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A topological phase can be engineered in quantum physics from the Bloch sphere of a spin-1/2 showing a
hedgehog structure as a result of a radial magnetic field. We elaborate on a relation between the formation of
an entangled wavefunction at one pole, in a two-spins model, and an interesting pair of one-half topological
numbers. Similar to Cooper pairs in superconductors, an Einstein-Podolsky-Rosen pair or Bell state at one pole
produces a half-flux quantum, which here refers to the halved flux of the Berry curvature on the surface. These
1/2 numbers also refer to the presence of a free Majorana fermion at a pole on each sphere. The topological
responses can be measured when driving from north to south and from a circularly polarized field at the poles
revealing the quantized or half-quantized nature of the protected transverse currents. We show applications of
entangled wavefunctions in band structures, introducing a local marker in momentum space, to characterize the
topological response of two-dimensional semimetals in bilayer geometries.
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I. INTRODUCTION

Topological phases of matter have attracted a lot of atten-
tion these last decades [1,2]. This gives rise to interesting
current flows at the edges protected through a band gap in
the energy spectrum as in the quantum Hall effect [3]. A
topological phase can also be achieved in quantum physics
from a spin-1/2 on a Bloch sphere when engineering a Dirac
monopole through the action of a radial magnetic field [4–6].
The Berry curvature [7] is distributed on the surface of the
sphere revealing the presence of a topological charge q. This
charge gives rise to an integer topological invariant. The
hedgehog structure of the spin response on the unit sphere can
also be viewed as the formation of a Skyrmion or topological
winding number [8,9]. Geometrical properties are measured
when driving from north to south [4–6] and can also be re-
vealed through the application of a time-dependent circularly
polarized field [10]. The sphere model also finds applica-
tions in energy through a dynamo effect [11,12]. In Ref. [4],
we have introduced a pair of one-half topological numbers
from the Bloch sphere as a result of entanglement formation.
Coupling two spins in curved space reveals a stable one-half
topological number on each sphere, within the phase diagram,
when driving from north to south [4]. In this article, through
Eqs. (7) and (8), we show how the number q 1

2 can be justified
from an Einstein-Podolsky-Rosen (EPR) pair or Bell state
[13] at one pole and a pure state at the other pole.

We relate entanglement properties and the one-half number
through bipartite fluctuations [14]. The one-half number can
be measured in transport and also from the response to a
circularly polarized field acting locally on one sphere. These
half numbers can also be understood in terms of Majorana
fermions [15,16], which are their own antiparticles, each
sphere revealing one free Majorana fermion at the pole where
the EPR pair forms. The two-sphere model can be imple-
mented to realize a pair of half-Skyrmions (merons), with only
half of the surface radiating the Berry curvature. The quest

of Skyrmions and fractional Skyrmions has engendered a lot
of curiosity in physics, e.g., related to the Yang-Mills equa-
tion [17] towards recent applications in quantum Hall systems
[18–20], three-dimensional topological insulators [1,21], and
magnetic materials [22–24]. In Ref. [4], we introduced a
topological semimetal on the honeycomb lattice, in a bilayer
system, showing a phase diagram similar to the model of two
spheres. Through Eqs. (18) and (19), we show that a local q 1

2
topological marker can be introduced, revealing the presence
of a pair of half-Skyrmions and entanglement properties at the
Dirac point related to a nodal-ring semimetal.

The class of models we address takes the form of two
interacting spin-1/2’s on a Bloch sphere [4]

H = −d1.σ1 − d2.σ2 + r f (θ )σ1zσ2z (1)

with

di = (d sin θ cos φ, d sin θ sin φ, d cos θ + Mi ). (2)

We implicitly assume inversion symmetry between the two
spins such that M1 = M2 = M > 0, that will be at the heart
of the protection of the results. The function f (θ ) can be
set to unity even though conclusions remain identical for a
large class of functions f (θ ). This model is realizable in
mesoscopic and atomic physics [5].

