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Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France

Abstract

Depending on their physical characteristics, freely hanging articulated pipes can

undergo divergence- or flutter-type instability above a critical velocity of the flow

they conveye. The effect of adding a point mass, and more precisely influence of

the mass magnitude and location, on the stability of such pipes is investigated

by means of a linear analysis. It is found that this additional load can have a

stabilizing or destabilizing effect depending on its location along the pipe and

that the effect is all the more important as the mass is high. The influence of

the mass on the shape of the destabilized linear mode is also discussed.

Keywords: pipe, futter, divergence, passive control

1. Introduction

Pipes conveying fluid are encountered in many industrial applications and

their dynamics and stability have motivated numerous studies. A freely hang-

ing pipe is one of many configurations of pipes conveying fluid, it consists of

a vertical pipe with a fixed upstream end and a free downstream end where5

the fluid discharges to the atmosphere. When the velocity of the conveyed flow

exceeds a critical value, an hanging pipe initially straight can be destabilized

and either static or oscillatory deflection occur, respectively referred to as di-

vergence or flutter. One of the first comprehensive study on the stability of

hanging pipes was devoted to articulated pipes that is pipes made of rigid seg-10

ments connected by flexible joints. In this theoretical and experimental work,

Benjamin [1, 2] showed that, depending on their physical characteristics, these
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pipes can be destabilized by divergence or by flutter. In contrast, a study by

Päıdoussis [3] revealed that hanging continuously flexible pipes are only subject

to planar flutter.15

The effect of adding a mass at the free end of continuously flexible pipes has

been considered by Copeland and Moon [4]. Their experiments revealed that,

depending of the end mass value, the flexible pipe can exhibit various routes to

chaos as the flow velocity is increased, and a great variety of dynamical states.20

This richness of states, including periodic, quasiperiodic or chaotic motions,

planar and three-dimensional, while only periodic planar motions have been

reported for a pipe without additional mass, has motivated further studies [5,

6, 7]. These studies have also shown that the stability limit of the hanging

flexible pipes is modified by such an end mass. Thus, with a small mass the25

flutter appears at a smaller critical velocity, that is a small mass is destabilizing,

whereas higher masses are stabilizing [4, 5, 7]. Configurations with several

additional masses [8, 9] or with a single mass at various locations along the pipe

[10] have also been investigated and the pipe stability has been found to depend

on both the location and the value of the masses. For a comprehensive review,30

the reader can refer to the monography of Päıdoussis [11]. For articulated pipes,

effect of an additional mass has only be tested for horizontal pipes, rather than

hanging. Thus, Sugiyama and Noda [12] showed that the critical velocity for a

pipe made of two segments is reduced wherever a mass is added on the second

segment.35

The present study aims to extend these studies to hanging articulated pipes

with an arbitrary number of segments, horizontal configuration is also briefly

adressed as a limit case. The effect of adding a mass on the stability of the pipe

is investigated by means of a linear analysis whose formulation is derived in the

next section (Sec. 2) using the Lagrange’s formalism as introduced by Benjamin40

[1]. Analyses were performed for articulated pipes with different characteristics

and considering different mass values and positions all along the pipe. Results

are presented in Section 3 before to conclude.
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2. Formulation of the linear analysis

The articulated pipe under investigation is schematized in Fig. 1. It consists45

of n identical rigid segments of length L and mass per unit length Mp, connected

by n identical flexible joints Jj . The upper segment is connected in O by the

joint J1 to a pipe fixed in the frame (O,−→x ,−→y ,−→z ). The pipe conveys a fluid,

whose mass contained in one unit length of pipe is Mf , at the velocity U and

discharging to the atmosphere at the free end E. The pipe is fitted with an50

additional mass Ma located on the the segment na (1 6 na 6 n) at a distance

La (0 6 La 6 L)) from the joint Ja. Without flow, the pipe freely hangs along

the vertical axis (O,−→z ) under the action of gravity G−→z . The motions of the

pipe are constrained within the plane (O,−→x ,−→z ) in such a way that they are

fully described by the n angles φj between the segments and (O,−→z ), its equi-55

librium position is defined by (φi = 0)i=1..n. It should be pointed out that, as

discussed by Benjamin [2], the conditions of stability of this equilibrium posi-

tion presented in the present study are deduced from a linearized theory in such

a way that they are not modified whether or not the motions of the pipe are

constrained in a vertical plane.60

Following Benjamin [1], the equations of motion of the articulated pipe are

derived from the n Lagrange’s equations for the open system composed of the

n segments and n joints, of the fluid they contain at any times and of the

additional mass, that are given by65

d

dT

∂L
∂φ̇i
− ∂L
∂φi

= −MfU

(
−̇−→
OE + U−→τn

)
· ∂
−−→
OE

∂φi
(i = 1..n) (1)

where overdot denotes derivative with respect to time T .

