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SOME RECENT ADVANCES IN RANDOM WALKS AND RANDOM
ENVIRONMENTS *

ALEXIS DEVULDER!, ROLAND DIEL? AND XIAOLIN ZENG?

Abstract. Recent contributions to random walks in random environments and related topics are
presented. We focus on non parametric estimation for one dimensional random walks in random
environment and on the Dirichlet distribution on decomposable graphs.

Résumé. Nous présentons de récentes contributions concernant les marches aléatoires en milieux
aléatoires et des sujets qui leurs sont reliés. Nous nous intéressons en particulier a I’estimation non
paramétrique pour les marches aléatoires en milieu aléatoire unidimensionelles, et a la loi de Dirichlet
sur des graphes décomposables.

INTRODUCTION

We are interested in random walks in random environments (RWRE). RWRE on Z are defined as follows.
Throughout the paper, we write N = Z; = {0,1,2,...}. Let w = (wz),; be an i.i.d. sequence of random
variables taking values in (0, 1), with common distribution v. Given a realization of w, let S = (5¢),cy denote
the random walk in the environment w, which is the Markov chain on Z starting at Sy = 0 and with probability
transitions, for every t € N:

W ify=xz+1,
P, (Sip1=9ylSi =)= 1—-w, ify=x-1, (1)
0 otherwise.

Hence, S = (S}),cy is a random walk in the random environment w. The probability measure PP, of the chain,
conditionally on the environment w, is called the quenched distribution, while the unconditional distribution

P () = [P ()5 ©)
is called the annealed distribution.
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A continuous time and space analogue of RWRE on Z is introduced by Schumacher [31] and Brox [5]. See
Shi [32] for some applications of such model and stochastic calculus to RWRE.

Also, RWRE can be generalised on 7% for d > 1 as follows. Let (e1,€2,...,¢eq) be the canonical basis of
7. We also set egy; = —e; for all 1 < i < d. Hence, (e1,...,e24) is the set of unit vectors of Z¢. We
consider a collection w = (w(z,x +¢;), 1 < i < 2d, z € Z%) of random variables, with joint law 7, such that
E?il w(z,z+e;) = 1 for every x € Z¢ and w(z,z+e;) € (0,1) for all z € Z? and 1 < i < 2d. Given a realization
of w, the random walk in the environment w is the Markov chain S = (S;),cy on Z% starting at Sy = (0,...,0)
and with probability transitions:

Py (St41 =+ €S =) = w(x,x + €;), reZt ie{l,...,2d}, tc N,

Once more, P, is the quenched law of S. The annealed law of S is defined as
P() = [Bl()ndw).

The more classical model of RWRE is the case where (w(z,2 + ¢;), 1 <i < 2d), x € Z? are independent with
the same law v, that is, the transition probabilities at each site € Z¢ are independent with the same law v.

Since the works of Chernov [7] in biophysics and of Temkin [35] in metallurgy, RWRE have attracted a
considerable interest, both in Mathematics and in Physics. Also, RWRE have many applications in physics (see
for example Hughes [20]) and in biology (see e.g. Cocco and Monasson [8]). Moreover, RWRE are used to define
or study some other mathematical models, see e.g. [24] (Chapter 3) for random walks in oriented lattices with
random environments, [38] for random walks in random environments with random scenery, [4] for branching
processes in random environments, [12] for branching random walks in random environments, and [14] for the
internal DLA cluster generated by Sinai’s walk. For a general account on RWRE, we refer to Zeitouni [36] and
Révész [28].

A particular case of RWRE on Z¢ is the case where the transition probabilities are i.i.d. at each site with a
Dirichlet distribution. Such RWRE, also called random walks in Dirichlet environments (RWDE), are related
to reinforced random walks, and more precisely, the annealed law of RWDE is that of a reinforced random walk
with linear reinforcement on directed edges. For an overview of RWRE in Dirichlet environments, see Sabot
and Tournier [30].