II. GENERAL FORMALISM

Here, we introduce the geometrical formalism for one
sphere with r = 0. The magnetic field di acting on a Bloch
sphere associated to each spin- 1

2 encodes the presence of
a Dirac monopole or Skyrmion in a sphere (hedgehog). A
topological phase with one magnetic charge q in each sphere
exists as long as M < d . The parameter M corresponding to
a uniform magnetic field will allow for phase transitions. The
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two-particle wavefunction of the model Eq. (1) takes the form

|ψ〉 =
∑

kl

okl (θ )|�k (φ)〉1|�l (φ)〉2. (3)

Here, |�+〉 and |�−〉 are the usual 2-component spinors with
norm unity associated to eigenstates |+〉z and |−〉z with σ jz =
±1, which then form the Hilbert space basis. The dependence
on the azimuthal angle φ, which acts as a gauge choice in the
wavefunction, is included through |�k (φ)〉i. The amplitudes
okl depend on the polar angle θ only for this model which
can be understood from the fact that at the poles of the sphere
all φ angles are equivalent and from the rotational symme-
try perpendicular to the z axis. For M < d and r = 0, the
ground state evolves from |ψ (0)〉 = |�+(φ)〉1 ⊗ |�+(φ)〉2

onto |ψ (π )〉r=0 = |�−(φ)〉1 ⊗ |�−(φ)〉2 and follows the di-
rection of the d j vector. The subscript r = 0 will be introduced
hereafter to specify that a quantity is evaluated at r = 0, where
it needs to be specified. Geometrical properties are encoded
through the Berry gauge potential such that it acts on each
spin (sphere), e.g., A1φ = −i〈ψ |∂1φ ⊗ I|ψ〉 and the Berry
curvature reads F 1

θφ = ∂θA1φ . We have similar definitions for
A2φ = −i〈ψ |I ⊗ ∂θA2φ|ψ〉 and F 2

θφ = ∂θA2φ . When varying
r, through this article, the wavefunction at θ = 0 will remain
identical such that Ajφ,r=0(0) = Ajφ (0). The functions Ajφ

depend on θ only and Ajθ = 0.
For M = 0 and r = 0, the ground state |ψ〉 = |ψG〉 =

|ψ1G〉 ⊗ |ψ2G〉 corresponds to an energy −2d , and the ampli-
tudes okl satisfy simple relations o++(θ ) = cos2 θ

2 , o−−(θ ) =
sin2 θ

2 , o+−(θ ) = o−+(θ ) = sin θ
2 . For r = 0 and M = 0, this

gives rise to the simple identity

Ajφ (θ ) = cos2 θ

2
Ajφ (0) + sin2 θ

2
Ajφ (π ). (4)

For the symmetric gauge choice |ψ jG〉 = cos θ
2 e−i φ

2 |�+〉 j +
sin θ

2 ei φ

2 |�−〉 j , Ajφ (θ ) = − q cos θ

2 leading to the gauge-

invariant form F j
θφ (θ ) = q sin θ

2 , with q = 1 the topological
charge. The topological invariant measuring the presence of
a Dirac monopole in each sphere can be introduced as in
Cartesian coordinates [5], and takes the two equivalent forms
[4,10]

Cj = 1

2π

∫ π

0

∫ 2π

0
F j

θφ (θ )dθdφ

= Ajφ (π ) − Ajφ (0) = q. (5)

Due to the inversion symmetry between the two spheres,
the charge is identical in each sphere such that q = q1 =
q2. This is equivalently measurable locally from the Berry
phases at the poles of the Poincaré or Riemann sphere through
the function Ajφ defined smoothly on the whole surface
[4,10]. The function Ajφ (θ ) is measurable through Ajφ =
− q

2 〈ψ jG|σ jz(θ )|ψ jG〉 + Ajφ (Re f ) and Ajφ (Re f ) = 0 for the
symmetric gauge. In this article, we also report interesting
relations between quantum metric or quantum distance [25],
geometrical properties, and responses to a circularly polarized
field [10]. Activating the azimuthal angle φ → φ′ on a sphere
j, such that M1 = M2 = 0 and r = 0, this leads to

|〈ψ jG(θ, φ)|ψ jG(θ, φ′)〉|2 = α j (θ ) + 2 cos(φ′ − φ)
(
F j

θφ

)2
,

(6)

where the function α j (θ ) = cos4 θ
2 + sin4 θ

2 also measures
the response to circularly polarized light [10]. As long as
0 < M < d , the topological charge sits in the core of each
sphere and the response takes an identical form modulo,
a redefinition of the polar angle θ → θ̃ , such that tan θ̃ =
sin θ/(cos θ + M

d ) with θ̃ ∈ [0; π ].
When M → d , then θ̃ ∈ [0; π

2 ]. It is similar as if the
surface is reduced to a hemisphere which corresponds to a
half-topological number Cj = 1

2 or a half-Skyrmion. From
Eq. (4), this leads to Cj = Ajφ (θ̃ = π

2 ) − Ajφ (θ̃ = 0) = q
2 .