In these equations L = T − V is the system Lagrangian, T = Tp+f + Ta
is kinetic energy of the pipe and the fluid plus that of the additional mass,

V = Vp+f + Va + VJ is the potential energy associated with the restoring forces70

due to gravity, for the pipe and the conveyed fluid, for the additional mass and

3



Ma

E

(J1)

(Ja)

(Jn)

L

La

−→x

−→z
−→τ1

−→τn

φ1

φ2

φa

φn

O

U

−→
G

Figure 1: Schematic of the system under consideration.

due to joint stiffness. −→τi is the unit vector parallel to the segment i and then
−̇−→
OE + U−→τn is the fluid velocity at the pipe free end.

For simplicity inner and outer pipe diameters are considered as being small

compared to the segment length L and the additional mass is treated as a point

mass. With these assumptions and by introducing the constant angle φ0 = 0
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(then φ̇0 = φ̈0 = 0), the terms of Eq. 1 are given by

Tp+f =
(Mp +Mf )L3

2

n∑
i=1

 φ̇2
i

3
+ φ̇i

i−1∑
j=0

φ̇j cos (φi − φj)

+

i−1∑
j=0

φ̇j cos (φi − φj)

2

+

i−1∑
j=0

φ̇j sin (φi − φj)

2


+MfL
2U

n∑
i=1

i−1∑
j=0

φ̇j sin (φi − φj) + n
MfLU

2

2
, (2)

Ta =
Ma

2

na−1∑
i=0

L2
na−1∑
j=0

φ̇iφ̇j cos (φi − φj)

+2LLaφ̇iφ̇na
cos (φi − φna

)
]

+
MaL

2
a

2
φ̇2
na
, (3)

75

Vp+f = − (Mp +Mf )GL2
n∑

i=1

cosφi
2

+

i−1∑
j=0

cosφj

+ const., (4)

Va = −MaG

[
na−1∑
i=0

L cosφi + La cosφna

]
+ const. (5)

The restoring forces due to the joints of stiffness K are supposed to be

linearly dependent on the deformation angle in such a way that

VJ =
K

2

n∑
i=1

(φi − φi−1)
2

+ const. (6)

The n coupled non linear differential equations governing the motion of the

articulated pipe are then derived by substituting Eqs. 2-6 into Eq. 1. Next,80

in order to analyze the linear stability of the straight pipe fitted with an ad-

ditional mass, these equations are linearized about the equilibrium position

(φi = 0)i=1..n and harmonic displacement modes φi (T ) = ϕie
ΣT are consid-

ered, where Σ is the complex circular frequency. The resulting linear system is

nondimensionalized using the time scale Ω−1 where Ω =
(

3K
(Mp+Mf )L3

) 1
2

is the85

frequency of the oscillator made of a single horizontal (G = 0) segment filled
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with the fluid at rest (U = 0). It follows the nondimensional linear homogeneous

system for the complex amplitude vector ϕ = (ϕi)i=1..n

aϕ = 0 (7)

where a can be written as the sum of two n × n matrices a = ap+f + aa with

ap+f the matrix for the system without additional mass and aa associated with90

the additional mass. Expressions of the elements ap+f (i, j) and aa(i, j) are

given in Appendix, the former depend on the five nondimensional parameters

n, m, g, u and σ, and the latter depend on na, ma, la, g and σ, where σ is the

nondimensional eigenvalue σ = ΣΩ−1. The other nondimensional parameters

are defined as functions of the physical parameters as follows95

n, m =
3Mf

Mp +Mf
, g =

3G

2LΩ2
, u =

U

LΩ
,

ma =
3Ma

(Mp +Mf )L
, da =

(na − 1)L+ La

L
= (na − 1) + la, (8)

thus da is the distance nondimensionalized with the segment length L from the

fixed pipe end 0 to Ma when the pipe is straight and la = La/L.