We present in Section 1 results obtained in [13] by R. Diel and M. Lerasle about non parametric estimation
for one dimensional RWRE.

Then Section 2 deals with a generalization of the Dirichlet distribution, depending on a finite decomposable
graph. One possible application could be to establish a link between such laws and random walks in random
environments on graphs. This section is a joint work of Bartosz Kolodziejek and Jacek Wesolowski (both from
Warsaw University of Technology) with Xiaolin Zeng.

Finally, a third talk of this session was given by Xinxin Chen about fixed points for branching Brownian
motions.

Acknowledgement: We are thankful to two anonymous referees for their very careful reading of the paper
and for their useful comments.

1. NON PARAMETRIC ESTIMATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT

This part is based on [13] by R. Diel and M. Lerasle.

1.1. Introduction

The topic of statistical inference for RWRE emerged with the appearance of statistical data fitting this model
such as data related to the DN A-unzipping experiment or DNA-polymerase phenomenon. We are interested here
in estimating the distribution of the random environment from the observation of one trajectory of a RWRE on
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Z. The problem considered may also be useful in applications where one wants to recover the environment itself.
Indeed, a purely frequentist estimator of the environment has poor performances on sites where the walk only
spent a short time, it is likely to be outperformed by a Bayesian estimator, provided that the prior distribution
is reasonably chosen. An estimator of the law of the environment could provide such a reasonable prior.

In the literature, the problem was originally considered in [1] who introduced an estimator of the moments
of the distribution. The state space of the walk in [1] is more general than Z but their estimators have a
huge variance, they are therefore unstable and cannot really be used in practice. More recently, [9, 10,15, 16]
considered the random walk on Z and investigated the problem in a parametric framework. The case of
Markovian environment has also been investigated in [3]. Although very interesting, this approach suffers
several drawbacks. Indeed, the quality of the estimator strongly relies on the assumption that the unknown
distribution lies in a parametric model which imposes severe restrictions for applications.

We present here a non-asymptotic and non-parametric approach to tackle the estimation of the unknown
cumulative distribution function (c.d.f.) of the environment from one observation of the walk. All our concen-
tration results are valid in any regime, the only difference lies in the convergence rate of the c.d.f. estimator. Our
approach is based on the estimation of the moments of the unknown distribution, these estimations can always
be performed in linear time. Those primary estimators are then combined to build a collection of estimators
with non-increasing bias and non-decreasing variance and the final estimator is chosen among them according
to Goldenshluger-Lepski’s method [17]. The resulting estimator is therefore easily computable and satisfies an
oracle type inequality. This approach has also been used in [19] to obtain results on the estimation of the
probability density of the environment and in [2] to obtain convergence results in estimating the distribution of
the environment of a RWRE on a tree.

1.2. Setting

We consider w = (wg), ¢z, an i.i.d. sequence of random variables taking values in (0, 1), with common distri-
bution v. The RWRE S = (S;),cy and the probability measures P, and P” are defined as in the introduction,
respectively in (1) and (2). We denote by E¥ the expectation with respect to P¥.

Here we construct an estimator of the c.d.f. of v built from one trajectory of the walk (S¢),.y. The asymptotic
behaviour of the walk (S;),.y depends on the random variables p, = 1;‘:“', x € Z. Results of Kesten, Kozlov
and Spitzer [22] and Sinai [33] give a precise description of the different possible behaviours. Our main result
is valid either under the assumptions of [22] or under a slightly weaker version of the ones given in [33] which
we present in the following global assumption:

E” [log po] = 0, E¥ [(10gp0)2} >0 and 3a > 0, B [p8] + E¥ [p5®] < +o0

or (H)
E¥ [log po] < 0, log pp has a non arithmetic distribution

and 3k € (0,00), E” [pf] =1 and E¥ [pflog(1V po)] < oo.

