
HAL Id: hal-04477700
https://hal.science/hal-04477700

Submitted on 26 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HyperTP: A unified approach for live hypervisor
replacement in datacenters

Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, Daniel Hagimont

To cite this version:
Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, Daniel Hagimont. HyperTP: A unified ap-
proach for live hypervisor replacement in datacenters. Journal of Parallel and Distributed Computing,
2023, 181, pp.104733. �10.1016/j.jpdc.2023.104733�. �hal-04477700�

https://hal.science/hal-04477700
https://hal.archives-ouvertes.fr

HyperTP: A unified approach for live hypervisor
replacement in datacenters⋆

Tu Dinh Ngoca,∗, Boris Teabea, Alain Tchanab, Gilles Mullerc, Daniel
Hagimonta

aIRIT, University of Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
bENS Lyon, Lyon, France

cInria, France

Abstract

Maintenance of virtualized datacenters is often needed for the purposes of
introducing new features, fixing bugs or mitigating security problems. However,
current maintenance methods are either highly disruptive to the operation of
VMs, utilize large amounts of computing resources or require high development
efforts.

We build HyperTP, a generic framework which combines in a unified way
two approaches: in-place server micro-reboot-based hypervisor transplant (noted
InPlaceTP) and live VM migration-based hypervisor transplant (noted Migra-
tionTP). HyperTP hinges on a VM state hierarchy for organizing different types
of hypervisor memory states in terms of their relation to VM execution, and an
Unified Intermediate State Representation that abstracts VM-relevant memory
states between multiple different hypervisors. We describe our implementations
of both approaches, including technical details of our UISR design and the trans-
plant process. Our evaluation results show that HyperTP delivers satisfactory
performance: (1) MigrationTP changes a VM’s underlying hypervisor while
taking the same time and impacting virtual machines (VMs) with the same
performance degradation as normal live migration; and (2) InPlaceTP imposes
minimal VM downtime, even under increasing number of VMs and memory sizes.
Finally, we discuss how the combination of InPlaceTP and MigrationTP can be
used to address the challenges of upgrading a hypervisor cluster, and to mitigate
known unpatched hypervisor vulnerabilities.

1. Introduction

The increasing usage of virtualization in modern datacenters is accompanied
with a simultaneous increase in the need for regular preventative maintenance and

⋆© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
https://doi.org/10.1016/j.jpdc.2023.104733

∗Corresponding author.
Email address: dinhngoc.tu@irit.fr (Tu Dinh Ngoc)

Preprint submitted to Elsevier July 1, 2023

updating of hypervisors and related software. Hypervisor updates are often done
for one of two reasons: either for introducing new features, or to mitigate a certain
vulnerability. These updates involve one of several methods: (1) a full reboot of
the host and all running guests; (2) live migration of running VMs from a host
running old versions of the hypervisor to another host running updated software;
and (3) live patching of the running hypervisor. Each method has its own set of
limitations: full reboots are highly disruptive to the infrastructure’s operations;
live migration consumes large amounts of time and network bandwidth, and
prevents the usage of certain virtualization features; live patching is limited to
small fixes, mostly of security issues, and requires extra development effort to
create a customized livepatch for each fix. Evidently, there remains a need for a
timely and efficient hypervisor maintenance system capable of delivering both
feature and security updates without causing service disruption or restricting
desirable features.

To address this need, we introduce the concept of hypervisor transplant. Our
goal is to quickly replace one running hypervisor Hcurrent with another Htarget

without rebooting running VMs for the purpose of speeding up preventative
maintenance of virtualization infrastructure. Note that Htarget can be anywhere
from an updated version of Hcurrent to a completely different hypervisor, allowing
more flexibility in choosing an appropriate hypervisor for the required workload.

We materialized our concept of hypervisor transplant in a platform called
HyperTP (initially presented in [1]), which combines in a unified way two comple-
mentary approaches: live VM migration-based transplant (noted MigrationTP)
which causes almost no VM downtime; in-place micro-reboot-based transplant
(noted InPlaceTP) which replaces a running hypervisor with little downtime
and no extra resources. The combination of these two approaches answers
the constraints put on both applications running in VMs and on datacenter
infrastructures.

Indeed, InPlaceTP and MigrationTP present a tradeoff between maintenance
deadline, downtime tolerance and upgrade resource availability. For instance,
InPlaceTP ’s micro-reboot-based transplant requires several seconds of downtime.
However, such downtime figures are not without precedent. Namely, Microsoft
Azure presents downtimes of up to 30 seconds for maintenance operations [2].
Orthus [3] reports figures of up to 9.8 seconds for VMM upgrades. Similarly, Hy-
FiX [4] requires 8.1 to 12.3 seconds of downtime for the same task. In exchange
for an extended downtime, InPlaceTP, by its in-place nature, does not require
large amounts of extra resources and significantly shortens the maintenance
timeframe. In comparison, MigrationTP causes minimal downtime to running
VMs but with the additional cost of spare machines and network bandwidth, like
other live-migration-based maintenance operations [3]. In the current state of
HyperTP, it is up to the datacenter operator to decide which transplant approach
is the most appropriate for their maintenance operation, since equivalent policies
are already provided for dealing with periodic platform updates.

While live migration and micro-reboot are known approaches, the main nov-
elty in designing HyperTP is to ease the support of multiple different hypervisors.
Naturally, this raises the question of managing the heterogeneity of their VM

2

state representations. To resolve this, we build both approaches of HyperTP
around two common principles, a VM state hierarchy which identifies and defines
the various types of memory states in relation to their functionalities relative to
a VM’s operation, and an Unified Intermediate State Representation (UISR) to
facilitate the creation of HyperTP -compatible hypervisors.

We demonstrated our platform by re-engineering Xen and KVM, the two
most popular open source hypervisors, into HyperTP -compliant hypervisors.
They represent the two types of hypervisors: type-I (Xen) and type-II (KVM),
thus demonstrating the scope and flexibility of our solution. We evaluated our
prototype at a machine scale to validate its ability to transplant both idle VMs
as well as active VMs running various types of benchmarks. We also presented
the downtime incurred by HyperTP while running various workloads such as
SPEC CPU 2017, MySQL and Redis.

We investigated the usage of HyperTP at a cluster scale in a datacenter.
We highlighted two direct usages of the platform: for hypervisor updating,
where HyperTP shortens the time and reduces the resources needed to apply
a new hypervisor version; and for hypervisor security, where HyperTP helps
reduce the time window where a virtualized infrastructure is exposed to known
vulnerabilities.

To summarize, in this paper, we present the following contributions:

• We present HyperTP, a two-pronged solution including MigrationTP and
InPlaceTP to help simplify hypervisor updates and maintain hypervisor
security.

• We implement HyperTP in multiple directions: Xen→KVM, KVM→Xen,
and Xen→Xen, thus demonstrating HyperTP ’s scope and flexibility.

• InPlaceTP Xen→KVM causes minimal downtime to running VMs (1.91
seconds for a VM with 1 vCPU and 1 GB of RAM), with negligible
memory and I/O overhead and without requiring VM reboots. With
KVM→Xen and Xen→Xen, the downtime is about 7.8 seconds for the same
VM configuration. MigrationTP offers similar performance to traditional
homogeneous VM live migration.

• We show the benefits of InPlaceTP over migration-based solutions for
upgrading an existing virtualization cluster. Namely, we demonstrate that
upgrading 10 servers each running 10 VMs using InPlaceTP for 80% of
the VMs takes 3 minutes and 54 seconds while using MigrationTP alone
would take up to 19 minutes.

• We conduct a study of vulnerabilities in Xen and KVM over the last 7 years.
We observe that most vulnerabilities are specific to a single hypervisor and
caused by faulty implementations, and show how HyperTP can be used to
reduce vulnerability windows of virtualized infrastructures.

The rest of the article is organized as follows. Section 2 present the gen-
eral overview of HyperTP. Section 3 presents the implementation of HyperTP.

3

Section 4 presents the evaluation results, followed by Section 5 which provides
observations over the limitations of our approach. Section 6 discusses the related
works. Finally, Section 7 concludes our paper.

2. Hypervisor transplant

In this section, we first present the two main principles of the design of
HyperTP, VM state hierarchy and Unified Intermediate State Representation.
We then show how these principles are applied to InPlaceTP and MigrationTP,
and demonstrate their application in our aforementioned use cases.

2.1. Design principles

To reiterate, the main goal of HyperTP is to rehost a VM running on one
hypervisor to another hypervisor without causing a VM reboot. Let us note
Hcurrent and Htarget as the current and target hypervisors of the transplant
process respectively. A hypervisor transplant is conducted by performing the
following five generic work items:

1. Suspend running VMs;
2. Translate VM states into the UISR neutral format;
3. Transfer VM states to the new target hypervisor;
4. Restore VM states from UISR to Htarget format;
5. Resume VMs and finish the transplant operation.

Note that the aforementioned workflow is not meant to be taken in strict
sequence; we optimize the contents and ordering of this workflow depending on
the scenario being executed (InPlaceTP or MigrationTP). These optimizations
are described in the next sections of our paper.

VM state hierarchy. Generally, we consider that the VMs’ states include all the
data structures in the hypervisor for the management of virtual resources (CPUs,
memory, devices). We observe that a VM’s in-memory representation consists of
multiple types of data, where each data type needs to be translated in a different
way. For example, a guest memory page needs to be treated differently from
a scheduling object associated to a vCPU. Nevertheless, different hypervisors
running on the same platform typically aim to provide a common-ground virtual
hardware that accomodates most guest OSes; not to mention, these hypervisors
necessarily share some common behaviors by virtue of running on the same
architecture. This implies there exists a commonality between how different
hypervisors manage their internal states.

In HyperTP, we propose a hierarchy of memory resources in a VM, which
serves to inform us of which kinds of data need to be kept as-is, transformed or
discarded. Our resource hierarchy is divided into four main categories:

• Guest State, like its name, represents the memory states that are specific
and visible to the VM, like memory pages. During transplantation, guest
states require the least transformation, i.e. they can stay mostly untouched
throughout the whole process.

