
HAL Id: hal-04477243
https://hal.science/hal-04477243

Preprint submitted on 26 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sharding in permissionless systems in presence of an
adaptive adversary

Emmanuelle Anceaume, Davide Frey, Arthur Rauch

To cite this version:
Emmanuelle Anceaume, Davide Frey, Arthur Rauch. Sharding in permissionless systems in presence
of an adaptive adversary. 2024. �hal-04477243�

https://hal.science/hal-04477243
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Sharding in permissionless systems in presence
of an adaptive adversary

Emmanuelle Anceaume, Davide Frey, and Arthur Rauch

IRISA/ Université de Rennes/ CNRS/ Inria, France

Abstract. We present SplitChain, a protocol intended to support the
creation of scalable proof of stake and account-based blockchains with-
out undermining decentralization and security. This is achieved by us-
ing sharding, i.e. by splitting the blockchain into several lighter chains
managed by their own disjoint sets of validators called shards. These
shards balance the load by processing disjoint sets of transactions in par-
allel. SplitChain distinguishes itself from other sharded blockchains by
reducing the synchronization constraints among shards while maintain-
ing security guarantees in an asynchronous setting. A dedicated routing
protocol enables transactions to be redirected between shards with a
low number of hops and messages. Finally, the protocol is designed to
dynamically adapt the number of shards to the system load to avoid
over-dimensioning issues encountered in static sharding-based solutions.

Keywords: Blockchain, Sharding, Distributed ledger, Scalability

1 Introduction

Blockchain technology is well known to provide a tamper-proof ”append-only”
distributed-ledger abstraction. The immutable nature of this ledger implies a
constant growth of its storage requirements, with every block being retained
for eternity. Not only does this impact storage, but it also increases the com-
munication requirements for a new honest party to join the system as it needs
to download the entire blockchain from the network in order to have a con-
sistent view of the transaction history. Sharding is a scaling solution involving
splitting the blockchain into several smaller blockchains, called “shards”, each
processed and stored by its respective set of validators. Allocating validators to
separate shards better balances communication and storage loads, accommodat-
ing more efficient network growth to achieve near-linear throughput scalability
as the number of shards increases. However, sharding poses several challenges.
Firstly, since the system is partitioned, compromising a shard demands a much
smaller portion of dishonest validators compared to what is required for classic
blockchains. In order to ensure shard safety, it is necessary to implement an
unbiased and verifiable random allocation of validators to prevent the adversary
from targeting a particular shard. It is also necessary to periodically relocate
validators to prevent the adversary from amassing corrupted validators inside a
shard. Secondly, it is necessary to ensure both the verification and atomicity of

2 E. Anceaume et al.

cross-shard transactions. A cross-shard transaction refers to a transaction made
between users managed by different shards. As each shard only knows the state
of the users stored in its blockchain, it is necessary to ensure that (i) an in-
valid transaction will not be accepted by any shard, and (ii) a valid transaction
partially accepted by the involved shards can be aborted so that funds can-
not be locked up indefinitely or duplicated. To solve both problems there must
exist some minimal amount of synchronization among shards. Most sharding
solutions, including Elastico, Omniledger, RapidChain or Ethereum 2.0, achieve
this using a global synchronization blockchain maintained by every validator in
addition to their shard’s blockchain. This synchronization shard enables each
validator to agree on the distribution of validators for consensus execution and
provides a secure communication mechanism to collectively maintain the global
state, i.e. the user accounts, of the system. In contrast to those solutions, we
contribute in the following way.
Contributions. We propose SplitChain, a fully decentralized state sharding
solution such that,

– Shards progress at their own pace without requiring the maintenance of a
synchronization blockchain or any heavy synchronization mechanisms;

– Shards keep a loosely synchronized view of each other’s state to guarantee
the processing of any cross-shard state updates in a bounded number of
consensus executions;

– Shards are tolerant to a fast adaptive adversary controlling less than a third
of all validators by relying on a novel distributed attribution mechanism;

– Shards self-adapt to the current payload of the system by self merging and
splitting the set of accounts;

– Shards efficiently forward transactions by leveraging the properties of hyper-
cubic routing protocols.

The remainder of the paper is as follows: Section 2 presents the system model.
Section 3 describes a chain’s structure and block creation. Section 4 is dedicated
to the management of transactions that span different chains and the assignment
of validators to chains. Section 5 introduces the system’s routing protocol. Sec-
tion 6 investigates SplitChain’s security properties. Finally, Section 7 compares
SplitChain to previous state-of-the-art sharding solutions.

2 Model of the system

2.1 Accounts and validators.

Splitchain uses the account model to provide durable identities to its users and
to enforce single-input single-output transactions for easier transaction man-
agement. Accounts are divided into two categories: user accounts and validator
accounts. Users can send and receive transactions, while validators participate
in SplitChain’s protocol.

Definition 1 (Accounts). Accounts are persistent balances identified by a pub-
lic key hash.

Sharding in permissionless systems in presence of an adaptive adversary 3

Definition 2 (Validators). Validator accounts are special accounts created by
users to participate in SplitChain’s protocol. All validator accounts possess the
same constant amount of currency called stake.

Any user can create a validator by submitting the corresponding amount of stake
through a transaction. Users with enough funds may possess multiple validators
concurrently. Stake serves as a limited resource to render the cost of Sybil attacks
impractical. Users specify a (bounded) number of cue blocks (see Definition 6)
for the existence of their validator, after which the validators expires and its
stake is returned to the user.

2.2 Network model.

We consider a peer-to-peer network of validators that self-divide into several
chains. Both the number of chains and validators vary over time to withstand a
dynamic and open environment. Communication delays are finite, however there
are no bounds on the time taken to deliver messages or any preservation of the
order of those messages, conforming to the asynchronous communication model.

2.3 Threat model.

Definition 3 ((µ,δ)-adaptive adversary). We consider a Byzantine adver-
sary that never controls more than a fraction 0 ≤ µ < 1/3 of validators.1 Fur-
thermore, the adversary is adaptive over a period δ ≥ 3, in the sense that if the
adversary chooses to corrupt some newly attributed validator, this corruption
will be effective after δ successive consensus executions.

2.4 Cryptographic functions.

Beyond common cryptographic functions, i.e. a hash function and asymmet-
ric signatures, validators use verifiable random functions(VRF) [5] to generate
pseudo-random hashes. VRFs are computed privately using a validator’s private
key, however their result is publicly verifiable using the validator’s public key.
Validators also use Merkle trees to prove the inclusion of data in a dataset with-
out having to know its content. Every leaf of the Merkle tree is labelled with
the hash of a data item, and every node other than the leaves is labelled with
the hash of the concatenation of the labels of its child nodes. The root of the
tree serves as the commitment to the dataset, and the Merkle path of a data,
i.e. the hashes of the sibling nodes of the nodes that connect a leaf to the root
of the Merkle tree, serves as the proof of the inclusion of the data. The (µ, δ)-
adversary’s computational power is restricted to match standard cryptographic
assumptions.

1 Given that validators all hold the same amount of stake, this equates to controlling
less than µ of the total validation stake.

4 E. Anceaume et al.

3 Structure of the blocks

There are two types of blocks in SplitChain: chaining blocks and transaction
blocks. Each transaction block is paired with a chaining block, which are the
outcome of a single consensus execution. The index of a block refers to its position
in the chain.

Definition 4 (Transaction blocks). Transaction blocks contain all the trans-
actions accepted by validators during a consensus execution.

Definition 5 (Chaining blocks). Chaining blocks store the hash of the pre-
vious chaining block of their chain and the Merkle root of the transaction block
produced during the same consensus execution.

Definition 6 (Cue block). Let Ncue be some positive integer. ∀k ≥ 0, every
chaining block at position k ×Ncue of a chain is called a cue block. A cue block
points to both the previous chaining block and the previous cue block.

Chaining blocks are akin to traditional block headers. A chaining block of a
chain C contains a list of hashes. In particular, it provides the Merkle roots
of the transaction block produced during their consensus execution, and of the
accounts managed by the chain as well as the fingerprints needed for cross-chain
transaction verification. It also contains the list of the latest known chaining
block indices of the chains other than C, which we refer to as the fingerprint of
the block. The interested reader may refer to Figure 1. For synchronization pur-
poses, chaining blocks are disseminated to all chains using SplitChain’s dedicated
routing protocol described in section 5. In contrast, transaction blocks of chain
C are only stored by the validators participating in C’s consensus executions.

