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Abstract: A cost-effective solution to address the challenges posed by sensitive instrumentation in
next-gen turbomachinery components is to reduce the number of measurement samples required to
assess complex flows. This study investigates Gaussian Process (GP) modelling approaches within
the framework of a data-driven hybrid measurement technique for turbomachinery applications.
Three different modelling approaches - Baseline GP, CFD to Experiments GP, and Multi-Fidelity GP
are evaluated, focusing on their performance in predicting mean flow characteristics and associated
uncertainties on a low aspect ratio axial compressor stage, representative of the last stage of a high-
pressure compressor. The Baseline GP demonstrates robust accuracy, while the integration of CFD
data in the CFD to Experiments GP introduces complexities and higher errors. The Multi-Fidelity GP,
leveraging both CFD and experimental data, emerges as a promising solution, exhibiting enhanced
accuracy in critical flow features. A sensitivity analysis underscores its stability and accuracy, even
with reduced measurements. The Multi-Fidelity GP, therefore, stands as a reliable data fusion method
for the proposed hybrid measurement technique, offering potential reduction in instrumentation
effort and testing times.

Keywords: machine learning, Gaussian process, data fusion, Bayesian inference, uncertainty quantifi-
cation, measurement technique, axial compressor, instrumentation, computational fluid dynamics,
turbomachinery

1. Introduction

In the pursuit of enhancing the performance and efficiency of gas turbine engines
operating with a Joule-Brayton cycle, the next generation of engines demands higher overall
pressure ratios. Figure 1 shows the evolution of engine pressure ratio over time showcasing
this trend. Current flying engines from major manufacturers are indicated with crosses in
the figures, illustrating the ongoing efforts in this direction.

This drive toward increased higher overall pressure ratios has led to the design of
compressors with reduced blade heights, resulting in a more compact core. By increasing
the overall pressure ratio at the compressor outlet, in turn, requires a reduction in the chan-
nel core dimensions due to the need to maintain a fixed Mach number at the combustion
chamber inlet. This reduction leads to a subsequent decrease in compressor blade height.
This compactness poses challenges for traditional measurement devices, which struggle to
match the miniaturization process, causing increased blockage and variations in the local
flow field.

The quest for enhancing the performance and efficiency of gas turbine engines de-
mands innovative measurement techniques to overcome challenges posed by increased
pressure ratios and compact core designs.
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Figure 1. Overall pressure ratio evolution in engine trends over the years with crosses representing
the current flying engines.

Efforts to address these challenges through machine learning data-driven approaches,
particularly in Computational Fluid Dynamics (CFD) modelling, have shown promise [1].
However, their application to real, noisy experimental measurements remains limited.

Traditional optical techniques and high-speed particle image velocimetry, while
promising, face challenges in industrial and engine testing environments. Data-driven
methods offer an alternative by requiring fewer measurements and less instrumentation,
minimizing the instrumentation blockage effect without compromising accuracy.

Venturi et al. [2] used DNS data and Bertream et al. [3] uses a fusion of CFD with
experimental data to reconstruct flow fields with proper orthogonal decomposition while
Lou et al. [4], and Seshadri et al. [5] have demonstrated successful flow reconstruction and
optimal sensor placement, in the turbomachinery field with optimization and Bayesian
methodologies, respectively.

In response to current machine learning trends [6] and recognizing the need to mitigate
instrumentation impact and minimize data acquisition times, Gaussian Processes (GP), or
Kriging, emerge as a key algorithm to deal with real data, due to this Bayesian formulation
naturally dealing with uncertainty. GP are a non-parametric Bayesian method that allows
predictions of a mean unknown response and covariance, giving a straightforward uncer-
tainty propagation. GPs are typically used in the fluid mechanics literature as surrogate
models, for example, to replace expensive CFD codes in blade design studies [7].

This paper focuses on evaluating and comparing various Gaussian Process (GP) mod-
elling approaches within a proposed hybrid measurement technique, aiming to mitigate
instrumentation impact and minimize testing duration. The schematic representation of
this hybrid methodology is illustrated in Figure 2, depicting a process that seeks compre-
hensive information through localized experimental measurements, requiring significantly
fewer samples.

The methodology begins by selecting an operating point (OP) and defining essential
boundary conditions for a CFD RANS simulation. The resulting flow field quantities across
the turbomachinery domain guide a Design of Experiments (DoE) framework to select
optimal experimental acquisition locations. Experimental measurements acquired at these
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Figure 2. Proposed Data Driven Bayesian Hybrid Measurement Technique schematic for a complete
accurate flow assessment and uncertainty quantification with a reduction in instrumentation usage
and testing time.

locations provide the basis for the subsequent GP modelling approaches, which will be
systematically compared.

This paper seeks to evaluate the efficacy of different GP modelling approaches in
achieving accurate flow assessments with a reduced number of measurement samples.
The trained GP model allows inference of the flow field across the entire spatial domain,
providing accurate assessments comparable to physical measurements, with the Bayesian
framework facilitating uncertainty quantification.