4

• VMi State corresponds to data structures that are specific to the execution
of one VM, but are not necessarily visible to the VM in their raw form.
An example of VMi State are 2D page tables (2DPT) or vCPU register
states. In fact, while the structure and content of the 2DPT is usually
specific to the hardware virtualization technology being used (e.g. Intel’s
EPT, AMD’s NPT), each hypervisor has its own policies for managing
the 2DPT, and therefore the contents of each VM’s 2DPT are not directly
translatable between hypervisors. Similarly, while vCPU register states are
closely linked to the vCPU’s execution, each hypervisor saves a vCPU’s
states in its own different data structure, and therefore these states must be
translated if a VM were to be transplanted between different hypervisors.

• VM Management States are in-memory states that serve to manage the
VM, but does not necessarily contain the VM’s state itself. For example,
a hypervisor’s scheduler queue might refer to a VM’s vCPUs, but does
not contain any vCPU states. In general, these states can be easily
reconstructed if necessary from the previously-mentioned types of state.

• HV State finally represents the set of hypervisor states that are not specific
to any VM, such as the memory assigned to hardware drivers. HyperTP
does not save or transform these states; they are considered to be disposable
(in the case of InPlaceTP, where they are reinitialized using micro-reboot)
and/or reconstructable (in the case of MigrationTP, where the migration
does not take them into account).

Unified Intermediate State Representation. From the hierarchy of VM states
presented above, we observe that many types of VM states are at least partially
specific to each hypervisor that is managing the VM. Yet, it is unreasonable to
demand all hypervisors to use the same data structures for its functionalities
in order to support hypervisor transplant, since such standardization not only
limits the range of functionalities each hypervisor can potentially support, but
also might introduce accidental common vulnerabilities.

To realize the concept of hypervisor transplant, we transform each VM’s
states into a Unified Intermediate State Representation (UISR). UISR represents
the hypervisor-dependent state of each VM with a hypervisor-independent
intermediate representation that facilitates the transfer of VM states across
different hypervisors. In this sense, UISR shares the same objectives as the
network-level neutral data representation XDR [5]. Relying on a neutral format
simplifies the re-engineering of a hypervisors into a HyperTP -compliant one,
since the hypervisor developer only has to understand the UISR format instead
of the representation formats of all existing hypervisors.

The goal of UISR is to sufficiently represent a VM for its reconstruction in
a HyperTP -capable, compatible hypervisor. Following the VM state hierarchy
presented above, we posit that knowledge of Guest State and VMi State is
sufficient for the reconstruction of a VM. These states are therefore the targets
of our UISR. In general, the following VM states are collected by HyperTP and
distilled into UISR: VM memory pages; CPU registers and control registers;

5

interrupt controller and timer states; and virtual hardware states (including hid-
den states required to reconstitute the virtual device). However, we acknowledge
that the above list is not an exhaustive list of all VM states; the restorability of
VMs under HyperTP depends on the compatibility of their configuration and
the UISR format1.

To transform a VM’s states between its hypervisor-specific representation
and UISR, each hypervisor needs to implement a pair of translation functions
for each class of VM state. These functions can be as simple as the identity
function for hypervisors that directly use UISR as their internal VM states, or an
explicit translation from a hypervisor’s internal state to the corresponding UISR.
Nevertheless, knowing that hypervisors often share certain commonalities (as
argued in the above section), we expect most hypervisors to be able to support
UISR without needing extensive modifications.

2.2. In-place hypervisor transplant

Figure 1: Basic workflow of InPlaceTP.

Figure 1 summarizes the working principles of InPlaceTP. In short, InPlaceTP
performs a hypervisor transplant through the means of replacing the running
hypervisor. To accomplish this, step ❶ first load the target hypervisor into
memory. After pausing any running guest VMs to be transplanted ❷, we invoke
the corresponding UISR translation functions to convert the corresponding
Guest/VMi States to the UISR format ❸. We perform a micro-reboot to hand
over control of the hardware to Htarget ❹, while passing to it any relevant UISR

1Note that this limitation is present in same-hypervisor live VM migration as well; current
hypervisors prevent VMs using certain hardware features from being migrated.

6

Guest/VMi States. Htarget then converts the received Guest/VMi States into its
own native format ❺, and uses these states to reconstruct the VMs ❻. Finally,
the VMs to be transplanted are resumed ❼ and the transplantation process is
completed.

For the purpose of HyperTP, Guest States refer specifically to memory pages
owned by the VM and used as its memory. These pages naturally do not require
any specific transformation or rewriting to be converted into UISR. As long
as these pages remain intact, they can be easily reincorporated into the new
VM. That is why during the entire process, InPlaceTP ensures that these Guest
States are protected from accidental deletion and corruption. The steps ❸ and
❺ in fact simply involve recording their location in the host’s physical memory,
and giving them back to the VM afterwards. This represents a large time saving
for InPlaceTP as costly memory copies and disk writes are minimized.

2.3. Migration-based hypervisor transplant

Under MigrationTP, the target of transplantation is no longer the current
server, but rather a remote server, in the same way as normal VM live migration.
As such, MigrationTP follows the same procedure as VM live migration, which
largely matches up with HyperTP ’s own steps. The differences come during the
sending of VM state to the destination server; during this step, MigrationTP
makes use of state proxies to translate the VM’s VMi States into UISR. Note that
these proxies are based on the same state transformations as used by InPlaceTP.
On the destination server, another proxy then translates the UISR back into
Htarget’s VM state format. While Guest States need to be copied over network
to the destination server unlike InPlaceTP, this copying step does not need to
involve the state proxy.

2.4. Using hypervisor transplant in a datacenter

In summary, HyperTP is a combination of two related approaches InPlaceTP
and MigrationTP, based on a common UISR for the representation of VM states.
In this section, we elaborate on the application of HyperTP to two exemplary use
cases: firstly, for installing updates on virtualized infrastructure; and secondly,
for the mitigation of hypervisor vulnerabilities.

Hypervisor update. As stated in Section 1, hypervisor updates are used not only
to fix system bugs but also to deploy new software features. A public cloud
provider might wish to quickly upgrade their hypervisor fleet to add new services
and to increase feature velocity of their cloud solution; a private cloud customer
might instead want to install a new hypervisor version to maintain software
support, or to fix performance and reliability issues, etc. However, existing
hypervisor update methods are either disruptive or limited in scope, causing
risk-averse operators to hesitate applying updates. In comparison, HyperTP
offers datacenter operators rapid deployment of new software with InPlaceTP in
complement with other upgrade choices (MigrationTP, normal migration or live
patching). Additionally, InPlaceTP is not only capable of upgrading the current

7

hypervisor core, but can even completely replace it with a different hypervisor
altogether. This is especially useful e.g. in cases where the operator wishes
to switch their hypervisor vendor, where the two different hypervisors can be
managed using the same tooling (like OpenStack). In conclusion, HyperTP helps
facilitate the deployment of desirable updates while minimizing their impact on
the infrastructure.

Figure 2: (a) Traditional vulnerability mitigation in data centers and (b) our hypervisor
transplantation-based solution.

Hypervisor security. Hypervisors are continuously subject to multiple security
vulnerabilities. Similar to previous works [6], we define the hypervisor vulnerabil-
ity window regarding a given security flaw as the time between the identification
of said flaw (whether by a good or bad actor) and the integration of a patch in
the running hypervisor (see the red zone in Figure 2a). In fact, the vulnerability
window is the sum of two durations: (1) the time required to propose a patch
once the vulnerability is discovered; and (2) the time to apply this patch in the
system. The time to release of a patch is highly dependent on the corresponding
vulnerability’s severity, and can vary from one week with vulnerabilities such as
the MD5 collision attack [7], to 7 months with vulnerabilities such as Spectre
and Meltdown2 [8, 9]. Meanwhile, the time to apply a patch mainly depends
on the datacenter operators’ patching policies. Together, this timeframe leaves
plenty of time to launch an attack against a vulnerable installation.

To alleviate this issue, HyperTP can be used to preemptively and temporarily
replace the actual datacenter hypervisor (e.g. Xen) with a different hypervisor
(e.g. KVM) which is immune to the given vulnerability (see Figure 2b). This
approach mitigates the impact of a vulnerability given one of the following condi-

2Note that Spectre and Meltdown are CPU-specific vulnerabilities with CVEs declared on
Intel products. Hypervisors and operating systems were not directly concerned by the CVE
declaration.

8

tions is met: (1) there is already a known-safe hypervisor when the vulnerability
is discovered, and (2) a patch solving the vulnerability can be developed in a
shorter amount of time for an alternate hypervisor than the one used in the
datacenter.

Table 1: Number of Xen and KVM critical and medium vulnerabilities per year.

Year Xen KVM Common
2013 3 3 0
2014 4 1 0
2015 11 1 1
2016 6 3 0
2017 17 1 0
2018 7 2 0
2019 7 2 0
Total 55 13 1

To investigate the viability of hypervisor transplant in this context, we
collected a list of critical vulnerabilities over the last 7 years for Xen and
KVM (see Table 1). A vulnerability is considered as critical when its Common
Vulnerability Scoring System 2.0 score is higher than 7 [10]. Over that period, we
found only one common critical vulnerability (CVE-2015-3456) originating from
QEMU, a common component used by both Xen and KVM. This low number
supports our starting assumption that a safe alternate hypervisor exists. Overall,
the number of critical vulnerabilities per year remains low, which means that
even if hypervisor transplant cannot be done too frequently, it would still bring
an improvement in security.