4 Handling multiple chains

4.1 Assigning validators to chains

Each block of each chain is created via the local execution of a consensus algo-
rithm. Consensus committees are periodically renewed (at each consensus execu-
tion) and their members are selected via two stages. The rationale of both stages
is to prevent the (µ, δ)-adversary from predicting, and thus manipulating, mem-
bers of consensus committees. Briefly, starting from their initialization chains,
validators are uniformly distributed over their reference chains (first stage), and
then uniformly distributed over their consensus chains (second stage). Valida-
tors stay forever in their initialization chain (that is as long as then want to
actively participate in the creation of SplitChain’s blocks), they stay for Ncue

blocks (see Definition 6) in their reference chain, and finally they stay for no
more than the duration of three consensus executions in their consensus chains.
Hence, for any chain Ci, and for any validators v, v′ and v′′ of Splitchain, at time
t, Ci can be the initialization chain of v, while it is the reference chain of v′ and
finally the consensus chain of v′′.

Sharding in permissionless systems in presence of an adaptive adversary 5

Initialization chain Any user u wishing to actively participate in block cre-
ations must first register a validator account, with a given amount of stake.
Validator accounts allow users to participate in different consensus executions.
Note that a single user can create multiple validator accounts if they own enough
currency. Let v = (skv, pkv) be u’s validator. User u submits a transaction to in-
stantiate v’s stake on what we call v’s initialization chain. This chain, denoted by
C init(v), is the chain of SplitChain whose label is the closest to addrv = H(pkv)
(by closest we mean the chain whose label minimizes the numerical value of the
xor between addrv and the chain’s label. The routing mechanism is described in
Section 5). Initialization chains provide a stable anchor point for validators and
allow them to prove the existence of their account. However, they do not con-
tribute to SplitChain security. Indeed, some malicious validator v′ can iteratively
invoke the cryptographic hash function to sit on some targeted chain C init(v′).
The current consensus committee of C init(v) updates the list L of new validators
with v and inserts L’s Merkle root to the chaining block under construction (see
“Future Initialization Proof” in Figure 1). When the next cue block of C init(v) is
created (see Definition 6), the consensus committee in charge of that cue block
will assign each new validator of L to their reference chain (see Algorithm 3
in Appendix B). Specifically, Algorithm 3 shuffles L (using the seed of the cue
block), partitions L into N sub-lists of ⌊|L|/N⌋ validators, where N is the cur-
rent number of chains of SplitChains, and assigns each random sub-list to one
of the N chains of SplitChain. The Merkle root of L and the proof of validator
assignment to their reference chain is included in the cue block (see Algorithm 1
in Appendix B). The chain to which v will be assigned is called v’s reference
chain and is denoted by Cref(v). At every cue block creation, Algorithm 1 is
executed so that v is periodically re-assigned to a reference chain.

Reference chain Each reference chain C1, . . . , CN of SplitChain assigns uni-
formly at random its V/N referenced validators to the N consensus chains of
SplitChain, where V is the total number of referenced validators in SplitChain.
It is important to note that to face a (µ, δ)-adaptive adversary, validator v
can not be attributed to the consensus committee of Ccons(v) more than δ − 1
consecutive times. Hence to be assigned to its consensus chain Ccons(v), val-
idator v = (skv, pkv) generates its consensus credential as a new key pair
(skcons(v), pkcons(v)) and sends a signed credential storage request to the cur-

rent consensus committee of Cref(v). Validator v regenerates its credentials every
δ attributions. This signed request contains addrv, ref v and H(pkcons), proving
the legitimacy of v’s request. If the request is valid, v’s consensus credential
is added by the current consensus committee of Cref(v) to the list L of valida-
tors that will be used by Algorithm 3 to build N sub-lists of ⌊|L|/N⌋ = V/N2

validators each. Such a sub-list is called a reference set, and each sub-list is as-
signed uniformly at random to one of the N chains os SplitChain. The chain
to which v is assigned is called v’s consensus chain and is denoted by Ccons(v).
The Merkle root “Credentials” (see Figure 1) of this list is added to the chaining
block. Merkle paths are sent to the referenced validators of Cref(v) to serve as

6 E. Anceaume et al.

credential proof. The current consensus committee of Cref(v) sends to each con-
sensus chain a transaction that contains the size of the reference set they have
allocated to it. This allows validators to know the total amount of stake inside
their consensus committee.

Consensus chain To join the consensus committee of Ccons(v), v issues a “join”
request to Ccons(v) using SplitChain’s dedicated routing protocol. Upon receipt
of the request, the core validators of Ccons(v) directly reply to v with the list
of core validators (see Section 5.2) and a sub-list of the current consensus com-
mittee members chosen at random. We call these validators the bootstrapping
validators of v. The number of bootstrapping validators is large enough so that
with any high probability 1 − ε, with ε ∈ (0, 1), at least one of them is hon-
est. As chaining blocks cannot be forged by the (µ, δ)-adversary without taking
over a chain’s consensus, the proofs they contain are sufficient to verify the
authenticity of the data provided by the bootstrapping validators. Thus only
one honest bootstrapping validator is sufficient for a successful bootstrap of v
to Ccons(v). Bootstrapping validators will provide v with Ccons(v)’s state. This
state corresponds to the latest state of Ccons(v)’s user accounts, the proofs of
attribution of the current consensus committee and the list of core validators.
Note that the fingerprint of the latest chaining block b of Ccons(v) contains the
latest chaining block index of each chain of SplitChain known to the consensus
committee of Ccons(v) when b was created. Therefore, the latest chaining block
b contains the chaining block index of each reference chain used to create the
current consensus committee of Ccons(v). From this list, v establishes the list of
attribution proofs of the committee, requesting the missing chaining blocks to
its bootstrapping validators if necessary. Algorithm 4 in Appendix B presents
the detailed pseudo-code of v’s attribution to its consensus chain.

4.2 Creation of the blocks of a chain

As described above, each chain Ci of Splitchain plays the role of a consensus
chain. By construction the consensus committee of Ci contains V/N validators.
(Note that Section 4.1 presents a partial attribution policy that can be used
to replace the one previously presented, when SplitChain is made of sufficiently
many chains). For performance reasons, V/N validators cannot altogether be
involved in the execution of a consensus algorithm. The solution we propose
is to rely on a particular asynchronous consensus called the merge consensus
algorithm [7].This algorithm leverages the cryptographic sortition lottery intro-
duced by Algorand [2] to elect, in a non-interactive and private way, a subset of
the committee members. This subset has a bounded expected size that is large
enough to handle adversarial behaviors, but independent from the size of the
consensus committee. The consensus algorithm runs a series of asynchronous
rounds, such that at each round, a new subset of validators is elected via crypto-
graphic sortition. The algorithm ensures, with any high probability (whp) that
all the transactions proposed by honest validators at the beginning of a consensus
execution are included in a block after a finite number of rounds.

Sharding in permissionless systems in presence of an adaptive adversary 7

4.3 Leveraging a large number of chains

As explained in Section 4.1, all reference chains send their last chaining block
containing the Merkle root of their reference set to all the consensus chains.
This allows the consensus committee of each chain to be updated with V/N2 at-
tributed validators. Once all these sets have been received, consensus executions
can be triggered (see Section 4.2). We call this policy the total attribution policy.
The total attribution policy ensures that consensus committees cannot be com-
promised by a (µ, δ)-adversary with overwhelming probability (see Theorem 2).
However, it introduces significant delays in presence of a large number of chains.
When the number of chains is large enough (i.e., N > 10) the partial attribution
policy is more appropriate. Specifically, a random subset of S reference chains is
selected among the N chains of SplitChain. Each consensus committee contains
S(V/N2) validators instead of N(V/N2). The S new reference sets of the next
consensus committee are selected as follows: Let L be the list of chains included
in the last fingerprint of Ci. List L is randomly shuffled using the random seed of
the last chaining block of Ci. The first S chains in L become the reference chains
providing the new reference sets of the next consensus of Ci. For safety reasons,
partial attribution cannot be used in presence of a small number of reference
chains, as the (µ, δ)-adversary can concentrate its power to manipulate a few
number of reference chains. Theorem 3 provides a lower bound Smin on S as a
function of the total number of reference chains. Due to asynchrony and because
the consensus committee of a chain Ci only waits for S reference sets to initiate
the consensus, the chaining block of a chain Cj listed inside the fingerprint of
the last chaining block of Ci may be older than the actual latest chaining block
of Cj . We call ρ(N,S) the difference between the last chaining block index of Cj

and the last chaining block index of Cj mentioned inside the fingerprint of Ci.
To prevent the adversary from taking advantage of ρ(N,S) to corrupt the new
reference sets of Ci, we require its adaptivity to be reduced to δ + ρ(N,S) and
the duration of a validator’s membership to be reduced from δ−1 to δ−ρ(N,S).
So, for the partial attribution policy, we consider a (µ, δ+ ρ(N,S))-adaptive ad-
versary. To bound the value of ρ(N,S) with a high probability, the consensus
committee of Ci is required to wait for the delivery of any new block b appearing
in the fingerprint of the chaining blocks of one of the S new reference commit-
tees. Similarly, any new chaining block inside b’s fingerprint must be delivered by
Ci’s committee before initiating a new consensus execution. Theorem 4 provides
an upper bound on ρ(N,S).

