_{i j}\left(F^{-1}(x)\right) \frac{\partial F_{k}}{\partial y_{i}}\left(F^{-1}(x)\right) \frac{\partial F_{l}}{\partial y_{j}}\left(F^{-1}(x)\right)
$$

and,

$$
b_{k}(x)=\sum_{i} \tilde{b}_{i}\left(F^{-1}(x)\right) \frac{\partial F_{k}}{\partial y_{i}}\left(F^{-1}(x)\right)+\sum_{i, j} \tilde{a}_{i j}\left(F^{-1}(x)\right) \frac{\partial^{2} F_{k}}{\partial y_{i} \partial y_{j}}\left(F^{-1}(x)\right)
$$

and,

$$
c(x)=\tilde{c}\left(F^{-1}(x)\right)
$$

One can indeed verify the neccessary conditions for \mathcal{L} to be an elliptic differential operator on Ω_{2}.

Suppose, for $r_{1}, r_{2}>0, x^{\prime}:=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$, we define, $x_{0}:=\left(x_{0}^{\prime}, x_{n}^{0}\right) \in \mathbb{R}^{n}$. Furthermore, $\psi: \overline{B\left(x_{0}^{\prime}, r_{1}\right)} \rightarrow \mathbb{R}$ be a smooth map such that, $x_{n}^{0}=\psi\left(x_{0}^{\prime}\right)$. Let,

$$
\Omega_{1}:=\left\{x \mid x^{\prime} \in B\left(x_{0}^{\prime}, r_{1}\right), \psi\left(x^{\prime}\right)<x_{n}<r_{2}\right\}
$$

and,

$$
\Omega_{2}:=\left\{y \mid y^{\prime} \in B\left(x_{0}^{\prime}, r_{1}\right), 0<y_{n}<r_{2}-\psi\left(x^{\prime}\right)\right\}
$$

We define,

$$
F:=\left(F_{1}, F_{2}, \ldots, F_{n}\right): \bar{\Omega}_{1} \rightarrow \bar{\Omega}_{2}
$$

by,

$$
\left\{\begin{array}{cl}
F_{i}(x)=x_{i} & 1 \leq i \leq n-1 \\
F_{n}(x)=x_{n}-\psi\left(x^{\prime}\right) .
\end{array}\right.
$$

Putting $y=F(x)$, we can deduce,

$$
B\left(x_{0}^{\prime}, r_{1}\right)=B\left(y_{0}^{\prime}, r_{1}\right), \quad 0<y_{n}<r_{2}-\psi\left(y^{\prime}\right)
$$

and,

$$
J F(x)=\left(\frac{\partial F}{\partial x_{i}}\right)=\left\{\begin{array}{cc}
I_{(n-1) \times(n-1)} & 0 \\
-\nabla \psi & 1
\end{array}\right\} .
$$

Moreover, the diffeomorphism F maps $\left\{x: x_{n}=\psi\left(x^{\prime}\right)\right\}$ to $\left\{y: y_{n}=0\right\}$.
Using the above concept, we can indeed conclude the following result.
Theorem 4.3.2. Given a bounded domain Ω with smooth boundary, suppose we have the following second order elliptic operator,

$$
\begin{equation*}
\mathcal{L}=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}+c \tag{4.3}
\end{equation*}
$$

where, the coefficients satisfy, $a_{i j} \in C^{1}(\bar{\Omega}), b_{i}, c \in L^{\infty}(\Omega)$ and the ellipticity condition given by,

$$
\begin{equation*}
m|\xi|^{2} \leq \sum a_{i j} \xi_{i} \xi_{j} \leq M|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{n} \tag{4.4}
\end{equation*}
$$

for some $m, M>0$. Let, $f \in L^{2}(\Omega)$ and, $u \in H_{0}^{1}(\Omega)$ be a weak solution of the problem,

$$
\begin{equation*}
\mathcal{L} u=f \quad \text { in } \Omega \tag{4.5}
\end{equation*}
$$

