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Abstract. Elisabeth-4 is a stream cipher tailored for usage in hy-
brid homomorphic encryption applications that has been introduced by
Cosseron et al. at ASIACRYPT 2022. In this paper, we present several
variants of a key-recovery attack on the full Elisabeth-4 that break the
128-bit security claim of that cipher. Our most optimized attack is a
chosen-IV attack with a time complexity of 288 elementary operations, a
memory complexity of 254 bits and a data complexity of 241 bits.
Our attack applies the linearization technique to a nonlinear system
of equations relating some keystream bits to the key bits and exploits
specificities of the cipher to solve the resulting linear system efficiently.
First, due to the structure of the cipher, the system to solve happens
to be very sparse, which enables to rely on sparse linear algebra and
most notably on the Block Wiedemann algorithm. Secondly, the algebraic
properties of the two nonlinear ingredients of the filtering function cause
rank defects which can be leveraged to solve the linearized system more
efficiently with a decreased data and time complexity.
We have implemented our attack on a toy version of Elisabeth-4 to
verify its correctness. It uses the efficient implementation of the Block
Wiedemann algorithm of cado-nfs for the sparse linear algebra.

1 Introduction

Hybrid Homomorphic Encryption (HHE) is an efficient technique for improving
the performance of Fully Homomorphic Encryption (FHE) by combining the
use of a FHE scheme with the one of a symmetric cipher, e.g., a stream cipher
or the combination of a block cipher and an encryption mode of operation.
The conducting idea of HHE can be roughly outlined as follows: instead of
homomorphically encrypting some data in order to enable their remote processing
in an untrusted environment (e.g., a server), a user first encrypts her data using a
classical symmetric encryption algorithm under a key k and sends a homomorphic
encryption of k to the remote party. At the cost of an extra computation by the
remote party called transciphering, this allows to save computation power and
bandwidth on the user side as compared with mere FHE, since the ciphertext to
plaintext size ratio equals one and at the exception of the homomorphic encryption
of k, only symmetric encryption is performed. The transciphering operated
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on the remote side transforms the symmetric ciphertext into a homomorphic
encryption of the original plaintext under the FHE by running the decryption
circuit homomorphically under k.

In this context, Elisabeth-4 is a HHE-friendly stream cipher introduced by
Cosseron et al. at ASIACRYPT 2022 [3]. It is the only fully specified instance of
a larger family of HHE-friendly stream ciphers named Elisabeth. It is parame-
terized by a 1024-bit key and an IV of unspecified length. The claimed security
level for Elisabeth-4 is 128 bits. The design of Elisabeth extends a few other
similar stream ciphers, more specifically FLIP [13] and FiLIP [12], which have
been the subject of a couple of cryptanalytic works, e.g., [5] on FLIP.

Stream ciphers in the Elisabeth family follow the so-called Group Filter
Permutator (GFP) paradigm: each keystream symbol belongs to an additive
group G and is derived from a large key by a filtering function that operates
on G. Unlike for traditional filtered-LFSR stream ciphers, the filtering function
used in Elisabeth is differentiated at each clock, most notably in the values of
additive constants called masks. In the case of Elisabeth-4, the group G equals
(Z/16Z,+) and we will denote it (Z16,+) for simplicity.

Two major design goals of the Elisabeth ciphers are to optimize the efficiency
of the homomorphic decryption and to optimize the efficiency of subsequent
format conversions and homomorphic data processings for typical use cases.
The distinctive property of Elisabeth stream ciphers that they operate in
an additive group such as (Z16,+) rather than extensions of F2 like in more
traditional symmetric ciphers was shown by the designers to play an important
role in achieving these designs goals.

Our contribution. In this paper, we present key-recovery attacks on the full
Elisabeth-4. The starting point for our attack is the observation that over F2,
the least significant bits (LSBs) of all keystream symbols can be expressed as
polynomials in the key bits that involve a surprisingly low number of monomials.
This observation on the algebraic normal form (ANF) of these keystream bits
can be leveraged to mount a simple known-IV linearization attack and reach a
first upper bound on the complexity of the key-recovery attack. We then show
that various specificities of the Elisabeth-4 stream cipher allow to substantially
reduce the complexity of a more involved linearization-based attack; we list them
below.

1. We observe that interactions between the algebraic properties of the two F2-
nonlinear ingredients of the Elisabeth-4 filtering function (namely, additions
over Z16 and negacyclic Z16 to Z16 S-boxes) cause degree and rank defects
in the polynomial equations over F2 of the LSBs of the keystream symbols.
While the attack complexity is only negligibly affected by the defect in the
degree of the ANF of the LSB of the keystream symbols (that is shown to be
bounded by 12 instead of 16), it is significantly reduced by the highlighted
rank defect phenomenon. In order to take into account and leverage the rank
defect phenomenon, the linearized equations have to be rewritten in a basis
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that consists of polynomials that are not all monomials. This can be viewed
as a natural extension of the original linearization technique.

2. We analyze how to leverage the high sparsity of the linearized system (that is
not affected by the former rank reduction considerations) in order to reduce
the complexity of the key recovery using sparse linear algebra techniques,
namely the Block Wiedemann algorithm.

3. We also show that a filtering of the collected equations allows to reduce the
size of the linearized system. This decreases the memory complexity of the
attack, and the overall time complexity for building and solving the system.
In a known IV setting, this is achievable at the cost of an increased data
complexity. In a chosen IV setting, this is achieved by a precomputation-based
trade-off and allows to decrease the data complexity.

The combination of all these optimizations allows to mount a chosen-IV attack
of overall time, data and memory complexity about 288 elementary operations,
about 237 nibbles and 254 bits. We list in Table 1 the various attacks described
in this paper.

Table 1. Complexities of the key-recovery attacks presented in this paper.

Model Time Data Memory Reference

(operations) (nibbles) (bits)

Known IV 2124 243 287 Section 3

Known IV 2116 241 281 Section 4

Known IV 294 241 257 Section 5

Known IV 288 287 254 Section 6.1

Chosen IV 288 237 254 Section 6.2

In order to corroborate our claims regarding the applicability of rank reduction
and Block Wiedemann techniques, etc., we have implemented our attack on a
small-scale variant of Elisabeth-4. Although this toy cipher is considerably
weaker than the original one,3 it nevertheless preserves most of the structure of the
linearized equations of the LSBs of the keystream elements. Our implementation
therefore gives some experimental evidence of the validity of our attack. We
conducted this practical experiment to reach partial key recovery using the
cado-nfs library [4] and in particular its Block Wiedemann implementation.
We have published the code of our implementation on GitHub and provided a
Dockerfile to simplify reproducibility:

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

3 this toy cipher is not only vulnerable to linearization attacks but also other classes of
attacks such as statistical cryptanalysis.

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4
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Figure 1. Overall structure of Elisabeth-4 (figure from [3]). A XOF generates a
sequence of parameters from the IV that selects at every step an ordered subset of the
secret key register and masks this selection before applying a fixed filtering function to
compute the output of Elisabeth-4 at this step.

Organization. The rest of this paper is organized as follows. We first describe the
Elisabeth-4 stream cipher in Section 2. In Section 3, we present an observation
on the number of monomials involved in the ANF of the LSB of all keystream
symbols and a simple linearization attack that leverages this observation. In
Sections 4, 5 and 6, we present improvements on this basic attack allowed
respectively by a rank defect phenomenon, a sparsity of the considered linearized
systems and further optimizations of the time and data complexities allowed by
restricting the equations considered to build the linearized system. We conclude
in Section 7 with the results of our small-scale experiments.

2 Description of Elisabeth-4

Elisabeth-4 is a stream cipher designed by Cosseron et al. and published at ASI-
ACRYPT 2022 [3]. The original specifications introduce a family of stream ciphers,
but, for clarity, we only describe the only fully specified instance Elisabeth-4,
which is the topic of this paper. It is optimized for Hybrid Homomorphic En-
cryption and the authors claim a security level of 128 bits. The architecture
of Elisabeth-4 (see Figure 1) extends the Improved Filter Permutator princi-
ple [13].

