
HAL Id: hal-04477581
https://hal.science/hal-04477581

Submitted on 26 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Root and shoot competition lead to contrasting
competitive outcomes under water stress: A systematic

review and meta-analysis
Alicia J Foxx, Florian Fort

To cite this version:
Alicia J Foxx, Florian Fort. Root and shoot competition lead to contrasting competitive outcomes
under water stress: A systematic review and meta-analysis. PLoS ONE, 2019, 14 (12), pp.e0220674.
�10.1371/journal.pone.0220674�. �hal-04477581�

https://hal.science/hal-04477581
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Root and shoot competition lead to

contrasting competitive outcomes under

water stress: A systematic review and meta-

analysis

Alicia J. FoxxID
1,2*, Florian Fort3

1 Plant Biology and Conservation; Northwestern University, Evanston, Illinois, United States of America,

2 Plant Science and Conservation, The Chicago Botanic Garden, Glencoe, Illinois, United States of America,
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Abstract

Background

Competition is a critical process that shapes plant communities and interacts with environ-

mental constraints. There are surprising knowledge gaps related to mechanisms that belie

competitive processes, though important to natural communities and agricultural systems:

the contribution of different plant parts on competitive outcomes and the effect of environ-

mental constraints on these outcomes.

Objective

Studies that partition competition into root-only and shoot-only interactions assess whether

plant parts impose different competitive intensities using physical partitions and serve as an

important way to fill knowledge gaps. Given predicted drought escalation due to climate

change, we focused a systematic review–including a meta-analysis on the effects of water

supply and competitive outcomes.

Methods

We searched ISI Web of Science for peer-reviewed studies and found 2042 results. From

which eleven suitable studies, five of which had extractable information of 80 effect sizes on

10 species to test these effects. We used a meta-analysis to compare the log response

ratios (lnRR) on biomass for responses to competition between roots, shoots, and full plants

at two water levels.

Results

Water availability treatment and competition treatment (root-only, shoot-only, and full plant

competition) significantly interacted to affect plant growth responses (p < 0.0001). Root-only

and full plant competition are more intense in low water availability (-1.2 and -0.9 mean
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lnRR, respectively) conditions than shoot-only competition (-0.2 mean lnRR). However,

shoot-only competition in high water availability was the most intense (— 0.78 mean lnRR)

compared to root-only and full competition (-0.5 and 0.61 mean lnRR, respectively) showing

the opposite pattern to low water availability. These results also show that the intensity of full

competition is similar to root-only competition and that low water availability intensifies root

competition while weakening shoot competition.

Conclusions

The outcome that competition is most intense between roots at low water availability empha-

sizes the importance of root competition and these patterns of competition may shift in a

changing climate, creating further urgency for further studies to fil knowledge gaps address-

ing issues of drought on plant interactions and communities.

Introduction

A major question among plant ecologists is to understand plant competition mechanisms and

their outcomes from different perspectives. Many contemporary ecological endeavors seek to

elucidate the role of competition in community structure, processes, and species coexistence

[1–6]. Evidence shows that competition impacts survival, and higher level processes such as

community diversity and spatial structure [7,8]. Past work dived deeply into understanding

the role of pair-wise species competition on outcomes observed in communities and in field

settings [9–12]. But, only a small section of the literature describes the competitive contribu-

tions of roots and shoots separately (Fig 1) and their interaction with environmental con-

straints—which is critical considering the contribution of roots and shoots to ecosystem

processes and responses to environmental changes[13–15].

Most competition studies focus on competitive outcomes on shoots. But competitive behav-

iors resulting from shoot competition, may not influence competitive root responses in the

same plant [16], thus the influence and outcome of roots interaction needs specific consider-

ation. Traits can predict competitive ability and performance in environments [17,18], and

Kembel & Cahill [19] showed that roots face different environments than shoots leading to

variable correlation of above- and belowground traits in response to the environment. A meta-

analysis on studies that physically partitioned roots and shoots during competition under

nutrient stress found that roots imposed more intense competition than shoots reporting a

42% biomass reduction–indicating intense competition. [20]. An important remaining ques-

tion is on the role of water in competition.

Water is a critical resource that allows plant growth, and related physiological processes

such as cell growth and nutrient transport to shoots [21,22]. In cases of low water availability

plants can close stomata to limit water loss and CO2 capture [23]. Plants can also respond to

low water availability by allocating more mass to roots to acquire the limited resource [24,25].