4.4 Pruning and verifying transactions

It is important to limit the amount of data stored by validators to prevent
bootstrapping costs from linearly increasing with the number of blocks in a
chain. We propose a pruning method that guarantees bootstrapping costs near-

constant. Specifically, each validator v of the consensus committee of C
cons(v)
i

stores only all the cue blocks of C
cons(v)
i as checkpoints and only the latest k

chaining and transaction blocks of C
cons(v)
i . This allows v to respond to users

8 E. Anceaume et al.

that wish to verify old transactions that were validated in the latest k blocks.
Users wishing to prove the inclusion of old transactions (i.e., those belonging
to transaction blocks bi, . . . bℓ, that have been deleted) must locally store the
chaining blocks between bi, . . . bℓ and the next cue block. Cryptographic links
between consecutive chaining blocks are then enough to recursively prove the
existence of a pruned chaining block. The inclusion of the transaction is proven
as per usual by the user against the Merkle root of the transactions contained in
the chaining block. Each validator also stores the latest cue block of all the other
chains: this supports the validator attribution strategy described in Section 4.1,
as cue blocks contain the initialization proofs of validators.

4.5 Cross-chain transactions

Splitchain’s transactions take place between any two user accounts.

Definition 7 (Cross-chain transactions). When both accounts of a transac-
tion are not managed by the same chain, a transaction is said to be cross-chain.

The chain in charge of handling a transaction is the one whose label prefixes
the emitter account (denoted by Csend in the following). Cross-chain transac-
tions are handled in two steps: the withdrawal operation and then the deposit
operation. The withdrawal operation occurs when the transaction is inserted in
a transaction block of Csend. During the creation of the new transaction and
chaining blocks, the consensus committee members of Csend determine the list
of cross-chain transactions inside the transaction block and generate the corre-
sponding relay transactions, which they organize as a Merkle tree T . A relay
transaction contains the user’s initial transaction and the Merkle path of the
relay transaction inside T . The Merkle root ”relay TX” (see Figure 1) of T is
included into the new chaining block under construction. Consensus committee
members of Csend then send the relay transaction to the receiver’s account chain.
As chaining blocks are propagated to all chains, the consensus committee mem-
bers of the receiver’s chain can verify the completion of the withdrawal operation
and include the relay transaction in the next transaction block of their chain,
which confirms the deposit operation, completing the cross-chain transaction.
Note that transactions are always redirected to the chain whose label prefixes
the identifier of the emitter account, whereas relay transactions are redirected
to the chain of the receiver account.

4.6 Grouping user accounts

Users exchanging on a frequent basis may want to avoid the latency introduced
by cross-chain transactions. Thus, we introduce the notion of group accounts
that allow users of the same group to always be part of the same chain. A group
account is a collection of accounts sharing the same group identifier, i.e. a key
hash. When a user u wishes to open an account inside a group gid, u only needs
to submit a transaction to a non-existent account (gid, pku). Similarly, when a
user wishes to withdraw from a group, they can simply submit a transaction to
transfer all their account funds elsewhere.

Sharding in permissionless systems in presence of an adaptive adversary 9

5 Routing

5.1 Hypercube, merging and splitting operations

SplitChain initially starts with a single chain C whose label is the empty chain
of bits ε. If during Ncue consecutive blocks, the average number of transactions
per block exceeds some threshold Tsplit, then C triggers a split. Splitting is an
operation that allows a chain of label l to be replaced by two chains of labels
l|0 and l|1, called siblings, each taking over half of the accounts of the original
chain. If the original chain C is labeled ε, then both new chains will be labeled
0 and 1 respectively. Conversely, if during Ncue consecutive blocks the average
number of transactions per block is lower than a threshold Tmerge, the chain
initiates a merge with its sibling chain. Both chains merge in a single one whose
label corresponds to the maximal prefix of their previous labels. By design, each
chain label is unique. Our topology is inspired by hypercubic networks [1]. A
hypercube of dimension d contains 2d vertices. Each vertex is assigned a d-bit
label. Two vertices are neighbors if the numerical value of the xor of their labels
is equal to a power of 2, i.e. if their labels differ by only one bit. For example, in
Figure 3, vertex 000 is a neighbor of vertices 001, 010 and 100. The number of
hops between two vertices can be determined using the Hamming weight of the
xor of their labels. The diameter of the hypercube, i.e. the maximum number of
hops between the two most distant vertices, is d. We use the following approach to
match each chain to one or more vertices of a hypercube: Let k be the number of
bits of the longest chain label. Splitchain conforms to a subgraph of a hypercube
of dimension k, where each chain whose label has exactly k bits is mapped to
the vertex of the same label, and each chain whose label contains strictly less
than k bits is mapped to all vertices whose labels are prefixed by the chain’s
label. Thus, in Figure 3, chain 01 is mapped to vertices 010 and 011. As a result,
when all chain labels are k bits long, the network corresponds to a hypercube
of dimension k. A hypercube of dimension k can be constructed recursively by
connecting two hypercubes of dimension k− 1. This allows the dimension of the
hypercube to be changed dynamically with k: if k increases, each vertex of label
l of size k − 1 is divided into two vertices of labels l|0 and l|1. Figure 3 shows
the transition from a hypercube of dimension 2 to a hypercube of dimension 3
after chain 00 splits into (i.e., is replaced by) two chains 000 and 001. Similarly,
if k decreases, vertices are merged in the same way as for chains. This ensures
that no vertex represents two chains simultaneously.

5.2 Core validators

To limit the number of messages transmitted by validators and hence to improve
the usage of network resources, we introduce the notion of core validators. The
number of core validators is chosen to ensure that at least one honest validator
belongs to the core. Election of core validators is as follows. When validator v
is attributed to the consensus committee of Ccons(v), v triggers twice the cryp-
tographic sortition lotery at round 0. Once for determining whether it will exe-
cutes round 0 of the merge-consensus algorithm (see Section 4.2) and a second

10 E. Anceaume et al.

time to determine whether it will be part of Ccons(v)’s core. Both invocations
of the cryptographic sortition lotery use the same parameters except for pa-
rameter τ , which represents the expected number of successful winners, so that
core validators represent a subset of the validators elected for round 0 of the
merge consensus. If successful, v is part of the core of Ccons(v) until its consen-
sus credentials expire, which corresponds to the duration that represents δ − 1
consecutive consensus executions (v tries to be elected in the core of Ccons(v)

only once during the lifespan of its credentials). Once elected, core validators
send their proof of election along with their consensus messages, guaranteeing
with any high probability that all committee members of Ccons(v) will agree on
the list of core validators at the end of the merge consensus execution. The hash
of the list of new core validators will be included in the chaining block decided
as the outcome of the merge consensus (see Figure 1). Core validators are in
charge of executing the routing protocol. They maintain two routing tables: A
core routing table containing the list of the core validators of neighboring chains
for cross-chain communication, and a consensus table containing the list of their
consensus committee members. By using their core routing table, core validators
forward transactions to the core validators of the neighboring chain whose label
is closest to the transaction’s destination. On the other hand, the consensus ta-
ble is used to broadcast messages within their consensus committee. Only core
validators keep track of the list of committee members.

5.3 Core routing table

Definition 8 (Core routing table). The core routing table of chain Ci, 1 ≤
i ≤ N , contains the list of the core validators of Ci’s neighbouring chains.

Core routing tables, denoted by RT core, are maintained by core validators
and contain the lists of core validators of all of its neighboring chains in the
hypercube. For any two neighboring chains Ci and Cj ,RT core

i [j] contains a linked
list made of at most δ − 1 elements. The k-th element of RT core

i [j], k ≤ δ − 1,
contains the k-th most recent core proof of Cj and points to the core validators
it proves (see Figure 2a). Upon receipt of a new chaining block b of Cj , core
validators of Ci create and insert in block order a new element containing the
core proof of b. Note that the core validators of Cj send separately the set of
new core validators and chaining block b. Once received, it is verified using the
core proof of b and then linked to the new element.

5.4 Consensus table

Definition 9 (Consensus routing table). The consensus routing table of a
chain Ci contains the list of validators of the consensus committee of Ci.