Overview. Elisabeth-4 operates on elements in Z/16Z, denoted here by Z16.
Its state has two components. First, it contains a fixed register loaded with the
stream cipher secret key. It is viewed as an array of length N = 256 of elements in
Z/16Z, k = (k1, . . . , kN ). Secondly, it contains the state of an extendable output
function (XOF) that is initialized with the stream cipher initialization vector IV.
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This state is updated autonomously as Elisabeth-4 consumes outputs of the
XOF as parameters in the generation of its outputs. Consequently, the successive
states of the XOF and all of its outputs can be considered as public values.

At Step i, Elisabeth-4 generates an element in Z16 in the following manner.
Using the XOF, an ordered arrangement of length r · t = 60, i.e. a r · t-tuple of
distinct elements of {1, . . . , N}, is selected. We denote it by πi =

(
πi
1, . . . , π

i
r·t
)
.

This arrangement can be seen as the composition of the selection of a r · t-subset
τ i of {1, . . . , N}, and a permutation σi of its elements. The XOF also produces
a whitening vector mi =

(
mi

1, . . . ,m
i
r·t
)
in Zr·t

16 . The keystream element zi ∈ Z16

at the output of Step i is obtained by applying a fixed filtering function f to the
sum of the key elements selected by the arrangement and the whitening elements:

zi = f(kπi
1
+mi

1, . . . , kπi
r·t

+mi
r·t).

The filtering function f . The filtering function f internally uses t = 12 parallel
calls to a function g applied on r = 5 elements. The r outputs are elements of
Z16 and are summed together to produce the output of f (see Figure 2). The
function g itself uses a nonlinear function h that we describe below.

h

⊞

x1 x2 x3 x4 x5

g

h

⊞

x6 x7 x8 x9 x10

g

h

⊞

x56 x57 x58 x59 x60

g

· · ·

⊞

zi

Figure 2. The function f in Elisabeth-4 internally uses t = 12 calls to g, which is in
turn defined using the nonlinear function h. Every element belongs to Z16.

The function g. The 5-to-1 function g is constructed as the sum of a nonlinear
4-to-1 function h and a linear function of the remaining variable (see Figure 2):

g : Z5
16 −→ Z16

(x1, . . . , x5) 7−→ h(x1, x2, x3, x4) + x5 .

The construction of the filtering function f over h is depicted in Figure 2. The
function h uses eight negacyclic look-up tables S1, . . . , S8 over Z16 (see Figure 3).
These NLUTs were selected at random by the designers [3]. They are given in
Appendix A.

Definition 1. A negacyclic lookup table (NLUT) [1] over Z/2ℓZ is a lookup
table S of length 2ℓ that verifies the following property:

∀i ∈ [0, 2ℓ−1 − 1], S[i+ 2ℓ−1] = −S[i].
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⊞x4 x1

S4⊞ ⊞
⊞ ⊞x2 x3⊞ ⊞

⊞x3 x2

S2⊞ ⊞

⊞ S1⊞S3

S7S6

⊞

x1 x4

S5 S8

⊞

h(x1, x2, x3, x4)

Figure 3. The function h uses eight NLUTs Si to map the four variables (x1, x2, x3, x4)
to h(x1, x2, x3, x4).

3 Basic attack

In this section, we present a general overview of the linearization principle before
describing a basic application to the cryptanalysis of Elisabeth-4.

3.1 Linearization technique

Algebraic cryptanalysis is a classical cryptanalysis paradigm. It consists in writing
multivariate polynomial equations linking the secrets of a cryptographic mecha-
nism (e.g., its key) and what is known to the attacker (e.g., IV bits, keystream
bits, plaintext, ciphertext, etc.), and then solving this system of algebraic equa-
tions to recover the secrets. In principle, this can always be achieved by putting
into equations the relations stemming from the specification of the cryptographic
mechanism. The resulting equations can be difficult to write and/or store in
practice, or require to introduce intermediate variables, but in the case where
it is possible, the complexity of solving a large nonlinear multivariate system
of equations in a large number of variables is often impractical. Let us consider
the following formalization. Let us denote Z/2Z by Z2. We denote the n-bit
secret the cryptanalyst aims at deriving by (x1, . . . , xn) ∈ Fn

2 . For any element
u = (u1, . . . , un) ∈ Zn

2 , we denote by xu the monomial xu1
1 · · ·xun

n . Due to the
field equation x2 = x over F2, any Boolean function p in n variables can be
written uniquely as a sum of such monomials:

p(x1, . . . , xn) =
∑
u∈Zn

2

aux
u, au ∈ F2 .

This representation is the algebraic normal form (ANF) of p. In the case of a
stream cipher generating a binary keystream, every keystream bit provides a
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polynomial equation in the key bits (or, in another typical setting not considered
in the sequel, in the initial state value). An attacker can therefore compute the
ANFs of the Boolean functions that take as input the key bits and return given
keystream bits, collect these keystream bits, and construct an overdetermined
system of nonlinear equations. If the attacker is able to solve this system, she
recovers the key.

Although solving a system of polynomial equations is hard in general, several
methods exist, e.g. solving methods based on Gröbner basis computation technique
such as Faugères’ F4 and F5 algorithms [6,7]. An elementary method of resolution
is linearization [8]. Considering every monomial appearing in the system as an
independent variable, the system can be viewed as a linear system of equations
involving a larger number of variables. In order for the linear system to be solvable,
a large number of equations needs to be available. The ANF of a Boolean function
in n variables can count up to 2n monomials, so this technique cannot be applied
with profit in the general case. However, in the case of a stream cipher whose
design is based on the filtering of a linear register, two factors make it worth
pursuing this type of attacks. First, the degree of the ANF of the equations
relating key bits and keystream bits does not grow and stays bounded by the
degree of the filtering function. This enforces an upper bound µ on the number
of monomials involved in the system, and thus on the number of variables in the
linearized system. This number of monomials can be further restricted by the
structure of the polynomial function. Secondly, the number of available equations
is not limited since the size of the keystream can in general be adapted to collect
enough equations, without requiring the introduction of additional variables, to
reach a full-rank linear system with good probability. This system can then be
solved in about µω operations, where 2 ≤ ω ≤ 3 is the linear algebra exponent
representing the complexity of matrix multiplication. In particular, for µ such
that µω < 2κ with κ the security parameter in bits, an attack is found.

Suppose the attacker has collected δ keystream bits zi, 1 ≤ i ≤ δ, and
computed the corresponding δ ANFs which we denote by pi(x1, . . . , xn) =∑

u∈Zn
2
aiux

u involving at most µ monomials. We let z ∈ Fδ
2 denote the vec-

tor of keystream bits and A to be the F2-matrix of size δ × µ constructed as
A[i, u] = aiu. Finding the solutions to the matrix equation Ax = z enables to
recover monomials in the key bits, and the key itself since the key bits are in
general part of the monomial basis.

3.2 Basic linearization attack on Elisabeth-4

Our attack on Elisabeth-4 relies on solving a system of Boolean polynomial
equations on the key bits using the linearization method described in Section 3.1.

Without loss of generality, we consider a keystream generated from a single
known IV. At iteration i of the keystream generator, a subset τ i of the key
register, a permutation σi of this subset and a whitening vector mi are derived
from the IV. Then, the filtering function f is applied. We can thus consider the
ANF of each Boolean function that takes as input the vector of r · t = 60 key
nibbles and returns one of the bits of the keystream element. In particular, in our
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attack, we consider the Boolean function fi that returns the least significant bit
(LSB) of the keystream element. We indeed observe that the LSB of the addition
in Z16 behaves linearly in F2. Thus, since f is constructed as the modular sum
of t = 12 applications of the function g, where g is constructed as the sum of h,
a nonlinear function of r − 1 = 4 elements, and a fifth element, the ANF of each
fi can be written as the sum of

– the least significant bits of the 12 key nibbles selected for the final addition
in the g function (see Figure 2),

– the algebraic normal form of 12 Boolean variations of the function h, restricted
to the LSB of its output, and parameterized by the whitening mask values
applied on the selected ordered 4-tuple of key elements.

