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Summary 
The decarbonization of energy end-use sectors, such as transportation and buildings, presents a significant 

challenge for mitigating the impacts of climate change. We conducted a model-intercomparison analysis 

to assess the potential for reducing CO2 emissions through demand-side strategies. The study focuses on 

the buildings and transport sectors and evaluates the effectiveness of three strategies: activity shifts, 

technological improvements, and electrification and fuel shifting. The results demonstrate that the 

intervention strategies can significantly reduce CO2 emissions. Moreover, combining approaches not only 

enhances emission reductions, but also alleviates stress on the energy system from individual demand-

side changes, such as increased electricity demand. 

Introduction 
It has become increasingly clear that demand-side mitigation is a critical part of strategies to meet the 

Paris climate goals (IPCC, 2022; Mundaca et al., 2019). Demand side changes, including lifestyle choices, 

consumer technology choices, and energy-saving behavior, can aid in mitigating climate change in the 

short term and reduce the need for carbon dioxide removal technologies in the long term. Reduced energy 

demand also allows for more flexibility in technology choice in the supply sectors (IPCC, 2022). Also, 



electrification of energy end uses can contribute substantially to emission reductions on the demand side 

and has synergies with the transition to renewables-based power systems (Luderer et al., 2022). 

Recent estimates (IPCC, 2022) suggest that shifting and reducing activity, together with improving 

efficiency in end-use sectors, could potentially lead to sectoral emission reductions of 40-70% by 2050. 

However, these estimates only consider individual assessments and fail to account for the interactions 

between various interventions. To overcome this limitation, our study takes a comprehensive approach by 

employing multiple integrated assessment models (IAMs) to analyze the combined effects of various 

demand-side intervention strategies in the buildings and transport sectors. 

Methods and scenarios 
The study uses multiple IAMs (COFFEE, IMACLIM-R, IMAGE, MESSAGE1, PROMETHEUS, REMIND and 

WITCH1) to analyze a set of demand-side intervention scenarios, examining specifically the area of 

buildings and transport, including personal mobility and international transport. The use of a wide range 

of models enables the derivations of a robust signal as well an indication of uncertainty. By gathering input 

from stakeholders through a survey, we identified a comprehensive list of measures with both high impact 

and feasibility. Broadly speaking, these measures can be grouped into activity reductions and behavioral 

shifts, technology improvements and electrification of end-uses. Consequently, we translated them into 

the following scenarios each representing distinct intervention strategies: 

1. Activity reduction and activity shift (ACT) involves redesigning service-provisioning systems to 

either reduce or shift consumption of services. People live in smaller spaces, work in shared 

buildings with flexible use, and adjust their thermostat settings to lower (heating) or higher 

(cooling) setpoints. Active modes of transportation are encouraged, and public transport and 

shared mobility options are improved. Air travel is discouraged, while advancements in freight 

logistics and speed restrictions in maritime transport enable more efficient transport of goods. 

2. Technological improvements - energy efficiency (TEC) focuses on improvements in the efficiency 

of existing technologies. Higher levels of energy efficiency are achieved in both new constructions 

and existing buildings through increased renovation rates, improved insulation, and more efficient 

heating, ventilation, and air conditioning (HVAC) systems. Efficiency standards for road vehicles, 

aircrafts and ships are implemented and environmental certification is required for using airports 

and ports. 

3. Electrification and fuel shift (ELE) focuses on switching to low-carbon technologies. Heat pumps 

and electricity-based heating systems are widely adopted in buildings. Non-clean heating fuels are 

phased out and new natural gas connections are banned in the Global North. Passenger vehicles, 

light-duty trucks, and ports transition to full electrification. Heavy-duty vehicles abandon diesel 

engines, and biofuels and electrofuels are increasingly used in aviation and shipping. 

4. All interventions (ALL) combines all of the strategies above. 

While related to the ASI (Avoid-Shift-Improve) framework developed by (Creutzig et al., 2022), our 

framework allows for a cleaner separation between intervention strategies and related impacts on the 

energy system and emissions. 

                                                           
1 Scenario results for MESSAGE and WITCH are not yet available and are not included in the results. 



 

We compare the results to a reference scenario (REF) where none of the above strategies are 

implemented. The scenario ensemble is further diversified by adding another dimension considering 

different climate pathways that limit (or do not limit) global warming by means of carbon pricing: 

continuation of current national policies (NPi), and climate policies consistent with 1.5°C global warming 

targets (1.5C). 

Results 
In the reference current policy scenario, global emissions from buildings and transport are projected to 

increase on average with 20 % (16-27%) in 2030 and 34% (26-50%) in 2050 compared to 2015 levels 

(Figure 1). All intervention strategies acting on top of current policies lead to reduced emission growth in 

the coming decades compared to the reference. The models project that the current trend of emission 

growth in the transport and buildings sectors can be reversed into emission reductions when combining 

all the measures. 

 

 

Figure 1: Growth of (direct) CO2 emissions from fuel combustion in the energy demand sectors in 2030 and 2050 with respect to 
2015 in a current policies scenario. The left panel shows the total of the buildings and transport sectors. Bars indicate model-
averages and black lines depict the model ranges. 

Electrification and fuel shifts can play a pivotal role in reducing demand-side CO2 emissions in both sectors, 

but they also result in a substantial surge in electricity demand (Figure 2). Conversely, activity reductions 

and technological improvements help decrease electricity demand. As a result, the combined intervention 

scenarios (ALL) exhibit lower electricity demand compared to scenarios focused solely on electrification 

(ELE), even under a 1.5°C climate target. This implies that a comprehensive approach can reduce the need 

for emission-reducing technologies, large-scale electricity storage and investments in electricity 

infrastructure. 



 

Figure 2: Electricity demand in the energy demand sectors in 2030 and 2050 under two different climate pathways. The left 
panel shows the total in all energy demand sectors combined (also including industry emissions). Bars indicate model-averages 
and black lines depict the model ranges. 

Our findings highlight the significance of demand-side changes in addressing emissions in the building 

and transport sectors. Demand-side changes can facilitate the achievement of climate targets and 

reduce the need for other mitigation measures. Combining different approaches proves particularly 

advantageous in this context. This approach not only leads to the greatest reduction in emissions but 

also helps alleviate the stress on the energy system that may arise from individual demand-side changes, 

such as an increase in electricity demand due to electrification. 
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