Core validators also keep track of the consensus committee members. All intra-
chain communication are handled by core validators, reducing the number of
messages within a chain. This also isolates intra-chain communications from the

Sharding in permissionless systems in presence of an adaptive adversary 11

overall network, allowing chains to be added without overloading SplitChain. A
consensus routing table, as shown in Figure 2b, contains the list of consensus
committee members sorted by reference chains and chronological order of attri-
bution proof (the Merkle root called ”Credentials”). The structure is composed
of N linked lists of at most δ − 1 elements, the i-th element of the j-th linked
list containing the i-th most recent attribution proof of the validators referenced
by the chain Cj . Each element points to the list of attributed validators. This
list is updated upon receipt of validators ”join” requests. When a core validator
receives a new chaining block b from some chain C, it inserts in block order a new
element containing b’s attribution proof and removes the δ−1 element if needed.
This allows the gradual replacement of validators with old credentials, to pre-
vent the (µ, δ)-adversary from compromising consensus committees. In addition,
organizing validators with the proof of attribution of the chaining blocks ensures
that when a proof expires, all the validator credentials proven by the proof also
expire, whether these validators ever participated to the merge consensus execu-
tions or not. This prevents the adversary from withholding credentials to build
up enough consensus credentials to take over a chain.

6 Security Analysis

In this section we analyze the security of SplitChain. Specifically we first show
that an adversary cannot tamper or predict randomness of block seeds, and then
we evaluate the probability of corruption of a chain’s consensus committee as
well as the probability of corruption of a chain’s routing core. For the purpose
of SplitChain, we can assume that at any time the total number of validators
is arbitrarily large. For space constraints, proofs of theorems and lemmas are
presented in Appendix B.

6.1 Randomness creation

The security analysis of SplitChain relies on the assumption that for any chain C
of SplitChain, and for any instantiation k ≥ 1 of the merge consensus, the seeds
of the chaining blocks preceding the k-th one of C have been generated in an
unbiased and unpredictable way. Theorem 1 is essential to prevent the adaptive
adversary from manipulating the outcome of the cryptographic sortition lotery.

Theorem 1. Let ϵ ∈ (0, 1) be the security parameter of SplitChain. The seed
of any chaining block cannot be tampered with or predicted in advance by the
adversary with any high probability 1− ϵ.

6.2 Variation in size of reference sets

Lemma 1 shows how fairly the attribution algorithm of SplitChain (i.e., Algo-
rithm 3) distributes validators between the different consensus committees.

Lemma 1. Let E1, E2, ..., EN be the reference sets produced by Algorithm 3.
Then ∀j, k ∈ {1, ..., N}, | |Ej | − |Ek| |≤ 1.

12 E. Anceaume et al.

6.3 Safety of consensus committees

To ensure that the (µ, δ)-adversary cannot take over the consensus execution of
any consensus chain C, the consensus committee of C must contain less than a
third of corrupted validators. We examine the probability of corruption of the
consensus committee of an arbitrary chain C for both the total attribution policy
and the partial one. Recall that µ represents the proportion of malicious valida-
tors in SplitChain and N represents the current number of chains of SplitChain.

Total attribution As long as the proportion µ of corrupted validators in
SplitChain is less than 1/3, Lemma 2 shows that the (µ, δ)-adaptive adversary
must distribute its corrupted validators evenly in the reference sets.

Lemma 2. The probability of corruption of a consensus committee by the (µ, δ)-
adaptive adversary is maximized when corrupted validators are equally distributed
among all reference chains.

Theorem 2 provides the probability pc of corruption of a consensus committee
when the total attribution policy is applied.

Theorem 2. For any security parameter ϵ ∈ (0, 1), for any proportion of cor-
rupted validators µ < 1/3, there exists a finite consensus committee size cmin

such that ∀c ≥ cmin, the probability pc that a committee of c validators is cor-

rupted satisfies pc < ϵ, where pc = 1−
∑⌊c/3⌋

ℓ=0

(
c
ℓ

)
µℓ(1− µ)c−ℓ.

Figure 4a illustrates Theorem 2 for different values of µ and ϵ.

Partial attribution We prove that the partial attribution is secure in presence
of a (µ, δ+ ρ)-adversary. Let S represent the number of randomly selected refer-
ence chains among the N chains of SplitChain. Theorem 3 gives the probability
of corruption pS of a partially attributed consensus committee. It provides a
lower bound Smin on the number of reference chains S such that a consensus
committee built with the partial attribution policy using S ≥ Smin reference
chains has probability less than ϵ to be corrupted.

Theorem 3. For any safety parameter ϵ ∈ (0, 1), for any proportion of cor-
rupted validators µ < 1/3, there exists a finite number of reference sets Smin such
that ∀S ≥ Smin, the probability pS that a consensus committee composed of S ref-

erence sets is corrupted satisfies pS < ϵ, with pS = 1−
∑⌊S/3⌋)

k=0

(
S
k

)
µk(1−µ)S−k.

Figure 5b displays the value of Smin/N for ϵ = 10−6 as a function of the
adversary proportion µ in SplitChain and for different values of N . The value of
Smin decreases when the number N of chains of the system increases. However,
when the adversary proportion µ becomes very close to 1/3, Smin/N tends to 1
and total attribution is needed.

Sharding in permissionless systems in presence of an adaptive adversary 13

6.4 Resistance against an adaptive adversary

The objective of this section is to analyze whether the adversary can benefit from
the partial attribution policy to corrupt a targeted consensus committee via the
manipulation of a given reference set Sj∗ of a chain Cj∗. Specifically, let C(t) be
the consensus committee of chain C at time t, and B(t) = {S1, . . . , Sj∗, . . . , SN}
be the set of the last reference sets sent by the N chains of SplitChain that
have been received by C(t). From the partial attribution policy (see Section 4.3),
C(t) randomly selects S sets from B(t) to determine the composition of the next
consensus committee C(t + 1) at time t + 1. Consensus committee C(t + 1) on

its turn will randomly selects S sets from B(t + 1) = {S(1)
1 , . . . , Sj∗, . . . , S

(1)
N },

where S
(1)
i represents the last reference set received by C(t + 1) and sent by

Ci. Note that, by the asynchrony of the system, all communications from the
chains may be arbitrarily long, delaying accordingly the receipt of reference
sets, and in particular the new reference set of Cj∗. Thus C(t + 1) may still
consider the obsolete reference set Sj∗ as the latest reference set of Cj∗. Let
ρ(N,S) be the upper bound on the difference between the chaining block index
of the obsolete reference set Sj∗ and the latest chaining block index of Cj∗.
Consensus committee C(t + ρ(N,S)) will randomly selects S reference sets from

B(t+ ρ(N,S)) = {S
(ρ(N,S))
1 , . . . , Sj∗, . . . , S

(ρ(N,S))

N }. Suppose that reference set Sj∗
is never selected during the first ρ(N,S)−1 random selections. Recall that for the
partial attribution policy (see Section 4.3), we assume a (µ, δ+ ρ(N,S))-adaptive
adversary. Were reference set Sj∗ selected after ρ(N,S) validator attributions,
the adversary could already have corrupted the validators of Sj∗. Let χρ(N,S)

be the probability that a consensus committee uses a reference set that has
been obsolete for at least ρ(N,S) consecutive validator attributions. Theorem 4
shows that χρ(N,S)

is less than the security parameter ϵ. Figure 5a illustrates
that ρ(100,24) = 5.

Theorem 4. ∀N, ∀S ≤ N , ∃ρ((N,S)> 0 such that χρ(N,S)
< ϵ.

6.5 Safety of the election of core validators

Validators of the core of a chain are crucial for intra- and cross-chain communi-
cations. There must always be at least one honest core validator to ensure the
routing of messages in a chain. In the following, T represents the lifespan of
consensus credentials, µ′ = µ(T)/(T − 1) refers to the maximum proportion of
corrupted validators eligible for the core and c is the number of validators of any
consensus committee. We use 1 ≤ r ≤ T to designate the number of the T last
consensus of a chain and refer to the number of validators that joined the con-
sensus committee during consensus r as cr. Theorem 5 shows that there exists
a finite core size above which the probability pcore that the core is corrupted is
smaller than ϵ.

Theorem 5. For any safety parameter ϵ ∈ (0, 1), for an adaptive adversary with
δ ≥ 3, there exists a finite core size τmin such that ∀τ ≥ τmin, the probability

14 E. Anceaume et al.

pcore that a core of τ validators is corrupted satisfies pcore < ϵ, with pcore =
(1− τ/c)(1−µ′)(c−cT).

Figure 4b plots τmin as a function of the consensus committee size c for
different values of δ. As observed, τmin quickly stabilizes as c increases. We also
notice that τmin decreases very rapidly when δ increases.

7 Related Work

While several sharded blockchains have been proposed in recent years, we focus
on previous works that have introduced new concepts that have influenced the
design of SplitChain.