Generally, while water stress reduces plant size, root allocation, branching, length, and uptake

increase to maintain soil water capture capacities [26–29] (Fig 2). Conversely, water stress

reduces shoot growth, leaf area, new leaf production, and photosynthetic light conversion

[27,29–31] (Fig 2). Resulting diminished light interception and metabolic activity above-

ground [32], coupled with increased absorptive root area under water stress should intensify

competition between roots more than between shoots (e.g. [33]), but the literature presents

mixed evidence related to their outcomes.

Root and shoot competition differ under drought
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Despite established patterns of the effects of water stress, water stress intensifies, decreases

or produces no measured outcomes on root-only or shoot-only competition (e.g. [34–36]. The

different physiological processes of roots and shoots to drought, may reduce resource need.

These differing activity levels during drought may also have strong effects on above- compared

to belowground performance that may affect the intensity of root and shoot competition in

water limited environments. This is critical due to the predicted variable global precipitation

patterns and increased regional aridity due to climate change [37]. Environmental constraints

such as resource stress, change the intensity of the competition among species [38–41] and low

water availability can intensify [42,43] or weaken competition [44].For example, water loss of a

nurse shrub due to dry soil reduced mortality in a protégé shrub [45]. Despite the substantial

impacts water limitation imposes on competition and survival compared to nutrient stress

[46], the literature pool on water and competition is comparatively small so syntheses would

advance our knowledge by elucidating patterns.

We conducted a systematic review and meta-analysis to provide resolution on the intensity

of root and shoot competition under water stress. We assessed whether roots and shoots

impose different competitive intensities in studies that physically partitioning roots and shoots

during competition experiments under different water availabilities (Fig 1). We hypothesize

that: 1) competitive intensity of root-only, shoot-only, and full competition will differ under

varying water availabilities; 2) competitive intensity will differ between low and high water

availability treatments; and 3) root competition will differ from shoot competition at varying

water availabilities.

Fig 1. Study treatments. Competition treatments of root-only, shoot-only, full competition and, monoculture of partition studies.

https://doi.org/10.1371/journal.pone.0220674.g001
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Methods

Literature search

We sought peer reviewed literature using the ISI Web of Science searching platform. A search

was performed on 2 May 2019 of the following title and topic with Boolean terms and wildcard

symbols to broaden the search: [(shoot� AND root�) OR (above AND below)] AND

[(competit� OR interact�)], topic: “water stress.” Search results were refined by research areas

of plant sciences, agriculture, genetics, heredity, forestry, and environmental sciences, and

ecology (See S1 Table and S3 Table for study checklists [47]). Citations within relevant articles

were searched as well. Abstracts were then evaluated for relevance and kept if they met the fol-

lowing experimental criteria: experimental designs that contained root-only, shoot-only, and

or full competition, and a control group (Fig 1), all under a high and low water availability

treatments. Authors were contacted for data sharing when essential data were not imputable

or extractable.

Data collection

Studies were included in the analyses if we acquired response variables, standard deviation,

and sample sizes, either from the study, the study authors, or from figures. When data were

only available in graphics, those data were extracted using the free web-based application Web-

PlotDigitizer v4.1 [48]. We extracted data from figures from three studies [34,49,50]. Two

studies implemented multiple water treatments [51,52], so data from the two extreme

Fig 2. Competition and water stress impacts. Morphological and physiological above- and belowground competitive responses to water availability.

https://doi.org/10.1371/journal.pone.0220674.g002
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treatments were used (highest and lowest water availability). Nutrient treatments were used in

some studies, but this was not replicated in all studies nor a target hypothesis so, only data from

the lowest nutrient level were utilized. Fixed effects from each study included water treatment

(low and high water availability treatments), competition treatment (control, root-only, shoot-

only, or full competition) (Fig 2), and focal species nested within study as a random effect.

Analyses

All analyses were performed in R v3.6.1 [53]. We constructed mixed effects meta-regression

models to compare the log response ratio values (lnRR). Models were constructed using the

“rma.mv” function in the “metafor” package [54] in R [53]. Models were compared using

logliklihood ratio test that used the “anova” function. To test whether water treatments modu-

lated outcomes of the competition treatments, the full model assessed the interaction between

water availability levels (low and high availability) and competition treatments (root-only,

shoot-only, and full). The reduced models were compared to the full model to determine

which explained more variation in plant growth. The reduced models assessed plant growth

response to water availability, or plant growth responses to competition treatment, and plant

growth responses to the additive effects of competition and water treatments.