If we fix any unordered quartet {x1, x2, x3, x4} of four distinct key elements, the
possible variations of h that take the elements of this set as inputs can be described
as the set of Boolean functions {hm,σ}m∈Z4

16,σ∈S4
, with m = (m1,m2,m2,m3) ∈

Z4
16, S4 the permutation group over four elements, and

hm,σ : Z4
16 −→ F2

(x1, . . . , x4) 7−→ LSB(h(xσ(1) +m1, xσ(2) +m2, xσ(3) +m3, xσ(4) +m4)) .

In the following, note that while Elisabeth-4 relies on operations defined on
Z16, we write the algebraic modelization in F2, using the LSB of each keystream
element.

Bounding the number of monomials. Since each element in Z16 is written
on four bits, the observation above shows that the degree of the ANF of each
fi is bounded by 4 · 4 = 16. Moreover, the number of monomials required to
describe the ANF of all LSB of the outputs of Elisabeth-4 is further reduced
by the element-wise structure of the cipher. Indeed, no monomial can involve
key variables appearing in more than four key elements, since the only F2-
nonlinear functions involved are h variations that depend on four key elements.
The four variables are written on a total of 16 bits. Thus, at most 216 monomials
can be formed with the bits of every selection of an unordered quartet of key
elements regardless of the h variation hm,σ applied to this unordered quartet.
This implies that the number of monomials to consider can be upper bounded
by
(
256
4

)
· 216 = 243.4 monomials.4

Construction of the linearized system. We describe here the construction
of the matrix A. We begin by the precomputation of the ANFs of the 216 · 4!
variations hm,σ of h by computing their truth table and applying the fast Möbius

4 This direct bound can be further refined by taking into account that monomials
involving less than four elements are counted multiple times. Observing that the
number of monomials involving variables from exactly j elements is 15j , a finer bound
on the number of monomials is

∑4
j=0

(
256
j

)
15j ≈ 243.0.
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transform. This step has a complexity of around 4! ·232 ≈ 236.6 applications of the
h function to compute the truth table, 4! · 216 · log(216) · 216 ≈ 240.6 elementary
operations to compute the fast Möbius transform, and storing the result requires
236.6 bits of memory. To build the matrix A of the linearized system, we associate
to every unordered quartet of key elements a dedicated set of 216 monomials.5

Thus, the matrix A has µ =
(
256
4

)
· 216 columns. The matrix A is then built row

by row, by considering successively least significant bits of the keystream. For a
given row and for each of the t = 12 applications of the g function:

– we determine from the XOF outputs the unordered quartet τ of key elements
on which a variation of function h is applied, and its parameters m and σ.
The columns of monomials associated to the set of elements τ are set in the
row of the matrix A according to the precomputed ANF of hm,σ.

– we determine the key element that is linearly added to the output of h (see
Figure 2) and set a column associated with the LSB of this element in the
set of monomials associated to a quartet containing this key element.

Finally, the sum of the LSB values of the whitening masks added to the fifth inputs
of the g function calls determine whether an additional column corresponding
to a constant monomial should be set in the row. Thus, at most t · (216 + 1) + 1
bits are non-zero in every row. Building the matrix A requires around δ · t · 216
elementary operations.

Description of the attack. We set δ ⪆ µ. The data complexity of the attack is
thus δ ≈ 243.3 nibbles and the time complexity of building the matrix is around
262.9 elementary operations. The system is then solved by standard linear algebra
techniques for a cost µω. With straightforward Gaussian elimination (ω = 3), the
time complexity of the resolution is 2129 elementary operations, and its memory
complexity, which corresponds to the cost of storing A, is about δ · µ = 287 bits.
Using Strassen algorithm where ω = log2(7) and a small multiplicative constant
< 6 needs to be taken into account [14], the time complexity can be brought
down to less than 2124.14 elementary operations. We make the (customary in
linearization attacks) assumption that the extra cost of recovering the key bits
after recovering the affine space of solutions is negligible.6

This basic attack is a known-IV attack. It can be modified into a chosen-IV
attack with a significantly improved online time complexity but similar total time
and memory complexity. Indeed, one can simply precompute the matrix A and
its Gaussian elimination (or LU decomposition in the case of Strassen algorithm)
before gathering the data and computing the solutions via a matrix-vector
multiplication.

5 In the finer monomial representation, without monomial duplication, the association
between the parameters of the h function and the set of monomials is more complex,
but can still be achieved with some indexes bookkeeping.

6 We do not not enter here into a discussion on the dimension of the found affine space
of solutions and how a large number of key bits can be derived from any particular
solution and leveraged to efficiently recover the missing key bits since this would
largely amount to anticipating the analysis of the next section.
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4 Improving the attack using rank defects

In this section, we identify an unexpected rank defect of the 216 · 4!× 216 matrix
whose rows are the ANFs of the functions hm,σ. We then discuss the impact
of this rank defect on the linearization attack described in Section 3, namely a
lowering of its expected complexity. Finally, we partially explain this rank defect
with theoretical arguments, relating it to the use of negacyclic Sboxes.

4.1 Identification of a rank defect

As mentioned in Section 3, the ANFs of the 216 · 4! variations of h can be
precomputed and stored in a matrix denoted here by H at a practical cost. Since
the rank of A is related to the dimension of the vector space spanned by these
ANFs seen as vectors of coefficients, we have computed the rank of the matrix H
and obtained ρ = 8705 ≈ 213.1, which is lower that the expected 216. Performing
a reduced row echelon form computation, we can write

LH =

[
P

0

]
, H = L′P,

with P an upper triangular matrix of size ρ× 216, L a square invertible matrix
of size 216 · 4! that is the product of elementary matrices and L′ is the 216 · 4!× ρ
matrix obtained as the first ρ columns of the inverse of the matrix L. P can be
seen as a change of ‘basis’ matrix: its rows define ρ linear combinations of the
monomials which are sufficient to describe the rows of matrix H. We will refer to
these combinations as the polynomial basis.

Given the greater value of small degree monomials, we adopt a degree mono-
mial order and reorder the columns of H accordingly before performing the
reduced row echelon reduction. With this choice, we observe that the polynomial
basis contains 12 monomials corresponding to input bits to the h function. The
most significant bits (MSBs) of the 4 input elements of h however do not belong
to the span of the polynomial basis.

4.2 Impact on the linearization attack

Since the variations hm,σ of the h functions only linearly depend on the ρ
polynomials of the polynomial basis, we adapt the linearization attack in a
straightforward way. Instead of associating to every unordered quartets a set of
216 monomial variables, we associate a set of ρ polynomial variables. Thus, the
number of columns of the matrix A decreases to µ =

(
256
4

)
· ρ ≈ 240.5, and the

matrix can be built in the same way as before by using the rows of the matrix
L′ instead of those of the matrix H. Linear terms corresponding to the LSBs of
the fifth input to the function g can be handled as before since they are part of
the polynomial basis. The number of equations required for the system to be
solvable is reduced accordingly to δ ⪆ µ using heuristics that the dimension of
the affine space of solutions is thereby reduced to a sufficiently small number
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of vectors. This is discussed in Appendix D and backed-up by the experimental
results described in Section 7.

Thus, the rank defect lowers the complexity of solving the linear system and
consequently the overall time complexity of the attack. The computation of the
row echelon form of H and the subsequent computation of L′ require about
ρ · 216 · 4! · 216 ≈ 248.43 operations. The data complexity of the attack is µ ≈ 240.5,
its time complexity is µω, which is about 2121.4 elementary operations using
Gaussian elimination and 2116.2 elementary operations using Strassen algorithm,
and its memory complexity is µ2 ≈ 280.9.

The resolution of the system enables to recover for all the unordered quartets
of key elements the values taken by the polynomials of the polynomial basis
applied to the relevant key bits. As seen above, this directly provides the key bits,
except for the most significant bits of the key elements. These can be recovered
quartet by quartet by small 24 exhaustive searches considering the system of ρ
algebraic equations provided by the polynomial basis. In total, this adds

(
256
4

)
24

elementary operations to our time complexity.