Under (H), we know since Solomon [34] that (S;),cy is either transient to the right for almost every environment
when E¥ [log pg] < 0, or recurrent for almost every environment when E [log pg] = 0.
Let us first recall the results obtained in [22] and [33]. Denote by

T,=inf{teN, S;=n}

the first hitting time of a site n € N. Precisely,
e if E”[logpo] < O (transient case, [22]):
(1) if & < 1, then T, /n'/* and S;/t* converge in distribution to some non trivial distributions,

(2) if k =1, then ano’é — and lngtSt converge in probability to non zero constants,

(3) if k > 1, then 7;—;” and % converge in probability to non zero constants.
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e if E [log po] = 0 (recurrent case, [33]) then S;/(logt)? converges in distribution to a non trivial limit.
When « exists, a simple convexity argument shows that it is unique. In all cases, T, is almost surely finite
for any n € N.
We give an estimator of the c.d.f. F' of v using the path Sjo1,) = { S, 0 <t < T, }. Even if they do not
have an explicit formulation, these estimators are easily computable as we will see in the next sections.

Theorem 1.1. Suppose that the c.d.f. F of v is y-Hdlder for some v € (0,2] and that v satisfies Assumption
(H). There exists a constant C,, depending on the distribution v such that, for any integer n > 2, there exists
an estimator F,, = f, (S[O,Tn]) of the c.d.f. F satisfying

]E”[Ilf —F }< C”(loin)ﬁm if E[logpo] <0,

C, k\’/gﬁ” if E”[logpo] =0.

Moreover, for any integer n > 1 and any real number z > 0, there exists an estimator ﬁi = f? (S[O,Tn]) such

that if BV [log po] < 0,
~ 1 2 Lm
P (F;—Fnoo >C, (” Og”) ’ ) <e .
n

In the recurrent case, the rate logn/y/n is, up to the logarithmic factor, the rate of convergence of the
empirical c.d.f. when the environment (w,)o<z<n is observed. This is the best rate reached by our estimator
expressed in terms of the number n of visited sites. This is not surprising since the walk visits each site many
times and can basically learn the environment itself. In the transient regime, the rate deteriorates as x increases;
this was also expected since the walk derives faster to infinity in this case and time T}, is smaller. This is a
reason why it can be more natural to express the rates of convergence as functions of the number T;, of observed
steps of the walk. Combining Theorem 1.1 with convergence results for the distribution of T,,, see [22] for the
transient case and [18] for the recurrent case, yields the following corollary.

Corollary 1.2. Grant the conditions of Theorem 1.1. For any positive increasing function f such that
limg 4 o0 f(2) = 400,
Tim P (1B, = Flloo = 7(Tu)f(T) ) =0,

r(Tn) = % B when EY [log pg] = 0,

r(Tn):(W)m whenEY [logpo] <0, 0 < Kk < 1,
e r(Tn) = (%)ﬁ when B [log po] < 0, & =1,

r(T,) = (%)ﬁ when EY [log pg] <0, k > 1.

In the original paper [13], there is a misprint in the rate for the case E¥ [logpg] < 0, 0 < k < 1: it is easily
checked that, as written above, the logarithmic term is (log T),)*/* and not log T,.

In the non parametric case, there seems to be a trade-off between exploring more sites (increasing ) to get
information about more realizations of v and spend more time on theses sites (decreasing ) to have a better
knowledge of these realizations. And, in terms of T;,, the fastest convergence of the estimator is obtained for
k = 1. This looks surprising compared to the results of [16] where the rate 1/4/T,, can be recovered in the
ballistic regime (k > 1).

