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Abstract

The Spillover Interface Project aims at assessing the encounter of wildlife, domestic ani-

mals, and humans along a landscape gradient from a protected area to a residential com-

munity, through areas of reforestation and agricultural land. Here, we present the protocols

of the project that combine virus screening in humans, bats, rodents and dogs with camera

trapping, land-use characterization, and network analyses. The project is taking place in the

sub-district of Saen Thong (Nan Province, Thailand) in collaboration with local communities,

the District Public Health Office, and Nanthaburi National Park. To formulate a predictive

hypothesis for the Spillover Interface Project, we assess the wildlife diversity and their viral

diversity that could be observed in Saen Thong through a data science analysis approach.

Potential mammalian species are estimated using data from the International Union for Con-

servation of Nature (IUCN) and their associated viral diversity from a published open data-

base. A network analysis approach is used to represent and quantify the transmission of the

potential viruses hosted by the mammals present in Saen Thong, according to the IUCN. A

total of 57 viruses are expected to be found and shared between 43 host species, including

the domestic dog and the human species. By following the protocols presented here, the

Spillover Interface Project will collect the data and samples needed to test this data-driven

prediction.
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Introduction

For several decades, the number of new emerging diseases as well as the number of epidemics

of infectious diseases have continued to increase [1,2]. The vast majority of these diseases are

zoonoses, involving domestic and/or wild animals [3]. The emergence of new zoonotic dis-

eases begins with the spillover of a pathogen hosted in an animal reservoir [4], which is essen-

tial for maintaining the zoonotic agent [5]. The animal reservoir is assumed to be

asymptomatic [6] and living in close relationship with humans [7]. Thus, emerging zoonotic

diseases are primarily driven by interspecific interactions described as spillover events [8].

Spillover events are determined by a combination of biological and ecological processes in

relation to hosts, pathogens, vectors and environmental conditions. Several studies have inves-

tigated the conditions that favor spillover [9,10] and, importantly, where a spillover has a

greater chance to occur [6,11,12]. Spillover events may depend on various factors, from habitat

change [13], climate variability [14], to social factors [15], which favor the encounter of reser-

voir and recipient hosts [16]. Habitat changes with agriculture intensification [17,18], livestock

expansion [19], urbanization [20,21] and forest conversion [22] enhance the spillover and

transmission of zoonotic diseases [23,24], often through generalist and synanthropic species

[25]. The various combinations of these factors constitute the encounter interface.

An encountering interface can be classified as obvious or non-obvious. An obvious encoun-

tering interface is a location where interspecific transmission of a pathogen is predictable over

time due to the continuous presence of both reservoir and recipient hosts. Wildlife markets or

exploited caves for bat guano can be defined as obvious encountering interfaces. In contrast,

non-obvious interfaces, such as ecotones related to human activities and rapid land use

changes, can be characterized as a transient location with a narrow transmission and spillover

opportunity due to short interspecific interactions [26,27]. This interface is difficult to identify

because it requires ecological knowledge of the species of interest in order to assess their affin-

ity with different habitats and their responses to environmental factors.

Among the new emerging viral zoonoses, bats harbor a high proportion of viruses [28–30],

with 224 species of bats harboring 61 zoonotic diseases [29]. Rodents are also important, with

217 species harboring 66 zoonotic viruses [31]. Among these viruses, coronaviruses (CoVs)

have received a great deal of attention [32]. In the last sixteen years, three coronaviruses of bat

origin with high epidemic potential have emerged in human populations (SARS-CoV, MERS--

CoV, and SARS-CoV-2) and one in domestic animals (SADS-CoV) [33]. Coronaviruses are

also well known in veterinary medicine as they infect a wide range of mammalian hosts, such

as Transmissible Gastroenteritis Coronavirus (TGEV) of domestic pigs [34], Mouse Hepatitis

Virus (MHV) of mice [35], and Canine Coronavirus (CCoV) of dogs [36]. In Malaysia, Canine

CoV (CCoV), a novel canine-feline recombinant alphacoronavirus was found in nasopharyn-

geal swab samples from eight out of 301 patients hospitalized with pneumonia, most of them

children living in rural areas [37].