The effect sizes lnRR [53]. Log response ratios are the proportional change in treatment

groups compared to the control group [55]. They are symmetric around zero and taking the

log linearizes the ratio and leads to a generally normal distribution when the treatment mean

is not zero [55]. Log response ratios measure the intensity of interactions; negative values

denote competition and positive values denote facilitation, while a lnRR of zero denotes no

effect of treatment [56]. The lnRR values were calculated in R using the “ROM” measure in the

“escalc” function in the “metafor” package [54]. The “ROM” measure underlies the equation:

lnRR ¼ ln
XE

Xc
ð1Þ

Where XE is the biomass mean of treatment group plants compared to the mean of the control

group XC. Here, the lnRR values were calculated over study and species and compared between

root-only, shoot-only, and full competition, as well as water availability levels. The calculated

lnRR is the most likely effect size but confidence intervals are important in interpreting meta-

analyses outcomes [56]. They indicate how confident one is in the directionality of an effect size

and tell the full range of effect size for the treatment [56]. If the lower bound confidence interval

overlaps with zero, the results are not statistically significant [56]. The sampling variances of the

lnRR were calculated in R using the “escalc” function, and the equation follows Hedges et al. [53]:

SD2
E

nE � X2
E

þ
SD2

C

nC � X2
C

ð2Þ

Where nE and nC and SDE and SDC are the sample sizes and standard deviations for the experi-

mental and control groups respectively. Standard deviation was not reported in two suitable stud-

ies [51,52], but were imputed to reduce publication bias and improve variance estimates

compared to when data from an incomplete study are excluded [57]. So, the standard deviation

was calculated using F-statistics reported in the original study using Eq 3 (L. Hedges, Personal

communication):

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYC � YEÞ
� 2
�

F
nCþnE
nC�nE

 !� 1
v
u
u
t ð3Þ
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where nC and nE are the sample sizes of the control group and treatment group respectively.

Additionally, YC and YE are the mean values of the control group and treatment group respec-

tively, and s is the imputed standard deviation. Standard deviations were also imputed for one

study [51] using a linear regression between sample sizes and pooled standard deviation values of

studies with known standard deviation values using the following equation [57]:

SDj ¼ avgXj � ð
PK

i SDi=
PK

i avg XiÞ ð4Þ

where SDj is the standard deviation of the study with missing information and SDi is the standard

deviation of samples with full information, Xi is the mean of the lnRR of full studies and Xj is the

mean of the lnRR of the study with missing information. We performed contrasts to test the

hypotheses that root competition differed from shoot competition at differing water levels, and

the hypothesis that competitive intensity differed between water availability levels. Contrasts were

specified in the “anova” function from the “car” package [58]. Finally, we tested for publication

bias by performing a Rank Correlation Test for Funnel Plot Asymmetry using the “ranktest”

function in the “metafor” package. This helps determine if the observed outcomes and variances

are correlated, indicating publication biases [54].

Results

Literature search

The search results yielded 2042 studies (Fig 3).The broad search terms led to many studies that

were usual competition experiments that lacked partitions or had suitable methods but manip-

ulated nutrients (see Kiaer et al. [20]) and not water levels, or manipulated no resource. Eleven

studies with applicable methods were found. One researcher provided data from her study

[36]. Five studies with extractable information were included in the meta-analysis on ten spe-

cies, containing 106 data points, and 80 lnRR outcome measures (Data for calculations; S2

Table). Data useful for calculating effect sizes and variance were unavailable in figures or

through authors in other studies and were excluded from analysis. One excluded study used

trees as focal plants [59] while all others utilized herbaceous or shrub species. Furthermore,

this study [58] and another [35– also with missing data] used spatial (site differences) and tem-

poral (drought year and rainy season) proxies for water treatments likely introducing hetero-

geneity and doubts on whether the effect sizes are drawn from the same population–an

assumption of fixed effects meta-analytic models [60]. Another study [49] was excluded due to

the response measure being shoot to root ratio while all other studies used direct biomass mea-

sures. In total, 16 species were represented in all twelve studies published across a 46-year

period from 1961–2007 (Table 1).