The linear stability of the static equilibrium position (φi = 0)i=1..n of a given

configuration (n,m, g, na, da) is then analyzed by calculating the 2n complex

eigenvalues σ of the linear problem Eq. (7) for a range of the nondimensional100

velocity u starting at 0. As u is increased, the straight pipe (φi = 0)i=1..n is

linearly destabilized as soon as one of the growth rate <(σ) > 0 becomes pos-

itive. The critical velocity is given by <(σ) = 0 and the pipe loses stability

by divergence if the displacement mode at the threshold is static =(σ) = 0, or

by flutter if the displacement is oscillatory =(σ) 6= 0. These two behaviors are105

illustrated in Fig. 2 showing the trajectories of the eigenvalues σ in the complex

plane, as u is varied, for pipes n = 2, m = 1, g = 10 and two configurations,

namely without additional (ma = 0) and with an additional mass ma = 2 at

the free end da = 2. For the configuration without additional mass, a purely

real eigenvalue crosses first the imaginary axis, at a critical velocity between 5.5110
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Figure 2: Trajectories of the eigenvalues σ in the complex plane, as u is varied from 0 to 6,

for pipes n = 2, m = 1, g = 10 without additional (dashed line) and with an additional mass

ma = 2 at the free end da = 2 (solid line).

and 6, indicating that the pipe loss stability by divergence. Conversely, for the

pipe with the additional mass ma = 2 at da = 2, a pair of complex conjugate

eigenvalues cross first the imaginary axis, for a value of u between 4 and 5, indi-

cating a flutter mode at the frequency given by the positive value of =(σ). For

some configurations, the linear displacement modes at the threshold are plot-115

ted. They are given by the real part of the solution of Eq. (7), associated with

the first eigenvalue σ becoming positive and calculated at the critical velocity,

using Matlab built-in functions. It should be noted that such linear modes are

of arbitrary amplitude. For the flutter modes, the pipe displacement is shown

at several instants of a cycle (see e.g. Fig. 3).120

3. Results

3.1. Articulated pipe without additional mass

The linear stability of articulated pipes without additional mass is first ana-

lyzed by setting ma = 0 then aa is a zero matrix. In this case, the pipe stability

is controlled by four nondimensional parameters, namely n, m, g and u where125

the mass ratio m is by definition between 0 and 3 and g is the ratio of the

two restoring forces that is gravity to joint stiffness, g > 0 for hanging pipes
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and g = 0 corresponds to horizontal pipes. As u is increased, pipes with low g

and/or low m are destabilized by flutter, otherwise they lose stability by diver-

gence, with a boundary that depends on n (see e.g. Ref. [13]). To investigate130

these two behaviors, the linear analysis was mainly performed for pipes with

m = 1, g = 0.5 and m = 1, g = 10, respectively referred to as ”low gravity/high

stiffness” and ”high gravity/low stiffness” pipes. In fact, all pipes without ad-

ditional mass made of n = 2 to 20 segments, as considered in the present study,

and characterized by m = 1 and g = 0.5 lose stability by flutter, whereas it is135

by divergence if m = 1 and g = 10. Pipes made of only one segment n = 1 are

always stable as discussed in Ref. [13].

The critical velocity u0 at which articulated pipes m = 1 and g = 0.5 are

destabilized, as well as the frequency ω0 of the resulting flutter mode at u0, that

is the value of =(σ) at u0, are plotted as function of n in Fig. 3. The evolution140

of u0 with n presents lobes which correspond to discontinuities of the flutter

frequency, they are due to changes of the flutter mode. Thus, a zero-neck mode

is predicted by the linear analysis for n = 2, then a one-neck mode for n = 3

and 4, a two-neck mode for n = 5, 6 and 7 and so on as illustrated in Fig. 3 for

n = 2, 3, 5 and 8.145

For m = 1 and g = 10, the loss of stability of the pipes leads to divergence

at a critical velocity u0 plotted in Fig. 4, u0 weakly increases between n = 2 to

4 then is independent on n as n > 4. The shape of the linear divergence modes

at u0 is shown in Fig. 4 for n = 2, 3, 5 and 8. The pipe deformation is mainly

confined to the free end and closely resembles for all n. It is notable that the150

last segment is almost vertical, a feature already noted by Benjamin [2] in his

experiments who analytically shown that it would be exactly vertical (ϕn = 0)

for pipes with joints without stiffness i.e. when gravity is the only restoring

force.

3.2. Effect of an additional mass155

When a mass is added on the pipe there are two more nondimensional control

parameters in addition to n, m, g and u, namely the additional mass ma, which
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Figure 3: Critical velocity u0 (•) and flutter frequency ω0 (•) for pipes m = 1 and g = 0.5

as function of the number of segments (all pipes are destabilized by flutter) and linear flutter

mode at u0 for n = 2, 3, 5 and 8, from left to right.