Elastico [4] is the first sharded blockchain. Its validators are divided into
shards, each one creating a block of transactions, which are then aggregated
into a ”global-block” to add to the system’s unique blockchain. The shards are
renewed after each global-block, ensuring strong safety against adaptive adver-
saries at the expense of synchronization and storage costs, i.e., validators store
the entire system. As a safeguard against Sybil attacks, each validator must
solve a PoW puzzle, whose solution also determines which shard it belongs to.
Elastico cannot ensure atomicity in cross-shard transactions [3], leading to per-
manent fund locking. Its attribution protocol coupled with its small shard size
(approx. 100 validators) yields a very high corruption probability of 2.76% [3] per
shard per block. In comparison, SplitChain splits the management and storage
of transactions and user accounts between the different chains at the cost of a
slower adaptive adversary. SplitChain implements a pruning mechanism for the
blocks of the chains and gradually renews the validators of the chains, limiting
the bootstrapping overhead of new validators. SplitChain supports cross-chain
transactions natively and includes a routing protocol designed for chains to route
transactions in a logarithmic number of hops in proportion to the total number
of chains in the system. Finally, SplitChain does not rely on PoW, which requires
a synchronous communication model and whose use is controversial because of
its excessive energy consumption.

Omniledger [3] improves upon Elastico. It uses a more scalable consensus
algorithm, increasing the size of its shards, thus reducing the probability of their
corruption. It features shards with separate ledgers to better distribute stor-
age costs and adapts classic distributed checkpointing principles to prune shard
ledgers. It provides a synchronous lock/unlock client-driven mechanism to handle
cross-shard transactions, although at the expense of lightweight-client compat-
ibility and significant latency and safety issues [8]. The UTXO model is not
adapted to sharding, as its cross-chain transactions can consume UTXOs stored
in different chains, having a significant impact on throughput as the number of
shards increases. Omniledger reduces the cost of shard reconfiguration by bound-
ing the number of validators shuffled in each of its day-long epochs, however,
Omniledger requires a global blockchain for validator allocation. In contrast,
SplitChain shuffles a small number of validators of a chain after each block to

Sharding in permissionless systems in presence of an adaptive adversary 15

withstand an adversary adaptive over a small, configurable number of consen-
sus instances and does not require any global blockchain to manage validator
identities. Validators can handle the management and routing of cross-chain
transactions autonomously, preserving lightweight-client compatibility.

Zilliqa [9] is an account-based sharded blockchain that handles smart con-
tracts. It inherits all the problems of Elastico except for its ability to handle
validators on a separate chain. It does not shard transactions storage. Moreover,
it cannot provide atomicity for cross-shard transactions.

RapidChain [11] is a UTXO-based sharded blockchain that distinguishes it-
self from Omniledger by featuring a transaction routing protocol inspired by
Kademlia, enabling message routing in log n steps without any special client
interaction. To reduce the size of its shards, RapidChain uses a synchronous con-
sensus algorithm tolerating a proportion of 1/2 Byzantine nodes. RapidChain
thus inherits problems of Elastico and Omniledger, namely the use of PoW for
validator enrollment (Elastico) and the use of the UTXO model (Omniledger).
On the other hand, Splitchain is asynchronous, does not require PoW and routes
transactions through a small subset of validators (the core) thereby significantly
reducing message load.

Monoxide [10] is the first sharded blockchain to implement the use of PoW
for shard consensus. It allows each miner to finalize and propose new transaction
blocks to multiple shards simultaneously, amplifying and distributing their min-
ing capabilities within the system. Its cross-shard transactions are handled in a
lock-free manner. However, to guarantee the safety of Monoxide, the majority of
miners are required to work for most if not all shards. This causes centralization
problems and contradicts the load-distribution principle of sharding, requiring
large throughput, storage and computation costs from miners. This behavior
causes Monoxide to resemble more to a parallelization solution than to an ac-
tual sharded system like SplitChain.

8 Conclusion

We have presented SplitChain, a protocol supporting the creation of scalable
account-based blockchains without undermining decentralization and security.
SplitChain distinguishes itself from other sharded blockchains by minimizing
the synchronization constraints among shards while maintaining security guar-
antees. Specifically, SplitChain is the first permissionless sharded blockchain that
does not require a dedicated shard or a global blockchain to attribute validators
to their consensus chain. This avoids the need for a global reconfiguration of the
shards each time a new batch of validators is added to the system. A dedicated
routing protocol enables transactions to be redirected between shards with a low
number of hops and messages. Finally, SplitChain dynamically adapts the num-
ber of shards to the system load to avoid over-dimensioning issues encountered
in static sharding-based solutions. Further research will investigate the practical
performance of SplitChain through its implementation and the potential use of
sharding to enhance user privacy.

16 E. Anceaume et al.

References

1. Emmanuelle Anceaume, Romaric Ludinard, and Bruno Sericola. Performance eval-
uation of large-scale dynamic systems. Sigmetrics Performance Evaluation Review
- SIGMETRICS, 39, 2012.

2. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 51–68, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3132747.3132757.

3. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598,
2018. doi:10.1109/SP.2018.000-5.

4. Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 17–30, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2976749.2978389.

5. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th An-
nual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pages
120–130, 1999. doi:10.1109/SFFCS.1999.814584.

6. D.C. Montgomery. Introduction to Statistical Quality Control. John Wiley, New
York, 6th edition, 2009.

7. Geoffrey Saunois, Frédérique Robin, Emmanuelle Anceaume, and Bruno Sericola.
Permissionless consensus based on proof-of-eligibility. In 2020 IEEE 19th Interna-
tional Symposium on Network Computing and Applications (NCA), 2020.

8. Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. Replay
attacks and defenses against cross-shard consensus in sharded distributed ledgers.
In 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages
294–308, 2020. doi:10.1109/EuroSP48549.2020.00026.

9. The ZILLIQA Team. The zilliqa technical whitepaper, 2017. URL: https://docs.
zilliqa.com/whitepaper.pdf.

10. Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asyn-
chronous consensus zones. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 95–112, Boston, MA, February
2019. USENIX Association. URL: https://www.usenix.org/conference/nsdi19/
presentation/wang-jiaping.

11. Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page 931–948, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3243734.

3243853.

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/EuroSP48549.2020.00026
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

Sharding in permissionless systems in presence of an adaptive adversary 17

A Figures

Fig. 1: Composition of a chaining block (bottom fields only belong to cue blocks.)

(a) Structure of the core routing table
(b) Structure of the consensus routing
table

Fig. 2: Routing tables

18 E. Anceaume et al.

Fig. 3: Mapping of vertices and chain labels after a chain split causing an increase
in hypercube dimension.

B Algorithms

Algorithm 1: Initializing a validator account

input : The validator account registering transaction tx.
1 function initialize(tx, pkval)
2 send(tx).to any()
3 b← wait for validation(tx)
4 Cinit ← b.chain
5 binit ← wait for cue block(Cinit)

6 txinit ← (”init”, pkval)
7 πinit ← wait for ack(txinit)

8 core table[Cinit]← ack.table
9 return πinit, binit, Cinit, core table

output: The validator’s initialization proof and cue block and its
initialization chain’s label and core table.

Algorithm 2: Referencing a validator

1 function reference(πinit, core init)
2 pkcons, skcons ← generate keys()

3 tx← (”credential”, πinit, pkcons)
4 send(tx).to(core init)
5 b, πref ← wait for validation(tx)
6 Cref ← b.chain
7 return πref, pkcons, skcons, Cref

output: The validator’s referencing proof.

Sharding in permissionless systems in presence of an adaptive adversary 19

Algorithm 3: Attribution algorithm

input : The list of validators L to attribute to chains, the number N of
chains, a random seed seed.

1 function attribution(L,N, seed)
2 L← shuffle(L, seed)
3 sets← []
4 α← ⌊|L|/N⌋
5 r ← |L| −N × α
6 for i← 0 to N − 1 do
7 sets.append([])
8 for j ← 0 to α− 1 do
9 sets[i].append(L.pop())

10 if r > 0 then
11 sets[i].append(L.pop())
12 r ← r − 1

13 return sets

Algorithm 4: Join a chain for consensus

input : The reference proof πref.
1 function join consensus(πref, core table)
2 tx← (”join”, πref)
3 send(tx).to core(Cref)
4 ack ← wait for ack(tx)
5 core table[Ccons]← ack.table
6 The validator bootstraps itself to the chain using the list of nodes

provided in the ack message
7 return core table

C Proofs

C.1 Randomness creation

Theorem 1 Let ϵ ∈ (0, 1) be the security parameter of SplitChain. The seed
of any chaining block b cannot be tampered with or predicted in advance by the
adversary with any high probability 1− ϵ.

Proof. We assume the existence of a preceding chaining block C[k − 1] with a
proper pseudorandom seed s0. This block may be the genesis block of SplitChain
if k is the first consensus of the system. Similarly, if the system consists of
multiple chains, we suppose that the seeds of the preceding blocks of these chains
are also pseudorandom and unpredictible.