4.3 Explaining the rank defect

In this section, we provide a partial explanation for the rank defect of the matrix
H whose rows correspond to the ANFs of the 216 ·4! variations {hm,σ}m∈Z4

16,σ∈S4

of h. We find that this phenomenon is largely due to the interaction between
modular addition and negacyclic look-up tables. Whilst analyzing said interaction,
we also proved that the degree of the LSB at the output of the function h is
bounded by 12 rather than 16, and thus that the degree of the LSB of the
keystream is also bounded by 12. Although this result did not lead to a significant
improvement of our linearization attack,7 we provide its proof in Annex B.8 Note
that this proof uses definitions and propositions introduced in the rest of this
section.

On negacyclic look-up tables. We start with two observations on negacyclic
look-up tables over Z2ℓ . In Elisabeth-4, negacyclic look-up tables are applied
to the sum of a key word and a whitening word. The following proposition shows
that the composition of an addition with a negacyclic look-up table (NLUT) does
not change its negacyclic nature: the composition is still a NLUT.

Proposition 1. Let ℓ be an integer and let S be a NLUT over Z2ℓ . For any
x̃ ∈ Z2ℓ , the look-up table S′ defined as S′[x] := S[x + x̃] for all x ∈ Z2ℓ is
negacyclic.

7 Indeed, the number of monomials in 16 variables of degree at most 12 is equal to∑12
i=0

(
256
i

)
= 215.98 which is not significantly smaller than 216.

8 Note that an observation made thanks to experiments on the degree of the keystream
LSB for some mask values had already been made by the authors of Elisabeth-4 [3],
but here we provide a proof that holds for any mask.
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Figure 4. The Antler function HS1,S2,S3 .

Proof. For all x ∈ Z2ℓ , S
′[x+2ℓ−1] = S[x+ x̃+2ℓ−1] = −S[x+ x̃] = −S′[x]. ⊓⊔

The next proposition highlights a property of NLUTs that we will show to be
largely responsible for the rank (and degree) defect(s).

Proposition 2. Let ℓ be an integer and let S be a negacyclic look-up table over
Z2ℓ . The Boolean function x 7→ LSB(S[x]) does not depend on the MSB of x.

Proof. For any y ∈ Z2ℓ , y and −y have the same parity and thus the same LSB.
As a consequence, for any x ∈ Z2ℓ , S[x] and S[x+ 2ℓ−1] = −S[x] have the same
LSB. Since x and x+ 2ℓ−1 have all their bits equal except for their MSB, the
proposition holds. ⊓⊔

On Antler functions. In the sequel, we rely on the analysis of a family of
16-bit to 1-bit functions with a 2-round, triangular structure that we propose to
name Antler functions (see Figure 4). This is because the LSB of the function
h and, as we will see in the sequel, the LSB of any of its variations hm,σ, can
be easily shown to be the sum of four Antler functions. Antler functions can be
defined as follows.

Definition 2. Let S1,S2,S3 be 3 negacyclic look-up tables. The Antler function
associated to S1,S2,S3 is defined as

HS1,S2,S3
: Z4

16 −→ F2

(x, y, z, w) 7−→ LSB(S3 [S1[x+ y] + S2[y + z] + w]) .

Although Antler functions are defined with domain Z4
16, we view them as Boolean

functions by considering the binary representation of elements in Z16 and thus
assimilating Z4

16 to 16-bit words or equivalently elements in F16
2 . Generally, in the

following, we assimilate elements in Zn
16 to 4n-bit words or equivalently elements

in F4n
2 . Antler functions possess properties inherited from NLUTs. In particular,

a direct consequence of Proposition 1 is the following proposition.
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Proposition 3. Let S1,S2,S3 be 3 negacyclic look-up tables and (x̃, ỹ, z̃, w̃) ∈
Z4
16. Then, HS1,S2,S3

(x+ x̃, y + ỹ, z + z̃, w + w̃) is also an Antler function.

Proposition 3 shows that the property that the LSB of h can be expressed as a
sum of four Antler functions extends to all variations in the set {hm,id}m∈Z4

16
,

where id ∈ S4 is the identity permutation. In particular, the vector space spanned
by the set of ANFs of {hm,id}m∈Z4

16
is a subspace of the vector space spanned

by the ANFs of all Antler functions. This can be generalized as follows. The
vector space spanned by the set of ANFs of {hm,σ}m∈Z4

16,σ∈Σ4
is a subspace of

the vector space spanned by the ANFs of all Antler functions for any ordering of
their input variables. Thus, to bound the dimension of the vector space spanned
by {hm,σ}m∈Z4

16,σ∈S4
, we first exhibit a bound on the dimension of the vector

space spanned by all Antler functions.
In the sequel, we will exhibit upper bounds on the dimension of some vector

spaces of Boolean functions. We introduce the following definition.

Definition 3. The rank of a set {Hi}i∈I of Boolean functions in n binary vari-
ables is defined as the dimension of the vector space of functions spanned by this
set.

For example, the rank of the set of variations hm,σ of h is the rank of H.

Bounding the rank of the set of Antler functions.

Proposition 4. The rank of the set of Antler functions is bounded by 210.43.

To prove this proposition, we rely on the following lemma.

Lemma 1. Let S1,S2,S3 be 3 negacyclic look-up tables. Let GS1,S2,S3
be the

Boolean function defined as

GS1,S2,S3
: Z3

16 −→ F2

(b, b′, w) 7−→ LSB(S3 [S1[b] + S2[b
′] + w]) .

Then, the rank of the set of Antler functions is bounded by the dimension of the
vector space spanned by all functions GS1,S2,S3 .

Sketch of proof. Let S1,S2,S3 be 3 negacyclic look-up tables. It is easy to see
that HS1,S2,S3 = GS1,S2,S3 ◦ F where F is defined as

F : Z4
16 −→ Z3

16

(x, y, z, w) 7−→ (b = x+ y, b′ = y + z, w = w) .

Thus, consider a basis of the set of all functions of the form GS1,S2,S3
. It is easy

to see that the set of all functions constructed as the composition of F with a
function in this basis generates the vector space spanned by Antler functions.
Lemma 1 is thus shown. ⊓⊔
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To prove Proposition 4, we thus only need showing that the rank of the set of
all functions GS1,S2,S3

is bounded by 210.43. In this section, we only demonstrate
a simpler result, namely, a bound 211 on the dimension, since it gives a first
intuition of the causes of the rank defects but remains simple to explain. We refer
to Annex C for a full proof for the bound 210.43 of Proposition 4. We believe
the actual rank to be even lower, namely 1088 = 210.09, as suggested by our
experiments. We did not manage to explain theoretically this tighter bound.

Proof of the bound 211. Notice that GS1,S2,S3
has domain Z3

16. However, by
Proposition 2, the output of GS1,S2,S3 does not depend on the most significant
bit of w. Thus, it can be seen as a Boolean function that takes as input 11 bits.
This trivially implies that the dimension of the space spanned by all functions
GS1,S2,S3

is at most 211. ⊓⊔

Bounding the rank of H. We have shown that the rank of the set of Antler
functions for a fixed ordering of the input variables is bounded by 210.43. Since
these functions take as input four elements in Z16, the rank of this set for any
ordering is at most 4! · 210.43. However, the vector space spanned by the set
containing the functions HS1,S2,S3 for all NLUTs (S1,S2,S3) is equal to the
vector space spanned by the compositions (x, y, z, w) 7→ HS1,S2,S3(z, y, x, w) of
HS1,S2,S3

with a transposition of x and z. Thus, the vector space spanned by all
Antler functions and for any ordering of their variables has dimension at most
4!
2 2

10.43 ≈ 214.01. Thus, the rank of the set {hm,id}m∈Z4
16,σ∈S4

is at most 214.01.

As mentioned above, using experiments, we found that the rank of an Antler
function is in fact bounded by 1088. This gives a bound of 4!

2 · 1088 ≈ 213.67 for
the rank of {HS1,S2,S3 ◦ σ} for all NLUTs and all permutations, which can be
considered close to the bound 8705 ≈ 213.1 as this bound holds for the particular
case of Elisabeth-4 (in which NLUTs are repeated across applications of Antler
functions within h).