Figure 4: Critical velocity u0 for pipes m = 1 and g = 10 as function of the number of segments

(all pipes are destabilized by divergence) and linear divergence mode at u0 for n = 2, 3, 5 and

8, from left to right.
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was varied up to 12, and its positions da. Positions all along the pipe were

considered, that is 0 6 da 6 n, by steps of 0.2, reduced to 0.05 around the

extremes of the critical velocity uc.160

Main results of the present study are presented in Figs. 5 and 8 for ”low

gravity/high stiffness” pipes and for ”high gravity/low stiffness” pipes, respec-

tively. These figures show the evolution of the critical velocity as function of

the additional mass location for different configurations. To highlight the effect

of adding a mass ma on the stability of articulated pipes, critical velocities uc165

for a pipe fitted with an additional mass are normalized by the critical velocity

u0 for the same pipe (same n, m and g) without additional mass. Normalized

critical velocities are presented either at a given additional mass ma = 4 and

for different pipes with n between 2 and 14 (Figs. 5(a) and 8(a)), or for the pipe

with n = 6 and mass ma varied from 0.5 to 8 (Figs. 5(b) and 8(b)). Results170

in these figures are qualitatively representative of all tested combinations such

that g > 0, n up to 20 and 0 < m < 3. The case g = 0 is also briefly discussed.

3.2.1. ”Low gravity/high stiffness” pipes

For the configurations m = 1, g = 0.5 and n = 2 to 20 segments, articulated

pipes without or with an additional mass ma, whatever ma and its position175

da, are found to be destabilized by flutter. Fig. 5 shows that, depending on its

location along the pipe, an additional mass can have a stabilizing (uc/u0 > 1) or

destabilizing (uc/u0 < 1) effect on the hanging articulated pipes. More precisely,

the influence of the mass is null or weak when it is located on the upper part

of the pipe and becomes more pronounced when the mass is on the last two180

segments. It is maximal on the last segment where the two extema of uc/u0

are observed, uc/u0 reaches its maximum around the half of this last segment

and its minimum at the free end da = n. Moreover, as shown in Figure 5(b)

for n = 6, both stabilizing or destabilizing effects are greater when the mass

ma is larger. For example, the critical velocity uc of a pipe n = 6, m = 1 and185

g = 0.5 can be increased by 1%, compared to the critical velocity of the same

pipe without additional mass, when it is fitted with an additional mass ma = 1

10



Figure 5: Normalized critical velocity uc/u0 as function of the additional mass location da

for m = 1 and g = 0.5 : ma = 4 and n = 2, 3, 6, 9 and 14 (a), n = 6 and ma = 0.5, 1, 2, 4

and 8 (b). All pipes are destabilized by flutter.

at da = 5.45, and increased by 23% when ma = 8 and da = 5.5. For this

later configuration, when ma is located at the pipe free end da = 6, the critical

velocity can be decreased by 6% to 47% for ma = 0.5 to 8.190

Fig. 6 shows the shape of the linear flutter modes for a pipe n = 6, m = 1

and g = 0.5 without or with an additional mass ma = 4 located at the positions

corresponding to the extremes of the critical velocity, that is da = 5.5 and

da = 6. At da = 5.5, the mass has little influence on the shape of the unstable

mode, in contrast, if ma is added at the free end it strongly influences by195

imposing a quasi-nodal point at this end, rather than an antinode without mass.

The conclusion that a mass ma added at the free end of articulated pipes

is increasingly destabilizing as ma is increased, see e.g. Fig. 5(b) for a pipe

n = 6 and ma up to 8, differs from the observations for continuously flexible

pipes where a small mass at the free end reduces the critical flow velocity for200

the flutter, whereas the effect of a higher mass is stabilizing [4, 5, 7]. For this

reason, the linear stability analysis of articulated pipes was conducted with

higher masses ma, up to 1000, located at the free end and uc is found to be

monotonuously decreasing over the whole interval as seen for pipes n = 6, m = 1

and g = 0.5 in Fig. 7 where ma is limited to 400 for clarity. The evolution of205

the corresponding nondimensional flutter frequency ωc with ma is also plotted
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Figure 6: Linear flutter mode at the critical velocity for pipe n = 6, m = 1 and g = 0.5

without additional mass at u0 = 2.196 (a) and with a mass added at da = 5.5 and ma = 0.5,

uc = 2.217 (b), ma = 4, uc = 2.431 (c) and at da = 6 and ma = 0.5, uc = 2.069 (d), ma = 4,

uc = 1.386 (e).

in the figure. The discontinuity that can be observed for ma between 39 and

40 corresponds to a jump from a flutter mode with 4 nodes to a mode with 5

nodes as displayed in Fig. 7.