Reverse spillover, called spill-back, can occur from the human population to domestic animals

or wildlife, as recently observed for SARS-CoV-2 in several mammal species [38], including

white-tailed deer [39]. In Thailand, three dogs out of 35 examined were found infected by SARS--

CoV-2 from households with confirmed COVID-19 residing patients [40]. The great diversity of

coronaviruses is associated with their evolutionary capacity and ability to jump between species

[41], which gives them an exceptional propensity for spillover and emergence [42].

The Spillover Interface Project aims at assessing virus sharing at the interfaces of wildlife,

domestic animals, and humans along a gradient from a protected area to a village community

and their agricultural land. The project will combine virus screening in various hosts in rela-

tion to land-use characterization [43,44].
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Here, we present the objectives, design, and protocols used in the Spillover Interface Proj-

ect. To formulate a predictive hypothesis for the Spillover Interface Project, we develop a pre-

dictive hypothesis based on open data to assess the wildlife diversity and associated viral

diversity that can be observed in the implementing locality of the project.

Materials and methods

A. Spillover Interface Project design

Project objectives. The objectives are (1) to investigate the diversity of viruses, and in par-

ticular coronaviruses, in humans, domestic dogs, and wildlife (bats and rodents), (2) to iden-

tify the potential transmission of viruses among hosts using network analyses, (3) to identify

potential interfaces using a land use map, (4) to assess the diversity of wildlife, their habitats

and their potential role in virus spillover.

Location of the study. Since 2012, our research team has conducted several collaborative

studies with local communities and local administrations, such as the District of Public Health

Office and the Nanthaburi National Park in the sub-district of Saen Thong (Nan Province,

Thailand). The sub-district is divided into two types of landscape, with a lowland agricultural

zone (with four villages) close to an urbanized habitat and an upland agricultural zone (four

villages) close to the forested area of Nanthaburi National Park [45]. The upland part of the

sub-district provides an ideal site for the implementation of the Spillover Interface Project,

with a gradient from the protected area of Nanthaburi National Park, with a cave populated by

bats, towards the reforestation area, plantations, and agricultural land (Fig 1A and 1B).

Fig 1. Location of the Spillover Interface project in (A) Saen Thong sub-district (Nan province, Thailand) precisely (B) in the upland part of the subdistrict. A

land-use cover describes the different land classes: Multi-specific forests, plantations (rubber, teak, bamboo plantations, orchards), fallows crops (corn, paddy

rice, ginger, etc.), urban infrastructural at (C) the level of the sub-district and (D) the upland part of the sub-district.

https://doi.org/10.1371/journal.pone.0294397.g001
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Land use map. A high-resolution land use map (10 square meters) of Saen Thong subdis-

trict was developed for a previous project using Copernicus satellite data [46]. Random Forest

classifications used the combination of Sentinel-2 optical and Sentinel-1 radar images with the

different images acquired in 2019. The classifications cover four categories of lands: (1) uncul-

tivated steep mountain slopes with forest (protected areas and community forests), (2) culti-

vated land mostly on steep slopes with annual crops (such as upland rice and corn), or

plantations (such as rubber, teak and bamboo), (3) cultivated lowland with paddy fields, (4)

urbanization and infrastructures. All farmers are smallholders, and field sizes are relatively

small. The classifications were validated by ground-truth checks [46].

The land use classification makes it possible to differentiate multi-specific and heteroge-

neous forests (mixed forests), including reforestation areas and community forests, from plan-

tations such as rubber, teak, bamboo or orchards. The land use also distinguishes dominant

crops (corn, paddy rice, ginger, etc.), houses, and other infrastructure (Fig 1C and 1D). A ter-

rain elevation model was also developed [46]. This land use map is important (1) to assess the

typology of the different habitats of the locality allowing statistical comparisons and (2) to

describe the behavior of animals at high resolution, ie. the movement or home rage of animals

in a small buffer zone around each camera trap or live trap by tags for rodents or pictures for

dogs and other wildlife when individual recognition is possible.

Framework. A framework was designed for sampling and data collection in order to vali-

date the predictive hypothesis. Rodents will be captured by live traps and bats will be trapped

by mist nets and harp traps. Sample collection will include all swabs and guano samples col-

lected for virus screening. Data collection will include qualitative data obtained from question-

naires and focus group discussions with villagers, as well as quantitative data such as weight

and body measurements obtained from rodents and bats during the trapping sessions. GPS

coordinates will be recorded at individual traps and camera trapping devices. In the field, all

information will be collected digitally (Fig 2).