5 Solving sparse linear systems

A matrix is said to be sparse if the number of its nonzero coefficients is small
with regards to the total number of coefficients. The matrix A of size δ×

(
256
4

)
· ρ

obtained in our attack is sparse since it has at most t(ρ+ 1) ≪
(
256
4

)
· ρ nonzero

coefficients per
(
256
4

)
· ρ-bit row. Binary sparse matrices can be stored in a

compressed form, e.g., by storing for every row the indexes of the columns
containing a nonzero coefficient. Further, sparse linear algebra algorithms can
take advantage of this property of the matrix to solve classic linear algebra
problems at a lower complexity.

In this section, we describe methods that allow to efficiently solve sparse
linear algebra problems before detailing an improved linearization attack.



Cryptanalysis of Elisabeth-4 15

5.1 Efficient methods for sparse linear algebra

As mentioned above, sparse linear algebra problems can be solved more efficiently
than general linear algebra problems. A well-known efficient method to solve
sparse linear problems is the 1986 Wiedemann algorithm [15]. This algorithm,
which exploits the cheapness of sparse matrix-vector products, has been widely
studied [2,9,10]. In our attack, we use a variant of Wiedemann algorithm, the
Block Wiedemann algorithm (BW) [2]. This algorithm introduced by Coppersmith
in 1994 converts Wiedemann algorithm to a block form, allowing to process several
bits at the same time. In this section, we begin with a brief description of the
Wiedemann and BW algorithms before computing the improved complexity of
our attack.

In the following, we let M be a square F2-matrix of dimension n and y be
a vector in Fn

2 . We assume that M is sparse, i.e. that the number of nonzero
coefficients per row is bounded by s ≪ n. We wish to find a solution to the
equation

Mx = y. (1)

Wiedemann algorithm. We begin with a brief overview of the Wiedemann
algorithm [15]. We refer to specialized papers for a more comprehensive description
of this algorithm, e.g., [2, 9, 10,15]. Wiedemann algorithm must be fed a square
matrix M of size n × n and a vector y and returns a solution x0 or the error
symbol. It requires at most 3n multiplications of the matrix M with a vector,
O(n2 log(n)) other operations, and a limited amount of storage in addition to
the cost of storing M (see [10]).

This algorithm is divided into two main steps. In a first step, the algorithm
recovers the minimal polynomial fM of the matrix M. Then, it uses this minimal
polynomial to recover a solution to (1). Indeed, recovering fM provides non-trivial
coefficients (ci)0≤i≤n such that

n∑
i=0

ciM
i = 0. (2)

If M is nonsingular, then necessarily c0 ̸= 0. The unique solution can then be
expressed as x = −(1/c0)

∑n
i=1 ciM

i−1y. On the other hand, if M is known to
be singular and y = 0, the algorithm finds a vector in the kernel of M in the
following manner. Since M is singular, c0 = 0. Letting cδ be the first nonzero
coefficient and r be a random vector, it comes that computing the successive
vectors Mi

(∑n
i=0 ciM

i−δr
)
for i = 1, . . . , δ yields a kernel element as long as r

is not in the kernel of the non-null matrix
∑n

i=0 ciM
i−δr, which happens with

probability greater than 1/2. Since M is s-sparse, a matrix-vector multiplication
costs at most 2sn operations. The total complexity of this step can thus be
bounded by n(2sn+ 2n) = 2(s+ 1)n2 operations.

To recover the minimal polynomial fM of the matrix M, the algorithm uses
the sequence (uTMiv)i≥0 for some random u and v.9 Since

∑n
i=0 ciM

iv = 0, a

9 In practice, if M is known to be nonsingular, one uses v = y.
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fortiori, for any vectors u,v and any integer j,
∑n

i=0 ciu
TMi+jv = 0. Therefore,

the sequence (uTMiv)i≥0 is a linear recurrent sequence of degree smaller or
equal to n. Thus, one can compute its first 2n first terms, feed them to the
Berlekamp-Massey algorithm [11] and obtain the minimal polynomial f1 of this
sequence. Since fM cancels this sequence, it comes that f1|fM. In fact, one can
show that with high probability, f1 = fM After a few tries using different random
vectors, the algorithm recovers fM and thus provides a solution to (1).10

Block-Wiedemann algorithm. Coppersmith’s Block-Wiedemann algorithm [2]
is a probabilistic algorithm that allows to parallelize or distribute the Wiedemann
algorithm. It takes as input a square matrix M and returns a solution of the
equation Mx = 0 or the error symbol. In this algorithm, one draws simultaneously
l1 random vectors for u and l2 random vectors for v and considers the sequence
(Mi)i≥0 such that

Mi = UTMiV ∈ Fl1×l2
2 where UT ∈ Fl1×n

2 and V ∈ Fn×l2
2 .

In practice, we will set l1 = l2 and this parameter is usually equal to the size
of a word on the processor considered. In the binary case, the implementation
can also take advantage of the degree of parallelism offered by the execution
of binary instructions on the bits of a word by a processor. Thus we typically
use l1 = 64. Coppersmith proposes a generalization of the Berlekamp-Massey
algorithm that allows to compute a linear recurrence that generates this sequence.
He then notices that the sequence of (Mi)i≥0 is in fact determined by its first
n/l1 + n/l2 +O(1) elements rather than 2n. This algorithm allows to compute
a solution to an homogeneous sparse linear system in time 3n/l1 matrix-vector
products, which cost at most 2sn, which must be added to a small term in
O(n2) operations [2]. The total complexity can thus be approximated by 6sn2/l1
operations.

Solving arbitrary sparse linear systems. It is always possible to transform
the problem of solving the equation Mx = y for arbitrary M (in particular M
non-square) and y, into a problem that can be fed to either algorithms. If M
is not square, several methods (some heuristic, some not) allow to transform
the problem into a problem where the matrix considered is square, and in a
way such that a solution to the square problem will provide a solution to the
original problem with high probability [9]. We will not go into details about how
these methods work. Further, to transform a non-homogeneous system into a
homogeneous one, one can simply consider the equivalent problem of finding the
solutions x0 to the equation

(M|y)x = 0

such that x0
n ̸= 0. If the matrix (M|y) is not square, one must then transform it

into a square matrix using the methods mentioned above.

10 Although the algorithm is in practice slightly more complicated, we do not go into
details as this is not the core of the article.
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5.2 Improved attack

The matrix A is a sparse matrix of size δ × µ, where µ =
(
N
4

)
· ρ, δ ⪆ µ and the

number of nonzero coefficients per row is bounded by s = t·(ρ+1)+1 ≈ t·ρ. In our
attack, we wish to recover the kernel of the matrix A|z. After extending A|z to a
square matrix of size about δ for a negligible cost, recovering vectors in its kernel
has complexity 6·s·δ2/l1 elementary operations. With l1 = 64, we improve the time
complexity of the attack described in Section 4.2 from 2116.2 elementary operations
using Strassen algorithm to 294.2 using the Block Wiedemann algorithm. The
memory complexity is also improved from 280.9 to s · δ ≈ 257.14, as the matrix can
be stored more efficiently using its sparsity. The data complexity is not affected.

6 Filtering the equations used by the linearization attack

In this section, we propose a final improvement to our initial attack by filtering the
collected equations in order to reduce the number of variables in the considered
linearized systems. This leads to a known-IV time-data tradeoff, that reduces
the time complexity of the attack at the cost of an increased data complexity,
and a chosen-IV attack with a decreased time and data complexity thanks to an
offline precomputation selecting appropriate IVs.

Contexts where a chosen-IV attack is possible usually correspond to a scenario
where the attacker has access to a chosen ciphertext decryption/verification
oracle. In the HHE context, a client must not only be able to encrypt some
data using HHE (with IVs they choose themselves), but also to recover some
information from the server later on. Such a scenario is thus not precluded.
For example, we can consider a malicious server using the client as a chosen
ciphertext decryption/verification oracle. This could happen in a Bleichenbacher
type scenario where a client sends back a bit depending on the success of plaintext
parsing (the malicious server has access to a symmetric decryption oracle), or a
scenario where the server has access to the public result of a computation (access
to a homomorphic decryption oracle).