For M > d , θ = π leads to θ̃ → 0 such that Cj = 0. It is as
if the topological charge leaks out from the sphere. The jump
of the topological number at the quantum phase transition is
observed in Ref. [5]. It is also important to mention measures
of the quantum metric tensor related to Eq. (6) in supercon-
ducting circuits [26].

The topological characterization at the poles on the sphere
is elegant to describe topological lattice models such as the
Haldane model [27] on the honeycomb lattice [28] and topo-
logical p-wave superconducting wires [29].

III. FRACTIONAL TOPOLOGICAL NUMBER
FROM THE POLES

For two interacting spheres, as long as r < d − M, the
physics remains identical with Cj = 1 while for r > d + M,
the two spheres are described with a topological number
Cj = 0 due to the fact that the states at the two poles become
identical, Ajφ (0) = Ajφ (π ). A fractional phase with Cj = 1

2
develops on a line when adjusting r such that d − M <

r < d + M which then spreads when adding an rxy(σ1xσ2x +
σ1yσ2y) interaction. In Ref. [4], the proofs showing the ex-
istence of the fractional topological number were derived
developing the geometrical approach through Stokes’ theo-
rem, and also through a numerical analysis when varying the
polar angle linearly in time θ = vt for various forms of f (θ )
functions. Here, we derive local identities showing the exis-
tence of such fractional topological numbers from the forms
of the two-particle wavefunctions at the poles [4], |ψ (0)〉 =
|�+〉1 ⊗ |�+〉2 and |ψ (π )〉 = 1√

2
(|�+〉1 ⊗ |�−〉2 + |�−〉1 ⊗

|�+〉2). It is interesting to mention that at θ = π the two states
|�+〉1 ⊗ |�−〉2 and |�−〉1 ⊗ |�+〉2 are degenerate and the
Einstein-Podolsky-Rosen (EPR) pair or Bell state occurs as
a result of perturbation theory giving rise to a term −λσ1xσ2x,
with λ ∼ d2 sin2 θ

r if r 
 d − M, in the Hamiltonian favoring
|ψ (π )〉 compared to the singlet state 1√

2
(|�+〉1 ⊗ |�−〉2 −

|�−〉1 ⊗ |�+〉2) for θ = π−. Here, π− refers to π − ε with
ε corresponding to any small deviation from θ = π .

The formation of this EPR pair is located around θ = π

for the model Eq. (1) such that we can acquire a good (better)
understanding from the poles, generalizing Eq. (5).

If we measure Ajφ for d − M < r < d + M, locally on a
sphere at θ = π such that A1φ = −i〈ψ (π )|∂1φ ⊗ I|ψ (π )〉 and
A2φ = −i〈ψ (π )|I ⊗ ∂2φ |ψ (π )〉, then we obtain

Ajφ (π ) = 1
2 Ajφ (0) + 1

2 Ajφ,r=0(π ), (7)

the subscript r = 0 in the last term referring to the state
at south pole |ψ (π )〉r=0 = |ψ (π )〉r<d−M such that Ajφ,r=0
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(π ) = Ajφ,r<d−M (π ). To write down Eq. (7), we implicitly
assume that the choice of the Hilbert space |�±(φ)〉 j remains
identical when tuning smoothly the parameters in the Hamil-
tonian and in particular the interaction r. Now, taking into
account that for r = 0 a charge resides inside each sphere we
also have

Ajφ,r=0(π ) − Ajφ (0) = q. (8)

Inserting the identity Ajφ,r=0(π ) = Ajφ (0) + q into Eq. (7)
then leads to

Cj = Ajφ (π ) − Ajφ (0)