Interaction outcomes from meta-analysis

The model that best fit the data included an interaction between competition treatment and

water treatments (Qdf = 5 = 395.5, p< 0.001) (Table 2), whereby competition and water treat-

ments interacted to significantly affect plant growth. Root-only, shoot-only and full competi-

tion exhibited different responses to water treatments while opposing competitive outcomes

are recorded at low water availability (Fig 4). Shoot-only competition in high water availability

resulted in a lnRR of -0.78, while, root-only and full competition are -0.5 and -0.61 respec-

tively, meaning shoot-only competition was on average more intense (Fig 4). Conversely, at

low water availability, root-only and full competition treatments resulted in more intense com-

petition (lnRR = -0.9, and lnRR = -1.2, respectively) than shoot-only competition (lnRR =

-0.2) (Fig 4).

Root and shoot competition differ under drought
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Root only-competition significantly differed from shoot-only competition at low water

availability (p< 0.0001) and under high water availability (p = 0.04), where root-only competi-

tion was more intense under low water availability compared to high water availability.

Though there are large confidence intervals for shoot-only competition at high water availabil-

ity reduces our certainty of the true effect size.

The heterogeneity between studies (Qm on 5 df) is 395.5 indicating that heterogeneity

between studies is high and given a Q> 100 we reject the null hypothesis that the variance

Fig 3. PRISMA flow diagram for study selection. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items

for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 10.1371/journal.pmed1000097. For more information, visit:

www.prisma-statement.org. [61].

https://doi.org/10.1371/journal.pone.0220674.g003

Root and shoot competition differ under drought
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component is 0 [55]. Large heterogeneity indicates that here are differences between studies

and unexplored sources of variation we did not capture in the analyses. This is reinforced by

the high I2 values (Table 2) denoting that a large part of the variation remains unexplained.

Root-only and shoot-only competition had significantly different responses to water treat-

ments (p<0.001) where root-only competition was more intense than shoot-only competition

under low water availability and the opposite pattern at high water availability treatments (Fig

4).The overall plant response was only slightly impacted by water availability (p = 0.1). Low

water availability caused weaker competition compared to high water availability when aggre-

gated over effect sizes of all treatments. The rank correlation test for funnel plot asymmetry to

test for publication bias revealed some correlation between studies (Kendall’s tau = 0.153,

p = 0.05) indicating publication bias.

Study Assessments: Competitive outcomes

Welbank [62] is the earliest experiment considered and assessed competition between Impa-
tiens parviflora and Agropyron repens in pots and only included full competition and shoot-

only competition which provides indicative rather than direct impacts of root competition.

Full competition under low water availability had a slower growth rate (biomass) than in high

water availability and full competition suppressed growth rate more than shoot-only competi-

tion, indicating that the inclusion of root intensified competition. In another study, Wilkinson

Table 1. Characteristics of studies assessed in this systematic review.

Study Experimental Setting Target Species Response measure Used in Meta-analysis

Bartelheimer et al. 2010 Outdoor–mesocosm Senecio aquaticus; Senecio jacobaea Total biomass Yes

Bornkamm et al. 1975 Setting unknown–

pots

Arrhenatherum elatius; Bromus erectus Root biomass Yes

Lamb et al. 2007 Outdoor–plots Artemisia frigida; Chenopodium leptophyllum Shoot biomass Yes

Weigelt et al. 2005 Outdoor–mesocosm Carex arenaria; Corynephorus canescens;
Hieracium pilosella

Total biomass Yes

Wilkinson & Gross 1964 Greenhouse–pots Trifolium repens Total biomass Yes

Salinger & Bornkamm 1982 Setting unknown–

pots

Arrhenatherum elatius; Bromus erectus Shoot:Root ratio No

Putz and Canham 1992 Outdoor–plots Cornus racemosa Basal area daily growth

rate

No

Dauro & Mohamed-Saleem 1995 Outdoor–mesocosm Triticum durum var. Boolai; Trifolium
quartinianum

Total biomass No

Semere & Froud-Williams 2001 Greenhouse–pots Zea mays Shoot biomass No

Haugland & Froud-Williams

1999

Greenhouse–pots Lolium perenne Total biomass No

Welbank 1961 Outdoor–pots Impatiens parviflora Biomass growth rate No

https://doi.org/10.1371/journal.pone.0220674.t001

Table 2. Table of model outcomes.