Research and ethical approvals. The principles of ethics and responsibility require local

community and stakeholder engagement, such as in the Primary Health Care Unit, the District

Public Health Office, and Nanthaburi National Park. Several meetings with all stakeholders

helped to co-construct the project which made it possible to meet the objectives of human

health, animal health, and biodiversity conservation.

Procedures for human health investigation, laboratory investigation, interviews, and ques-

tionnaires will be sent for approval by the ethical committee of the Nan Provincial Public

Health Office, Ministry of Public Health, Thailand (NAN REC 63–13). All participants who

agree to join the study will be asked to read the Participant Information Form, which explain-

ing the objectives, procedures, possible risks, and benefits of the research project.

Similarly, procedures for collection of samples from dogs, laboratory investigation, safety

procedures, interviews and questionnaires of dog owners will be sent for approval by the Insti-

tutional Animal Care and Use Committee, Kasetsart University (ACKU64-VTN-010).

Rodent and bat species that will be investigated by Spillover Interface Project will be neither

on the CITES list nor on the Red List (IUCN). Animals will be treated in accordance with the

guidelines of the American Society of Mammalogists, and within the European Union legisla-

tion guidelines (Directive 86/609/EEC). Any trapped rodent species listed on CITES will be

released without being manipulated. All animals will be released after sampling. Approval

notices for trapping and investigation of bats and rodents will be sent for approval by the Insti-

tutional Animal Care and Use Committee, Kasetsart University.

Permit has been approved by the Department of National Parks, Wildlife and Plant Conser-

vation (DNP) and the Royal Forest Department, Ministry of Natural Resources and Environ-

ment, Thailand. In addition, foreign researchers participating in the research project have also
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Fig 2. Framework for sampling, swabs collected for virus screening, and data collected from questionnaires and

focus groups from villagers, from rodent and bat trappings and from camera trappings (with associated GPS

locations for each device). Data will be collected in the field using a data form designed from the Epicollect5 application

installed on smart phones.

https://doi.org/10.1371/journal.pone.0294397.g002
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been approved by the National Research Council of Thailand (NRCT) with the consent of the

DNP.

With community engagement, ethics, and research permits, the investigation will begin

with the organization of a meeting involving the researchers, local public health workers, the

village leaders, and village volunteers to remind them of the purpose and details of the study.

Interviews with villagers will help to describe their interactions with wildlife. Moreover, it

will help to select participants who will express close contact with wildlife, either bats or

rodents.

Field implementation and virus screening protocols

Bat sampling. Bats will be sampled once inside a cave situated in Nanthaburi National

Park and in the village of Santisuk using mist nets and harp traps [47]. Traps will be set before

sunset and checked after sunset depending on bat activity time. Measurements will be taken

for each captured bat: weight, forearm, hindfoot, tail, ear, head to body, and tibia lengths.

Saliva and rectal swabs will be collected, and stored in RNA later and kept at -20˚C. For other

sessions, only guano will be collected from the cave.

Rodent sampling. The rodent trapping is designed to cover a gradient from the village to

the bat cave situated in the Nanthaburi National Park area. Rodent trapping will then cover

several habitat types, including agricultural crops, plantations, and the reforestation area at the

interface between plantations and the National Park. Live-traps, locally made (dimension: 14

X 14 X 27 cm) will be used. A total of 210 traps will be set: 40 traps in and around the village,

60 traps in agricultural land and plantations, 100 traps in the reforestation area, and 10 traps

inside the cave. Traps will be set in lines of five traps separated by a distance of 10 meters. The

different lines will be set to evenly cover the gradient. Trapping will be conducted over a period

of four nights for each session, which corresponds to a total of 840 trap nights per trapping ses-

sion. The traps will be placed in the same positions for each session by using plastic plant labels

as notification tags on the ground. Pictures, habitat descriptions and rodent trap coordinates

available for the CERoPath Project (https://healthdeep.shinyapps.io/Small_mammals_

CERoPath/) will be used for rodent species identification [44].