6.1 Known-IV attack

In this section, as in the case of the attacks described previously, the attacker has
access to a long keystream generated from a single known-IV. However, she will
only consider some useful positions in this keystream. This allows to restrict the
equations considered in the system to particular equations involving nonlinearly
only key elements in a proper subset of size N ′, where N ′ is comprised between
(r − 1) · t = 4t and N , of the set of all key elements, of size N . To produce a
keystream element, the XOF selects (r − 1) · t key nibbles at the input of the
t = 12 applications of h. For instance, we could only keep equations where those
key nibbles entering the h functions are all picked in the first half of the key
register (see Figure 5).

Working under this principle, the number of variables in the linearized system

is reduced to µN ′ =
(
N ′

4

)
ρ+(N −N ′), since the N −N ′ LSBs of the key elements
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Figure 5. Selected equations chosen so that the inputs to the h functions correspond
to key nibbles from the first half of the key register.

that appear only linearly through g still need to be considered. The number of
particular equations to collect is of the same order δN ′ ⪆ µN ′ . Assuming that
the XOF outputs are well distributed, the probability that all the key nibbles
appearing at the input of the h functions belong to a subset of size N ′ is given

by pN ′ =
(

N ′

(r−1)·t
)
/
(

N
(r−1)·t

)
. Thus the number of equations to obtain in order to

get enough particular equations after filtering is δN ′/pN ′ . This constitutes the
data complexity of this attack. The time complexity of building the matrix A is
now dominated by the cost of filtering the equations to keep only the particular
equations. The time complexity is δN ′/pN ′ generations of parameters by the XOF.

Then, the time complexity of the Block Wiedemann algorithm equals
6

l1
· s · δ2N ′

operations, where 6 and l1 are the same constants as in the previous Section 5.2.
This enables the attacker to recover the N ′ key elements and the N −N ′ LSBs
of the other key elements using the previously described attack. Recovering the
remaining 3(N−N ′) bits is an easier problem which can be linearized at a smaller
cost.

Using the parameters from Elisabeth-4, we choose the size N ′ of the target
subset so that the time complexity of the system construction and the time
complexity of its resolution are similar. We find N ′ = 137, which makes the
data complexity about 287 nibbles and the time complexity about 2× 287 = 288

operations. Finally, the memory complexity is also improved, as storing A only
requires about t · ρ · δN ′ = 254 bits.
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6.2 Chosen-IV attack

We now consider a chosen-IV version of this attack. In order to reduce the data
complexity of the attack described in the previous subsection where the attacker
had access to a large keystream (e.g., generated from a single known IV), we
assume that the adversary can obtain the first nibble of the keystream for a large
number of IVs of her choice.

Indeed, the attacker can prepare in an offline precomputation phase several
well-chosen IV values such that the XOF selects in a predefined proper subset of
the key register of size N ′ < N the (r − 1) · t key elements at the input of h in
the computation of the first keystream nibble.

The precomputation of the well-chosen IVs costs δN ′/pN ′ generations of
parameters by the XOF and enables to determine δN ′ appropriate IVs. The
equations corresponding to the first element of the keystream generated from
these IVs enable to build the matrix A for a data complexity of δN ′ .

We optimize the choice of N ′ so as to ensure that the time complexity of the
IV precomputation equals the time complexity of the key-recovery step. This
results in the same optimal value N ′ = 137 as in the known-IV setting. The time
complexity of the IV precomputation is then 287 generations of parameters by
the XOF, the data complexity is only µN ′ = 237 elements, the time complexity of
the construction and resolution of the linear system is 287 elementary operations.
The memory complexity of the attack is about t · ρ · δN ′ = 254 bits.

7 Small-scale experiments

In order to illustrate the linearization attacks presented in this paper, and to
validate their correctness, we implemented an attack on a reduced version of
Elisabeth-4. In this section, we describe the reduced version we considered
for our tests and report on the results we obtained. The implementation of our
experiments can be found at the following address:

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4

7.1 Elisabeth-4 reduced version

Elisabeth-4 design is highly parameterizable, which enables to easily define
reduced versions. In order to implement practically the attacks presented in this
paper, we need to reduce the size of the cipher, but we want to do so in a way that
remains representative of the structure of the cipher. We emphasize that we not
make any claim of resistance of the reduced version of Elisabeth-4 considered
here against any kind of attack.

In order to retain the effects of the rank defect discussed in Section 4, we
choose not to modify the structure of the function g. Also, we require t ≥ 2, since
there is some decoupling in the linear system between the components related to
different key quartets when t = 1. Consequently, we need N ≥ t ·r = 10. Since the
memory size of the sparse matrix A is already quite large at this point, namely

https://github.com/jj-anssi/asiacrypt2023-cryptanalysis-elisabeth4
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10
4

)
· t · ρ2 ≈ 235, we reduce further the design by considering 3-bit elements. Our

reduced variants thus operates in Z8, and eight arbitrary negacyclic Sboxes are
selected (see Table 2). We continue to observe a rank defect in this case with
ρ = 254 ≪ 212. This allows to increase the number N of key elements and the
number t of parallel calls to g in the filtering function f .

Table 2. Comparison of the parameters of the original Elisabeth-4 cipher and the
toy cipher introduced in this paper for experimental verifications.

Elisabeth-4 N t r Sboxes Group ρ

Original 256 12 5 4-bit Z16 8705

Toy 32 2 5 3-bit Z8 254

While implementing this reduced version, we were under the impression that
the XOF of Elisabeth-4 is not precisely defined in [3]. It refers to [13] as a
source for the definition of a forward secure PRG, but the correspondence from
random bits to random integers encoded in a function next int [3, Algorithm 2]
is not clearly explicited. Furthermore, the Rust implementation of Elisabeth-411

directly uses a RandomGenerator object from the concrete-core Rust library.
In order to ensure interoperability, the XOF function should be explicitly and
unambiguously defined. In our implementation, we try to fill the gaps in a sensible
way. For more details on how we defined the XOF in our implementation, we
refer the reader to Annex E and to our code (of which the link can be found
at the beginning of this section). Please note that our cryptanalysis does not
depend on the details of the XOF and of the functions that produce the round
parameters of Elisabeth-4 from the output of the XOF.

7.2 Implemented attack

We have implemented the linearization attack, taking into account the analysis
performed in Sections 4 and 5.

In order to implement the resolution of the sparse linear system, we used the
implementation of the Block Wiedemann algorithm provided by the cado-nfs
project [4]. cado-nfs is an open-source tool enabling to factor large integers
using the state-of-the-art factorization algorithms [4]. It has been used to achieve
factorization records in past years. A resource intensive phase of the factorization
algorithm consists in finding a vector in the kernel of a large sparse matrix, thus
cado-nfs provides a state-of-the-art, parallelisable and distributable implemen-
tation of the Block Wiedemann algorithm, linalg/bwc. This implementation
routinely solves linear algebra problems with sparse matrices with millions of
rows and about a hundred nonzero entries per rows.

11 https://github.com/princess-elisabeth/Elisabeth.

https://github.com/princess-elisabeth/Elisabeth
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During our experiments, we encountered issues using linalg/bwc. We realized
that this implementation is tailored to the case of matrices encountered in the
context of the NFS algorithm. More precisely, linalg/bwc solves x.A = 0,
with matrix A whose number of rows exceeds its number of columns, whereas
considering an overdetermined system A places us in the case where the number
or rows is less that the number of columns. There seems to be some issue with
the padding of matrix A to a square matrix, since the gather program which is
part of linalg/bwc reports nonzero coordinates in the padding part. In order
to bypass these issues, we fallback to generating square A matrices, embedding
the vector z as a column in the matrix A. In other words, we are using exactly
δ = µ+ 1. This constraint is not prohibitive as confirmed by the experimental
results below. Further investigations of the encountered issues in linalg/bwc

and solving them in order to get a general purpose implementation of the Block
Wiedemann algorithm is left as an open problem.

Results. The goal of our experiment was to check that the improved attack
of Section 5.2 works rather than experimentally evaluating its complexity. Our
experiment showed that it is possible to solve an Elisabeth-4 type linear system
using BW algorithm and that solving this linear system allows to recover the
secret key. Indeed, we managed to run the linearization attack successfully on
a reduced version of Elisabeth-4 (with 3-bit Sboxes, N = 32 and t = 2), and
recovered the key from a found kernel vector. This result gives some confidence
in the correctness of the attack.