Factor Df Qm T2 I2 P -value

Competition treatment 2 28.7 0.54 98.9% <0.0001

Water treatment 1 218.1 0.57 99.4% <0.0001

Competition + water treatment 3 312.6 0.53 98.7% <0.0001

Competition � water treatment 5 395.5 0.53 98.1% <0.0001

Q test statistic assess significance of between study variation [55]; T2 measures the between study variance; and I2 measures variance explained by heterogeneity between

studies [54].

https://doi.org/10.1371/journal.pone.0220674.t002

Root and shoot competition differ under drought
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& Gross [51] aimed to understand the role of competition in Trifolium repens in stands of Dac-
tylis glomerata and introduced T. repens into stands of D. glomerata in a greenhouse study

where roots and shoots were separated by clear plastic. The biomass of T. repens at low water

availability was highest in full competition followed by root-only competition. Outcomes in

low water availability showed that full competition had the greatest mass followed by root-only

competition, then by shoot-only competition, indicating that competition was least intense for

shoot-only competition.

Bornkamm et al. [52] explored the role of water availability on competition that could

pattern distribution of the co-occurring grasses Arrhenatherum elatus and Bromus erectus. A.

elatus had smaller root mass at low water availability compared to high water availability indi-

cating suppression, and larger roots in shoot-only and full competition treatments under low

water availability. B. erectus had smaller roots in high water availability for root- and shoot-

only competition but had larger roots in low water availability showing the opposite pattern.

The follow-up study [49] used the same experimental design [52] and found that B. erectus
allocated more mass to shoots under root-only competition and low water availability com-

pared to high water availability. B. erectus also allocated less to shoots in low water compared

to high water availability in both shoot-only and full competition treatments pointing to

increased competition. A. elatus showed a differing response and had lower S:R ratio in low

water availability in root-only and full competition, while it had equal S:R in the shoot-only

competition for both water levels. Another study [59] assessed methods to curtail tree

encroachment into shrub areas and compared the interactions of Cornus racemosa on Acer
rubrum seedlings in a field study using site differences as a proxy for water treatment and

trenches with weed cloth and wire to tie shoots. Measuring basal area daily growth rate,

the authors found that the growth of A. rubrum was most suppressed by shoot-only competi-

tion—being two times smaller than under root-only competition—meanwhile full competition

most suppressed the basal area at the driest site and shoot-only plants had two times the basal

Fig 4. Effects of water availability and competition on plant growth. Meta-estimates (square points) and 95% confidence intervals. Smaller values indicate intense

competition, while larger values indicate weaker competition. Sample sizes of lnRR values are in parentheses.

https://doi.org/10.1371/journal.pone.0220674.g004
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area than root-only competition indicating weaker competition in the shoot-only treatment.

These site differences also introduce soil property and site history differences that could affect

plant growth in addition to treatments imposed.

Two studies utilized partitioning experiments in agricultural systems to understand compe-

tition in intercropped systems. Dauro & Mohamed-Saleem [35] evaluated the impacts of com-

petition between intercropped Triticum durum var. Boolai and Trifolium quartinianum in

field plots using wet and dry seasons as a proxy for water treatment and reflective foil and ply-

wood to separate shoots and roots, respectively. In both the dry and wet season shoot-only

competition did not significantly affect either species’ biomass, meanwhile root-only competi-

tion in the dry season suppressed T. quartinianum significantly leading to increases in biomass

for T. durum competitors. Semere & Froud-Williams [63] explored ways that intercropping

interactions improved yield of Zea mays and two pea cultivars with leafy and less-leafy pheno-

types in a greenhouse. The authors found that pea cultivar identity and low water availability

impacted root-only competition on Zea Mays. Both pea cultivar’s growth were not signifi-

cantly affected by shoot-only competition, while root-only competition and low water avail-

ability reduced mass by 43%. These results indicate that root-only competition impacted

growth while shoot-only competition had smaller effects, and that water stress and root-only

competition suppressed the growth of Z. mays more than shoot-only competition. Interest-

ingly, pea cultivar competitive intensity in shoot-only treatment did not differ given the differ-

ences in leaf phenotype.

Haugland & Froud-Williams [64] explored the role of competition in grassland establish-

ment of established Lolium perenne and Phleum pretense seedlings in boxes in the greenhouse.