= 1

2π

∫ π

0

∫ 2π

0
F j

θφdθdφ = q
1

2
. (9)

Since for the specific class of models in Eq. (1) the function
Ajφ depends on θ only such that F j

θφ = ∂θAjφ (θ ), this justi-
fies the writing of Ajφ (π ) − Ajφ (0) as a topological number,
i.e., the flux produced by the Berry curvature on the surface
of the sphere. The function Ajφ is smoothly defined on the
whole surface and we can verify numerically when activating
θ = vt in time that the information at the poles is meaning-
ful and stable for all parameters range d − M < r < d + M,
even when M → 0+ implying r → d . The fractional number
Cj = q

2 reveals the formation of an entangled wavefunction
at one pole through the factor 1

2 in Eq. (7). This leads to a
“true” 1

2 response on the surface similar to the halved flux
quantum in a superconductor �s = �0

2 , with �0 = h
e [30,31]

the flux quantum value in the normal phase. The halved value
of Cj is similar to have a half-Skyrmion (i.e., a meron) on
a sphere. The subsystem j presents a superposition of two
coherent geometries, one encircling the monopole and one
participating in the entanglement structure. It is as if we have
two tori, one on top of each other, and where half of the
surface encircles the hole, the other surface becomes hidden in
the entanglement structure [4]. The Dirac string information,
which can be equivalently formulated as two thin handles
on each cylinder, is also similar to a pair of π winding
numbers [32].

IV. ONE-HALF TOPOLOGICAL NUMBER
AND EPR PAIR THROUGH LIGHT

The topological number is equivalently written as
Cj = q

2 (〈σ jz(0)〉 − 〈σ jz(π )〉) = q
2 (1 − 0), which is equiva-

lent to say that − 1
2 〈σ jz(θ )〉 = Ajφ (θ ) in the symmet-

ric gauge corresponding to Ajφ (0) = − q
2 and Ajφ (π ) =

0. Here, we introduce the definition 〈ψ (θ )|σ jz|ψ (θ )〉 =
〈σz(θ )〉. It is then useful to relate correlation functions at
θ = π with the fractional topological number. At north
pole

〈ψ (0)|σ1zσ2z|ψ (0)〉 = |o++(0)|2 = 2Cj

q
= 1. (10)

We have identified 〈ψ (0)|σ1zσ2z|ψ (0)〉 = 〈σ jz(0)〉2 =
〈σ jz(0)〉. Below, we take into account the conservation
of the norm of the two-particle wavefunction from north to
south leading to |o++(0)|2 = |o+−(π )|2 + |o−+(π )|2, with

here o+−(θ ) = o−+(θ ). At south pole

〈ψ (π )|σ1zσ2z|ψ (π )〉 = −|o++(0)|2 = −2Cj

q
= −1. (11)

We also verify 〈ψ (π )|σ1xσ2x|ψ (π )〉 = |o++(0)|2 = 2Cj

q =
1 and 〈ψ (π )|σ1xσ2z|ψ (π )〉 = 0. For the Bell pair, the
von Neumann entanglement entropy S = −Tr ln ρ1 ln ρ1 =
−Trρ2 ln ρ2, with ρ j corresponding to the reduced density
matrix of one spin j, can be defined as a measure of en-
tanglement revealing the probability for each spin to be in
|+〉z or |−〉z state. At θ = 0 and θ = π , it takes the simple
form S = −p+ ln p+ − p− ln p− with p± = 1

2 (1 ± 〈σ jz〉). For
the EPR pair, p+ = p− = 1

2 such that we reach a maximum
S(θ = π ) = ln 2. At north pole p+ = 1 and p− = 0, leading
to S(θ = 0) = 0. The entanglement entropy is accessible in
quantum circuits [33]. We have introduced bipartite fluctu-
ations F [14] as a (possible) measure of entanglement in
many-body quantum systems motivated by an article from J.
Bell in 1963 speaking about fluctuations and compressibility
theorems in superconductors [34]. For the present situation,
we can build a simple relation between entanglement proper-
ties, correlation functions and geometrical responses revealing
the same information as the probabilities p± in the entropy. In
the present situation, the bipartite fluctuations F = F1 = F2

simply correspond to the variance on the measure of a spin
magnetization

F (π ) = 〈ψ (π )|σ 2
1z ⊗ I|ψ (π )〉 − 〈ψ (π )|σ1z ⊗ I|ψ (π )〉2.