The attribution of the new validators of the consensus committee of C[k] is
based on the last seeds of its reference chains. As these seeds are both pseudo-
random and unpredictable, the result of the attribution of the new validators of

20 E. Anceaume et al.

(a) Minimum number of validators
cmin of a consensus committee as a
function of µ for different safety prob-
abilities 1− ϵ.

(b) Minimum core size τmin as a func-
tion of the consensus committee size c
for different values of adversary adap-
tivity δ

Fig. 4

(a) Probability χ as a function of the
number of selected reference chains S
and the delay in blocks ρ. Parameters
N = 100 and ϵ = 1E − 6.

(b) Required proportion of reference
chains to achieve partial attribution
with probability 1− 10−6 as a function
of µ for different values of N .

Fig. 5

Sharding in permissionless systems in presence of an adaptive adversary 21

C[k] using these seeds is also pseudorandom and unpredictable. As the adversary
needs δ blocks of delay to corrupt validators, it is not possible for it to target
the validators of the reference committees quickly enough to influence the ran-
domness of the attribution. Furthermore, in the case of partial attribution, the
adversary cannot predict which of the system’s chains will serve as the reference
chains of the consensus committee of C[k], as they are also randomly chosen
using the seed of C[k − 1]. Thus, if the preceding seeds are unpredictable, the
adversary cannot temper the randomness of the attribution of new validators
for C[k]’s consensus committee.

Furthermore, the verifiable random function (VRF) used in the pseudoran-
dom sortition algorithm (see Section 4.2) run by new validators of the consensus
committee to determine if they are part of the core uses the seed of C[k−1] and
the private key of the validators. As the seed used by the sortition function is
both pseudorandom and unpredictable, and the core contains at least one honest
validator with high probability 1− ϵ, the new seed of C[k] obtained by hashing
the concatenation of the core validator’s public keys is both pseudorandom and
unpredictable. Thus, the adversary cannot predict or manipulate the value of
the new seed in advance. ⊓⊔

C.2 Fair attribution of reference sets

Lemma 1 Let E1, E2, ..., EN be the reference sets produced by Algorithm 3.
Then ∀j, k ∈ {1, ..., N}, | |Ej | − |Ek| |≤ 1.

Proof. Let N and L be respectively the number of reference sets to be pro-
duced and the set of validators to be attributed. The algorithm first assigns
α = ⌊|L|/N⌋ validators to each set. This makes r = |L| − αN < N validators to
be attributed. Then for the r remaining validators, the algorithm assigns each
of them to a different set. This results in 0 ≤ r < N sets of α+1 validators and
N − r sets of α validators. ⊓⊔

C.3 Consensus committee safety

Let A = µV be the total number of corrupted validators in SplitChain. Let Ai

be the number of corrupted validators in the reference set of Ci, 1 ≤ i ≤ N .
We have A =

∑N
i=1 Ai. Recall that the attribution of any validator lasts for

δ − 1 consecutive consensus. Let Ak
i be the random variable that represents the

maximal number of malicious validators attributed by the (ℓ + k)-th instance
of Algorithm 3 executed in Ci, for any ℓ ≥ 1 and k ∈ [1, δ − 1]. We have

Ai =
∑δ−1

k=1 A
k
i .

Each reference chain Ci, 1 ≤ i ≤ N , sends a new reference set of validators
to a chain Cj to update the consensus committee membership of Cj . Let Xi,j be
the random variable that represents the number of corrupted validators assigned
by Ci to the consensus committee of Cj . We have 0 ≤ Xi,j ≤ Ai. Specifically,
the number of new corrupted validators Xk

i,j attributed by Ci to the (ℓ′ + k)-th

22 E. Anceaume et al.

consensus committee of Cj , for any ℓ′ ≥ 1 and k ∈ [1, δ−1], is less than or equal

to Ak
i and we have Xi,j =

∑δ−1
k=1 X

k
i,j .

Let Yj be the random variable that represents the number of corrupted val-
idators in the consensus committee of a chain Cj . We have that Yj is the sum of
the corrupted validators of all the reference sets attributed to Cj by its reference
chains.

Lemma C.1 Xk
i,j follows a hypergeometric distribution with parameters V/(N(δ−

1)), V/((δ − 1)N2) and Ak
i .

Proof. The reference set attributed by the (ℓ+ k)-th instance of Algorithm 3 in
Ci to the consensus committee of Cj , for any ℓ ≥ 1 and k ∈ [1, δ−1], is a dichoto-
mous population of size V/(N(δ− 1)) composed of Ak

i corrupted validators and
(V/(N(δ−1)))−Ak

i honest validators. Each validator in this population can only
be allocated to one consensus committee, hence the sampling is drawn without
replacement. Finally, validators are evenly allocated between the N consensus
chains, so each attribution subset contains V/((δ − 1)N2) validators. Hence,
Xk

i,j ∼ H(V/(N(δ − 1)), V/((δ − 1)N2), Ak
i). ⊓⊔

C.4 Consensus committee safety with the total attribution policy

Recall that in the total attribution policy, the consensus committee of any chain
Cj of SplitChain is fed with the reference sets of each chain of SplitChain. Thus

we have Yj =
∑N

i=1 Xi,j =
∑N

i=1

∑(δ−1)
k=1 Xk

i,j .

Lemma 2 The probability of corruption of a consensus committee by the
(µ, δ)-adaptive adversary is maximized when corrupted validators are equally
distributed among all reference chains, i.e., ∀i, ∀k, Ak

i = A/(N(δ − 1)).

Proof. By definition of Yj and by applying lemma C.1, we have

Yj =

N∑
i=1

Xi,j =

N∑
i=1

(δ−1)∑
k=1

H

(
V

N(δ − 1)
,

V

(δ − 1)N2
, Ak

i

)
, (1)

and the expectation of Yj is given by

E(Yj) =

N∑
i=1

(δ−1)∑
k=1

(
V

(δ − 1)N2
)(
(δ − 1)NAk

i

V
) =

N∑
i=1

(δ−1)∑
k=1

Ak
i

N
=

A

N
. (2)

The average proportion of the (µ, δ)-adaptive adversary in a consensus commit-
tee is therefore (A/N)/(V/N) = A/V = µ. Note that this value is independent
from Ak

i . Therefore, the adversary can only maximize its chances of corrupting
the consensus committee of Cj by increasing the variance of Yj . The variables

Sharding in permissionless systems in presence of an adaptive adversary 23

Xk
i,j are drawn from disjoint populations, and are therefore independent. Thus,

the variance of Yj is given by summing the variances of random variables Xk
i,j :

Var(Yj) =

N∑
i=1

(δ−1)∑
k=1

V

(δ − 1)N2

(δ − 1)NAk
i

V

(
1− (δ − 1)NAk

i

V

) V
N(δ−1) −

V
(δ−1)N2

V
N(δ−1) − 1

=

N∑
i=1

(δ−1)∑
k=1

Ak
i

N

(
1− (δ − 1)NAk

i

V

) V (N−1)
(δ−1)N2

V
N(δ−1) − 1

=

N∑
i=1

(δ−1)∑
k=1

(
Ak

i

N
− (δ − 1)Ak

i
2

V

)
V (N − 1)

N(δ − 1) (V −N)

=
V (N − 1)

N(δ − 1) (V −N)

 1

N

N∑
i=1

(δ−1)∑
k=1

Ak
i −

(δ − 1)

V

N∑
i=1

(δ−1)∑
k=1

Ak
i

2

=

V (N − 1)

N(δ − 1) (V −N)

A

N
− (δ − 1)

V

N∑
i=1

(δ−1)∑
k=1

Ak
i

2

 . (3)

To maximize Var(Yj), the (µ, δ)-adversary must choose the Ak
i so that to

minimize
∑N

i=1 A
k
i
2
, with 0 ≤ Ak

i ≤ V/(N(δ − 1)) and
∑N

i=1

∑(δ−1)
k=1 Ak

i = A.