The results of Theorem 1.1 and Corollary 1.2 are illustrated with some experiments on synthetic data using
Beta distribution B(a,b). In this example, F is clearly infinitely differentiable and simple computations show
that kK = a — b. Figures 1-4 show the estimates of the c.d.f. for various values of x and n = 500. They also

provide the value of the selected model M,, and the value of the loss Nag = |F— F\yn lloo- The red curve is the
empirical c.d.f. knowing the environment (wy )o< <, ;-
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FIGURE 1. Recurrent case B(3,3): FIGURE 3. k = 1, B(4,3): n =
n =500, T, =~ 8.7 x 10°, M,, = 99, 500, T,, = 8553, M, = 28, Ny =~
N ~ 0.029. 0.063.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. kK =0.5, B(3.5,3): n = FIGURE 4. K = 3, B(6,3): n =
500, T, = 198284, M, = 49, 500, T, = 1732, M,, = 13, Ny ~
Ny =~ 0.047. 0.156.

1.3. Estimation of the moments of the environment

We suppose in this part that E¥[log pg] < 0. This section presents estimators of the moments of the environ-
ment and the key martingale arguments underlying the concentration property. These will be the basic tools
to build and control the estimator of the c.d.f.. Following [10], let

L(to,x) = Z 1is,=2,5,11=c—1}

0<t<tp—1

denote the number of steps to the left from site x until time ¢3. The process
(Z;l)ogwgn = (L(Tna n— :L‘))nggn

is an exhaustive statistic that is the building block of our estimation strategy. According to [22], (Z7)o<z<n
has the same distribution as a branching process in random environment with immigration (Z;)o<z<n. Under
the annealed law P¥, (Z,)zen is an homogeneous Markov chain starting at 0 with transition kernel

K (i, j) = ( *.j) / "4 (1 - aP(da) (3)

7
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(see [10, Proposition 4.3]). Moreover, if E” [log po] < 0, (Z;)zen is positive recurrent and aperiodic and admits

a unique invariant probability measure 7 (see [10, Theorem 4.5]).
Equation (3) shows that it is natural to estimate the moments

m®? =E” [w§ (1l —wo)’] = /0 a®(1 —a)’v(da).

Our estimation strategy is based on the following simple equality. For any «, 8 € N,

Vi > o, Z(i_a+j_ﬁ)ai+1(l—a)j:ao‘(l—a)ﬁ.

4 T —
jzB

Integrating this with respect to a and using (3), this gives, for any «, 8 € N,

Vi >0, Vo € [Ln), m* Lsay =B [®a5(Z71, Z0)| 251 = i] (4)
where, for any integers i,j > 0,
i+j—(a+p) a—1;. —1,.
o ,B(z J) _ ]l{> >8) ( Ji,a ) _ ]1{> >8) =0 (Z — 6) ?:O (] — E)
a,p\t:7) = Miza,j> it = Hiza,j> atp—1,. , . :
() ST+ -0

It is therefore natural to estimate m®# by the following estimator:

n n—1
o 1 n n a
mnﬁ = Na Z cI)a,ﬁ(Zazflv Zac) where N = ;::0 1{2520}7 (5)

nor=1

with the convention that 0/0 = 0. Indeed, Equation (4) implies that, for any «, 8 € N, the triangular arrays
(Xfff)ogxgn<oo defined, for all n > 0, by Xf;’ég =Qandforl <z <n, Xfff =®,3(22 Z")—mo"ﬁ]l{zn >a)

rz—1“x
are martingale difference arrays. Then Mc Diarmid’s inequality [27] gives a control of the risk of our moment
estimators:

1
Vn>1, Vz>0, P¥ ’ﬁ%f{ﬁ — mo‘ﬂ’ > n(oz—l—ﬁ) i < 2"
Ne\ « V2n

Note that, if E” [log pg] < 0, NTS =1 ZZ;& L{zn>a} converges to some positive constant according to ergodic

theorem and if E” [log pg] = 0, N&/n > 1/2 with large probability. Therefore, for any a, 8 > 0, m%# converges
at parametric rate y/n.