(12)

We verify that

F (π ) = 4|o+−(π )|2|o−+(π )|2 = 2Cj

q
= +1, (13)

implying Cj = 1
2 if q = 1. The maximum values of F and

S at the south pole reveal the formation of the EPR pair
and also give a clear interpretation to the fractional topologi-
cal number. At θ = 0, F = S = 0. Eqs. (10), (11), and (13)
are in agreement with the same value Cj = q 1

2 . When r <

d − M within the topological phase (such that M < d) then
we have 〈ψ (π )|σ1zσ2z|ψ (π )〉 = |o++(0)|2 = 2Cj

q with Cj = q

and F (π ) = 1 − |o++(0)|2 = 0.
We can now propose a measure of the topological num-

ber(s) through circularly polarized light. We can implement
a boost of the azimuthal angle φ = ∓ωt on one sphere
only, e.g., through the perturbation δH1 = (−ω0e±iωtσ+

1 +
h.c.). At θ = π this is equivalent to introducing a d1 vector
on sphere 1 such that (d̃ sin θ ′ cos φ, d̃ sin θ ′ sin φ, d̃ cos θ ′ +
M ) = (ω0 cos ωt, ω0 sin(∓ωt ),−d + M ). This leads to the
identification φ = ωt , ω0 = d̃ sin θ ′, and d̃ cos θ ′ = −d for
sphere 1. If ω0 � d ∼ d̃ then the angle θ ′ ∼ θ remains
very close to π such that Cj = q 1

2 remain identical for both
spins. Activating the azimuthal angle of sphere 1 through
φ = ∓ωt , for φ − φ′ = ∓π

2 , from Eq. (6) we also obtain the
relation

|φφ〈ψ (π )|ψ (π )〉φ′φ|2 = Cj

q
= 1

2
, (14)
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within the fractional phase which provides another measure
of the 1

2 number. The subscript symbol φ, φ or φ′, φ refers
to the azimuthal angle of sphere 1 and 2, respectively. We
obtain a similar result flipping the role of spheres 1 and 2.
This result is also equivalent as if we modify θ = π → θ̃ = π

2
in Eq. (6). For one sphere with r = 0, if we set θ = π and
φ′ − φ = ±π

2 in Eq. (6), the same protocol would measure
α j (π ), i.e., the square of the integer topological invariant
[10]. The measure at north pole reveals an identical response
for r = 0 and for the fractional topological phase α j (0) = α j

(π ) = 1.

V. CYLINDER GEOMETRY
AND PROTECTED TRANSPORT

We can also formulate an analogy with a cylinder ge-
ometry, similar to the Laughlin analysis [35], where we fix
Ajφ at the top and bottom disks to Ajφ (0) and Ajφ (π ), re-
spectively. Since the function Ajφ and F j (φ, z) = −∂zA jφ

can be defined smoothly on the vertical surface of the
cylinder � for the model Eq. (1), then from Stokes’
theorem

1

2π

∫ 2π

0

∫ H

0
F j (φ, z)dφdz = (Ajφ (π ) − Ajφ (0)) = Cj .

(15)

Here, F j = F j (φ, z)u with u a normal unit vector perpendic-
ular to the vertical surface �. This relation is also applicable
for the fractional phase. We have the identification z = cos θ

from the unit sphere. For one sphere when r = 0 (and M = 0),
Ajφ (θ ) = − q

2 cos θ = − q
2 z such that F j (φ, z) = 1

2 . To repro-
duce the topological number Cj = q then this requires to fix
the height associated to the z axis to H = 2. We can also apply
a voltage drop from north (top, t) to south (bottom, b) such
that (Vt − Vb) = HE with H = 2 and E is the corresponding
electric field. This way, we verify the formation of two edge
modes on a cylinder with a conductance Gj = e2

h Cj such that
the transverse pumped current measured along the direction

of the azimuthal angle satisfies J j
⊥ = e2Cj

h HE = e2

h Cj (Vt −
Vb) = (It − Ib) [10]. Within this protocol, J j

⊥ measures the
transport of an electron and of a hole moving in opposite
directions along z axis producing effectively a quantum Hall

response 2 e2Cj

h . These formulas are also applicable for the sit-
uation Cj = 1

2 . In this case, to measure a particle this requires
a projection onto half of the entangled wavefunction (with 1

2
probability) justifying the occurrence of Cj = 1

2 in transport
properties.