The outcomes are not clearly reported likely due to lack of statistically significant findings in

competition treatments with water treatments. However, the authors found that low water

availability reduced growth of both species and that shoot-only competition from L. perenne
reduced the biomass of P. pratenses more than root-only competition. Some studies utilized

this approach on outdoor settings and mesocosms. Lamb et al. [34] were interested in identify-

ing the role of root-only and shoot-only competition and productivity gradients in Canadian

grassland in the field with PVC pipes for root exclusion and plastic netting for shoot exclusion.

Focal species were Artemisia frigida and Chenopodium leptophyllum and neighbors were a

mixture of grass and tree species in the natural vegetation. Shoot biomass for A. frigida under

root-only and full competition was similar and smaller than shoot-only competition under

both water treatments indicating more intense competition and suppression in these treat-

ments. Shoot biomass in shoot-only competition was smaller with higher water—compared to

lower water availability. C. leptophyllum under low water availability for full and root-only

competition had similar shoot mass outcomes, while shoot mass in shoot-only competition

treatment was higher. At higher water availability, full competition had the lowest shoot mass

mean followed by root-only then shoot-only competition. These results show that competition

intensifies when roots interact and under low water availability. The natural vegetation could

have potential diversity effects that could influence interaction outcomes though provides a

robust comparison of field performance.

Weigelt et al. [36] assessed root allocation in response to competition and resource stress in

dune species Carex arenaria, Corynephorus canescens, and Hieracium pilosella in an outdoor

sandbox mesocosm calculating competitive intensity from total plant biomass. This study

assessed root-only and full competition treatments only and did not report on competition by

water treatments responses likely due to the lack of statistical significance. The authors found

that competition for all species was generally more intense under low—compared to high

water availability. Lastly, one study explored the role root-only or shoot-only competition

played in niche segregation of co-occurring species Senecio aquaticus and Senecio jacobea
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using Phleum pratense competitors in mesocosms under drought and water-logged conditions

[50]. S. aquaticus is adapted to wet soil (e.g. marshes) and had the largest shoot mass in shoot-

only competition followed by full, then root-only competition at low water availability. It per-

formed better in high water availability for all treatments, and the competitive hierarchy of low

water availably was maintained. S jacobea had similar mass in shoot-only and root-only com-

petition treatments and full competition had the smallest mass at low water availability. This

species also had the largest shoot mass in shoot-only followed by, full, then root-only competi-

tion at low water availability indicating less intense competition with shoot competitors at low

water availability.

Discussion

The impact of increasing drought in a changing climate [65] and ever-present competition

have large ramifications for natural plant communities and agricultural systems. Specifically,

competition and water stress impacts community membership [3,66] and crop yield [10,67]

and has global importance for plant conservation and food security. We demonstrate that

water availability significantly modulates competitive outcomes where high water availability

intensified shoot-only competition while weakening root-only competition respective to com-

petitive outcomes of low water availability. These study results are important as short-term

effects of competition were a top predictor of species’ abundance in the field [68]. This system-

atic review combines study assessments and a meta-analysis on empirical evidence to reveal

competitive patterns and influence future work to advance our knowledge.

Shoot competition responses to water availability

We show in meta-analysis and in study evaluations that shoot-only competition was more

intense under high water availability than in low water availability treatments. Higher above-

ground biomass in high water availability treatments may have resulted from plentiful soil

resources available for biomass production[27,29–31]. Furthermore, greater aboveground

mass could be in response to light competition for shade avoidance responses denoting inten-

sified competition through imposing shade [69,70]. From a community perspective, research

suggests that light competition is important in ecosystems with high aboveground productivity

[71] and thus aboveground competition can impact patterns of community diversity and

dynamics [72].

To the contrary, the weakest competitive treatment was shoot-only competition in low

water availability. Water stress is known to limit plant growth leading to a reduction in leaf

area which limits shading and light competition that an individual can impose on its neighbor

[63]. Results of the meta-analysis showed that competition weakens at low water availability

when shoot competition is included, and seem to agree with the stress gradient hypothesis

which notes that facilitation and weak competitive interactions may dominate at high-stress

levels compared to low-stress [44,73]. Weak competitive interactions could be a result of plants

allocating less mass aboveground or slowing metabolic activity aboveground for survival and

defense under stressful conditions [32]. This is interesting given that competition in dry envi-

ronments is high, though thought to be concentrated belowground [74], however, we clearly

demonstrate that when shoot competition is considered alone water availability is a key factor

modulating its intensity and this needs exploration in different biomes.