Rodents will be anesthetized using a mixture of 20% v/v isoflurane in propylene glycol. Two

ml of mixed isoflurane will be placed on cotton or gauze in a transparent plastic box chamber

(32 X 22 X 15 cm). The individual animal will be introduced into the chamber, and respiratory

rate will be observed after anesthetizing for one minute in the case of a mouse-size rodent and

for two minutes for a rat-size rodent [48,49]. The animal will be removed from the anesthetic

chamber, its weight will be recorded, and pictures will be taken for further body measure-

ments. Saliva and rectal swabs will be taken, and stored in RNA later and kept at -20˚C. A

microchip (Passive Integrated Transponder: PIT Tag) of 1.4 X 8 mm will be injected subcuta-

neously for individual permanent identification and for capture-mark-recapture (Absonutrix

Sale Company, ISO11784/785). Captured animals will be read with a microchip reader (Abso-

nutrix Sale Company, mini scanner ISO FDX-B 134.2 KHz) to evaluate re-trapping or new

trapping. Rodents will be carefully monitored before releasing them at their trap location cap-

tures. Any re-trapped individual during a session will be released without manipulation.

Dog sampling. Most dogs roam freely in the upland villages of Saen Thong and may go to

agricultural or reforestation areas with their owners. Free-roaming dogs will be selected with

the help of the village leader, who will invite dog owners to freely join the research project. The

participant dog owners will take their dogs to the village hall, where we will collect nasopha-

ryngeal swabs, conjunctival, swabs and rectal swab with the consent of their owners. Nasopha-

ryngeal, conjunctival and rectal swabs that will be placed in cryotube contained 0.5 μl of RNA
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later, will be stored in RNA and kept at -20˚C. Conjunctival swabs will be used to screen

asymptomatic [50] as well as symptomatic cases of COVID-19 [51].

Virus screening. For RNA extraction, the QIAamp Viral RNA Mini Kit (Qiagen) will be

used following the manufacturer’s instructions. The extracted RNA will be measured for concen-

tration, purity and quality checking using Nanodrop [41]. Concerning CoVs, extracted RNA will

be used for reverse transcriptase (RT) reactions using SuperScript III Reverse Transcriptase (Life

tech) and hexamers with primers and semi-nested PCR protocols following Gouilh et al. [43]. We

will keep extracted DNA and RNA extraction for further viral analyses [52].

Camera trapping. Camera trapping helps to investigate wildlife diversity along the gradi-

ent from the protected area, especially species visiting the bat cave, to the reforestation area

and agricultural land. A total of 40 camera traps will be positioned following a land use map

illustrating forest or reforested areas, rodent trapping lines, and suggestions from the rangers

of Nanthaburi National Park and the village volunteers based on their ecological knowledge.

The camera traps will be left in place for a year. The camera traps will be checked every two

months. Batteries will be changed, and pictures taken by the camera traps will be transferred to

a laptop computer. Later, the pictures will be sorted, and the identification of species will be

assessed by a consensus of experts. The sorted pictures by species and by camera traps will be

analyzed using the ‘camtrapR’ package [53] implemented in R, which will allow the explora-

tion of the spatio-temporal activities of animals, including roaming dogs.

B. Predictive hypothesis

Potential wildlife species and viruses. We developed a predictive modeling that helps

formulate hypotheses to be tested by the Spillover Interface Project, such as which mammal

species and which viruses can be found in the study locality. To describe the potential associa-

tion between mammal species and virus, we estimated the potential presence of mammal spe-

cies in the study site using data from the International Union for Conservation of Nature

(IUCN). Shapefiles of terrestrial mammal species were downloaded from the IUCN Red List

(https://www.iucnredlist.org/resources/spatial-data-download) providing geographical distri-

bution for each animal species. The IUCN Red List the status of each mammal species and

their CITES status. The list of mammal species from the orders Carnivora, Cetartiodactyla,

Chiroptera, Pholidata, Rodentia, and Scandentia, that are potentially present in Saen Thong

was then extracted using the land use map presented above. Animal species were identified on

the basis of their overlap distribution, given by the IUCN shapefiles, with Saen Thong area

given by the land-use map [46]. Concerning the viral diversity, we used an open database of

nucleotide sequences published between 1950 and 2019 compiling the associations between

1,785 virus species (DNA and RNA) with 725 mammalian host species that resulted from the

automatic screening of the accompanying metadata [54,55].

Network analyses. We used a network analysis approach to represent and quantify the

ecology of virus transmission between different hosts [56], as it allowed representation and

mathematical quantification of the importance of a given host in the transmission of viruses.