The protection of the transverse current within the topo-
logical phase can be understood from the fact that the
quantization of J j

⊥ only depends on the value of Ajφ or 〈σ jz〉 at
the poles, which remain invariant within the same topological
phase as long as we respect the inversion symmetry between
the two spin-1/2’s [32]. Interestingly, even in the presence
of a disorder in the masses Mi the situation remains positive
in the sense that disorder can even produce another elon-
gated stable region with a one-half topological number per
sphere [36].

Below, we provide an alternative interpretation through
Majorana fermions.

VI. MAJORANA FERMIONS

At north pole, each spin is polarized along z direction
such that it is then natural to write σ1z = 2c†

1c1 − 1 with
c†

1c1|ψ (0)〉 = +|ψ (0)〉. Equivalently, |ψ (0)〉 = c†
1|0〉 corre-

sponds to the creation of a particle (fermion), with c†
1c1 =

n1 = 0 or 1 such that eiπc†
1c1 = 1 − 2n1 and {c1, c†

1} = 1.
We have similar definitions for sphere 2 in terms of the
fermion c†

2|0〉. The model close to θ = π can then be mapped
onto four Majorana fermions through the Jordan-Wigner
transformation [37] such that σ1z = 1

i (c†
1 − c1), σ1x = (c†

1 +
c1), σ2z = 1

i (c†
2 − c2)eiπc†

1c1 and σ2x = (c†
2 + c2)eiπc†

1c1 [38].
We introduce Majorana fermions which are their own an-
tiparticles η j = 1√

2
(c j + c†

j ) = η
†
j and α j = 1√

2i
(c†

j − c j ) =
α

†
j , such that {η j, η j} = 1 = {α j, α j} = 1 with 2iη jα j = 1 −

2c†
j c j . The choice of “spin-Majorana fermions” representation

here takes into account the formation of the EPR pair leading
to 〈ψ (π−)|σ jz|ψ (π−)〉 = 0 within the ground state. The ef-
fective Hamiltonian is written as

Heff = rσ1zσ2z − d2 sin2 θ

r
σ1xσ2x

= −2riη1α2 − 2id2

r
sin2 θα1η2. (16)

The ground state satisfies 〈ψ (π )|σ1zσ2z|ψ (π )〉 =
〈ψ (π )|2iα2η1|ψ (π )〉 = −1. At θ = π , the system shows
two free Majorana fermions α1 and η2 encoding the
degeneracy of |�+〉1|�−〉2 and |�−〉1|�+〉2, which
become bounded at θ = π− due to the term − d2 sin2 θ

r
such that 〈ψ (π−)|2iα1η2|ψ (π−)〉 = 1. This implies
〈ψ (π−)|c†

j c j |ψ (π−)〉 = 1
2 , such that one fermion at θ = 0

has a probability 1
2 = Cj to reach θ = π . We also have

〈ψ (π )|c†
j c j |ψ (π )〉 = 1

2 revealing the zero-energy (free)
Majorana fermions through 〈ψ (π )|2iη jα j |ψ (π )〉 = 0 [39].
A pair of 1/2-topological numbers can then refer to a pair
of free Majorana fermions at one pole. This identification
is then generalizable to other systems such as interacting
superconducting Kitaev wires [29].

Here, we show that the local characterization of the topo-
logical properties on the sphere and the occurrence of an EPR
pair at one pole can also be applied as a marker in topological
energy band structures.