1.4. Estimation of the cumulative distribution function

We now want to use the estimation of the moments m®? to approximate the cumulative distribution function
F of v. Define for any u € [0,1] and any M € N*,

[(M+1)u]—1 M
FM(U) — Z <k)mk,JVIk’
k=0

where Z;;:lo =0 and x — |z] is the floor function. A classical approximation result shows that, if F' is Hélder
continuous, F'M converges uniformly to F' when M tends to infinity. Thus, we only have to estimate F'* using
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the same kind of estimators as in the previous section:

[(M+1)u n n
Fé\/[ NM Zw - J Zm’ 1?Za:)7

noop=1

where NM = """ 1 zn>ap as in (5) and

i) =05 (1,7,

using the conventions 0/0 = 0 and (Z) = 0 for n < k. Remark that

-1

CNEDY (A,f) vtk (i ),

k=0

for any ¢ > M, where @, pr—y, is defined in (4). This estimator is then essentially the estimator of F M obtained
from the moment estimators of Section 1.3, but using only the sites = satisfying Z7'_; > M. The Vandermonde’s
identity Zi\/[:o (}C) (Mj_k) = (””) for any 4,5 > 0, shows that any FM is a (random) c.d.f.. Assuming that, for
some vy € (0,2], the c.d.f. F is v-Holder with Holder norm ||F||,, we get an upper bound on the risk:

= NM n (M +1)7/2 ©)

~ n z+log M 2| F
VM,n>1, Vz>0, P <||F,§VI—F||OO > tlogM - 2IFl, ) < 2%,
n
The first term in the bound is derived from the martingale argument presented in the previous section. The
second term is the upper bound on the bias of this estimator derived from the error approximation between FM
and F. It is interesting to notice that, although F™ is a histogram, one can take advantage of the regularity of
F up toy=2.

Our final estimator ﬁn given by Theorem 1.1 is obtained via Goldenshluger-Lepski’s method, see [17], using

the collection (ﬁ,{” )ar>1. This method selects, for any fixed z > 0 but without the knowledge of 7, a regularizing

parameter Z/W\,f > 0 such that the estimator EJLV[ " optimizes, up to a multiplicative constant, the bound given
by (6). To derive the rate of convergence of this estimator and conclude the proof of Theorem 1.1, we have to

study the asymptotic behaviour of N;?l when M and n go to infinity. This study is performed separately for
the recurrent case and the transient case.

Indeed, in the transient case, the Markov chain (Z), .y admits an invariant probability m while it does not in
the recurrent case. Therefore, in the transient regime, we can show that N¥ /n concentrates around 7 ([M, 00))
using the concentration inequality for Markov chains of [11] and that 7([M, +00)) ~ C, M ~* using the estimate
of the tails of W from [22]. Theorem 1.1 then follows from a classical optimization of the parameter M.

In the recurrent case, convergence results for the distribution of Tj,, see [18], and the strong Gaussian
approximation theorem of [26], imply that N /n is asymptotically almost surely 1 if M grows as a power of n
which is enough to obtain the result of the theorem.

2. GRAPH DIRICHLET DISTRIBUTION

This part is based on a joint work [25] of Xiaolin Zeng with Bartosz Kolodziejek and Jacek Wesolowski.



ESAIM: PROCEEDINGS AND SURVEYS 45

2.1. Introduction

Dirichlet distribution is well known in probability and statistics. It has applications in e.g. Pdlya urn (or the
more general Dirichlet urn, see Johnson et al. [21]), directed edge reinforced random walk [29], and in Bayesian
statistics as a common prior distribution (see [21]).

To fix the notations, given d > 2, we say that X = (X1,..., X4_1) supported on M = {x € (0,1)%!, 1+ -+
z4—1 < 1} follows the Dirichlet distribution with parameter o = (aq,...,aq) € R%,, denoted by X ~ Dir(a),
if its law is f(x) Hfl:_ll dx; where

d d
o) = Lo (@)=t O T, @
[Tizi Tlew) 2y
It is often said, with a slight abuse of notation, that X = (X,..., X4_1,X4), where Xg =1 — Z?;ll X;, also
follows a Dir(«) distribution (notice that here, the number of X; is the same as the number of «;, contrarily to
the previous case). We use this abuse of notation in the following.
Classically, it is related to the Dirichlet urn process: assume that «; € N* for all i = 1,...,d, and let there
be initially «; balls of color ¢ in the urn. The Dirichlet urn process is a stochastic process (V;,)nen taking values
in {1,...,d}, constructed by the following rules:

(1) At time n > 0, draw a ball uniformly at random from the urn, its color is denoted by Y,;
(2) Put back immediately this ball into the urn, and add in the urn an additional ball of the same color
before the next drawing.