3.2.2. ”High gravity/low stiffness” pipes210

Results for m = 1 and g = 10 are presented in Fig. 8 recalling that, for these

values of the parameters, pipes without additional mass are destabilized by

divergence. It appears first that adding a mass affects significantly the stability

of these pipes only if it is placed on the last two segments (n−2) < da 6 n, and

second that here also the additional mass can be stabililizing or destabililizing215

depending on its location. The positions for which these two effects are maximal

are on the last segment, around its centre for the maximum of uc/u0 or at its

free end for its minimum, except for the n = 2 for which it is maximum at the

joint between the two segments. Moreover, Fig. 8(b) shows that both stabilizing

or destabilizing effects are increased as ma is increased.220

The main difference with the ”low gravity/high stiffness” pipes is that here

adding a mass can change not only the critical velocity but also the type of the

instability. Thus, when fitted with a mass, pipes m = 1 and g = 10 can be

destabilized by flutter (filled symbols in Fig. 8) or divergence (open symbols),
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Figure 7: Critical velocity uc (•) and flutter frequency ωc (•) for pipes m = 1, g = 0.5 and

n = 6 as function of the additional mass ma located at da = 6 (all pipes are destabilized by

flutter) and linear flutter mode at uc for ma = 39 (left) and 40 (right).

depending on the position and intensity of this mass, whereas the same pipes225

without additional mass are always destabilized by divergence.

To further examine this behaviour, stability analyses were conducted up to

velocities such that at least one divergence mode and one flutter mode became

unstable. The resulting critical velocity uc for divergence and flutter are plotted

as function of the additional ma in Fig. 9 for pipes n = 6, m = 1, g = 10 fitted230

with a mass at da = 5.4 and 6.

When the mass is added at da = 5.4 (Fig. 9(a)), the two critical velocities,

for divergence and for flutter, rapidly converge towards each other as ma is

increased. They intersect for ma between 2.5 and 3 meaning that the pipe

is first destabilized by divergence then by flutter, the corresponding unstable235

modes are shown in Fig. 10(a-c) for ma = 0, 2 and 4, respectively. Note that

the difference between the two critical velocities is less than 0.7% as soon as

ma > 2 and at least up to 100.

Fig. 9(b) shows that when the mass ma is located at the free end, similar change

of the type of the first mode to be destabilized occurs. In this case the two240

curves intersect between ma = 0.1, where the pipe loses stability by divergence

Fig. 10(d), and ma = 0.2 where flutter occurs first Fig. 10(e). If ma is still
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Figure 8: Normalized critical velocity uc/u0 as function of the additional mass location da

for m = 1 and g = 10 : ma = 4 and n = 2, 3, 6, 9 and 14 (a), n = 6 and ma = 0.5, 1, 2,

4 and 8 (b). Open and filled symbols are for destabilizations by divergence and by flutter,

respectively.

increased it imposes a node at the free end to the flutter mode as observed in

Fig. 10(f).

3.2.3. Horizontal pipe245

Present results for hanging articulated pipes g > 0 differ from those reported

by Sugiyama and Noda [12] for horizontal pipes with n = 2 segments. In

this configuration joint stiffness is the only restoring force then g = 0 and

the pipe is destabilized by flutter, and the authors observed that wherever an

additional mass is on the second segment, it is always destabilizing. Some250

analyses have been conducted for this horizontal configuration by setting g = 0

in the expression of the matrix elements, given in Appendix, of the linear system

Eq. (7). Results are illustrated in Fig. 11 for pipes with m = 1, n between 2

and 14, and an additional mass ma = 4. It can be seen that when the mass

is positioned approximately on the first part of the pipe its impact remains255

limited whereas, on the second part, it is increasingly destabilizing as the mass

is moved toward the free end da = n in agreement with the results of Sugiyama

and Noda. For example, for a pipe m = 1 and n = 6 fitted with a mass ma = 4,

uc/u0 evolves non-monotonously between 0.98 and 1.01 for 0 < da 6 2.6 then

14



Figure 9: Critical velocity uc for divergence (open symbols) and flutter (filled symbols) as

function of the additional mass ma for n = 6, m = 1, g = 10 and da = 5.4 (a), da = 6 (b).