VII. APPLICATION INTO BAND THEORY

The two-sphere model can be realized with two planes 1
and 2. The radial magnetic field on each sphere corresponds
to a Haldane model [27], where the two spin-polarization
eigenstates |�±〉 j refer to the occupancy on sublattice A or
B of the honeycomb lattice for a plane j [4]. The parameter
r corresponds to a hopping term between planes (in an AA-
BB stacking, which can be, e.g., realized in optical lattices
[40]) and M describes a staggered potential on the lattice.
For r < d − M, each plane forms a quantum anomalous Hall
phase with a topological number |Cj | = 1. For r > d + M,
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each plane is an insulator characterized by a topological
number Cj = 0. The two lowest bands are characterized
through opposite topological numbers [40]. Tuning r such that
d − M < r < d + M, there is the formation of a nodal-ring
semimetal at the Fermi energy [4]. The Dirac points K and K ′
within the Brillouin zone correspond to the north and south
poles respectively.

The two-particle wavefunction at the K point becomes
identical to the one on the sphere at θ = 0, flipping the role
of the two-spin polarizations as a result of the inversion
di → −di in the definition of the Hamiltonian |ψ (K )〉 =
|ψ1(K )〉 ⊗ |ψ2(K )〉 = eiπ c†

B1c†
B2|0〉K = eiπ |�−〉1

1 ⊗ |�−〉2
2.

The state |ψ1(K )〉 ⊗ |ψ2(K )〉 associated to two particles
occupying bands 1 and 2, at wavevector K , corresponds
to two particles polarized on sublattice B occupying a
different plane (or sphere). In the definition of |�±〉k

j , the
subscript j = 1 or 2 refers to sphere or plane index and the
superscript to particle k = 1 or 2. We can measure geometrical
properties in each plane locally resolved at the K point such
that

Ajφ (K ) = −i〈ψ (K )|∂ jφ|ψ (K )〉 = Ajφ (0), (17)

where Ajφ (0) on the right-hand side refers to the geometrical
response at north pole on a sphere. The index j on the left-
hand side refers to a measure on a plane. The two-particle
wavefunction is uniquely defined around K justifying the
smoothness of Ajφ (K ) in this area.

At the K ′ point, the ground state is also nondegenerate
|ψ (K ′)〉 = |ψ1(K ′)〉 ⊗ |ψ2(K ′)〉 (with 1 and 2 correspond-
ing to the two occupied energy bands). This can also be
written as |ψ (K ′)〉 = 1

2 (−c†
A1 + c†

A2)(−c†
B1 + c†

B2)|0〉K ′ in the
formulation of the two planes. This represents an entangled
wavefunction where each particle is delocalized between the
two planes and has an equal probability 1

2 to be in each plane.
Below, we discuss several ways to interpret this probability 1

2 .
In the spheres (planes) and particles representation

|ψ (K ′)〉 = 1
2 eiπ

(|�+〉1
1 ⊗ |�−〉2

2 + |�−〉1
1 ⊗ |�+〉2

2

)
+ 1

2

(|�+〉1
1 ⊗ |�−〉2

1 + |�−〉1
2 ⊗ |�+〉2

2

)
. (18)

We have modified |�+〉2
2 → −|�+〉2

2 such that the first line
corresponds to |ψ (π−)〉, from the triplet sector, on the sphere.
There is one particle on one sphere (plane) for this state.
The second line reveals two particles on one sphere (plane).
Evaluating −i〈ψ (K ′)|∂ jφ|ψ (K ′)〉 where j corresponds to a
measure on a plane j then we have

Ajφ (K ′) = 2 1
4 (Ajφ (0) + Ajφ,r=0(π )) = Ajφ (π ). (19)

The function Ajφ (K ′) is smooth around K ′ with the informa-
tion resolved in each plane. To show this equality, we have
introduced Ajφ (0) and Ajφ,r=0(π ) referring to the two-sphere
model in Eq. (1) leading to Eq. (7). Due to the symmetric form
of Eq. (18), we obtain the same result if we invert the role of
planes and particles.

Measuring Ajφ (K ) and Ajφ (K ′) around each Dirac point,
Ajφ (K ′) − Ajφ (K ) can be defined as a local topological
marker related to the fractional phase of the two-sphere

model. We can then write down Ajφ (K ) in terms of
− 1

2 〈σ jz(0)〉 and Ajφ (K ′) = − 1
2 〈σ jz(π )〉, such that Ajφ (K ′) −

Ajφ (K ) = 1
2 (〈σ jz(0)〉 − 〈σ jz(π )〉) = q 1

2 . Here, 〈σ jz〉 measures
the relative occupancies on sublattices A and B resolved at
each Dirac point in a plane j. It is also in agreement with the
structure of the edge mode which shows a 50%-50% proba-
bility to occupy a plane [4]. In this sense q 1

2 can be introduced
as a topological bulk quantity defined on each side of the
band-crossing region at the Fermi energy, from the two-sphere
model within the fractional phase. This results in a total Berry
phase 2π (Ajφ (K ′) − Ajφ (K )) = qπ , with q = −1, resolved at
the two Dirac points [41].