Intuitively,
∑N

i=1

∑(δ−1)
k=1 Ak

i
2
is minimal when Ak

i = A/(N(δ−1)). We formulate
this hypothesis by the following inequality, where vki represents the deviation of
Ak

i from A/(N(δ−1)), such that −A/(N(δ−1)) ≤ vki ≤ V/(N(δ−1))−A/(N(δ−
1)) and

∑N
i=1

∑(δ−1)
k=1 vki = 0. We have:

N∑
i=1

(δ−1)∑
k=1

Ak
i

2 ≤
N∑
i=1

(δ−1)∑
k=1

(
A

N(δ − 1)
)2

<

N∑
i=1

(
A

N(δ − 1)
+ v1i)

2 + (
A

N(δ − 1)
+ v2i)

2 + ...+ (
A

N(δ − 1)
+ v

(δ−1)
i)2

N(δ − 1)(
A

N(δ − 1)
)2 <

N∑
i=1

(δ − 1)(
A

N(δ − 1)
)2 +

(δ−1)∑
k=1

vki
2
+ 2

A

N(δ − 1)

(δ−1)∑
k=1

vki

A2

N(δ − 1)
<

A2

N(δ − 1)
+

N∑
i=1

(δ−1)∑
k=1

vki
2

0 <

N∑
i=1

(δ−1)∑
k=1

vki
2

(4)

We notice that inequality 4 stands when any deviation vki is different from 0,
that is, any other distribution than Ak

i = A/(N(δ−1)) results in a greater value
of the sum and reduces the variance of Yj . Therefore, to maximize the variance

24 E. Anceaume et al.

of Yj , i.e., to maximize the corruption probability of the consensus committee
of Cj , malicious validators must be evenly distributed across the k executions of
Algorithm 3. ⊓⊔

Lemma C.2 The probability pc that a consensus committee of chain Cj is cor-
rupted by the adversary is given by

pc = P
(
Yj > ⌊

c

3
⌋
)
= 1−

⌊ c
3 ⌋∑

l=0

(
c

l

)
(µ)l(1− µ)c−l (5)

Proof. A consensus committee is corrupted if the sum of the adversary’s valida-
tors is greater than one third of the chain. By applying lemma 2 to equation 1,
we can express the probability of corruption pc of a consensus committee as:

pc = P

(
Yj > ⌊

V

3N
⌋
)

= 1− P

 N∑
i=1

(δ−1)∑
k=1

H

(
V

N(δ − 1)
,

V

(δ − 1)N2
,

A

N(δ − 1)

)
≤
⌊

V

3N

⌋
(6)

The binomial distribution is a good approximation of the hypergeometric
distribution when the population is sufficiently larger than the sample size, which
is commonly accepted as a sampling fraction of 0.1 [6]. That is, H(m,n, p) ≈
B(n, p/m) when n/m < 0.1. In our case, (V/((δ− 1)N2))/(V/(N(δ− 1))) < 0.1
imposes that N > 10. Thus, we assume that the number of chains N is always
greater than 10. By applying this approximation to equation 6, we can simplify
our equation:

P (Yj ≤ ⌊
V

3N
⌋) = lim

V→∞
P (

N∑
i=1

(δ−1)∑
k=1

H(
V

N(δ − 1)
,

V

(δ − 1)N2
,

A

N(δ − 1)
) ≤ ⌊ V

3N
⌋)

= P (

N∑
i=1

(δ−1)∑
k=1

B(
V

(δ − 1)N2
,
A

V
) ≤ ⌊ V

3N
⌋)

= P (B(

N∑
i=1

(δ−1)∑
k=1

V

(δ − 1)N2
, µ) ≤ ⌊ V

3N
⌋)

= P (B(
V

N
, µ) ≤ ⌊ V

3N
⌋)

=

⌊ V
3N ⌋∑
k=0

(V
N

k

)
(µ)k(1− µ)

V
N −k

(7)

Sharding in permissionless systems in presence of an adaptive adversary 25

Let c be the constant representing the minimal number of validators needed
to ensure the proper and safe execution of a chain. By replacing V/N with c
in equation 7, we can calculate the probability of corruption of a chain by the
adversary:

P (Yj > ⌊
c

3
⌋) = 1−

⌊ c
3 ⌋∑

k=0

(
c

k

)
(µ)k(1− µ)c−k

⊓⊔

Theorem 2 For any security parameter ϵ ∈ (0, 1), for any proportion of cor-
rupted validators µ < 1/3, there exists a finite consensus committee size cmin

such that ∀c ≥ cmin, the probability pc that a committee of c validators is

corrupted satisfies pc < ϵ, where pc = 1−
∑⌊c/3⌋

ℓ=0

(
c
ℓ

)
µℓ(1− µ)c−ℓ.

Proof. Probability pc is given by lemma C.2. Let c = V/N be the number of
validators inside a consensus committee, and µ = A/V the proportion of cor-
rupted validators in SplitChain, with µ < 1/3. We know from Equation 2 that
the average number E(Yj) of corrupted validators in a consensus committee is
A/N = µc. We also know from lemma C.2 that pc = 1 − P (Yj ≤ ⌊c/3⌋), with
Yj ∼ BinomialDistribution(c, µ).

Let µ = 1/3. Then E(Yj) = c/3. By definition of the statistical mean, we have
limc→∞ P (Yj ≤ E(Yj)) = 0.5. Thus, when µ = 1/3, limc→∞ pc = 0.5. However,
SplitChain strictly requires that µ < 1/3. As E(Yj) < c/3 when µ < 1/3,
limc→∞ P (Yj ≤ ⌊c/3⌋) = 1 and limc→∞ pc = 0. By definition, the cumulative
distribution function is monotone increasing, so pc is monotone decreasing. Thus,
there exists a value cmin, such that for any ϵ < 1 and c ≥ cmin, pc < ϵ. ⊓⊔

C.5 Consensus committee safety with the partial attribution

Let S be the number of reference sets required for a chain Cj to update its
(ℓ+ k)-th consensus committee before initiating a new consensus execution. Let
Rk

a ≥ N be the number of referencing sets corrupted by the adversary among the
N reference sets proposed to Cj by the chains of SplitChain at some attribution
execution (ℓ′+k). The number of corrupted reference attributed to the (ℓ+k)-th
consensus committee of Cj is the random variable Sk

a ≤ S.

Lemma C.3 The number of corrupted validators Yj is maximized when the
corrupted validators are equally distributed among the Ra reference chains, i.e.
∀Ci ∈ Ra, Ai = µ′V/N , where µ′ is the new proportion of corrupted validator
inside the Sa corrupted reference chains, such that µ′ ≥ µ.

Proof. This result is obtained by applying lemma 2 with S referencing chains
instead of N and µ′ instead of µ. ⊓⊔

Lemma C.4 Sa follows the hypergeometric distribution with parameters H(N,Ra, S).

26 E. Anceaume et al.

Proof. The reference sets correspond to a dichotomous population of size N com-
posed of Ra corrupted sets and N −Ra honest sets. Each set in this population
can only be allocated once to the same consensus committee, hence the sampling
is drawn without replacement. Finally, only S sets are chosen at random, thus
the number of randomly selected corrupted sets Sa follows the hypergeometric
distribution H(N,Ra, S). ⊓⊔

Lemma C.5 The proportion of malicious validators inside a consensus commit-
tee Sa×(µ′/S) is maximized when the reference chains targeted by the adversary
are fully corrupted, i.e. when µ′ = 1.

Proof. The average value of Sa is: E(Sa) = SRa

N = S (µ/µ′)N
N = S µ

µ′ . This corre-

sponds to an average adversary proportion of E(Sa)
µ′

S = µ corrupted reference
validators. Note that this mean value doesn’t depend on µ′.

The adversary proportion’s variance is:

Va(Sa
µ′

S
) =

µ′2

S2
S
Ra

N

N −Ra

N

N − S

N − 1

=
µ′2

S

µ
µ′N

N

N − µ
µ′N

N

N − S

N − 1

=
µ′2

S

µ

µ′ (1−
µ

µ′)
N − S

N − 1

=
µ

S
(µ′ − µ)

N − S

N − 1

The derivative function of the adversary proportion’s variance is ∂
∂µ′Va(Sa

µ′

S) =
µ
S

N−S
N−1 , whose roots are N = S and µ = 0. If S = N , then all the available

reference validators are used and the proportion of corrupted reference validators
is µ. For µ > 0, µ′ ≤ 1 and 0 < S < N , the derivative is always positive. Hence,
the adversary proportion’s variance is ascending for µ ≤ µ′ ≤ 1 and reaches its
maximum when µ′ = 1. ⊓⊔

Lemma C.6 (Probability of corruption of a partially attributed consensus com-
mittee).

pc = P (Yj > ⌊c/3⌋) = P (Sa > ⌊S/3⌋) = 1−
⌊S/3⌋)∑
k=0

(
S

k

)
(µ)k(1− µ)n−k (8)

Proof. A consensus committee is corrupted if it contains more than one third
of malicious validators. As the committee is composed of S reference sets, this
corresponds to S(V/3N2) validators. By definition of Yj and by applying lemma
C.3, we have:

pc = P (

Sa∑
i=1

H(
V

N
,
V

N2
,
V

N
µ′) > ⌊S V

3N2
⌋) (9)

Sharding in permissionless systems in presence of an adaptive adversary 27

Let limV,N→∞
V
N2 = c, c being the fixed number of validators within an attribu-

tion subset.