The paper is outlined as it follows: Section 2 presents the H25 axial compressor test
case used in work, with both experimental and numerical tools being presented. In section
3, an overview of the different GP modelling approaches we propose is given. Section
4 shows the mean flow results and a comparison study between the different modelling
approaches. Finally, the work concludes and prospects future implementations to the
proposed measurement technique.

2. Test Case - H25 Axial Compressor

This work focuses on the H25 compressor stage, which is a low aspect ratio research
stage developed under the LEMCOTEC project. The stage is intended to evaluate the
impact of core size on the performance and flow field of the stage of a high-speed axial
compressor for aircraft gas turbine applications. The stage is highly three-dimensional
and features a reduced blade height, from which it derives its name, with the blade height
measuring a mere 25mm.

The configuration of the H25 axial compressor, characterized by its reduced blade
height, makes it an ideal candidate for the methodology’s assessment since it aligns with
the research goals of improving experimental flow assessment methods in next generation
compressor technologies that are more sensitive to instrumentation since their size is
decreasing and probe minimization cannot follow.

More importantly, data availability played a major role in the selection of this test
case. The H25 axial compressor has been extensively and comprehensibly experimentally
tested by [8], providing access and in-depth knowledge of the flow. This data includes a
wide array of measurements related to the flow characteristics of the compressor that are
described below.
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Figure 3. VKI R4 facility layout for axial compressor studies.

2.1. Experimental setup

The experimental data was acquired in the R4 test rig of the von Karman Institute
for Fluid Dynamics (VKI). The layout of this facility is depicted in Figure 3. This facility
incorporates an inlet plenum equipped with a heat exchanger and honeycomb (1), which
regulate the total temperature and flow homogeneity. The flow is then channelled to the
H25 test section (2), via a smooth convergent bell-mouth. After passing through the test
section, the compressed flow is released into a large collector (3). A return duct (4) connects
this collector back to the inlet plenum, forming a closed-loop system. The facility includes
a precision throttle valve (5) that enables accurate control of mass flow.

The R4 facility operates in a closed-loop configuration, providing the flexibility to
independently adjust key parameters, including Reynolds number (Re), rotational speed,
and throttling transients. All experimental data used for this work was obtained under
atmospheric conditions.

A meridional view of the H25 test section, labelled as point (2) in Figure 3, is presented
in Figure 4. In this view, the rotating components are highlighted in red, while the stator
row is marked in green. The instrumentation is axially distributed along four measure-
ment planes, which are referenced as MP (Measurement Plane). MP0: Located after the
convergent inlet bell-mouth, seven rotor chords upstream of the rotor. MP1: One chord
upstream of the rotor. MP2: In the inter-row region between rotor and stator. MP4: At the
stage outlet, one chord downstream of the stator blades.

The overall performance, particularly pressure ratio and efficiency, is assessed using
combined pressure-total temperature rakes deployed at MP0O and MP4. Additionally, radial
traversing of probes is possible in all measurement planes.

At MP4, a motor was installed to allow a pitch-wise traversing of the probes over
one and a half stator pitch. This setup enabled the sampling of a radial-azimuthal two-
dimensional map of the flow field. The acquisition process for this outlet flow cartography,
while essential for evaluating the flow inside the compressor, was the most time-consuming
part of the experimental campaign, taking approximately 3 hours to collect data points
from 950 locations, distributed in a matrix of 25 radial points over 38 pitch-wise points,
featuring refinement near the walls in the radial direction for improved gradient evaluation
and uniform discretization in the tangential direction. For this reason, and given the critical
role of MP4 in assessing the compressor’s performance, this experimental acquisition of
the total pressure ratio flow field (P) at the machine’s design point serves as the test case
for applying the proposed GP modelling approaches.
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Figure 4. H25 compressor stage experimental test section meridional view. Measurement planes in
blue. Rotating machinery in red. Stator row in green.

For this test, a custom-designed miniaturized three-hole probe was utilized to measure 12s
flow total pressure, angle, and Mach number. The systematic uncertainty of the miniatur- 120
ized pressure probe is determined by the pressure scanner used. In this case, it amounts to 130
£0.08% of the full span. At nominal speed, the total pressure ratio uncertainty budget was 1
estimated to be around 1%. 132

The probes were installed with a standard mechanical safety margin of 0.02 mm to  1s:
ensure a gap between the probe and hub/casing walls. Additionally, the radial size of the 134
probe head was added to this value when determining the accessible span for each probe. 13
This led to a 2% span end-wall proximity. 136

2.2. Numerical simulations - CFD RANS 137

A CFD numerical model is used to integrate highly discretized flow data with under- 11
sampled experiment in the modelling approaches described above, and thus the domain 3¢
matching between CFD and experiments is critical. The simulation domain is extended 140
from experimental MPO to a location two rotor chords downstream of MP4. This avoids 1a
issues related to outlet boundary conditions at MP4. 142