The process Y = (Y},)n>0 is related to X by: The law of Y is the same as, first sample a probability measure
x = (x1,...,2q) from X ~ Dir(a), then run an i.i.d. process that takes value i with probability x;. This can
be seen by direct computation of finite dimensional marginal distributions of the two processes (see Johnson et
al. [21]; see also Zeng [37] Section 1.3).

Another classic story in which Dirichlet distribution plays a role is the shooting board game in Bayesian
statistic. Comnsider a random experiment producing outcome 0,1,...,k with probability respectively equal to
qo,q1,---,qr and repeat this experiment successively and independently infinitely many times. If we count
the number of outcomes 1,.. .,k until 0 is occurred r times, let Ny,..., Ny be the number of times each result
1,...,k occurs. The random vector N follows a negative multinomial distribution with parameter (r; ¢, ..., qx),
i.e. the probability to observe n = (nq,...,ng) is

k Tk
) r+n|—1 "
P(N;=mn;, 1<i<k)= <n1 n nk) (1—Zqz‘> HqiLa (8)
v i=1 i=1

where |n| =ny +ng + -+ + ng.

Dirichlet distribution is the conjugate prior for the negative multinomial distribution (as likelihood): if ¢ is
drawn from a Dirichlet distribution of parameter (8, aq,...,az), then the posterior, the new estimation after
the observation n follows again the Dirichlet distribution with parameter (8 + r, a1 + ny, ..., ar + ng).

We are going to generalize the Dirichlet distribution so as it will depend on a finite decomposable graph
G = (V, E) and parameters o = (a;);cv € RY, and 8 > 0, and list some of its properties and one of its related
processes. We call this generalization graph G-Dirichlet distribution. In particular, the classical Dirichlet
distribution becomes a G-Dirichlet distribution with G being the complete graph. We will use a particular
graph as an example of application, called the nasty graph in this manuscript, depicted in Figure 5.

2.2. Decomposable graph and definition of G-Dirichlet distribution

For details of proofs and references of the claims in this section, please see [25]. An undirected simple graph
G = (V,E) is said to be decomposable if it admits a perfect eliminating sequence, which provides a way to
decompose the graph (like in a finite tree graph, we can decompose it by removing its leaves). More precisely,
a graph G = (V, E) with V' = {v1,...,vq} is decomposable if there exists a permutation o (called a perfect
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eliminating sequence) of order d such that for all k =1,...,d — 1, the vertex v, is simplicial in the inducted
subgraph of G with vertices set {vg(k), ..., Vs(a)}. We recall that a vertex v is simplicial in G if its neighbors in

G form a clique (i.e. a subgraph which is a complete graph) in G.

Remark 2.1 (Chordal graph). There is a simpler definition for decomposable graphs: a graph is decomposable
if it is chordal, i.e. a graph in which all cycle of four or more vertices have a chord. There are other character-
izations for decomposable graphs, see [23] for the precise definition of cycles and chords, and a more complete

introduction.
In Figure 5, we depict one perfect eliminating sequence of the nasty graph in which we identify v; to i
fori = 1,...,5, 0 = id, and we illustrate how successive simplicial vertices are removed. Note that perfect

elimination sequence is not unique for a given decomposable graph.

1
an
&n
en

FIGURE 5. Decomposition of the nasty graph with perfect elimination sequence o = id.