Now, we elaborate on the relation between this local topo-
logical marker and the quantum Hall responses. We introduce
the angle θc on the sphere that will precisely refer to the
location of the band crossing for the topological semimetal
along the path in the Brillouin zone. For the model in Eq. (1),
from Stokes’ theorem, Cj = Ajφ (π ) − Ajφ (0) = A′

jφ (θ <

θc) − A′
jφ (θ > θc) = q 1

2 with Ajφ (θ ) being smoothly defined
for θ ∈ [0; π ] [4]. We introduce A′

jφ (θ < θc) = Ajφ (θc) −
Ajφ (0) = ∫ θc

0 F j
θφdθ and A′

jφ (θ > θc) = Ajφ (θc) − Ajφ (π ) =
− ∫ π

θc
F j

θφdθ . The functions A′
jφ (θ < θc) and A′

jφ (θ > θc)
characterize the transverse currents Je

⊥(θ < θc), for an elec-
tron going from θ = 0 to θ = θc, and Jh

⊥(θ > θc) for a
hole going from θ = θc to θ = π within the same sphere.
Therefore, the local marker Ajφ (K ′) − Ajφ (K ) measures the
quantum Hall conductivity |q| 1

2
e2

h related to the model in
Eq. (1). We can also elucidate the information within the
two occupied bands of the topological semimetal from the
momentum space. If we integrate the Berry curvature on
the same two domains θ ∈ [0; θ−

c [ and θ ∈]θ+
c ; π ], and sum

the contributions of the two occupied bands on each domain,
this gives rise to an edge contribution on a cylinder associated
to a plane of the form Ajφ (K ′) − Ajφ (K ) = q 1

2 , related to the
local topological marker. This can also be interpreted as a
half-quantized “conductivity” response in units of e2/h. Now,
one may question the role of the crossing region. This gives
rise to an additional “bulk” contribution located symmetri-
cally around the crossing point (on the cylinder in momentum
space) of the form Ajφ,r=0(θ̃c) per plane if we introduce
the dressed angle such that tan θ̃c = sin θc/(cos θc + M

d ). This
bulk contribution is zero (per plane) if we define a half-
Skyrmion on the sphere θ̃c = π

2 , which requires to satisfy
cos θc + M

d = 0 with d − M < r < d + M. In this case, the
half-quantized Hall response in each plane comes from the
region θ̃ ∈ [0; θ̃c = π

2 ] on a sphere, revealing the topological
formation of a half-Skyrmion.

The topological nodal-ring semimetal can also be realized
in one graphene plane [42]. For this situation, for band 2,
particles at θ±

c acquire orthogonal spin polarizations |+〉x and
|−〉x [43], and the energy band 2 can develop a quantum Hall
[44] and/or a quantum spin Hall response [45]. Interestingly,
the responses to circularly polarized light locally at the Dirac
points can measure signatures of the one-half topological
number related to the quantized quantum Hall response of the
lowest energy band [32,43].
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VIII. SUMMARY

To summarize, we have shown how the formation of an
EPR pair or Bell state locally on the Bloch sphere can be char-
acterized through half-topological numbers and zero-energy
Majorana fermions. The half-quantized response can be re-
vealed through a circularly polarized field and also through
transport. We have shown the relevance of the two-sphere
model to characterize the (topological) edge response in bi-
layer geometries. These sphere models can be realized [5]
and may find applications in energy through a dynamo effect
[11,12]. The presence of zero-energy Majorana fermions can
find relevance for quantum information [36]. The physics
of two entangled spin-1/2’s may also have relations to-
wards black hole physics, e.g., through similarities between
EPR pairs and the formation of ER bridges [46]. It is also

interesting to mention recent applications of one-half mag-
netic monopoles through Berry phases [47].
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