Viral diversity and potential transmission to humans were assessed using network architec-

tures and associated indices. In bipartite networks, only host–virus interactions are consid-

ered, representing how host species and virus species are associated. Viruses and hosts

represent nodes of the network, and edges represent the observed interactions between nodes

in the network. In a unipartite network, nodes represent the hosts and edges the viruses shared

between each node (i.e. host).

Modularity in bipartite and unipartite networks of shared viruses help assess host commu-

nities sharing similar virus transmission and then potential risks of transmission of other

PLOS ONE A protocol to study the spillover of coronavirus at wildlife interface

PLOS ONE | https://doi.org/10.1371/journal.pone.0294397 January 2, 2024 7 / 16

https://www.iucnredlist.org/resources/spatial-data-download
https://doi.org/10.1371/journal.pone.0294397


viruses between species [57]. Modularity measures the strength of division of a network into

modules, i.e. groups or clusters of hosts sharing common viruses.

Network centrality indices provided useful information on the relative importance of a

given host to the entire network [58]. A host occupying a highly central position (i.e., having a

high centrality value) links different hosts clustered into subgroups within the network and

participates strongly in the transmission among a large community of hosts. Hosts with high

values of centrality in networks can help target key reservoirs for viral disease surveillance

[54,56,57].

We first linked the list of mammal species extracted from the IUCN, adding the domestic

dog (Canis lupus familiaris) and the human species (Homo sapiens), to the dataset of virus spe-

cies from mammals [47]. Using the information linking each host species with their virus, we

obtained bipartite networks and unipartite projections in which each node was a host species.

Modules were identified for bipartite and unipartite networks of shared viruses between mam-

mal species. We used bipartite network analysis, with nodes describing the mammal species

interacting with nodes describing the viruses using the ‘bipartite’ package [58,59] implemented

in R [60]. We used the function ‘computeModules’ of the package ‘bipartite’ to compute mod-

ules using the modularity algorithm of Dormann & Strau [61]. We projected these bipartite

networks onto unipartite networks using the ‘tnet’ package [62] implemented in R. A unipar-

tite network represented relative interactions amongst hosts through the sharing of virus spe-

cies. Each host within the network played a different role in virus sharing relative to all other

nodes, which was examined using its centrality measurement. We used the function ‘cluster_-

louvain’ implemented in the package ‘igraph’ [63] to identify the modularity structure of the

unipartite networks. This function is based on a multilevel modularity optimization algorithm

[64]. A central node (i.e. a host with a high centrality value) was the one that was highly con-

nected to other nodes and thus was supposed to have a greater transmission potential for virus

species. We calculated the eigenvalue centrality (EC) with the ‘evcent’ function from the pack-

age ‘igraph’ [63].

Results

The predictive modeling used network analysis to explore the association between mammal

species and their viruses. A total of 130 mammal species are potentially present in Saen

Thong sub-district according to the IUCN Red List, although we removed several species

known for their absence in the area (such as Mus musculus and Rattus rattus). The species

were checked and confirmed using the CERoPath database and the data collected by the

Smart Patrol Project of Nanthaburi National Park. This list of mammal species, also includ-

ing the domestic dog (Canis lupus familiaris) and the human species (Homo sapiens), was

linked to the dataset of virus species from mammals. A total of 57 viruses were found to be

shared between 43 host species (see S1 and S2 Tables), including the domestic dog and the

human species (Fig 3A), with the human species hosting the highest number of viruses fol-

lowed by the domestic dog, the Indochinese rhesus macaque (Macaca mulatta), and several

bat species. Bats showed the highest diversity of viruses shared among the whole host com-

munities, followed by human and non-human primates, carnivores, rodents, and cetartio-

dactylids (Cervidae) (Fig 3B).

Bipartite networks and unipartite projections were obtained using the information linking

each host species with their virus. Modules identified for bipartite and unipartite networks dif-

fered by their numbers of modules (Figs 4 and 5). Using the bipartite network, five modules

were identified (Fig 4), such as the one grouping the human species, domestic dog,
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Indochinese rhesus macaque, and Sambar deer (Rusa unicolor) with ten virus species. The bat

species were separated into three modules, and the rodent species into two modules.