As detailed in Section 5.2, the most expensive part of the attack performed is

the Block-Wiedemann step. Its theoretical complexity is 6 · t ·
(
N
4

)2 · ρ3/l1. As
in our experiment, t = 2, N = 32, ρ = 254, l1 = 64, we obtain a theoretical
complexity of 251.8 elementary operations. On the multicore platform that was
used for the experiment, the attack required 44 hours. Yet, we highlight that,
due to the impact of an increased memory complexity, it is difficult to assess how
these results scale when considering larger instances.
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13. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.S. (eds.)
Advances in Cryptology – EUROCRYPT 2016, Part I. Lecture Notes in Computer
Science, vol. 9665, pp. 311–343. Springer, Heidelberg, Germany, Vienna, Austria
(May 8–12, 2016). https://doi.org/10.1007/978-3-662-49890-3_13

14. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13,
354–356 (1969)

15. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE transactions
on information theory 32(1), 54–62 (1986)

http://www.jstor.org/stable/2153413
https://hal.inria.fr/hal-03905546
http://cado-nfs.inria.fr/
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1007/978-3-662-53018-4_17
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://books.google.fr/books?id=dyavmAEACAAJ
https://books.google.fr/books?id=dyavmAEACAAJ
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13


Cryptanalysis of Elisabeth-4 23

A Sboxes

0 1 2 3 4 5 6 7 8 9 a b c d e f

S1 3 2 6 c a 0 1 b d e a 4 6 0 f 5

S2 4 b 4 4 4 f 9 c c 5 c c c 1 7 4

S3 b a c 2 2 b d e 5 6 4 e e 5 3 2

S4 5 9 d 2 b a c 5 b 7 3 e 5 6 4 b

S5 3 0 b 8 d e d b d 0 5 8 3 2 3 5

S6 8 d c c 3 f c 7 8 3 4 4 d 1 4 9

S7 4 2 9 d a c a 7 c e 7 3 6 4 6 9

S8 a 2 5 5 3 d f 1 6 e b b d 3 1 f

Table 3. Sboxes used in Elisabeth-4 in hexadecimal notations.

B Degree of the least significant bit

In this section, we show that at any iteration j of the keystream generator, the
ANF of the Boolean function fj that takes as input the key bits and returns the
least significant bit of the keystream element is bounded by 12. We remind the
reader that this proof uses definitions and propositions introduced in Section 4.3.

We showed that at any iteration j, the Boolean function fj can be written
as the sum of t = 12 Boolean variations of h and the least significant bits of
some key elements (see Section 3). Thus, the degree of fj is bounded by the
maximum degree of a variation of h. Further, in Section 4.3, we showed that any
Boolean variation of h can be written as the sum of four Antler functions. Thus,
the maximum degree of any variation of h, and thus the degree of fj , is bounded
by the maximum degree of an Antler function. The following Theorem and its
proof thus suffice to upper bound the degree of fj .

Theorem 1. For any 3 negacyclic look-up tables S1,S2,S3, the ANF of HS1,S2,S3

has degree at most 12.

Proof of Theorem 1. In order to study HS1,S2,S3
, we introduce the following

definitions (see Figure 6):

u := S1[b] = S1[x+ y]

v := S2[b
′] = S2[y + z]

β := S1[b] + S2[b
′] + w .

Each bit of b (resp. b′, u+ v) can be expressed as a polynomial in the sum of
the bits of x and y (resp. y and z, u and v) and in the product of the bits of x
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Figure 6. The Antler function HS1,S2,S3 .

and y (resp. y and z, u and v). This property reflects the symmetric nature of
the modular addition. Thus, for 0 ≤ i ≤ 3, we also define

si := xi ⊕ yi, s
′
i = yi ⊕ zi

pi := xi · yi, s′i = yi · zi
σi := ui ⊕ vi

πi := ui · vi .

For any 0 ≤ i ≤ 3, the following equations are verified

pisi = 0

p′is
′
i = 0

πiσi = 0 .

As a consequence, by applying the definition of the modular addition to b = x+y,
we get

b0 = s0

b1 = p0 + s1

b2 = p0s1 + p1 + s2

b3 = p0s1s2 + p1s2 + p2 + s3 .

The exact same equations hold for b′. Similarly, the bits of u+ v can be expressed
as polynomials in the σi’s and πi’s.

Going back to the proof, the main idea is to show that the monomials in xi,
yi, zi, wi for 0 ≤ i ≤ 3 that can appear in the ANF of HS1,S2,S3(x, y, z, w) have
their degree bounded by 12. The first property we use is that HS1,S2,S3

(x, y, z, t)
does not depend on β3. This is a direct consequence of Proposition 2. On the
other hand, HS1,S2,S3

(x, y, z, t) can be expressed as a sum of monomials in the
βi’s for i = 0, 1, 2. In order to prove the theorem, we thus simply need to show
that any monomial in β0, β1, β2 can be expressed as a sum of monomials in xi,
yi, zi, wi for 0 ≤ i ≤ 3 that all have degree at most 12.
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To do so, we first need to express β0, β1, β2 as polynomials in the σi’s, πi’s
and the wi’s. By applying the modular addition to β = u+ v + w, we obtain

β0 = w0 + σ0

β1 = w1 + w0σ0 + π0 + σ1

β2 = w2 + w0w1σ0 + w1(π0 + σ1) + w0σ0σ1 + π0σ1 + π1 + σ2 .

Considering monomials in the βi’s for i = 0, 1, 2, we study which monomials in
the σi’s, πi’s and the wi’s can appear in their polynomial expression. For example,
the monomial β0β1 can be expressed as

β0β1 = w0w1 + w1σ0 + w0π0 + w0σ1 + σ0σ1

and thus contains the monomials w0w1, w1σ0, w0π0, w0σ1 and σ0σ1. We show
that the only monomial that can appear in the polynomial expression of a
monomial in the βi’s, 0 ≤ i ≤ 2 that depends on the three variables w0, w1 and
w2 is w0w1w2. β2 is the only variable that depends on w2, β0 does not depend
on w1 and β1 depends only linearly on w1. Thus, for a monomial in the three
variables w0, w1 and w2 to appear in the expression of a monomial in the βi’s,
one must consider β0β1β2, in which only the monomial w0w1w2 depends on all
three variables. Since only w0w1w2 can appear, any monomial that depends on
the σi’s and πi’s depends on at most two of the wi’s. We will now show that the
monomials in the σi’s and πi’s expressed as polynomials in the xi’s, yi’s and zi’s
are of degree at most 10, which will conclude the proof of the theorem.

The σi’s and πi’s, as well as any monomial in these variables, can be expressed
as a function of b and b′. In turn, b and b′, as well as any monomial in these
variables, can be expressed as a sum of monomials in the pi’s, si’s, p

′
i’s and s′i’s.

Since p3 (resp. p′3) does not appear in the expression of bi (resp. b
′
i), 0 ≤ i ≤ 3,

the monomials that can appear in the expression of a monomial in the σi’s and
πi’s do not depend on p3. Further, recall that pisi = p′is

′
i. Thus, the monomials

cannot depend on both pi and si (resp. p
′
i and s′i). Last but not least, note that

any pip
′
i = xiyizi is of degree 3. At first sight, the monomial of highest degree

that can be formed is s3s
′
3

∏2
i=0 pip

′
i. This monomial has degree 11, and is the

only monomial of degree 11 that respects the constraints we have put forward.
However, it turns out that this monomial cannot appear. Indeed, only b3 (resp.
b′3) is the depends on s3 and p2 (resp. s′3 and p′2). Further, in the polynomial
expression of b3 (resp. b′3), these variables are added to each other. It comes that
in the polynomial expression of any monomial in the bi’s, these variables cannot
be multiplied with each other. Thus, the monomials of highest degree that can
be formed have degree 10. We have thus shown the theorem.