Given a finite graph G = (V, E), let Cg be the collection of cliques of G. If C € Cg, we say that C' is a clique
of order |C| (the cardinality of C); in particular, there is only one clique of order 0, which is the empty set.
A clique C € Cg is said to be maximal if it is not strictly contained in a larger clique. We denote by C; the
collection of maximal cliques of G.

Another equivalent definition of a decomposable graph is: G is decomposable if C;r allows a perfect ordering,
i.e. we can order the elements of Cg+ as C1,...,Ck (so K is the number of maximal cliques) in such a way that

for any j € {2,..., K}, there exists i € {1,...,7 — 1} such that

j—1

0#S;:=CinlJCcCi
=1

The sets Ss, ..., S, defined above are called minimal separators of G, they need not to be distinct. Moreover,
the family Sg :={S CV: Jk € {2,...,K}, S = Si} is called the set of minimal separators. For S € Sg, the
number of indices k£ such that S = Sy is called the multiplicity of the minimal separator S and is denoted by

vs. Both S5 and vs do not depend on the perfect ordering.

For example, on the nasty graph, we have C; = {1,2,3}, C2 = {2,3,4}, C5 = {3,4,5} and Sy = {2,3},
S3 = {3,4} and K = 3.

Given a finite decomposable graph G = (V, E), let G* be its complementary graph, i.e. G* = (V| E€), where
the complementary of E is taken as the edges that do not exist in E (an edge of the form {¢,4} is not allowed).

Recall that Cg- is the collection of cliques in G*. From now on we identify V' = {vy,...,v4} = {1,...,d},
and use x1,...,xq to denote indeterminate variables associated to the vertices. Let |C| denote the number of

vertices in C, and ¢ (x) = [[;c @i, with the convention my(x) = 1, for © = (z;)icy. We define the graph
polynomial Ag of formal variables (z;,7 € V') by

Ag(z)= Y (-1)“mc ().

CeCgx
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To fix the idea, one can think of the x; as real numbers. In fact they are generators of a monoid algebra defined
in Section 2.3. For A C V, let G4 be the graph induced by the subset A of G, that is, defined by

gA = (Aa {{27]} € E7 27.7 S A})7
and

Mg = {CC € (071)d7 VACYV, AgA(.%'A) > 0}
where z4 = (z;);ca. We are ready to define the graph Dirichlet distribution.

Theorem 2.2 (Definition of Graph Dirichlet distribution). Given a finite decomposable graph G = (V, E), let
V| = d, for a € (0,00)¢ and B > 0, a random vector X = (X;)iev € (0,1)V is G-Dirichlet distributed with
parameters a and 3 if it has the probability density function

(@) = Kg(a, B)lag () Ag (x)* ] ag ™
%

where
HCec;S r (|QC| + B)
B)m™ Hiev ['(a;) Hs@sg I(|as| + B)vs ’

and Cé‘ is the collection of mazimal cliques of G, S5 is the collection of minimal separators of G and vs is the
multiplicity of S, and |aal =3 ,c 4 i for any A CV, and m is the number of connected components of G.

Kg(a,B) = T

Example 2.3 (Examples on complete graphs and on the nasty graph).

(1) For d > 2, let G = K4—1 be the complete graph with d — 1 vertices. G* is the completely disconnected
graph, so it only has cliques of order 0 and 1. If we denote

xg:=0Ag(x)=1—a1 —29 — -+ —Tg_1,

and note the fact that there is only one maximal clique of G: G itself, then we recover the classical
Dirichlet distribution discussed in (7).
(2) Let G be the nasty graph depicted in Figure 5, then we have

Ag(x)=1—x1 — @9 — T3 — Ty — T5 + T1T5 + T1T4 + TaT5.

It appears that, by definition,

5 5
/ Ag(x)ﬁ_lnx?ﬁl Hdmi
Mg i=1 i=1

D(8) [1;_, T(ew) - T(az + as + B)l(as + s + B)
T(ar +as+az+ ) (ae +as +as+ B)(as + s + a5 + 8)

2.3. The graph negative multinomial distribution

Similar to the shooting board game, we can construct a distribution for which the graph Dirichlet distribution
is its conjugate prior.