The numerical domain retains technological features like blade fillets in rotor and stator a3
sections but excludes experimental cavities. Assuming periodicity, only one blade passage 14
is simulated, utilizing a mixing plane approach for conservative pitchwise coupling. 145

Mesh generation employs a structured grid with Autogrid5, adopting an O-4H topol- 146
ogy for blade rows and OH topology in the rotor tip gap. Non-dimensional wall distance ez
(y+) is maintained below 2. 148

Figure 5 illustrates the meridional and blade-to-blade views of the computational grid. s
A multi-block structured grid approach results in three mesh levels, with grid convergence 1so
analysis on 0.6, 4.55, and 19.45 million cells, selecting the 4.55 million cells mesh for s
Reynolds-Averaged Navier-Stokes (RANS) data. 152

NUMECA FINE Turbo 12.1 solves fully turbulent compressible steady RANS equations  1ss
using the k-w SST turbulence model [9]. Operating at the compressor’s design point, s
the inlet imposes experimentally measured pitchwise averaged total pressure and total s
temperature profiles at MPO. At the outlet, absolute mass flow is imposed, with an adiabatic s
assumption for all domain walls. 157
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Figure 5. H25 compressor stage numerical domain meridional view and blade-to-blade zoom cut
(distorted blade geometry).

3. Gaussian Process Modelling

The objective of this work is to retrieve missing or unavailable data using a limited set
of experimental measurements through a Bayesian mathematical framework. This can be
formulated as a regression problem:

y=f(X)+n 1)

where y represents the vector of observed output variables with a random error or noise
associated 7. X is the matrix of input variables and f(X) denotes the underlying regression
function that maps inputs to outputs.

In the context of this work, the available experimental flow field measurements y
at measurement locations X are used to build a regression model f(X), enabling the
estimation of unmeasured flow field data points y. at locations where probe measurements
are unavailable X.. This repression model is based on Gaussian Processes.

Gaussian processes (GPs) are a non-parametric method that incorporate probabilistic
distributions directly into the regression model f(X), constructing “Gaussian distributions
over functions” [10] rather than in a fixed number parameters. This unique characteristic
makes GPs a powerful probabilistic tool, especially for regression problems, as formulated
in equation 1, predict unknown data y, from observed data y, which includes some level
of measurement error or uncertainty.

A GP defines a multivariate Gaussian prior distribution over functions for every point
in the input space X:

p(f 1X) ~ N(f | 1K) @

where f(X) is a multivariate random variable f(X) = [f(x1), f(x2),..., f(xn)] with a mean
function y# and a covariance matrix K(x;, x;) that is defined with a positive definite kernel
function. Due to the flexibility of GPs in modelling, the mean is assumed to be zero u = 0
and the GP distribution over f(X) is fully defined by K. Therefore, the choice of the kernel
function K is a key modelling decision in the GP framework.

Multiple kernel function families exist in the literature for different function modelling
behaviour (e.g. smoothness, stationary) making this choice a prior input of knowledge
of the problem. In the present work, the base kernel function selected is a stationary
anisotropic Matérn-5/2 kernel, which is given by:

158

159

160
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where { is the length scales for a single input dimension and control the smoothness of the
function modelling and ¢y acts as a scaling factor. These are usually called hyperparameters
0 and ensuring their correct values play a pivotal role in GPs. The length scales ¢ controls
the smoothness of the function by directly quantifying how much a single data point
influences the space around it. The scaling factor oy controls the vertical scale of the
function around its mean, influencing the uncertainty of the model.

Given the above assumptions and available noisy observations y; = f(x;) + #;, where
the noise 7 follows an independent, identically distributed Gaussian distribution with zero

mean and fixed variance 17 ~ N (O, (751) , the log marginal likelihood can be derived as:

logp(y | X,0) = félog(det(KJr(T;I))
1 -1 N
— 5= (K+I) (y—p) - log2m) @)

where the first term is a model complexity term, defined by the selection of the kernel
function. The second term is a likelihood data-fit term showing the Bayesian weighting of
the prior with the observed data. The third term is a constant term. Based on the available
data, the log marginal likelihood can be maximized to obtain the optimal hyperparameters
mentioned above.

The inherent noise of the available data 0y, is taken as an hyperparameter to infer along
with the kernel parameters. This choice allows the model to determine the optimal level of
noise during hyperparameter training. It enhances model flexibility by enabling adaptation
to varying noise levels and it provides valuable uncertainty information of what the model
thinks of the data.