3. Prototype

We implemented HyperTP on top of two commonly-used open-source hyper-
visors, Xen and Linux KVM. We used Xen 4.12.1 with fully-virtualized HVM
domains; Xen PV was not used due to its tight coupling with the Xen API.
On the KVM side, we used Linux 5.3.1 along with the standalone kvmtool. We
implemented InPlaceTP in three transplantation directions: Xen→KVM and
KVM→Xen as examples of our heterogeneous hypervisor transplant; and finally
Xen→Xen as an example for enabling live upgrade of Xen hypervisor instances.
KVM→KVM InPlaceTP can be implemented with the same principles; however,
we did not implement this scenario as it is already covered by existing works [3, 4].
MigrationTP was additionally implemented for the Xen→KVM direction. We
configured our VMs to use remote storage to concentrate I/O activity onto
virtual networking.

Our HyperTP prototype represents a total of approximately 8.5 KLOC, of
which 2.2 KLOC belong to the hypervisors, 5.2 KLOC in userspace management
tools (libxl, kvmtool and PRAM/Kexec), and 1.1 KLOC for HyperTP orches-
tration purposes. We based our prototype mostly in userspace; in fact, only

9

10% of our implementation involves Xen/Linux kernel code. Such a prototype
takes advantage of existing tools and libraries for controlling VMs (libxenctrl,
kvmtool), therefore being highly compatible with different versions of Xen and
Linux/KVM. Our implementation of HyperTP also runs the bulk of its code
with minimal privilege and only during the transplant process, thus minimizing
HyperTP ’s security footprint.

In the following sections, we describe the common implementations of VM
state management with UISR, as well as our implementations of InPlaceTP and
MigrationTP in detail.

3.1. UISR and device management

When considering only HyperTP from Xen to Xen itself, our translation
and restoration functions can simply be the identity function. However, when
transplanting VMs between Xen and KVM, the need arises for a common UISR
format that can be used to represent VM states. Xen provides a relatively
stable and well-defined VM state format that covers the majority of VM-critical
hardware. As a result, we use a slightly modified and extended version of Xen’s
VM format as our UISR.

Platform device management. We use the term platform device to refer to non-
replaceable devices inside the VM that are critical to its execution (CPU registers,
interrupt controllers, timers), in contrast to bulk I/O devices such as network
and storage devices that the guest OS can function without. Naturally, platform
devices attract special attention during the hypervisor transplant process, since
they are needed for the guest OS to safely resume its operation.

We first established a mapping to be implemented in our state translation
functions between each of a VM’s platform components on Xen and KVM and our
UISR equivalent. Subsequently, we extracted the native VM states of Xen and
KVM using the appropriate system calls (using libxenctrl on Xen and IOCTLs
on KVM). Our translation functions then handled the reading and writing of
various VM formats, and at the same time provided fixes to certain platform
components that are not mutually compatible between the two hypervisors.
Table 2 shows the correspondence between UISR states and native VM states of
Xen and KVM in our implementation.

Table 2: Correspondence between hypervisor platform device states and UISR on x86.

Xen HVM UISR KVM
CPU regs CPU (S)REGS, MSRS, FPU
LAPIC LAPIC MSRS
LAPIC regs LAPIC REGS LAPIC REGS
MTRR MTRR MSRS
XSAVE XSAVE XCRS, XSAVE
IOAPIC IOAPIC IRQCHIP
PIT PIT PIT2

10

Management of bulk I/O devices. Generally speaking, virtual device functional-
ities are presented to VMs in one of two main types: device passthrough and
device emulation. Our handling of I/O devices depends on the type of device,
the details of which are presented below.

Device passthrough grants a VM direct access to hardware installed in its
physical server. The VM therefore communicates with hardware using the same
driver as a native system would. To prevent the VM from abusing passthrough
hardware to attack the host, a I/O memory management unit (IOMMU) is often
used to limit that hardware’s access to physical memory. Device passthrough
gives VMs an I/O performance that is as close as possible to native performance,
but also binds the VM to its underlying hardware, and therefore requires special
attention in certain cases (e.g. during live migration). In the case of HyperTP,
we treat passthrough-assigned devices the same way as a live migration event:
the VM is informed of the transplantation event and performs the necessary steps
to stop its device driver in a consistent fashion. Once the transplantation event
completes, the device is reconnected to the guest and resumes its operation.

Emulated devices (including paravirtualized ones) are implemented in soft-
ware through the use of trap-and-emulate techniques. However, HyperTP might
lead to a change in the software that is performing the emulation. In our solu-
tion, emulated devices can be handled using one of two ways: either by copying
and translating the emulation state for use in the target hypervisor (as we’ve
done with our emulated platform devices), or by using the same stop-reconnect
technique described above. The stop-reconnect technique has the advantage of
being able to replace the paravirtualization API being used by the VM; in other
words, a VM making use of Xen’s netfront driver can later switch to a virtio
network driver on KVM after a successful hypervisor transplant.

We added a kernel module in the guest that listens for transplant events from
the host. The kernel module is responsible for suspending running processes
inside the guest and preparing them for the I/O device transition. Notably,
this technique does not break existing network connections and therefore does
not interfere with applications running on the VM outside of the expected
downtime, as the guest’s in-kernel connection states are not altered by our device
replacement.

VM memory management. The treatment of VM memory differs depending on
the approach being used. Regardless, VM memory, as part of the Guest States
category of VM states, is transferred over to the new hypervisor without needing
modifications. We describe the memory handling of each approach in the below
sections.

3.2. Implementing InPlaceTP

Following the general workflow of HyperTP described in Section 2.1, we
observe that InPlaceTP requires the customization of steps 2 (translation),
4 (restoration) and especially step 3 (micro-reboot). Besides the VM state
transformation described above, we detail the technical aspects of InPlaceTP ’s
VM memory management and micro-reboot implementation.

11

VM memory management. VM memory is often made of hundreds to thousands
of fragments spanning multiple gigabytes in size. It therefore deserves special
attention in InPlaceTP, as memory copies, or worse, disk writes must be mini-
mized during the transplantation process to avoid causing excessive downtime.
As pointed out in Section 2.2, our solution is to keep a VM’s memory in place
during the entire transplantation process, while protecting it from accidental
corruption while the new hypervisor is reinitialized. To accomplish this, we store
a representation of our transplanted VMs in an in-memory filesystem structure
called a PRAM structure, adapted from the PRAM patchset [11]. Figure 3 shows
the detailed construction of our PRAM structure, which consists of metadata
pages that record the physical location of a VM’s memory pages, allowing each
VM’s memory to be reconstructed after the new hypervisor boots up. In short,
the PRAM structure consists of a list of file pointers, each of which points to
a file information page which identifies an individual VM’s unique name and
memory size. Each file information page then points to a linked list of page
entries; each page entry maps a range of VM memory pages to its location in
physical memory. This memory can later be mapped in the restoration step 4
with an appropriate API (e.g. mmap).

File pointer

File pointer

File pointer

File info

File info

File info

File info

File pointer

Page entry

Page entry

Page entry

Page entry

GFN Size

Size Mode Name

PRAM pointer

MFN

Page entry

Page entry

Page entry

Page entry

Figure 3: PRAM structure, used for identifying VM memory pages.

Micro-reboot. Step 3 in the hypervisor transplant process requires quick and
efficient switching between two hypervisors on the same system without corrupt-
ing the VM states already stored in host memory. For this purpose, we make
use of Kexec, which allows quickly booting a new OS kernel without having to
reinitialize all devices.

While booting a new host kernel with Kexec does not require passing through
BIOS (and therefore resetting memory contents), the new host kernel can still
overwrite any VM states living in host memory when the system is being
reinitialized. To protect the in-memory VM state information from being

12

corrupted during transplantation, we made three main modifications to the
Kexec process:

• We reserved a dedicated memory location in which to load the new kernel
to avoid Kexec itself from overwriting the relevant PRAM pages.

• We passed the PRAM pointer to the new host kernel during Kexec via
its kernel command line. Knowing the PRAM structure’s location, we
modified the target kernel (Xen and Linux) to protect the PRAM pages and
VM memory contents from being accidentally overwritten. This protection
is applied during each kernel’s early boot process. After the new kernel
boots up, each VM’s memory is presented again in a virtual filesystem
where it can be picked up and reinjected back to its corresponding VM.

• Finally, we implemented various fixes in Kexec and the hypervisor kernels
to ensure that the new hypervisors operate correctly after InPlaceTP. This
ranges from correctly initializing boot structures provided by the Kexec
userspace tools to ensuring that hardware devices keep operating on the
new host kernel.

Optimizations. The main limitation of InPlaceTP is that of its required downtime.
Particularly, as InPlaceTP suspends the VM when its host kernel is being
replaced, any transplantation step happening in the meantime will impact the
overall downtime of the system. However, our general hypervisor transplant
workflow is not meant to be fixed, and as a result leaves room for certain
optimizations. For the interest of reducing downtime during the transplantation
process, we implemented the following optimizations in our InPlaceTP prototype:

• We optimized the execution ordering between different transplantation
steps in the same spirit as the pre-copy step of VM live migration. This
optimization is implemented in two aspects. Firstly, we build PRAM
substructures ahead of time before the VM ever gets suspended. Especially
in the case of Xen, where VMs’ memory pages are preallocated ahead of
time, this step presents a significant time save as very little work remains
once the VM is finally suspended. Secondly, as a small optimization,
we load the new hypervisor kernel well before the final Kexec boot. In
short, the step of suspending all running VMs is deferred until absolutely
necessary, thus helping to reduce InPlaceTP ’s downtime.

• We parallelized our VM state construction process in order to significantly
speed up the translation of VMi States and creation of PRAM structures
needed for transplanting VMs.

• We implemented large page support natively inside InPlaceTP. The large
page CPU feature, commonly used by hypervisors, allows combining mul-
tiple appropriately-aligned pages into one large page to lower the overhead
of 2D page translations. For example, on the x86-64 architecture, 512
consecutive 4 KB pages can be combined into a 2 MB large page. With

13

our optimization, we encode each large page’s order (i.e. level of page
combination) in our PRAM structure; each large page therefore takes up
only one page entry (see Figure 3). Not only does this speed up our PRAM
construction by lowering the number of VM pages that must be traversed,
it also reduces the overhead of PRAM structures w.r.t. VM memory size.