Then, $u \in H^{2}(\Omega)$.
Proof. Suppose, $\left\{V^{\alpha}\right\}$ be an open cover satisfying,
(i) $\overline{V^{0}} \subset \Omega$.
(ii) $V^{\alpha}=V_{i}\left(x^{\alpha}, r_{1}^{\alpha}, r_{2}^{\alpha}\right)$, and, $\psi_{i}^{\alpha}: \overline{B\left(x^{\alpha}, r_{1}^{\alpha}\right)} \rightarrow \mathbb{R}$ be a smooth function such that,

$$
\begin{gathered}
\Omega \cap V^{\alpha}=\left\{x \in V_{i}^{\alpha} \mid x^{\prime} \in B\left(x^{\alpha}, r_{1}^{\alpha}\right), \psi^{\alpha}\left(x^{\prime}\right)<x_{i}<r_{2}^{\alpha}\right\}, \\
\partial \Omega \cap V^{\alpha}=\left\{x \in V_{i}^{\alpha} \mid \psi^{\alpha}\left(x^{\prime}\right)=x_{i}\right\}
\end{gathered}
$$

Let, $F_{\alpha}: \overline{\Omega \cap V^{\alpha}} \rightarrow{\overline{\mathbb{R}_{+}}}^{n}-\left\{y: y_{i}>0\right\}$ be defined as,

$$
\left\{\begin{array}{c}
F_{\alpha}^{j}(x)=x_{j} \\
F_{\alpha}^{i}(x)=x_{i}-\psi^{\prime}\left(x^{\prime}\right) .
\end{array}\right.
$$

and,

$$
W^{\alpha}=F_{\alpha}\left(\overline{\Omega \cap V^{\alpha}}\right)=\left\{y \mid y_{i}^{\prime} \in B\left(x^{\alpha}, r_{1}^{\alpha}\right), 0<y_{i}<r_{2}^{\alpha}-\psi\left(y^{\prime}\right)\right\} .
$$

Consider a C^{∞} partition of unity as $\left\{\chi^{\alpha}\right\}_{\alpha=0}^{l}$ subordinate to the assumed covering such that, $u^{\alpha}=\chi^{\alpha} u$.

We can observe that, $u=\sum u^{\alpha}$ and, $\operatorname{Supp}\left(u^{\alpha}\right) \subset V^{\alpha}$, where,

$$
\frac{\partial}{\partial x_{i}}\left(u^{\alpha}\right)=\frac{\partial}{\partial x_{i}}\left(\chi^{\alpha} u\right)=\chi^{\alpha} \frac{\partial u}{\partial x_{i}}+u \frac{\partial \chi^{\alpha}}{\partial x_{i}}
$$

As a result, we can obtain $b_{i}^{\alpha}, c^{\alpha} \in L^{\infty}(\Omega), \operatorname{Supp}\left(b_{i}^{\alpha}\right), c^{\alpha} \subset \overline{V^{\alpha}}$ such that,

$$
\begin{gathered}
\mathcal{L} u^{\alpha}=\chi^{\alpha} \mathcal{L}(u)+\sum b_{i}^{\alpha} \frac{\partial u}{\partial x_{i}}+c^{\alpha} u \\
=\chi^{\alpha}+\sum b_{i}^{\alpha} \frac{\partial u}{\partial x_{i}}+c^{\alpha} u=f^{\alpha} \in L^{2}\left(V^{\alpha}\right)
\end{gathered}
$$

Clearly, we have, $\operatorname{Supp}\left(f^{\alpha}\right) \subset \operatorname{Supp}\left(\chi^{\alpha}\right)=K^{\alpha}$ is compact. Moreover, $\operatorname{Supp}\left(u^{\alpha}\right) \subset \operatorname{Supp}\left(\chi^{\alpha}\right)=$ K^{α}.

For $\alpha=0$, we have, $\operatorname{Supp}\left(u^{0}\right) \subset K^{0} \subset \Omega$ and, $\mathcal{L} u^{0}=f^{0}$ in Ω. Thus, $\mathcal{L} u^{0}=f^{0}$ in \mathbb{R}^{n}.
A priori from the fact that, \mathcal{L} is indeed elliptic in Ω, hence, by interior regularity property, we conclude, $u^{0} \in H^{2}(\Omega)$.