Root responses to water availability

Root-only competition was weaker at high water availability than low water availability but

was the most intense competition group of this study at low water availability. This suggests
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that higher water supply weakens belowground competition and shows different patterns to

shoot-only competition. These results are in line with Lamb et al. [34], but counter Bartelhei-

mer et al. [50] who showed competitive suppression in root-only treatments under high water

supply. On the other hand, root-only competition was the most intense competition treatment

under low water availability. Intense root competition may be driven by roots responding to

water stress by increasing root allocation and intensity of soil exploration resulting in

increased nutrients and water uptake [24,25,75,76]. High root biomass and root length pro-

duction are known to induce intense competition between plants [77] and these morphologi-

cal changes in response to water stress likely also increase competition due to reduced

resources [10,78]. Research suggests that root competition is more intense in dry environ-

ments where productivity is concentrated belowground [74,79] and root-only competition

was more intense than shoot-only competition under low water availability. These results

along with meta-analytic findings of Kiaer et al. [20] on nutrients indicate that when soil

resources are limited, root competition is more intense than shoot competition. Despite this

strong evidence of a positive effect of water shortage on the root competition we may expect

conflicting responses when species evolve in differing environments, though more studies are

needed to better assess this hypothesis.

Whole plant outcomes and implications

The results of studies reviewed highlight the variability in species response to low water avail-

ability but generally are in line with the findings of this meta-analysis that root-only competi-

tion differs from shoot-only competition. But the contrasting results between shoot-only,

root-only, and full competition suggest that the contributions of root and shoot competition

are not additive. Rajaniemi et al. [38] showed that root-only competition experimental assem-

blages resulted in lower species diversity compared to shoot-only competition assemblages.

Also, Lamb et al. [80] showed shoot competition negatively impacted community evenness

but was through indirect increases in competitive root responses. While aboveground compe-

tition has documented impacts on community structure [81], root competition also has strong

and apparent consequences for plant communities. Because we see contrasting outcomes in

root-only and shoot-only competition, researchers should increase the assessment of below-

ground ecology to draw more accurate conclusions about competition particularly if environ-

mental constraints would lead to a shift in biomass allocation [82].

Study limitations

These results show important interactions between plant competition and water availability.

The fixed effects used in these models significantly explained variation in effect sizes but

including other effects such as target species life history, non-target life-history, and experi-

mental setting may reduce residual heterogeneity. Given the small number of studies, these

factors could not be reliably tested without replication. Other sources of variation were in the

differences in materials used to partition plants (e.g. mesh vs. solid aboveground dividers) and

implementation of water stress where amounts that were considered “high” and “low” differed

by study. Additionally, the adaptations of target species could have influenced competitive out-

comes and responses to water stress. For example, Bartelheimer et al. [50] used Senecio aquati-
cus–a wetland adapted species–which performed poorer than the terrestrial congener in low

water availability.

Five studies ignored the role of intraspecific competition in the set-up and had focal plants

interact with conspecifics both above and belowground. Given that many species compete

more intensely with conspecifics than heterospecifics [83] this could impact the outcomes of
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competitive intensity recorded. Additionally, considering proper comparison groups is impor-

tant for quantifying the effect of a treatment. Monoculture groups with root-only, shoot-only,

full treatments under all applied water treatments serve as appropriate controls for partition

studies.

Finally, we excluded several known suitable studies from the meta-analysis due to missing

information introducing publication bias [84]. More studies in this area are needed particu-

larly to provide resolution for whether plants alter allocation in response to the source of

below or aboveground competition, shedding light on long-posited hypotheses [76]. The

results of relevant treatments in suitable studies were likely not reported due to lack of signifi-

cance, introducing selective reporting bias [84]. Authors should publish full study results

related to original hypotheses presented and parameters (e.g. sample size, responses, measures

of variability) for future synthesis and knowledge advancement.

Conclusions

The intensity of root-only and shoot-only competition showed opposing trends under differ-

ing water availability. Our results show that roots have major implications in competitive out-

comes for plants when soil resource are limited. Importantly, if we only record aboveground

responses to water stress or competition, we may conclude weak competition or facilitation

when belowground responses may reveal contrasting evidence. Future research should tie in

the role that root and shoot competition have on species coexistence in plant communities.
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