• We adapted Linux/KVM to prioritize the VM restoration process. We
found that on our test platforms, the default service priorities necessitated
a long wait before VM restoration could begin (as reported by the systemd-
analyze tool). In response, we adjusted the service boot priority on our
host operating system to resume all VMs as soon as the basic services
required by the VMs are ready. On a busy host running multiple services,
this optimization again serves to minimize VM downtime, in lieu of waiting
for non-critical, unrelated services.

3.3. Implementing MigrationTP Xen-to-KVM transplantation

As stated in Section 2.3, the workflow of MigrationTP closely matches that of
InPlaceTP, as well as that of a normal live VM migration. Based on the existing
InPlaceTP device management primitives, we implemented the necessary VM
state transformations on the destination kvmtool. The incoming migration state
stream from Xen is translated accordingly and applied to the destination VM.
We describe below each individual step of MigrationTP Xen→KVM in detail:

• Pre-copy: In this step, VM memory pages are copied from the source
host to the destination host over several iterations while the VM continues
its execution. Page modification tracking is used to keep track of which
pages have changed since the last copy iteration. Similar to InPlaceTP,
the received memory pages do not need additional transformation and
MigrationTP applies them as-is.

• VM suspension: Once a sufficient number of VM memory pages has been
transferred to the destination, the source VM is suspended to prepare for
the final migration step (cf. workflow Step 1).

• State transfer and reconstitution: This step covers Steps 2 to 4 of the general
HyperTP workflow. In this step, the individual device state translations
described above are applied to the incoming migration stream containing
Xen VM states to form our UISR; kvmtool then receives the resulting UISR
and applies it to the destination VM using the appropriate KVM API
calls.

• Starting the destination VM: We arrive at the final Step 5 of our HyperTP
workflow. Once all necessary VM states have been transferred and suc-
cessfully applied, following positive confirmation from both the source and
destination hypervisors, the source VM is destroyed and MigrationTP puts
the destination VM back into operation.

14

4. Evaluations

This section presents the performance evaluations of the two approaches
of HyperTP, InPlaceTP and MigrationTP. In particular, we present a time
breakdown of each approach under various configurations, as well as their
impacts on several different kinds of application workloads. We also evaluate the
impact of HyperTP on the two use cases of hypervisor update and hypervisor
security, and its various memory overheads. Our evaluations aim to answer the
following questions:

• What are the time and memory costs incurred by each step of the trans-
plantation for both approaches, InPlaceTP and MigrationTP?

• How scalable is each approach with varying VM sizes and number of VMs?

• What is the performance impact of HyperTP on user applications?

• How does HyperTP perform at the cluster scale for hypervisor update?

• Finally, how does HyperTP help improve security in a datacenter?

4.1. Experimental setup

Hardware. For our evaluations, we used two kinds of machines: two
machines, each equipped with an Intel i5-8400H CPU and 16 GB of RAM (called
M1) and one equipped with 2x Intel E5-2650L v4 and 64 GB of RAM (called
M2). All machines are linked with a 1 Gbps Ethernet connection. We evaluated
InPlaceTP on both M1 and M2; to ensure that MigrationTP experiments were
conducted between similar machines, we performed them on M1 machines only.
We reserved 2 CPUs for the administration OS (dom0 in Xen and host Linux in
KVM), and configured hypervisors to use 2 MB huge pages for guest memory.

We made use of the Grid’5000 testbed in our cluster-scale evaluations. Each
cluster member was equipped with 2x Intel Xeon E5-2630 v3 and 96 GB of RAM.
All machines in the cluster were connected together with 10 Gbps Ethernet.

Applications. We evaluated HyperTP using three main application types: SPEC
CPU 2017, MySQL and Redis. Table 3 shows a list of our tested workloads in
detail.

Table 3: Description of HyperTP evaluation workloads.

Benchmark (metric) Description
SPECrate 2017 23 CPU- and memory-intensive
(execution time) workloads
Sysbench MySQL 5.7 Stressing a relational database
(latency) with a SQL load injector
redis-benchmark Stressing an in-memory KV store
(QPS) with its included load injector

15

4.2. Time breakdown

In this experiment, we aim to analyze the duration of each phase of InPlaceTP
and MigrationTP for each transplantation direction. We used idle VMs for this
evaluation since VM activity does not impact the transplantation time.

For InPlaceTP, we break down the transplant process into four steps: (1)
PRAM structure construction, where the VM’s memory layout is analyzed
and stored into a PRAM structure (noted as PRAM in Figure 4); (2) UISR
translation, where the VM is suspended and then its execution state is taken
and translated into UISR (noted as Translation); (3) micro-reboot, where the
target hypervisor and supporting software are started using Kexec (noted as
Reboot); and (4) UISR restoration, where the previously-taken UISR is used
to restore and consequently resume the VM (noted as Restoration). Since our
PRAM structure is constructed before pausing VMs, the downtime therefore
equals Translation + Reboot + Restoration. Note that time = 0 on Figure 4
corresponds to the moment when VMs are paused, therefore the PRAM step is
always located below the x-axis. Since network services are not needed for all
application types, we present its initialization time separately from the overall
transplant time (noted Network). Therefore, this time will not be counted in
the downtime of network-independent applications, such as the SPEC CPU2017
benchmark, but counted for network-dependent applications.

For MigrationTP, we show the duration that the VM is paused (a.k.a. down-
time) and the total migration time. This is in comparison to normal live VM
migration, which follows a very similar procedure (without our MigrationTP
proxy in particular).

4.2.1. Basic evaluations

This scenario allows us to gather basic information about the performance of
each step of our HyperTP workflow. In this scenario, our machines ran a single
VM configured with 1 GB of memory and 1 vCPU. This VM size is representative
of cloud workloads such as Microsoft Azure [12]. Our smallest machine (M1)
could host up to 12 VMs of this size each. We repeated each experiment 5 times,
while presenting average values when standard deviation is very low, and box
plots otherwise.

InPlaceTP: Xen→KVM (Figure 4). We start with a focus on Xen→KVM to
detail the time costs of each step of hypervisor transplant. The total trans-
plantation time is 2.03 and 4.74 seconds on M1 and M2 respectively, of which
0.13/0.20 seconds is spent on PRAM ; 0.05/0.19s on Translation; 1.71/3.60s on
Reboot ; and 0.15/0.75s on Restoration. Reboot is evidently the dominant step
of the process, representing 83% and 76% of the total transplantation time on
M1 and M2 respectively. The resulting total downtime is 1.91s on M1 and 4.54s
on M2. When networking is taken into account, the process takes 6.7s on M1
(of which 6.6s is spent waiting for the network card) and 5.8s on M2 (with 5.6s
spent on networking). Despite the long network downtime, we observe that these
interruptions do not affect the operation of network connections.

16

M1 M2
Servers

0
1
2
3
4
5
6
7
8
9

Ti
m

e
(s

ec
)

The VM is running after
 1.91 sec and 4.54 sec

PRAM Translation Reboot Restoration Network

Figure 4: Time breakdown of each step of InPlaceTP Xen→KVM with a single VM. See
Section 4.2 for a description of individual steps and our measuring process.

InPlaceTP: KVM→Xen and Xen→Xen (Table 4). We compare different In-
PlaceTP directions in this experiment. We observe that the reboot times for
KVM→Xen and Xen→Xen are higher than that of Xen→KVM:

• KVM→Xen vs Xen→KVM: 6.67s vs 1.71s on M1; 17.92s vs 3.60s on M2;

• Xen→Xen vs Xen→KVM: 6.61s vs 1.71s on M1; 17.84s vs 3.60s on M2.

These differences are mainly caused by Xen’s boot process. In fact, being a
type-I hypervisor, Xen requires launching two kernels: the Xen hypervisor and
the Linux dom0 kernel. Regardless, we note that the downtime caused by these
directions of InPlaceTP is still far from the 30s maintenance window proposed by
Microsoft [2] even with several VMs, as we will demonstrate in the next section.

Table 4: InPlaceTP for KVM→Xen and Xen→Xen. Downtime in seconds.
PRAM Translat. Reboot Restore Downtime

M1
Xen→KVM 0.13 0.05 1.71 0.15 1.91
KVM→Xen 0.22 <0.01 6.67 0.72 7.39
Xen→Xen 0.73 0.06 6.61 0.60 7.27
M2
Xen→KVM 0.20 0.19 3.60 0.75 4.54
KVM→Xen 0.22 <0.01 17.92 1.23 19.15
Xen→Xen 2.87 0.22 17.84 1.19 19.25

MigrationTP: Xen→KVM (Table 5). We demonstrated live migration between
two Xen hosts to establish a baseline for analyzing the performance of Migra-
tionTP. Firstly, we observe that the total migration time is almost the same,
about 9.5 seconds (dominated by memory page copies). Secondly, the downtime
of MigrationTP is 27× lower than that of live migration between two Xen hosts.
The reason is that on the destination host, MigrationTP uses kvmtool which is

17

more lightweight compared to Xen’s libxenctrl and therefore needs less time to
resume the VM.

Table 5: MigrationTP Xen→KVM compared to Xen VM live migration.

Xen→Xen MigrationTP (Xen→KVM)
Downtime 133.59 ms 4.96 ms
Migration time 9.564 sec 9.63 sec

10
5
0
5

10
15
20

Ti
m

e
(s

ec
)

Xen->KVM, M1 Xen->KVM, M1 Xen->KVM, M1 Xen->KVM, M2 Xen->KVM, M2

VM paused

Xen->KVM, M2

10
5
0
5

10
15
20

Ti
m

e
(s

ec
)

KVM->Xen, M1 KVM->Xen, M1 KVM->Xen, M1 KVM->Xen, M2 KVM->Xen, M2 KVM->Xen, M2

1 2 4 6 8 10
vCPUs

10
5
0
5

10
15
20

Ti
m

e
(s

ec
)

Xen->Xen, M1

2 4 6 8 10 12
Memory Size (GBytes)

Xen->Xen, M1

2 4 6 8 10 12
VMs

Xen->Xen, M1

1 2 4 6 8 10
vCPUs

Xen->Xen, M2

2 4 6 8 10 12
Memory Size (GBytes)

Xen->Xen, M2

2 4 6 8 10 12
VMs

Xen->Xen, M2

PRAM Translation Reboot Restoration

Figure 5: Scalability breakdown of InPlaceTP with regard to various transplantation directions
and VM configurations.