Predictions of the unknown states y, can be obtained by conditioning their input loca-
tions X, on the prior distribution of equation 2, giving, a predictive posterior distribution:

p(y, | X, X y) =Ny, | n., ) (5)

where px represents the predicted mean values for new input locations X* and Z, is the
covariance matrix associated with the predicted values, and are computed respectively as:

p, =K (K4 071y (6)

I, = K — K (K+ ;1) 'K )

3.1. Baseline GP approach

The conventional single-fidelity approach to Gaussian Process modelling, here taken
as a baseline, involves using a set of domain inputs, X = (r, ), where x; = (r,0); is a single
location where a noisy experimental measurement y; is taken. The unknown values, yx,
are the equivalent quantity of interest evaluated at non-sampled locations X, = (7x, 0x).
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This method provides a good approximation of unknown values close to input loca-
tions x where data is available, but tends to become less accurate as the inference moves
away from these locations. For example, in regions where few measurements are available
or none exist, like in the boundary layer region of the flow.

3.2. CFD to Experiments approach

The approach proposed in [11] involves coupling numerical data with experimental
measurements in GPs. Instead of mapping the physical input domain x = (r,0), ] RANS
simulations flow fields (at various operating conditions of the machine) are used as inputs
x. Using the case of total pressure at the compressor outlet, one input x; is a j-dimensional
vector that contains all the ] RANS total pressure results evaluated at a grid point i = (r,0),
where one experimental measurement y; is available. The GP functional mapping of this
work is represented by the following matrix format in Equation 9 for the total pressure at
the outlet of the compressor.

fiX=1 : : eER — y=|: eR €)
Povyy - Povnd crp Py Exp

where the matrix Xcrp represents the inputs for the GP model when incorporating CFD
data. Each column of this matrix corresponds to a location (7, ) in the physical domain, and
the rows encapsulate the results of various RANS simulations at that location. Specifically,
P(; ) denotes the total pressure obtained from the j-th RANS simulation at the i-th grid
point (r,0).

The use of an anisotropic kernel in the GP model plays a crucial role in this context.
An anisotropic kernel allows the model to adapt its lengthscales independently for each
input dimension. In the case of multiple CFD simulations, this flexibility is essential for
balancing lengthscales between different simulations. It enables the GP model to account
for variations in the physical domain along the radial and pitch directions separately,
ensuring a more accurate representation of the complex flow field. This adaptability is
particularly beneficial when dealing with simulations under different operating conditions,
as it allows the GP model to capture variations in the flow characteristics across the entire
parameter space.

3.3. Multi-fidelity approach

The last approach, previously applied to fluid mechanics by multiple authors in [12,13],
leverages the auto-regressive formulation proposed by O’'Hagan [14] for Multi-Fidelity GP
modelling. The formulation assumes a linear dependency between each fidelity model.
In a general formulation, it assigns a GP prior to each fidelity model ¢, where the higher
fidelity model f; is expressed as a function of the lower fidelity f;_1, multiplied by a scaling
factor p;_1(x) plus a bias function &¢(x), which is itself a GP 6;(x) ~ N (ps, K¢).

fr(x) = pr—1(x) fr—1(x) + 6t (x) (10)

The scaling factor p;_1 (x) weights the cross-correlation between fidelity levels and it is
considered an hyperparameter to be learned in the inference process. The above formulation
ensures that at each fidelity level ¢, the conditional distribution of the GP f;(x) is influenced
by fi—1(x) thourgh the Markov property, Cov{fi(x), fi—1(x') | fi-1(x)} =0, Vx # X/,
which means that assuming f;_1(x) is known, no more can be learned about f;(x) from
any other lower fidelity model output f;_1(x'), for x # x'.

251

252

253
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In the present case only 2 levels of fidelity are available, the high fidelity experiments
and the low fidelity CFD, which is the default case in this work, and assuming a constant
scaling factor p, the formulation of equation 10 simplifies to:

fexp(x) = pferp(x) +6(x) (11)

where fry,(x) and fcrp(x) represent the high- low-fidelity datasets, respectively and 6(x)
isa GP 6(x) ~ N (g, Kpizs)- The prior GP model of the formulation of equation 11 can be
expressed as:

ferp(x) } N [ HcED } [ Kcrp pKcrp
[ fExp(x) N Pexy || PKcrp  0°Kerp + Kpigs ) (12)

where ptcpp and pg,, are the mean functions. Kcrp is the covariance matrix associated
with the low-fidelity data, pKcpp is the cross correlation matrix between fidelity’s and
0?Kcrp + Kpigs is the covariance matrix associated with the high-fidelity.

The recursive approach of Le Gratiet [15] decouples the inference of the fidelity’s
into standard GP inference. The key step of the formulation is to infer the posterior of
the low-fidelity model f&;(x) independently and replace it for its prior in equation 11.
With this formulation, the multi-fidelity GP posterior distribution for the high fidelity

p ( fexp | Xexps YExps fCFD) is fully defined and predictions are made with following mean
and covariance:

-1
HExp,«(X«) = ppcED (X)) + po + Kgxp « (KExp + Uﬁ,gxpl) [yExp — ptcrp (XExp) — #5}
(13)

-1
z“Exp,* (x*) = pzZCFD (x*) + KExp,** - KExp,* (KExp + Uj,Epr) K};:xp,* (14)

The proposed approach offers several benefits over the traditional GP regression
approach. By using CFD as low fidelity data in the model, its high data density in the full
domain enables the prediction of the unknown flow values yp,,, ., at non-sampled domain
locations x, = (r,60) where the experimental probe cannot reach. This makes it possible
to infer the flow at regions where few or no measurements are available, such as the hub
boundary layer in the case of the H25 test case.