Figure 10: Linearly unstable mode at the critical velocity for pipe n = 6, m = 1 and g = 10

without additional mass at u0 = 5.938 (a) and with a mass added at da = 5.4 and ma = 2,

uc = 6.954 (b), ma = 4, uc = 7.835 (c) and at da = 6 and ma = 0.1, uc = 5.982 (d),

ma = 0.5, uc = 5.436 (e), ma = 4, uc = 4.189 (f).
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Figure 11: Normalized critical velocity uc/u0 as function of the additional mass location da

for m = 1 and g = 0, ma = 4 and n = 2, 3, 6, 9 and 14. All pipes are destabilized by flutter.

decreases to less than 0.48 at da = 6 that is a reduction of the critical velocity260

by more than 52%.

4. Conlusion

The present study was undertaken to investigate the effect of adding a mass

on the stability of an articulated pipe conveying a fluid by means of a linear

analysis. When the pipe is hanging, an additional mass can be destabilizing265

or stabilizing depending on its position, compared to the stability of the same

pipe without additional mass, both effects increasing with the mass value. More

precisely, the critical velocity of the conveyed fluid flow is found for all hanging

configurations tested to be maximum when the mass is around the centre of

the last segment, and minimum when it is at the free end, that is at the end270

of the last segment. In contrast, adding a mass on a horizontal articulated

pipe has been found to be effective only to reduce the critical flow velocity at

which pipe begins to flutter, this stabilizing effect occurs when ma is located

roughly on the second half of the articulated and maximum at the free end.

Moreover it has been found that a sufficiently high mass added on the last two275

segments of ”high gravity/low stiffness” articulated pipes can also change the
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instability type from static to oscillatory, that is from divergence to flutter. Note

that similar observations have previsously been reported for another system of

fluid/structure interaction. In fact, Howell et al.[14] showed that when a line

mass is added parallel to the span of a flexible plate immersed in a flow, it is280

possible to promote as well as to delay the flow velocity at which plate flutter

occurs by changing the location of the mass along the chord. Thus, the present

study confirms that an ”inertial inhomogeneity” [14] is an effective, and easy

to implement, means to passively control the stability of a structure interacting

with a fluid flow. Additional information, as the amplitude of the displacement285

modes or the nature of the bifurcations can be obtained by considering the

system of non linear equations Eq. 1 with Eqs. 2-6. Moreover, this non linear

system, possibly extended to motions not constrained in a plane, could be used

to check if articulated pipes with an additionnal mass can exhibit a wide variety

of dynamical states and routes to chaos as observed for a continuously flexible290

pipe fitted with an end mass [4, 5, 6, 7].

Appendix

The matrix a of the linear system Eq. (7) is written as the sum of two n×n

matrices, where n > 2 is the number of segments into the pipe, a = ap+f + aa.

Elements of ap+f are given by295

for all n > 2

ap+f (n, n) = σ2 +muσ + g + 1,

ap+f (n− 1, n) =
3

2
σ2 + 2muσ +mu2 − 1,

and for i = 1 to n− 1

ap+f (i, i) = [4 + 3 (n− 1− i)]σ2 +muσ −mu2 + [3 + 2 (n− 1− i)] g + 2,

ap+f (i+ 1, i) = [3 + 6 (n− 1− i)] σ
2

2
− 1;

if n > 2, for i = 1 to n− 2300

ap+f (i, n) =
3

2
σ2 + 2muσ +mu2,
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ap+f (i, i+ 1) = [9 + 6 (n− 2− i)] σ
2

2
+ 2muσ − 1,

and for j = 1 to i

ap+f (i+ 2, j) = [3 + 6 (n− 2− i)] σ
2

2
;

if n > 3, for i = 1 to n− 3 and j = i+ 2 to n− 1

ap+f (i, j) = [9 + 6 (n− 1− j)] σ
2

2
+ 2muσ.

Remembering that na is the number of the segment on which the additional

mass mass is placed 1 6 na 6 n, elements of aa, which is a n × n symmetric305

matrix, are given by

for all na

aa(na, na) = ma

(
σ2l2a +

2

3
gla

)
;

if na > 2, for i = 1 to na − 1

aa(i, i) = ma

(
σ2 +

2

3
g

)
and for i = 1 to na − 1 and j = i+ 1 to na

aa(i, j) = aa(j, i) = maσ
2 [1 + (la − 1) δj,na ]

where δj,na
is the Kronecker delta;310

if na < n, for i or j > na

aa(i, j) = 0.
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