4.2.2. Horizontal and vertical VM scalability

We evaluated all HyperTP directions (Xen→KVM, KVM→Xen, as well as
Xen→Xen) while varying the VM size (number of vCPUs and memory size) and
number of VMs running on each machine. Figure 5 presents our results on both
M1 and M2: each row of figures corresponds to a transplantation direction (e.g
the first row is Xen→KVM on M1 and M2), while each column contains results
when varying an experimental parameter (e.g. the first column contain results
with varying number of vCPUs on M1).

InPlaceTP scalability. From the first and fourth columns of Figure 5, we first
notice that the number of vCPUs has no impact on the transplantation time,
regardless of the transplantation direction. However, the second and fifth columns
demonstrate a slight growth in downtime when varying the VM memory size
on both M1 and M2 for all transplantation directions. This is mostly due to
the restoration step taking more time with increasing memory size for the VM.
Similarly, the total transplantation time increased slightly with the number of
VMs, especially in the case of KVM→Xen and Xen→Xen which necessitates the
use of Xen’s slightly slower VM stack (columns 3 and 6).

18

Similarly to our previous evaluations, we observe that the reboot times of
KVM→Xen and Xen→Xen (second and third rows) are higher than that of
Xen→KVM (first row) due to Xen’s longer boot sequence. Finally, we can
observe that the PRAM time increases in respect to the number of VMs or
memory size when the transplantation starts from Xen (first and third rows).
This is due to the need to use Xen hypercalls to get access to the memory
mapping of VMs for building PRAM structures. Nevertheless, this does not
impact running applications because most of the PRAM structure is built with
the VMs still running.

In summary, thanks to the fact that we build PRAM before pausing VMs,
the VM downtime remains minimal, within 1.91 seconds and ≈10 seconds for
M1; and 4.54 and ≈22 seconds for M2. Notably, our results are comparable to
that of Orthus [3] (from 0.48 seconds up to 9.8 seconds), which only upgrades the
KVM module and QEMU without rebooting the physical machine. Moreover, we
again note that this downtime is smaller than the 30s proposed by Microsoft [2]
during maintenance windows.

MigrationTP scalability: Xen→KVM. Figure 6 presents our results of Mi-
grationTP downtime compared to that of normal VM migration. Generally,
MigrationTP downtime is lower than that of Xen→Xen migration because of
kvmtool ’s more efficient stop-and-copy step. Additionally, while this downtime
increases slightly with increasing numbers of vCPUs, it is impacted only mini-
mally by the VM’s memory size. We use box plots in the last subfigure because
of the high variation in downtime induced by Xen when migrating several VMs
at the same time. This variation is explained by Xen’s serialized migration
process, which migrates multiple VMs in parallel on the sending side, but not
on the receiving side. In particular, the first migrated VM’s downtime will be
lower than that of the second’s, and so on. In comparison, MigrationTP offers a
constant downtime on each VM by allowing multiple VMs to be migrated at the
same time.

1 2 4 6 8 10
vCPUs

40
80

120
160
200
240
280

Ti
m

e
(m

illi
 se

c)

2 4 6 8 10 12
Memory Size (GBytes)

2 4 6 8 10 12
VMs

Xen downtime HyperTP downtime

Figure 6: MigrationTP Xen→KVM downtime compared to Xen migration.

Figure 7 presents the total migration time of each solution. MigrationTP and

19

Xen have almost the same results when migrating a single VM while varying its
memory size (see the first two subfigures). Namely, while the number of vCPUs
has no impact on the migration time, migration time scales almost linearly to
VM memory size due to the need for transferring VM memory over the network.
When varying the number of VMs, we observe that while MigrationTP has a
higher median VM migration time, the variance in migration time is far less than
that of Xen→Xen migration. This is again caused by Xen’s serialized migration
which blocks multiple VMs from being migrated at the same time.

1 2 4 6 8 10
vCPUs

0
15
30
45
60
75
90

105
120

Ti
m

e
(s

ec
)

2 4 6 8 10 12
Memory Size (GBytes)

2 4 6 8 10 12
VMs

Xen HyperTP

Figure 7: MigrationTP Xen→KVM migration time compared to Xen→Xen.

4.3. Impact on applications

We evaluated HyperTP using macro-benchmarks with common workloads
in the following fashion: each benchmark is launched inside a Xen VM with
2 vCPUs and 8 GB of RAM; we then trigger the transplantation operation
during each benchmarks’ execution. We compare the results to that of a machine
running purely on Xen, thus observing the impact of InPlaceTP on application
performance.

Redis. We used the redis-benchmark tool to stress a Redis server running on a
VM. The underlying host is then upgraded with HyperTP during the benchmark
run.

Figure 9 presents the results for InPlaceTP on M1 and M2. The downtime
of Redis is 8 seconds for Xen→KVM, 12s for KVM→Xen, and finally 13s for
Xen→Xen on M1. On M2, the results are 11s for Xen→KVM, 22s for KVM→
Xen and 23s for Xen→Xen. Note that this downtime includes the time needed
to reestablish the physical network link on the host, which is done in parallel
with other phases of InPlaceTP. While Redis continues to perform well after
transplantation, we also observe a performance difference of approximately 16%
between Xen and KVM for this particular workload.

Figure 8 (right) shows the Redis performance under MigrationTP, which like
Xen→Xen migration, shows a “classical” live migration performance pattern
with a performance drop during the memory copy phase (from 50s to 124s, or
78s in total), followed by a negligible downtime when the VM is paused, and
finally a return to normal performance.

20

0 25 50 75 100 125 150
Time (sec)

 Mysql

0
20
40
60
80

100

La
te

nc
y

(m
illi

 se
c)

Xen->KVM, M1

0 25 50 75 100 125 150
Time (sec)

 Redis

0
20
40
60
80

100

QP
S

(K
ilo

)

Xen->KVM, M1
Xen HyperTP

Figure 8: Impact of MigrationTP on MySQL (left) and Redis (right).

MySQL. We used Sysbench to generate load on a MySQL VM while applying
HyperTP. With InPlaceTP, we observe a similar behavior as with Redis, where it
causes a downtime of approximately 10 seconds on M1 and 21 seconds on M2 (see
Figure 10). Both MigrationTP (Figure 8 left) and Xen→Xen migration caused
a period of 252% increase in latency lasting 76 seconds during the migration
process.

SPEC CPU2017. We ran all 23 SPECrate workloads included in the SPEC
CPU2017 benchmark suite. We estimated the performance degradation caused
by HyperTP as the maximum of the degradation w.r.t. Xen and KVM, i.e.

Deg = max(
tHyperTP − tXen

tXen
,
tHyperTP − tKVM

tKVM
)

Table 6 presents each benchmark’s execution time in seconds for Xen and KVM,
as well as the performance degradation in percentage for each transplantation
direction on M1 and M2. The maximum degradations for InPlaceTP are 5.12%
on M1 and 5.00% on M2 for KVM→Xen, 4.45% on M1 and 5.29% on M2 for
Xen→KVM, and 5.18% on M1 and 6.86% on M2 for Xen→Xen. MigrationTP ’s
maximum degradation on M1 is 6.27%. Note that these differences not only come
from the transplantation process itself, but also from the native performance
difference between Xen and KVM. Indeed, we can see that these benchmark
applications do not have the same performance in both hypervisors (see the
Xen and KVM columns of Table 6). Moreover, since HyperTP ’s duration of
performance degradation is quite constant, its impact on applications with longer
execution times (e.g. scientific simulations) will be negligible.

21

0

30

60

90

QP
S

(K
ilo

)

Xen->KVM, M1 KVM->Xen, M1 Xen->Xen, M1

0 25 50 75 100 125 150
0

30

60

90

QP
S

(K
ilo

)

Xen->KVM, M2

0 25 50 75 100 125 150

KVM->Xen, M2

0 25 50 75 100 125 150

Xen->Xen, M2

Xen HyperTP

Figure 9: Impact of InPlaceTP on Redis throughput on M1 and M2.

0

5

10

15

La
te

nc
y

(m
illi

 se
c)

Xen->KVM, M1 KVM->Xen, M1 Xen->Xen, M1

0 25 50 75 100 125 150
Time (sec)

0

5

10

15

La
te

nc
y

(m
illi

 se
c)

Xen->KVM, M2

0 25 50 75 100 125 150
Time (sec)

KVM->Xen, M2

0 25 50 75 100 125 150
Time (sec)

Xen->Xen, M2

Xen HyperTP

Figure 10: Impact of InPlaceTP on MySQL latency on M1 and M2.

22

T
a
b
le

6
:
Im

p
a
ct

o
f
In

P
la
ce
T
P

a
n
d
M
ig
ra
ti
o
n
T
P

o
n
S
P
E
C
ra
te

2
0
1
7
b
en

ch
m
a
rk
s.