In summary, three distinct, increasing in complexity, modelling approaches: single-
fidelity experiments, single-fidelity CFD to experiments, and multi-fidelity modelling were
presented for flow field reconstruction from undersampled measurements. The subsequent
sections will present a detailed analysis of the performance in accurately reconstructing
flow fields, especially in challenging scenarios with limited measurements, analysing
each approach’s strengths, limitations, and practical implications, shedding light on their
effectiveness in real-world applications.

4. Results

This section presents a comprehensive analysis of various GP modelling approaches,
with the goal of evaluating their performance within a data-driven hybrid measurement
technique presented in Figure 2. An initial investigation involves a systematic comparison
of all GP modelling approaches, utilizing a consistent measurement grid. This ensures a
consistent evaluation of mean flow inference and its associated uncertainty across different
approaches.

The data-driven hybrid measurement technique integrates a Design of Experiments
(DoE) phase, currently in development and not presented in this work. A preliminary
application of this DoE phase revealed that the optimal number of measurements is around
one-third (33%) of the complete experimental reference test dataset.
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The complete 950 experiment points dataset is divided into two distinct subsets: the
training subset and the validation subset. The training subset corresponds to an optimal
33% measurement grid and is utilized in the optimization process, maximizing the marginal
log-likelihood of Equation 4, enabling hyper-parameter learning and flow reconstruction.
The validation subset, corresponding to the remaining 67% measurements, serves as the
ground truth and is compared against the predicted flow reconstruction to evaluate the
performance of the GP modelling approach.

To assess the different GP modelling approaches performance in predicting flow
characteristics, the following fundamental metrics are assessed:

Root Mean Squared Error (RMSE): RMSE is a standard error metric that quantifies
prediction accuracy. It calculates the square root of the average squared differences between
predicted and actual values.

1 Nygp . .
RMSE = | 7 ) (¥4 = ¥i)? (15)
val j—1

where y’, represents a predicted value, and y’ ; represents the corresponding ground truth
validation measurement.

MMaximum Absolute Error (MaxAE): MaxAE identifies the most significant prediction
error, enabling a direct comparison with experimental measurement uncertainty. A notable
difference between MaxAE and RMSE indicates problematic model performance in specific
flow regions.

MaxAE = maxi<ij<n Yi - Yiml (16)

val

4.1. Baseline GP

This section presents a comprehensive analysis of the Baseline GP model within
the context of the data-driven hybrid measurement technique, serving as a reference for
subsequent comparisons with more advanced GP models. The baseline approach adopts
a standard single-fidelity GP, associating each outlet pressure measurement y; with its
domain location x; = (r,6);.

The systematic application of the baseline GP model on a consistent measurement
grid provides insights into mean flow inference and its associated uncertainty. Trained on a
carefully selected 33% subset of the complete experimental dataset, the model demonstrates
its capability to reconstruct the flow field across the entire spatial domain.

Figure 6 illustrates the comparison between the predicted total pressure flow values
(y+), on the right, and the ground truth validation data (y,,;). The selected experimental
grid is represented with white crosses.

The Baseline GP model shows a smooth flow field prediction, revealing a generally
consistent match between predicted and actual flows. It accurately captures high-pressure
regions and secondary flow structures in terms of both shape and location. Notably, the
model successfully captures the radial contouring of the strong gradient wake and other
secondary flows, such as the boundary layer hub region and losses emanating from the
rotor tip vortex in the casing. These are correctly predicted in terms of size and magnitude.

However, there are notable differences, particularly in predicting the minimum pres-
sure value in the wake. The GP model struggles to infer the correct wake lower pressure
region core, where higher losses are expected. Another observation is the transition be-
tween the hub secondary flow structure and the blade wake region, which appears more
pointwise in the prediction but occupies a larger pitch size in the experimental reference.

The Bayesian modelling enables direct uncertainty propagation, as illustrated in Figure
7. This serves a dual purpose — showcasing the GP framework capability to predict the
mean flow and its associated uncertainty, and providing insights into areas with potentially
less certain predictions.
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Figure 6. Baseline GP total pressure prediction (right) against fully experimental reference (left) with
33% measurements used.
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Figure 7. Baseline GP Pressure Ratio Uncertainty +20 with 33% measurements used.