In case when, $\alpha \neq 0$, we define, $F^{\alpha}:\left(\overline{\Omega \cap V^{\alpha}}\right) \rightarrow \overline{W^{\alpha}}$ such that,

$$
\tilde{u}^{\alpha}(y)=u^{\alpha}\left(\left(F^{\alpha}\right)^{-1}(y)\right) .
$$

Therefore, $\tilde{u}^{\alpha} \in H_{0}^{1}\left(W^{\alpha}\right)$ implying, $\operatorname{Supp}\left(\tilde{u}^{\alpha}\right)$ is in fact compact in ${\overline{\mathbb{R}_{+}}}^{n}$. Consequently, \tilde{u}^{α} is a weak solution of a second order uniformly elliptic operator \mathcal{L}^{α}, in other words,

$$
\left\{\begin{array}{c}
\mathcal{L}^{\alpha} \tilde{u}^{\alpha}=\tilde{f}^{\alpha} \quad \text { in } \mathbb{R}_{+}^{n} \\
\tilde{u}^{\alpha} \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right) .
\end{array}\right.
$$

Hence, $\tilde{u}^{\alpha} \in H^{2}\left(W^{\alpha}\right) \Longrightarrow u^{\alpha} \in H^{2}\left(\Omega \cap V^{\alpha}\right) \Longrightarrow u:=\sum u^{\alpha} \in H^{2}(\Omega)$. The result is thus established.

As a corollary, we can further comment on the H^{m}-regularity for the case $m \geq 2$ as follows.
Corollary 4.3.3. Suppose, $f \in H^{m}(\Omega), g \in H^{m+\frac{3}{2}}(\partial \Omega)$, and $u \in H^{1}(\Omega)$ satisfies,

$$
\left\{\begin{array}{cc}
\mathcal{L} u=f & \text { in } \Omega \\
\gamma_{0} u=g & \text { on } \partial \Omega
\end{array}\right.
$$

Then, $u \in H^{m+2}(\Omega)$.
Proof. A priori applying the fact that, $\gamma_{0}: H^{m+2}(\Omega) \rightarrow H^{m+\frac{3}{2}}(\partial \Omega)$ is surjective, and hence, \exists $u_{1} \in H^{m+2}$ with, $\gamma_{0}\left(u_{1}\right)=g$. Let, $v=u-u_{1}$. then, $v \in H_{0}^{1}(\Omega)$. Moreover, $\mathcal{L} v=f-\mathcal{L} u_{1} \in$ $H^{m}(\Omega)$, and, $\gamma_{0} v=0$ onto $\partial \Omega$.

It follows that, u^{α} indeed satisfies the Interior Regalarity and Boundary Regularity conditions as described in Theorems 4.1.2) and 4.2.1) respectively. Therefore, we conclude that, $u^{\alpha} \in$ $H^{m+2}(\Omega), \forall \quad \alpha$, implying that, $u \in H^{m+2}(\Omega)$. And the proof is thus complete.

Statements and Declarations

Conflicts of Interest Statement

I as the sole author of this article certify that I have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affi liations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Data Availability Statement

I as the sole author of this aarticle confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

[1] D. Bahuguna, V. Raghavendra, B.V. Rathish Kumar, Topics in Sobolev Space and Applications.
[2] Elias M. Stein, Rami Shakarchi, Fourier Analysis : An Introduction, Princeton Lectures in Analysis, Princeton university Press, Princeton and Oxford, ISBN 978-0-691-11384-5.
[3] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1969.
[4] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[5] L. C. Evans, Partial Differential Equations, Vol. 1 \& Vol. 2, Berkeley Mathematics Lecture Notes, 1994.
[6] V. G. Mazya, Sobolev Spaces, Springer-Verlag, Springer Series in Soviet Mathematics, 1985.
[7] S. L. Sobolev, On some estimates relating to families of functions having derivatives that are square integrable, Dokl. Adale Nauk. SSSR (1936), 267-270.
[8] S. L. Sobolev, On a theorem of functional analysis, Math. Sh. 46 (1938), 471-497.
[9] M. Struwe, Variational Methods : Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, 1990.
[10] W. P. Ziemer, Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag, 1980.