In
P
la
c
e
T
P

M
ig
ra

ti
o
n
T
P

X
e
n

K
V
M

K
V
M

to
X
e
n

X
e
n

to
X
e
n

X
e
n

to
K
V
M

X
e
n

to
K
V
M

B
e
n
ch

m
a
rk

s
T
im

e
M
1

T
im

e
M
2

T
im

e
M
1

T
im

e
M
2

D
eg

M
1

D
eg

M
2

D
eg

M
1

D
eg

M
2

D
eg

M
1

D
eg

M
2

D
eg

M
1

p
er
lb
en
ch

44
9.
23

64
1.
8
4

4
4
8
.3
3

6
4
3
.4
2

2
.7
7

4
.3
2

2
.1
3

5
.2
0

3
.3
0

2
.6
8

2
.6
3

gc
c

31
1.
77

46
7.
48

3
1
0
.4
8

4
4
8
.9
9

5
.0
0

5
.6
8

3
.0
5

5
.2
9

5
.1
8

5
.8
9

4
.1
2

b
w
av
es

93
9.
70

14
47
.8
1

9
2
4
.9
0

1
4
2
0
.6
4

2
.9
2

3
.7
4

2
.3
3

3
.7
0

1
.6
5

1
.0
0

1
.8
3

m
cf

45
0.
80

71
2.
02

4
4
9
.3
3

6
6
4
.5
1

4
.0
4

3
.8
8

2
.8
2

4
.0
1

3
.4
5

1
.4
9

3
.1
2

ca
ct
u
B
S
S
N

31
2.
87

52
4.
55

3
1
0
.0
1

5
0
7
.5
0

5
.1
2

4
.1
4

4
.4
5

4
.0
3

3
.5
8

2
.3
9

3
.8
2

n
am

d
29
8.
13

47
2.
29

2
9
8
.0
6

4
7
3
.1
5

4
.5
8

5
.4
7

2
.9
6

4
.4
3

3
.1
0

3
.0
5

1
.6
2

p
ar
es
t

63
6.
41

10
90
.4
2

6
3
8
.2
0

1
0
8
8
.6
8

2
.2
8

2
.2
9

1
.4
7

2
.4
6

2
.2
4

1
.3
9

1
.1
5

p
ov
ra
y

53
6.
13

82
7.
42

5
3
8
.7
0

8
2
3
.0
1

3
.0
9

3
.4
3

1
.7
5

3
.1
6

2
.0
7

2
.3
6

1
.5
4

lb
m

29
6.
49

65
0.
88

2
9
6
.0
8

6
0
8
.9
8

4
.9
8

5
.0
8

2
.8
6

1
.7
1

3
.9
8

6
.6
1

6
.2
7

om
n
et
p
p

54
3.
35

61
2.
14

5
3
9
.0
3

5
9
9
.1
0

3
.2
7

6
.2
4

2
.2
9

3
.4
8

4
.2
1

6
.8
6

3
.1
4

w
rf

63
5.
07

98
5.
51

6
2
6
.9
8

9
7
3
.3
2

2
.9
3

3
.9
1

1
.9
7

3
.3
8

2
.0
3

0
.0
4

1
.2
4

x
al
an

cb
m
k

47
3.
08

62
5.
59

4
7
2
.0
7

6
1
7
.8
2

2
.4
0

5
.2
8

1
.4
7

5
.0
0

6
.6
8

5
.6
9

0
.7
9

x
26
4

54
9.
48

81
3.
34

5
4
8
.7
3

8
0
9
.3
4

2
.6
7

3
.1
1

2
.1
8

3
.2
4

3
.9
8

1
.6
7

0
.5
9

b
le
n
d
er

42
3.
0
2

58
2.
6
1

4
2
2
.5
1

5
8
0
.1
6

3
.4
1

4
.5
9

2
.1
6

4
.1
4

3
.0
5

2
.6
4

1
.6
8

ca
m
4

52
4.
44

81
1.
05

5
2
2
.1
2

8
0
7
.7
4

3
.3
5

3
.4
8

2
.1
4

2
.3
3

2
.8
1

2
.3
8

2
.2
4

d
ee
p
sj
en
g

44
2.
18

65
0.
24

4
4
2
.8
2

6
4
4
.9
2

3
.3
6

2
.9
7

2
.2
3

3
.4
8

4
.3
4

1
.9
9

4
.3
3

im
ag
ic
k

69
3.
98

10
08
.0
5

6
9
3
.3
1

1
0
0
7
.7
5

2
.1
6

2
.5
9

1
.5
0

2
.1
0

1
.5
8

1
.3
3

0
.7
0

le
el
a

72
5.
80

10
22
.7
7

7
2
6
.3
9

1
0
1
8
.5
0

2
.1
0

2
.8
2

1
.2
6

2
.5
6

1
.5
5

1
.7
3

0
.6
5

n
ab

54
4.
06

76
7.
31

5
4
3
.1
1

7
6
4
.8
3

2
.6
1

3
.4
5

1
.7
9

3
.1
9

1
.7
6

1
.8
1

0
.4
8

ex
ch
an

ge
2

56
6.
03

85
6.
35

5
6
5
.9
8

8
5
7
.1
1

2
.4
4

2
.9
9

1
.6
3

2
.7
0

1
.7
3

1
.6
7

0
.9
6

fo
to
n
ik
3d

39
0.
19

76
3.
08

3
8
6
.2
5

6
7
9
.3
0

4
.1
4

6
.9
4

2
.5
0

2
.0
3

4
.6
5

0
.1
3

3
.8
6

ro
m
s

42
2.
13

66
2.
71

4
1
7
.9
8

6
5
6
.5
3

4
.4
1

1
.6
7

3
.7
8

4
.1
6

4
.8
9

0
.3
1

5
.7
6

x
z

52
2.
24

59
1.
80

5
1
5
.1
2

6
7
5
.0
8

3
.0
4

2
.7
0

2
.7
8

3
.5
9

5
.0
0

3
.6
3

1
.8
9

23

4.4. Hypervisor update

In this section, we evaluated the time taken to upgrade a cluster using
MigrationTP. We used the BtrPlace VM scheduler framework [13] to define
the structure of a simple server cluster including 10 physical hosts. On each
hypervisor host, we defined 10 VMs each equipped with 1 vCPU and 4 GB of
RAM, for a grand total of 100 VMs across all hosts. In this group of VMs, we
configured 30% to run a video streaming server (each with a matching client
running outside of the cluster); 30% running a CPU- and memory-intensive
benchmark; and the remaining 40% being idle. We simulated an upgrade event by
dividing the cluster into smaller groups, sequentially putting each group offline
using BtrPlace’s constraints (placing VMs from the offline group into other
groups), followed by recording the resulting migration plans. For information,
BtrPlace generated a migration plan with a total of 154 VM migration operations.
We then prepared a real software cluster running the above-defined VMs, executed
the migration plans proposed by BtrPlace, and recorded the total migration
times of the cluster.

We repeated the same experiments while varying the percentage of VMs
that are InPlaceTP compatible. Figure 11 shows the number of migrations
and reduction in total migration times (compared to normal migration-based
upgrades) with varying proportions of InPlaceTP -compatible VMs. We observe
that increasing the proportion of InPlaceTP -compatible VMs reduces the number
of migrations necessary to upgrade the cluster, as well as the total migration
times. For example, with 20% InPlaceTP -compatible VMs, our migration plan
required 109 migrations, corresponding to a 17% shorter migration duration.
With 60% compatible VMs, the cluster needed 73% fewer migrations and 68%
less migration time, and with 80% compatible VMs, the cluster required only
25 migrations, or reducing total migration time by almost 80%. Coupled with
the fact that InPlaceTP takes only seconds to complete, these results show how
HyperTP can substantially speed up the upgrading of a hypervisor cluster.

0 20 40 60 80
InPlaceTP-compatible %

0
50

100
150
200

M

ig
ra

tio
n

20 40 60 80
InPlaceTP-compatible %

0
20
40
60
80

Ti
m

e
ga

in
 %

Figure 11: Impact of InPlaceTP on cluster updating: a) w.r.t. the number of migrations; b)
w.r.t. total update time.

4.5. Hypervisor security

As we claimed in Section 2.4, HyperTP can be used to reduce the vulnerability
window of a hypervisor. To qualify our claim, we study the case of a vulnerability

24

on Xen. For example, consider CVE-2018-18883 [14], a critical denial-of-service
vulnerability with a CVSS v2 score of 7.2 affecting Xen 4.9.x-4.11.x on Intel x86
platforms. In short, the vulnerability allows Xen HVM guests to configure CPU
virtualization features even if they are disabled in its configuration, leading the
host Xen to access uninitialized memory and causing Xen to crash. The root
cause of CVE-2018-18883 is mismanagement of Intel’s virtualization features;
hosts running KVM are not vulnerable to the same issue. In this case, HyperTP
can help quickly handle such a vulnerability by switching from Xen to KVM.

Another use case of HyperTP is to apply certain software diversity-based
security measures on-the-fly during operation of an hypervisor. For example,
certain operating systems support link-time randomized binary layouts [15, 16].
However, these defensive measures can only be applied once at boot-time,
meaning they become less effective over time in long-running systems. HyperTP
can be used to periodically reapply these measures by switching from Hcurrent

to a Htarget with a different random binary layout, making attacks requiring
running the same binary for a long time (e.g. those that need to probe the
address space) more difficult to execute.

4.6. Memory overhead

The memory overhead of HyperTP includes the extra memory required for
storing PRAM structures and UISR states. Figure 12 presents our overhead
measurements for various transplantation scenarios as explored in Section 4.2.1.
We can see that the memory footprint of PRAM structures increases with the
VM memory size, from 16 KB (for a single 1 GB VM) up to 60 KB (for a 12
GB VM). In the case of multiple simultaneously-running VMs, the overhead
increases slightly due to additional file info and metadata pages needed for each
VM (see Figure 3); however, these overheads remain minimal at only 148 KB
for 12 VMs with 1 GB of RAM each. More generally, PRAM structures consist
of 8-byte records for every VM’s memory page (which can be 4K or 2M in size)
leading to a worst-case overhead of 2 megabytes of metadata per GB of guest
memory (in the case of all-4K guest pages), or 4 KB per GB of guest memory
(in the case of all-2M guest pages).

The memory footprint of UISR states increases with the total number of
vCPUs, from 5 KB with 1 vCPU up to 38 KB with 10 vCPUs. In summary, the
total memory overhead of HyperTP varies from 21 KB up to 98 KB per VM,
which is negligible. Note that this extra memory is immediately given back to
the hypervisor as soon as the transplantation process finishes.