The model predicted uncertainty tends to increase rapidly outside the studied domain,
particularly evident around pitch close to zero. Furthermore, the model exhibits higher
uncertainty in regions where no experimental measurements are available, as expected. The
highest uncertainty within the domain of interest is observed in the strong gradient wake
region, primarily around a radial span of 0.4, corresponding to the location of the wake
core highlighted above. This increased uncertainty in regions of the wake and transition
zones indicates that the model does not overstate its confidence in inherently challenging-
to-predict flow regions. Importantly, even in regions with "high uncertainty," the predicted
uncertainty remains within the bounds of the full experimental test’s uncertainty. In other
parts of the predicted flow, the uncertainty is comparatively lower.

The performance metrics presented in Table 1 provide a quantitative assessment of the
Baseline GP model. Despite specific challenges in certain flow regions, the model demon-
strates strong predictive capabilities, with both RMSE and MaxAE values at magnitudes
of 10E — 3 or lower. Notably, the MaxAE discrepancy, observed in the wake core, is still
within a reasonable range. Importantly, both errors are smaller than the experimental
uncertainty, suggesting that the Baseline GP model provides predictions aligning well with
the expected variability in experimental measurements. This is a positive indicator of the
model’s robustness in practical applications.

In summary, the Baseline GP model, while encountering specific challenges in certain
flow regions, serves as a strong foundation for the subsequent comparison with other
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Table 1. Baseline GP pressure ratio performance metrics.

Modelling RMSE MaxAE Exp. Unc.
Baseline GP  4.7E-4  1.7E-3 1.3E-3

modelling approaches. The performance metrics validate its capability to predict the flow
field with high accuracy and provide a realistic representation of uncertainty.

4.2. CFD to Experiments

This subsection presents the CFD to Experiments GP modelling approach, as proposed
in [11]. Unlike the Baseline GP model, this approach introduces an innovative coupling of
numerical data with experimental measurements within the GP framework.

In this approach, a total of | RANS simulations are executed, each corresponding
to various operating conditions of the turbomachinery. These simulations provide com-
prehensive flow field data across the entire domain, effectively capturing the system’s
behavior under different scenarios. Instead of directly mapping the physical input domain,
each input x; becomes a j-dimensional vector containing all ] RANS total pressure results
evaluated at a specific grid point i = (r, ). This strategic choice aligns with the case of total
pressure at the compressor outlet, where each experimental measurement y; is available.

Figure 8 visually compares the predicted total pressure flow values (y*) using the CFD
to Experiments GP approach (on the right) with the ground truth validation data (y,,;) on
the left.

The qualitative analysis of the CFD to Experiments GP model reveals distinctive
features in the flow patterns. The model successfully captures key aspects, such as high-
pressure regions and the wake. However, notable differences compared to the Baseline GP
model are observed. Unlike the Baseline approach, the flow in this case exhibits sharper
pointwise gradients in the radial contouring of the wake. Additionally, flow discrepancies
appear larger, with the wake core not being correctly represented, and its shape not aligning
with the experimental reference.

In the tip region of the flow, the GP prediction displays a different flow feature shape,
with the tip flow occupying a higher span and pitch area in the blade wake region, and its
direction changed. This results in an overprediction of the pressure losses associated with
this secondary flow.

Another effect of using CFD is the presence of a passage vortex signature in the hub
region around pitch 0.5. This passage vortex is clearly visible in all CFD simulations at
this span high, but it is not evident in the experimental reference. Despite extracting
information from the CFD, this information might be incoherent with the experimental
reference, hindering the GP modelling approach’s flow assessment capabilities.

Figure 9 extends the qualitative examination by illustrating the uncertainty in the
predicted pressure ratio (+20). This provides insights into the areas where the CFD to
Experiments GP approach exhibits higher uncertainty.

Overall, the uncertainty levels are equivalent or higher than in the Baseline GP case,
with the lowest and highest predicted uncertainty values being double. However, the
regions of higher uncertainty differ. Unlike the Baseline GP, where the highest uncertainty
was in the domain limits, in the CFD to Experiments approach, the regions of higher
uncertainty are in the region of the blade wake and in the boundary layer regions, both
at the hub and tip, where the mean flow differences were highlighted above. Notably, the
wake radial gradient contouring is clearly detected as a region of high uncertainty. This
is believed to be due to the fact that the different CFD simulations, at different operating
points, have different wakes. Similarly, the passage vortex region, not present in the
experiments but present in the CFD, shows high uncertainty as well.
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Table 2. Performance metrics of CFD to Experiments modelling and comparison with Baseline GP.

Modelling RMSE w.r.tBaseline MaxAE w.r.t Baseline
CFDto Exp 9.2E-4 +95.7 % 6.4E-2 +3664 %

_ High
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Figure 8. CFD to Experiments GP total pressure prediction (right) against fully experimental reference
(left) with 33% measurements used.
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Figure 9. CFD to Experiments GP Pressure Ratio Uncertainty =20 with 33% measurements used.