Theorem 2.4 (Definition of Graph negative multinomial distribution). We use the same notations as in
Theorem 2.2. Let G = (V, E) be a finite decomposable graph. A random vector N = (N;);ev € NV is distributed
according to the G-negative multinomial distribution of parameters r > 0 and p = (p;)icv € Mg, if

Kg(n,r . n:
ng((n))Ag(p) 117 (9)

eV

P(N; =n; 1<i<d)=
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and this expression defines a probability mass function on NY. Moreover, the G-Dirichlet distribution is a
conjugate prior for N.

Note that, when G is a complete graph, we recover the negative multinomial distribution defined in (8).

Next we give a probabilistic interpretation of the G-negative multinomial distribution such as the shooting
board game, i.e. we will describe a random experiment such that, if N is G-negative multinomial distributed,
then the probability of outcome n equals the one defined in (9).

The interpretation uses a theorem of Cartier and Foata [6], which holds for any graph. To simplify our
presentation, we will rephrase their theorem in our setting. Recall that we fix G = (V, E), a finite decomposable
graph. Consider V as the alphabet, its elements are called letters, and let V* denote the free monoid generated!
by V. Elements of V* are called words. Recall that E° is the edge set of the complementary graph G*, it
induces a commutation structure on V: vjvy = vou; if and only if {v1,ve} € E€.

We say that two words w, w’ are adjacent if there is wy,wy € V* and {v1,v2} € E° such that

W = Ww1vV1v2wW3, ’LU/ = W1V2V1W2.

Two words w, w’ are equivalent, and denoted by w ~ w’, if there is a sequence of words wy = w, w1, ..., wy, = w’
such that consecutive words in the sequence are adjacent. Let L = V*/ ~ be the quotient monoid. Elements in
L are denoted by [w], where w is any representative of the equivalent class [w]. We say that L is the quotient
monoid induced by G = (V, E).

For any clique C' € Cg+, we denote by [C] = [r¢], the equivalent class of product of letters in C, this notation
is well-defined since all vertices in C' commute with each other.

Theorem 2.5 (Cartier Foata). For any graph G = (V, E), let L be the quotient monoid induced by G. The
following equality holds in the monoid algebra of L over Z,

-1

Yo e =Y wl (10)

CeCg= [w]eL

Remark 2.6 (General graph). The above theorem holds for any finite graph, but we only use it for decomposable
graph G. When the graph is not decomposable, one can still define the Graph Dirichlet distribution, but our
explicit expression of probabilities and normalizing constant no longer hold.

Corollary 2.7. Let L be the quotient monoid induced by a decomposable graph G = (V,E). Let ¢ : L — NV

be such that e([w]) counts the number of each letters in w, any representative of [w], clearly ¢ is well defined.
Kg(n)

o) where

Fiz n € NV, the number of elements [w] in the quotient monoid L such that e([w]) = n equals
Kg(n) = Kg(n,1).

By the above corollary, we have, the probability that a G-negative multinomial (with parameters r =1, p €
Myg) distributed random variable N equals n is

P(N =n):=p(n) = f‘f((z)) Ag(p) H i
eV

= (Kg(n) Hp?i) (Agp)™)™

v (n) icv

-1

= Z H p;" Z T (P)

[w]:e([w])=n i [w]eL

Lywith the operation as concatenation of words, i.e. finite sequence of letters.
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_ Z[w]:s([w]):n 7Tw(p)
Z[w]EL 7Tw(p)

where we used (10) to deduce that Ag(p)~t = > (wjer Tw(P), by the (monoid algebra extension of the) specifi-

cation map i — p;, Vi € V. We see that, to sample N, we can first sample an element [w] in L with probability
proportional to 7, (p), then take the pushforward measure by €. This process generalizes the shooting board
game.

S
)
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