5. Discussion

UISR and VM compatibility. Section 2.1 specified that UISR serves as a represen-
tation of VM state that is sufficient for its reconstruction. However, restoration
of a VM from a given UISR instance is affected by several factors: (1) hardware
compatibility between the source and target hypervisor platforms, e.g. matching
processor features; (2) each hypervisor has numerous different implementations

25

1 2 4 6 8 10
vCPUs

0
50

100
150

 S
ize

 (K
By

te
s)

2 4 6 8 10 12
Memory Size (GBytes)

2 4 6 8 1012
VM

PRAM structures UISR formats

Figure 12: Memory overheads of InPlaceTP and MigrationTP.

of devices and resources, some of which cannot be easily reconstructed (e.g.
passthrough devices); and (3) breaking changes to the hypervisor’s paravirtu-
alization API contract. As a result, the set of features made available to the
VM must be chosen such that either (1) the feature could be reproduced in our
UISR and in the target hypervisor; or (2) the target VM is tolerant to loss of
said feature’s states. In our implementation, devices that fall into the second
category (e.g. PCI network devices) are implemented using the stop-reconnect
technique, as the guest Linux operating system in combination with our kernel
driver allows removing and reinstalling these devices without affecting network
connections.

Downtime-resource tradeoff. As stated above, datacenter operators must choose
whether InPlaceTP or MigrationTP is more appropriate for the maintenance of
their virtualization platform. While our evaluations show that InPlaceTP short-
ens the maintenance duration, it also comes with an intrinsically longer downtime
(dominated by the booting of the new hypervisor, as seen in Section 4.2.1). The
individual downtime of each VM (several seconds) might not be acceptable
compared to the milliseconds of downtime offered by migration-based techniques.
Moreover, this downtime tends to slightly increase along with the number of
VMs; this increase, while predictable, must be taken into account during the
maintenance planning. One way to perform this is by mixing and matching the
two techniques: for instance, VMs can be separated into service tiers; as an
example, one can define two tiers denoted “default” and “mission-critical”. Most
VMs that can tolerate a short downtime can be placed in the “default” tier on
machines serviced using InPlaceTP ; VMs denoted “mission-critical” can instead
be hosted on machines using MigrationTP, where upgrading will not cause a
significant disruption.

Hypervisor security. It is worth noting that in the context of hypervisor secu-
rity, HyperTP first of all serves as a mitigation, meaning it is applied after a
vulnerability becomes known, as illustrated in Figure 2. Moreover, before the
mitigation could be applied, the vulnerability must be analyzed to determine
which HyperTP -capable hypervisor is an appropriate transplant target (e.g. not
vulnerable to the vulnerability in question). Secondly, HyperTP cannot currently

26

serve as a replacement for remediation of a compromised system. Note that
techniques exist to bring a running system to a known, verifiable state (e.g.
Dynamic Root for Trusted Measurement (DRTM) [17, 18]) and can potentially
be used to reinforce such a remediation. To elaborate, a DRTM launch event can
be used to implement micro-reboot by taking over a running hypervisor, putting
the system in a known trusted state, then booting the target hypervisor. As
the target hypervisor started from a trusted state, it is considered “fresh” and
free from any leftover compromised state. It can then pick up the UISR left by
the running hypervisor and resume any running VMs. However, a limitation of
InPlaceTP is that it currently does not implement these techniques. In compari-
son, MigrationTP and other live migration-based techniques [3, 19] can be used
to transfer VMs from a potentially-compromised host to another hypervisor.
While none of these techniques (whether micro-reboot-based or migration-based)
can guarantee the integrity of the aforementioned VMs post-compromise, this
limitation can again be mitigated by the use of encrypted virtual machines (e.g.
AMD SEV [20]).

6. Related work

Our investigation of the state of the art will focus on the applications of
HyperTP on hypervisor update and security.

6.1. Hypervisor update

Live patching. The least disruptive method for updating the hypervisor is kernel
live patching [21, 22]. Live patching is a lightweight solution for applying simple
temporary patches to a running kernel. Unfortunately, it does not support
patches that may change persistent data structures (i.e. data structures which
have allocated instances in the kernel heap or stacks). When such patches are not
sufficient, VM live migration or in-place hypervisor update with server reboot
should be used instead.

Live migration. VM live migration [23, 24] allows the cloud provider to upgrade
almost everything on the origin server, from hardware devices to the hypervisor,
once it no longer hosts any running VMs. Several works [25, 26] have investigated
downtime reduction during live migration. Tsakalozos et al. [27] proposes the
use of a special-purpose MigrateFS file system and a network of brokers for
synchronizing virtual disk states to ease the migration of VMs without making
use of shared remote storage. These approaches can also be combined with
MigrationTP to further improve the performance of migrating VMs that are not
compatible with InPlaceTP.

To our knowledge, Liu et al. [28] is the only work which studied VMmigrations
between heterogeneous hypervisors as HyperTP. It was not possible for us to
quantitatively compare our MigrationTP solution with Liu et al. [28] because
no public prototype exists. From the design perspective, our UISR principle
facilitates the integration of new hypervisors, making HyperTP generic. Finally,

27

HyperTP combines live migration with in-place hypervisor transplantation to
address the scalability limitation of the former.

In-place hypervisor update. Zhang et al. [3] introduces Orthus, which targets
the upgrading of both the user-space emulator software (QEMU) and the KVM
kernel module with minimal downtime. Orthus modifies the KVM module
to incorporate state-transition capabilities between two consecutive versions,
coupled with a lightweight mechanism to checkpoint/restore VMs. However,
Orthus is specific to KVM, and does not target heterogeneous hypervisors like
HyperTP. Secondly, Orthus does not target the update of the entire kernel, which
explained their very low downtime (0.48-9 seconds). Other research works such
as [6, 19, 29] uses nested virtualization to enable quick and transparent in-place
updates. LivCloud [30] solves the related problem of migration compatibility
between different cloud providers by making use of a common L1 hypervisor.
While these works are comparable with MigrationTP in that they also propose
a low-downtime solution for updating the L1 (i.e. “inside”) hypervisor, they
did not propose a mechanism for updating the L0 (i.e. “outside”) hypervisor.
HyperTP, in comparison, does not include this limitation as the hypervisor
kernel is entirely restarted. Nested virtualization in this fashion also incurs an
additional overhead, especially on the commonly-used x86 architecture where
virtualization instructions executing inside the L1 hypervisor must be trapped
and emulated by the L0 hypervisor.

6.2. Hypervisor security

We classify hypervisor protection strategies in four categories: preventive
(stopping attacks by design), corrective (applying updates), reparative (restoring
consistency), and defensive (protection during the vulnerability window).

Preventive approaches, e.g. hardening the hypervisor: Many research works
advocate a micro-kernel architecture for the hypervisor in order to (1) reduce
the trusted computing base (TCB), thus reducing the attack surface [31, 32];
(2) formally verify this TCB to prove the absence of known classes of vulner-
abilities [33]; and (3) isolate buggy or untrusted device drivers of the hyper-
visor [31, 34, 35]. This approach often imposes a strict implementation of a
micro-kernel architecture, which requires considerable efforts in the hypervisor’s
design and implementation. In addition, most of the contributions in this ap-
proach require hardware changes that are not yet available [36]. Moreover, no
implementation is 100% sure; such an approach has to be combined with regular
security updates as studied in the next section.

Preventive approaches, e.g. software diversity: The concept of software diversity
involves using multiple software versions to mitigate vulnerabilities. Schaefer et
al. [37] describe general approaches for utilizing and managing diverse software
systems; In the context of virtualization, Winarno et al. [38] studies the use
of multiple hypervisors to ensure system resilience. Tan et al. [39] proposes a
similar scheme based on one hypervisor running on multiple cloud platforms.

28

However, to our best knowledge, our work is the first that allows a VM to be
transplanted between multiple hypervisors on the same machine with minimal
disruption.

Reparative approaches, e.g. consistent state restoration: These mainly rely on
fast reboot and restoration, and can be implemented at the OS or hypervisor
level [40, 41, 42, 43, 44, 45, 46]. Notably, Otherworld [41] restores applications
running on a kernel in the event of a crash by booting a previously-loaded second
kernel image, and restoring the application from main memory. The authors
of [40, 42] went in the same direction with hypervisors by saving the states of
VMs in memory and restoring them to a new loaded hypervisor on the same
server. Cerveira et al. [46] proposed to respond to hypervisor corruption by
migrating VMs over the same physical host instantly and with no overhead, by
avoiding memory copy and taking advantage of Intel EPT’s inner workings.

Defensive approaches, e.g. mitigation during vulnerability windows: The afore-
mentioned approaches have a limitation: that they cannot protect against a
vulnerability if the corresponding security patch is not yet available.
As we highlighted in Section 2.4, the creation of such a security patch can take
anywhere from several days to multiple months. In contrast, HyperTP provides
an unique “escape hatch” that protects virtualization infrastructure during a
vulnerability window with little downtime (as long as the vulnerability does not
impact the target hypervisor). The combined approach of HyperTP also gives
operators a flexible tradeoff between downtime and resource usage.

7. Conclusion

We introduced HyperTP, a platform for replacing a running hypervisor
with a different hypervisor while incurring minimal downtime in a process
called hypervisor transplant. We discussed our ideas of VM state hierarchy
and Unified Intermediate State Representation, and presented details of the two
approaches that make up HyperTP, in-place hypervisor transplant (InPlaceTP)
and migration-based transplant (MigrationTP). We evaluated our prototype
of HyperTP with well-known benchmarks, and showed that HyperTP causes
minimal interference to running workloads. Namely, InPlaceTP needs less
than 2 seconds to transplant a VM running on Xen to KVM, while requiring
negligible memory and I/O overhead. MigrationTP transplants a VM to another
hypervisor with essentially the same cost as normal live migration. We showed
that a hypervisor cluster with 80% of VMs supporting InPlaceTP can reduce
its upgrade time by a proportional 80%, and demonstrated how HyperTP can
simplify the process of securing hypervisor infrastructure.

Acknowledgements

This work is supported by the French National Research Agency (ANR-20-
CE25-0005) and Région Occitanie under the Prématuration-2020 program. Some

29

experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations.