Table 2 presents the performance metrics of the CFD to Experiments Gaussian Process  os
(GP) modelling approach and compares them with the Baseline GP using 33% of the o5
measurements. 406

The increase in both RMSE and MaxAE for the CFD to Experiments modelling high- a0z
lights a less accurate representation of the flow field compared to the Baseline GP. Specif- 408
ically, the CFD to Experiments model exhibits larger discrepancies in predicting total 4oe
pressure values across the spatial domain, particularly in some important flow regions, a0
with the MaxAE being one order of magnitude higher. While the Baseline GP demon- au
strated robust performance, the integration of CFD data in this current framework seems 412
to introduce complexities leading to larger errors. a3

Differences observed in the CFD to Experiments model, such as sharper gradients and 414
discrepancies in specific flow features, are reflected in the quantitative metrics. Utilizing a5
CFD data, despite capturing certain flow characteristics, introduces uncertainties and 416
discrepancies contributing to higher error metrics. Challenges in integrating CFD data with a7
experimental measurements are evident in the notable increase in errors. 418
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While being a novel approach, the present integration of CFD data introduces chal- 410
lenges, resulting in higher prediction errors. The comparison with the Baseline GP empha- 420
sizes the importance of carefully evaluating the impact of additional data sources on overall 421
model performance. Looking ahead, the subsequent subsection explores the Multi-Fidelity 422
GP model as an alternative, aiming to address the challenges highlighted in the CFD to 423
Experiments modelling approach. a2a

4.3. MMltl—FldEllty GP 425

The section presents the Multi-Fidelity GP modelling approach, building upon the 26
framework proposed in [12]. The MFGP model integrates CFD data as low-fidelity informa- 427
tion and experimental measurements as high-fidelity data to map the input domain space 42s
x; = (r,0); to pressure measurements y;. This approach introduces CFD information and a2
complexity over the Baseline GP, aiming to enhance the accuracy of flow field predictions. 430

Radius
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Figure 10. Multi-Fidelity GP total pressure prediction (right) against fully experimental reference
(left) with 33% measurements used.
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Figure 11. CFD to Experiments GP Pressure Ratio Uncertainty 20 with 33% measurements used.

Figure 10 visually compares the Multi-Fidelity GP model predicted total pressure as:
flow values (y.) with the ground truth validation data (y,,;;). The model demonstrates 432
a visual seamless prediction, accurately capturing high-pressure regions and secondary ass
flow structures. A distinctive enhancement is observed in the prediction of the wake lower 43
pressure region, signifying improved accuracy in areas with higher losses. Additionally, 435
the transition between the hub secondary flow structure and the blade wake region is more 436
accurately represented, addressing a previous pointwise discrepancy in the Baseline GP. 437
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Table 3. Performance metrics of the Multi-Fidelity GP modelling approach and comparison with
Baseline GP.

Modelling RMSE w.r.t Baseline MaxAE w.r.t Baseline
Multi-Fidelity =~ 4.5E-4 -4.3% 1.6E-3 --5.9%

Another characteristic of the Multi-Fidelity GP model is its ability to smooth the flow,
providing a super-resolution effect. This inherent smoothing facilitates flow assessment
with reduced experimental measurements, indicating potential benefits in terms of testing
time and instrumentation effort.

Figure 11 shows the uncertainty of the Multi-Fidelity GP model, demonstrating a close
resemblance to the Baseline GP. The model uncertainty pattern aligns with expectations,
showing a rapid increase beyond the studied domain and higher uncertainty in regions
without experimental measurements.

Contrary to initial expectations, the contribution of CFD uncertainty to the overall
uncertainty is minimal. The scaling factor hyperparameter p, reflecting the relationship
between CFD and experiments, is below 0.2, indicating a low contribution. This result
is justified by a substantial discrepancy between RANS simulations and experiments,
emphasizing the MFGP model’s adaptability to incorporate and propagate uncertainties in
the presence of challenging data sources.

Table 3 provides a quantitative assessment of the Multi-Fidelity GP modelling ap-
proach, comparing its performance metrics with the Baseline GP.

The RMSE for the Multi-Fidelity GP is 4.5E-4, showcasing a slight improvement of
-4.3% compared to the Baseline GP. This reduction in RMSE indicates that the MFGP model
provides a more accurate overall prediction of total pressure values, aligning closely with
the experimental reference. The MaxAE, the Multi-Fidelity GP model achieves a value of
1.6E-3, representing a -5.9% decrease concerning the Baseline GP. The negative percentage
change implies a reduction in the maximum prediction error.

The improvements observed in both RMSE and MaxAE highlight the Multi-Fidelity
GP model improved capability to capture flow field characteristics compared to the Baseline
GP. The model ability to better represent the wake core lower pressure region and refine
the transition between flow structures contributes to these improvements.