lim
V,N→∞

P (Yj > ⌊S
V

3N2
⌋) = lim

V,N→∞
P (

Sa∑
i=1

H(
V

N
,
V

N2
,
V

N
µ′) > ⌊S V

3N2
⌋)

= lim
V,N→∞

P (

Sa∑
i=1

H(
V

N
, c,

V

N
µ′) > ⌊S c

3
⌋)

= P (

Sa∑
i=1

B(c, µ′) > ⌊S c

3
⌋)

= P (B(Sac, µ
′) > ⌊S c

3
⌋)

We know from lemma C.5 that this value is maximized when µ′ = 1, thus we
obtain pc = P (Sac > ⌊S(c/3)⌋) = P (Sa > ⌊S/3⌋). As a reference set contains
at least one validator, i.e. c ≥ 1, the minimum number of consensus validators
of a chain is S. From lemma C.4, we know that Sa ∼ H(N,Ra, S). As µ′ = 1,
Ra = µN . Thus:

pc = lim
V,N→∞

P (Sa > ⌊S/3⌋)

= lim
N→∞

P (H(N,µN, S) > ⌊S/3⌋)

= P (B(S, µ) > ⌊S/3⌋)

= 1−
k=0∑

⌊S/3⌋)

(
S

k

)
(µ)k(1− µ)S−k

⊓⊔

Theorem 3 For any security parameter ϵ ∈ (0, 1), for any proportion of cor-
rupted validators µ < 1/3, there exists a finite number of reference sets Smin

such that ∀S ≥ Smin, the probability pS that a consensus committee composed

of S reference sets is corrupted satisfies pS < ϵ, with pS = 1−
∑⌊S/3⌋)

k=0

(
S
k

)
µk(1−

µ)S−k.

Proof. We know from lemma C.6 that the number of fully corrupted reference
sets in a committee is pc = P (Sa > ⌊S/3⌋) = 1 − P (Sa ≤ ⌊S/3⌋), with Sa ∼
B(S, µ). The average number of fully corrupted reference sets in a consensus
committee is E(Sa) = Sµ.

Let µ = 1/3. Then E(Sa) = S/3. By definition of the statistical mean, we
have limS→∞ P (Sa ≤ E(Sa)) = 0.5. Thus, when µ = 1/3, limS→∞ pc = 0.5.
However, SplitChain strictly requires that µ < 1/3. As E(Sa) < S/3 when
µ < 1/3, limS→∞ P (Sa ≤ ⌊S/3⌋) = 1 and limS→∞ pc = 0. Because the cumula-
tive distribution function is by definition monotone increasing, pc is monotone
decreasing. Thus, there exists a value Smin such that for any ϵ > 0 and S > Smin,
pc < ϵ. ⊓⊔

28 E. Anceaume et al.

C.6 Partial attribution policy: Probability to corrupt a given
consensus set

Lemma C.1. Let χρ(N,S)
be the probability that a consensus committee uses

a reference set that has been obsolete for at least ρ(N,S) consecutive valida-

tor attributions. Then χρ(N,S)
≤ P (H(N,S, 1) = 0)

(
P (H(N,S, 1) = 0)p2,S +

P (H(N,S, 1) = 1)p2,S−1

)
, where H is the hypergeometric distribution and

pi,k =

1, if i > ρ(N,S)

0, if k ≥ N

P (H(N,S, 1) = 0)
∑min(S,k)

j=0

(
P (H(N,S, k) = j)

(P (H(N,S, 1) = 0))jpi+1,k+S−j

)
Proof. We first assume that all chains are up to date, i.e. at time t, each chain
knows the penultimate block t−1 of all other chains. Because of the asynchrony,
we adopt the worst-case scenario and assume that the index of chain C1 is only
updated by a chain C2 if C1 is selected for the partial attribution of C2, i.e. a
new chaining block of C1 is required to initiate the consensus of C2.

Let χ1 be the probability that C does not draw C ′. Since all chains are up
to date, none of the drawn chains contain block indices unknown to C, therefore
χ1 = P (H(N,S, 1) = 0. Given that C can draw itself, the number of new chain
block indices is equal to S with probability P (H(N,S, 1) = 0) or equal to S − 1
with probability P (H(N,S, 1) = 1). If a chain whose block index is greater
than t − 1 is selected, it may contain a new block index of C ′ or any other
new chain block indices greater than t− 1. We approximate this probability by
considering only the probability that the chain drew C ′ during its last draw, i.e.
P (H(N,S, 1) = 0). Thus, we obtain:

χ2 ≤ χ1

(
P (H(N,S, 1) = 0)

(S∑
j=0

P (H(N,S, S) = j)(P (H(N,S, 1) = 0))j
)

+ P (H(N,S, 1) = 1)
(S−1∑
j=0

P (H(N,S, S − 1) = j)(P (H(N,S, 1) = 0))j
))

Let p2,k = P (H(N,S, 1) = 0)
∑min(S,k)

j=0 P (H(N,S, k) = j)(P (H(N,S, 1) = 0))j .

Then χ2 ≤ χ1

(
P (H(N,S, 1) = 0)p2,S + P (H(N,S, 1) = 1)p2,S−1

)
. Taking into

account the case where k ≥ N , i.e. all chains have been drawn at least once (so
the probability that C ′ has not been drawn is 0), we can apply the formula of
pi,k iteratively until i = ρ. ⊓⊔

Theorem 4 ∀N, ∀S ≤ N , ∃ρ((N,S)> 0 such that χρ(N,S)
< ϵ.

Proof. Direct from Lemma C.1 ⊓⊔

Sharding in permissionless systems in presence of an adaptive adversary 29

C.7 Safety of the core

Definition C.10. The core of a chain is composed of the new core validators of
the last δ − 2 consensus. Let X = XA +XH be the number of validators in the
core, where XA is the number of malicious core validators and XH the number of
honest core validators. We respectively denote XA

r and xH
r the number of corrupt

and honest new core validators at the r-th last consensus, with Xr = XA
r +XH

r .

Lemma C.7 The probability that the core of a chain is corrupted is given by

pcore = (1− τ/c)(1−µ′)(c−c(δ−1)) (10)

Proof. New core validators are elected by sortition during each consensus. A
validator can only be elected as a core validator during its first consensus. Fur-
thermore, the list of new core validators is only determined at the end of the
consensus execution. Thus, core validators can only join the core for δ−2 consen-
sus executions. The probability of a validator u being elected as a core validator
is B(wu, τ/w)[7], where B is the binomial distribution, w is the total valida-
tion stake of the consensus committee and wu is the stake of validator u. In
SplitChain, all validators have the same validation stake, thus wu = 1 and:

X ∼
r=1∑
(δ−2)

i=1∑
cr

B(1, τ/c)

∼ B(

r=1∑
(δ−2)

cr, τ/c)

∼ B(c− c(δ−1), τ/c)

(11)

We consider the worst case where the adversary concentrates the corrupted
validators of the consensus committee among the new validators of the last δ−2
consensus. Following the same logic as with equation 11, with a proportion of
µ′ = µ(δ − 1)/((δ − 2)) corrupted validators, we obtain XH ∼ B((1 − µ′)(c −
c(δ−1)), τ/c). Thus, the probability of corruption pcore of the core is:

pcore = P (B((1− µ′)(c− c(δ−1)), τ/c) = 0)

=

(
(1− µ′)(c− c(δ−1))

0

)
(τ/c)0(1− τ/c)(1−µ′)(c−c(δ−1))−0

= (1− τ/c)(1−µ′)(c−c(δ−1))

⊓⊔

Theorem 5 For any security parameter ϵ ∈ (0, 1), for an adaptive adversary
with any delay δ ≥ 3, there exists a finite core size τmin such that ∀τ ≥ τmin,
the probability pcore that a core of τ validators is corrupted satisfies pcore < ϵ,
with pcore = (1− τ/c)(1−µ′)(c−c(δ−1)).

30 E. Anceaume et al.

Proof. We know from Lemma C.7 that XH ∼ B((1− µ′)(c− c(δ−1)), τ/c), with
µ′ = µ((δ − 1))/((δ − 2)). The expected proportion of honest core validators is
E(B((1−µ′)(c− c(δ−1)), τ/c)) = τ(1−µ′)+ τ(c(δ−1)/c)(µ

′− 1). As µ′ decreases
when δ increases, with limδ→∞ µ′ = µ, ∀δ ≥ 3, µ < 1/3⇒ µ′ < 2/3. If µ = 1/3
and δ = 3, then we have E(B((1−µ′)(c−c(δ−1)), τ/c)) = τ/6. As pcore decreases
with the value of δ and τ , ∃τmin such that ∀δ ≥ 3 and ∀τ ≥ τmin > 0, we have
pcore ≤ ϵ, where ϵ < 0.5 is the security parameter. ⊓⊔

	Sharding in permissionless systems in presence of an adaptive adversary