C Proof of Proposition 4

By Lemma 1, we only need showing that the rank of the set of functions GS1,S2,S3

has its dimension bounded by 210.43. It is straightforward that the vector space
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Figure 7. The function GS1,S2,S3 .

spanned by all functions GS1,S2,S3
is a linear subspace of a vector space of the

form B0 + w0B1 + w1B2 + w2B3 + w0w1B4 + w0w2B5 + w1w2B6 + w0w1w2B7

where each Bi is a linear subspace of the linear space of dimension 28 spanned
by the monomials in the bits of b and b′. The dimension of this vector space
can thus be upper bounded by the sum

∑7
i=0 dim(Bi). We provide an upper

bound on dim(Bi) for each i. We remind the reader of the following notations
(see Figure 7):

u := S1[b]

v := S2[b
′]

β := S1[b] + S2[b
′] + w

σi := ui ⊕ vi

πi := ui · vi .

We also remind the reader of the expression of the value of the bits β0, β1

and β2 as polynomials in the σi’s, πi’s and wi’s.

β0 = w0 + σ0

β1 = w1 + w0σ0 + π0 + σ1

β2 = w2 + w0w1σ0 + w1(π0 + σ1) + w0σ0σ1 + π0σ1 + π1 + σ2 .

The least significant bit of h is a linear combination of monomials in βi for
i = 0, 1, 2. First, we consider B7, which corresponds to w0w1w2. The only
monomial in the βi’s that contains a monomial dividable by w0w1w2 is β0β1β2.
Further, the only monomial that can appear is w0w1w2. Thus, B7 has dimension
1. Next, we consider B6, which corresponds to w1w2. The only two monomials
in the βi’s that contain monomials dividable by w1w2 are β1β2 and β0β1β2. We
now consider the monomials dividable by w1w2 but not dividable by w0 that
appear in β1β2 and β0β1β2. We obtain the set {w1w2, w1w2σ0}. By Proposition 2,
σ0 is the sum of two bits that depend on 3 bits each and thus the rank of the



Cryptanalysis of Elisabeth-4 27

set of σ0 has rank 23 + 23 = 24. It comes that B6 has dimension at most 24.
Lastly, we consider B5, which corresponds to w0w2. Three monomials in the βi’s
contain monomials dividable by w0w2, namely β0β2, β1β2 and β0β1β2. We now
consider the monomials dividable by w0w2 but not dividable by w1 that appear in
these three monomials. We obtain the set {w0w2, w0w2σ0, w0w2π0, w0w2σ1}. By
Proposition 2, the set of π0 functions has rank at most 23 × 23 = 26. Further, it
contains the linear subspace spanned by the σ0 functions. The set of σ1 functions
has dimension 24 + 24 = 25 and also contains the linear subspace spanned by the
σ0 functions. Thus, B5 has dimension at most 26+25−24. It comes that a bound
on the rank of the LSB of h is

∑7
i=0 dim(Bi) ≤ 5×28+26+25−24+24+1 ≈ 210.43.

D On the dimension of the affine space of solutions

In this section, we discuss the dimension of the affine space of solutions to the
matrix equation Ax = z for a matrix A constructed as described in Section 4

and Section 6. In particular, A is a matrix of size δ×
(
N ′

4

)
ρ where δ ⪆

(
N ′

4

)
ρ and

where N ′ = N in Section Section 4 and N ′ < N in Section Section 6. Ignoring a
few lone nonzero bits from the final linear contribution to g, each row of A has
less than t · ρ active bits, organized into t = 12 sets of ρ active bits. A necessary
condition for the affine space of solutions to have dimension 1 is that each of

the
(
N ′

4

)
submatrices of size δ × ρ of A, constructed by extracting the ρ columns

corresponding to an unordered quartet of key element positions, is non-singular.
The concern that the matrix equation Ax = z could have an affine space of

solutions with a problematically large dimension, which would be highly unlikely
for a random matrix, stems from the fact that A has the following structure:
each row is nonzero in only t distinct sets of columns. If t was ‘too’ small, e.g.
t = 1, then this necessary condition might not have been fulfilled: each submatrix
would have on average just about ρ nonzero rows, and thus, the probability that

all
(
N ′

4

)
submatrices have full rank would would be rather low. For t = 12, on

the other hand, we provide a proof that this necessary condition is satisfied with
overwhelming probability for the values N ′ we consider in our attacks. In other
words, the structure of A produces no oblivious rank deficiency as compared
with the behaviour of a random matrix.

We consider a submatrix of size δ×ρ extracted from A as described above. We
let p1 be the probability that after gathering δ equations, this submatrix has less
than 2 · ρ nonzero rows. This probability is strictly smaller than the probability

that after gathering
(
N ′

4

)
ρ =def δ1 < δ equations, this submatrix has less than

2 · ρ nonzero rows. We compute this latter probability. For a fixed submatrice, we

can view the construction of A as drawing δ1 =
(
N ′

4

)
ρ rows such that for each

row, the probability that this row is nonzero is pt = t/
(
N ′

4

)
. The number X of

nonzero rows thus follows a binomial law with parameters δ1 =
(
N ′

4

)
· ρ and pt,

X ∼ B(δ1, pt). Thus, the probability that after
(
N ′

4

)
· ρ equations, the submatrix

has less than 2 · ρ nonzero rows is P(X ≤ 2 · ρ). Since δ1 · pt · (1− pt) ≫ 10, we
use the approximation of the binomial distribution by the normal distribution
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given by the Moivre-Laplace theorem:

P(X ≤ 2 · ρ) ≈ P

(
Y ≤ 2 · ρ− δ1 · pt√

δ1 · pt · (1− pt)

)
,

where Y ∼ N (0, 1). For N ′ = N = 256 and N ′ = 137, this probability can be

shown to be at most e−2692

538
√
π
.

We now compute the probability p2 that a submatrix containing at least 2 · ρ
equations does not have full rank ρ. We approximate this probability by the
probability that a random 2 · ρ × ρ matrix does not have full rank. It can be
shown by induction that the probability that a random F2-matrix of size 2 · ρ× ρ

has full rank ρ is at least e−
ρ

2ρ+1 . This implies that p2 ≤ 1− e−
ρ

2ρ+1 .
For a fixed submatrice, p1 is the probability that after gathering δ equations,

this submatrix has less than 2 · ρ nonzero rows whilst p2 is the probability that
a submatrix containing at least 2 · ρ equations does not have full rank. Thus,
the probability that a fixed submatrix is singular is at most p1 + p2. Since there

are
(
N ′

4

)
submatrices, the probability that at least one submatrix is singular is

at most
(
N ′

4

)
(p1 + p2). In particular, for N ′ = N = 256 and N ′ = 137, each

submatrix is non-singular with probability at least 1−
(
N ′

4

)
(p1 + p2) > 0.99.

E Description of the XOF

The XOF state contains an AES key. It is initialized with the IV. During operation,
a block of output is produced by encrypting a fixed constant using the key in the
XOF state. The updated state is obtained by encrypting another fixed constant
using the same XOF state as key. This enables to produce a sequence of bits
of arbitrary length. From this sequence we extract bit sequences to generate
masking values and integers to generate an ordered arrangement. In order to
generate an integer uniformly at random in {0, .., n − 1}, we apply rejection
sampling. We form an integer from k bits of the XOF output, where k is the
bitlength of n. While this candidate integer is greater or equal that n, we discard
it and take a new candidate. In the other case we use this integer as the output.
This defines a procedure next int(n). Note that the state of the XOF is updated
as bits of its output sequence are consumed.

Using this building block, we follow exactly Algorithm 2 of [3]. Note that the
generation procedure of parameters πi and mi is stateful: a current permutation
of {1, .., N} and an array of N masking values is maintained. At every step, we
need to extract r · t (= 60 for Elisabeth-4, = 10 in our toy version) key nibbles.
We do so by performing an ‘aborted Knuth shuffle’: for i in {1, · · · , r · t}, we
compose the current permutation with the transposition (i, i + x) where x is
an output of next int(N − i). At the end of the loop, the r · t first positions of
the current permutation contain an uniformly distributed ordered arrangement
of {1, .., N}. For every position determined by this arrangement, we add in the
array of masking values a fresh group element, generated through next int(16).
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