Overall, the Multi-Fidelity GP approach demonstrates promising results, providing
a more accurate and detailed representation of the flow field. The negative percentage
changes in error metrics emphasize the advancement achieved by integrating CFD data as a
supplementary information source in the present modelling framework. The Multi-Fidelity
GP model effectiveness in mitigating the limitations observed in the Baseline GP positions
it as a valuable alternative for comprehensive flow field predictions in practical applications
and places this approach at the optimal data fusion approach for the proposed data driven
hybrid measurement technique in development.

4.4. Sensitivity Analysis

In this final segment of the results section, a comprehensive sensitivity analysis is
conducted to evaluate the robustness and performance of the three GP modelling ap-
proaches—Baseline GP, CFD to Experiments, and Multi-Fidelity GP—under varying condi-
tions of measurements subsampling and different measurement grids.

The sensitivity analysis evaluates subsampling percentages of 10%, 20%, 33%, and
50%, corresponding to absolute measurement points of 95, 190, 313, and 475, respectively.
This systematic exploration aims to assess the models’ sensitivity to the quantity and
distribution of experimental measurements, providing insights into their adaptability and
performance across different measurement scenarios and grids.

Figure 12, presents the sensitivity of each modelling approach depicted through a
series of RMSE box plots for different measurement subsampling percentages (10%, 20%,



Version December 22, 2023 submitted to Int. ]. Turbomach. Propuls. Power 16 0of 18

1073
\ Methodology
4.0 i Bl Baseline GP
B CFED to Experiments
;%3 ! ’ " B Multi-Fidelity GP

- 7
7

0.4 I@i@' 'iii' 'E#E' 'E%?'
10% 20% 33% 50%

Measurements used

RMSE
o =

Figure 12. RMSE comparison between the Baseline, CFD to Experiments and Multi-Fidelity GP
approaches across different model runs for different amount of measurements used.

33%, and 50%) and across different randomly generated measurement grids. The box
plots provide a visual representation of the distribution of RMSE values, allowing for a
comparative analysis of model performance under diverse measurement conditions. In
these box plots, the whiskers span from the lowest to the highest values. The box itself
represents the first and third quartiles, with the median shown as a line.

For all the different modelling approaches, an increase in the number of measurements
leads to a reduction in RMSE. This reduction is particularly pronounced for the Baseline and
the Multi-Fidelity GP when increasing the number of measurements. This behaviour is due
to the convergence of the hyperparameters, as discussed earlier. Once a sufficient number
of measurements is used, the models effectively learn the correct data hyperparameters,
and additional data does not significantly improve the modelling.

The results clearly indicate that the CFD to Experiments GP consistently performs
worse than both the Baseline GP and Multi-Fidelity GP across all subsampling percentages.
The box plots reveal higher median RMSE values for the CFD to Experiments GP, indicating
a less accurate flow prediction compared to the other two models.

In contrast, the Baseline GP and Multi-Fidelity GP exhibit comparable performance.
The box plots for both models show similar medians, suggesting a consistent level of
accuracy across different subsampling percentages. However, the Multi-Fidelity GP stands
out as a more robust option, as evidenced by its lower box plot spread and fewer outliers.
This indicates that the Multi-Fidelity GP is less sensitive to variations in the experimental
grid and maintains a stable performance even with reduced measurement data since the
spread between the box plot whiskers can be primarily attributed to the influence of the
randomly selected experimental measurement grids.

These findings highlight the advantages of the Multi-Fidelity GP model, showcas-
ing its robustness and ability to provide accurate predictions with a reduced number of
experimental measurements for the proposed data driven Bayesian hybrid measurement
technique in development.

5. Conclusions

In this work, three Gaussian Process (GP) modeling approaches—Baseline GP, CFD
to Experiments GP, and Multi-Fidelity GP—are compared in the context of a data-driven
hybrid measurement technique for turbomachinery applications. The goal was to evaluate



Version December 22, 2023 submitted to Int. ]. Turbomach. Propuls. Power 17 of 18

their effectiveness in predicting mean flow characteristics and associated uncertainties,
with a particular focus on informing the development of a hybrid measurement approach.

The Baseline GP served as a robust foundation, showcasing accurate predictions of
the flow field and providing realistic uncertainty estimates. However, the novel integration
of CFD data in the CFD to Experiments GP introduced complexities, resulting in higher
prediction errors and uncertainties, highlighting the need for careful consideration of
additional data sources.

The Multi-Fidelity GP approach integrates CFD data as low-fidelity data and ex-
perimental measurements as high-fidelity data. It demonstrated enhanced accuracy in
predicting critical flow features, such as the wake core and hub and casing regions.

The sensitivity analysis showed the Multi-Fidelity GP robustness, even with a reduced
number of experimental measurements that might not be optimal. This is relevant in
practical applications where resource constraints may limit the number of measurements.
The Multi-Fidelity GP is, therefore, a reliable data fusion method for the proposed hybrid
measurement technique, offering the potential to streamline instrumentation efforts and
greatly reduce testing time.
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