References

[1] T. Dinh Ngoc, B. Teabe, A. Tchana, G. Muller, D. Hagimont, Mitigating
vulnerability windows with hypervisor transplant, in: Proceedings of the
Sixteenth European Conference on Computer Systems, 2021, pp. 162–177.

[2] Microsoft Corp., Maintenance for virtual machines in Azure, https://do
cs.microsoft.com/en-us/azure/virtual-machines/maintenance-and

-updates (2022).

[3] X. Zhang, X. Zheng, Z. Wang, Q. Li, J. Fu, Y. Zhang, Y. Shen, Fast and
scalable VMM live upgrade in large cloud infrastructure, in: Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 93–105.

[4] A. Segalini, D. Lopez-Pacheco, G. Urvoy-Keller, F. Hermenier, Q. Jaque-
mart, Hy-FiX: Fast in-place upgrades of KVM hypervisors, IEEE Transac-
tions on Cloud Computing (01) (2021) 1–1.

[5] Sun Microsystems, Inc., XDR: External data representation standard, http
s://tools.ietf.org/html/rfc1014 (1987).

[6] H. Bagdi, R. Kugve, K. Gopalan, Hyperfresh: Live refresh of hypervisors
using nested virtualization, in: Proceedings of the 8th Asia-Pacific Workshop
on Systems, 2017, pp. 1–8.

[7] X. Wang, H. Yu, How to break MD5 and other hash functions, in: Annual
international conference on the theory and applications of cryptographic
techniques, Springer, 2005, pp. 19–35.

[8] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, et al., Meltdown: Reading kernel memory
from user space, Communications of the ACM 63 (6) (2020) 46–56.

[9] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, et al., Spectre attacks: Exploiting
speculative execution, Communications of the ACM 63 (7) (2020) 93–101.

[10] NIST, National Vulnerability Database - vulnerability metrics, https:

//nvd.nist.gov/vuln-metrics/cvss.

[11] V. Davydov, pram: persistent over-kexec memory file system, https:

//lists.openvz.org/pipermail/criu/2013-July/009877.html (2013).

30

[12] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini,
Resource central: Understanding and predicting workloads for improved
resource management in large cloud platforms, in: Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, Associa-
tion for Computing Machinery, New York, NY, USA, 2017, p. 153–167.
doi:10.1145/3132747.3132772.
URL https://doi.org/10.1145/3132747.3132772

[13] F. Hermenier, J. Lawall, G. Muller, Btrplace: A flexible consolidation
manager for highly available applications, IEEE Transactions on dependable
and Secure Computing 10 (5) (2013) 273–286.

[14] CVE-2018-18883, https://www.cvedetails.com/cve/CVE-2018-18883/
(2018).

[15] OpenBSD kernel address randomized link, https://lwn.net/Articles/7
27697/ (2017).

[16] Function granular KASLR, https://lore.kernel.org/lkml/202112230
02209.1092165-1-alexandr.lobakin@intel.com/ (2021).

[17] TCG D-RTM architecture, https://trustedcomputinggroup.org/reso
urce/d-rtm-architecture-specification/ (2013).

[18] Intel Trusted Execution Technology (Intel TXT) overview, https://www.
intel.com/content/www/us/en/support/articles/000025873/proce

ssors.html (2022).

[19] K. Kourai, H. Ooba, Zero-copy migration for lightweight software reju-
venation of virtualized systems, in: Proceedings of the 6th Asia-Pacific
Workshop on Systems, 2015, pp. 1–8.

[20] D. Kaplan, J. Powell, T. Woller, AMD memory encryption, https://deve
loper.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_

Whitepaper_v9-Public.pdf (2016).

[21] J. Kosina, P. Mládek, V. Pavĺık, J. Slaby, kGraft: Live patching of the
Linux kernel, https://kernel-recipes.org/en/2014/kgraft-live-pat
ching-of-the-linux-kernel/ (2014).

[22] J. Arnold, M. F. Kaashoek, Ksplice: Automatic rebootless kernel updates,
in: Proceedings of the 4th ACM European Conference on Computer Systems,
EuroSys ’09, Association for Computing Machinery, New York, NY, USA,
2009, p. 187–198. doi:10.1145/1519065.1519085.
URL https://doi.org/10.1145/1519065.1519085

[23] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, Live migration of virtual machines, in: Proceedings of the
2nd Conference on Symposium on Networked Systems Design and Im-
plementation - Volume 2, NSDI’05, USENIX Association, USA, 2005, p.
273–286.

31

[24] F. Machida, D. S. Kim, K. S. Trivedi, Modeling and analysis of software reju-
venation in a server virtualized system with live VM migration, Performance
Evaluation 70 (3) (2013) 212–230.

[25] H. Jin, L. Deng, S. Wu, X. Shi, X. Pan, Live virtual machine migration with
adaptive, memory compression, in: 2009 IEEE International Conference on
Cluster Computing and Workshops, IEEE, 2009, pp. 1–10.

[26] U. Deshpande, U. Kulkarni, K. Gopalan, Inter-rack live migration of multiple
virtual machines, in: Proceedings of the 6th International Workshop on
Virtualization Technologies in Distributed Computing Date, VTDC ’12,
Association for Computing Machinery, New York, NY, USA, 2012, p. 19–26.
doi:10.1145/2287056.2287062.
URL https://doi.org/10.1145/2287056.2287062

[27] K. Tsakalozos, V. Verroios, M. Roussopoulos, A. Delis, Live VM migration
under time-constraints in share-nothing IaaS-clouds, IEEE Transactions on
Parallel and Distributed Systems 28 (8) (2017) 2285–2298.

[28] P. Liu, Z. Yang, X. Song, Y. Zhou, H. Chen, B. Zang, Heterogeneous live
migration of virtual machines, in: International Workshop on Virtualization
Technology (IWVT’08), 2008.

[29] H. Yamada, K. Kono, Traveling forward in time to newer operating systems
using shadowreboot, in: Proceedings of the 9th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, 2013, pp. 121–
130.

[30] I. E. A. Mansour, K. Cooper, H. Bouchachia, Effective live cloud migration,
in: 2016 IEEE 4th International Conference on Future Internet of Things
and Cloud (FiCloud), IEEE, 2016, pp. 334–339.

[31] D. G. Murray, G. Milos, S. Hand, Improving Xen Security through Disag-
gregation, in: Proceedings of the Fourth ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, Association for Com-
puting Machinery, New York, NY, USA, 2008. doi:10.1145/1346256.1346278.
URL https://doi.org/10.1145/1346256.1346278

[32] J. Szefer, E. Keller, R. B. Lee, J. Rexford, Eliminating the Hypervisor
Attack Surface for a More Secure Cloud, in: Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, Associ-
ation for Computing Machinery, New York, NY, USA, 2011, p. 401–412.
doi:10.1145/2046707.2046754.
URL https://doi.org/10.1145/2046707.2046754

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al., seL4: Formal
verification of an OS kernel, in: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 2009, pp. 207–220.

32

[34] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, J. Li, Decon-
structing Xen, in: 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017, The Internet Society, 2017.
URL https://www.ndss-symposium.org/ndss2017/ndss-2017-program

me/deconstructing-xen/

[35] F. Zhang, J. Chen, H. Chen, B. Zang, CloudVisor: retrofitting protection
of virtual machines in multi-tenant cloud with nested virtualization, in:
T. Wobber, P. Druschel (Eds.), Proceedings of the 23rd ACM Symposium on
Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, ACM, 2011, pp. 203–216. doi:10.1145/2043556.2043576.
URL https://doi.org/10.1145/2043556.2043576

[36] W. Shi, J. Lee, T. Suh, D. H. Woo, X. Zhang, Architectural Support
of Multiple Hypervisors over Single Platform for Enhancing Cloud Com-
puting Security, in: Proceedings of the 9th Conference on Computing
Frontiers, Association for Computing Machinery, New York, NY, USA, 2012.
doi:10.1145/2212908.2212920.
URL https://doi.org/10.1145/2212908.2212920

[37] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck,
A. Pathak, S. Trujillo, K. Villela, Software diversity: state of the art and
perspectives (2012).

[38] I. Winarno, T. Okamoto, Y. Hata, Y. Ishida, Increasing the diversity of
resilient server using multiple virtualization engines, Procedia Computer
Science 96 (2016) 1701–1709.

[39] Y. Tan, D. Luo, J. Wang, CC-VIT: Virtualization intrusion tolerance based
on cloud computing, in: 2010 2nd International Conference on Information
Engineering and Computer Science, IEEE, 2010, pp. 1–6.

[40] K. Kourai, S. Chiba, Fast software rejuvenation of virtual machine monitors,
IEEE Transactions on Dependable and Secure Computing 8 (6) (2011)
839–851.

[41] A. Depoutovitch, M. Stumm, Otherworld: giving applications a chance to
survive OS kernel crashes, in: Proceedings of the 5th European conference
on Computer systems, 2010, pp. 181–194.

[42] M. Russinovich, N. Govindaraju, M. Raghuraman, D. Hepkin, J. Schwartz,
A. Kishan, Virtual machine preserving host updates for zero day patching
in public cloud, in: Proceedings of the Sixteenth European Conference on
Computer Systems, 2021, pp. 114–129.

[43] M. Le, Y. Tamir, Applying microreboot to system software, in: 2012 IEEE
Sixth International Conference on Software Security and Reliability, 2012,
pp. 11–20.

33

[44] X. Xu, H. H. Huang, DualVisor: Redundant hypervisor execution for
achieving hardware error resilience in datacenters, in: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2015, pp.
485–494.

[45] D. Zhou, Y. Tamir, Fast hypervisor recovery without reboot, in: 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2018, pp. 115–126.

[46] F. Cerveira, R. Barbosa, H. Madeira, Fast Local VM Migration Against
Hypervisor Corruption, in: 2019 15th European Dependable Computing
Conference (EDCC), 2019, pp. 97–102.

34