Four modules were identified using the unipartite network. The first module grouped the

human species with domestic dog, Indochinese rhesus macaque, Sambar deer, and two species

of rodents (Rattus exulans, Rattus nitidus). The bat species were separated into three modules,

with one comprising two rodent species (Rattus tanezumi, Rattus losea), and one comprising

three carnivore species (Paguma larvata, Paradoxurus hermaphroditus, Viverricula indica)

(Fig 5).

In terms of host centrality in the network of virus sharing, the primates showed the highest

centrality because of the human species, followed by carnivores due to the domestic dog, the

deer species (Cetartiodactylida), the rodents, and the bats (Fig 6).

Discussion

Pathogen spillover events depend on various factors that favor the encounter of reservoir hosts

and recipient hosts. Encountering interfaces is not always easy to characterize, mostly because

of the lack of ecological knowledge about the species of interest. The protocols of the Spillover

Interface Project will combine pathogen screening in humans, domestic dogs, bats, and

Fig 3. Diversity of potential viruses hosted in species potentially present in Saen Thong with (A) the number of viruses per mammal species including the

human species and the domestic dog and (B) the number of viruses per mammal orders. Data on the potential presence of wild mammals were extracted from

the IUCN Red List and data on the potential viruses from an open database.

https://doi.org/10.1371/journal.pone.0294397.g003
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rodents with extensive camera trapping, land use characterization, and network analyses in

order to assess the encountering of wildlife, domestic animals and humans.

Using a data-based approach, we have made predictions about the wildlife diversity and

viral diversity that can be observed in Saen Thong. The use of IUCN and virus open databases

helped to predict the potential diversity of virus–mammal interactions in the locality. Using

network analysis, we showed the importance of bat species as major reservoirs of potential

zoonotic viruses. However, carnivores, along with domestic dogs, appeared central in the virus

sharing among all mammal species [57,65]. The predictive analysis using open access data and

network analysis showed the importance of several species. Synanthropic rodents and the

domestic dog appeared central in the network of sharing viruses among humans and wildlife

species that are potentially present at the location site. This data-based prediction confirmed

Fig 4. Bipartite network of potentially shared virus species among wild mammal species potentially present in Saen Thong and the human species and

the domestic dog. Five modules were identified with one the one grouping humans, domestic dog, Indochinese rhesus macaque, and the Sambar deer with ten

viruses. Bat species were separated in three modules, and rodent species in two modules.

https://doi.org/10.1371/journal.pone.0294397.g004

PLOS ONE A protocol to study the spillover of coronavirus at wildlife interface

PLOS ONE | https://doi.org/10.1371/journal.pone.0294397 January 2, 2024 10 / 16

https://doi.org/10.1371/journal.pone.0294397.g004
https://doi.org/10.1371/journal.pone.0294397


the importance of investigating not only bats and rodents but also the domestic dog, which are

then the targeted species of the Spillover Interface Project.

The results of this data-based prediction will be interrogated with the data gathered by the

Spillover Interface Project. First, with the data on the diversity and co-occurrence of wildlife

species in the different habitats gathered by the camera and live traps. The land-use map will

allow the precise identification of habitat use and shared by each species trapped or pictured,

and potential interfaces. Second, the screening of viruses will permit the investigation of their

diversity and the number of species that individual viral species are able to infect such as small

terrestrial mammals, bats, dogs, and importantly, across habitats. Last, the trapping design will

standardize the sampling effort to assess the presence and abundance of the investigated small

mammals and domestic dogs in each habitat.

Conclusion

We presented the results of a predictive modeling approach illustrating the potential presence

and association of hosts and their viruses in Saen Thong using network analysis. The protocols

and framework of the Spillover Interface Project were designed to test the results of the predic-

tive modeling in the Spillover Interface Project, first starting with coronaviruses.

Fig 5. (A) Unipartite network with modules differentiated by colors of shared virus species among mammal species including humans and domestic dog. The

links among hosts (nodes) of the unipartite network depict shared viruses (vertices were placed according to the Fruchterman–Reingold algorithm) with

thickness of links proportional to number of viruses shared and size of vertices proportional to the degree centrality of hosts. (B) Clustering representation of

the unipartite network with the different clusters differentiated by colors. Four modules were identified with one grouping the human species with the

domestic dog, the Indochinese rhesus macaque, the Sambar deer and two species of rodents (Rattus exulans, Rattus nitidus). The bat species were separated in

three modules, with one comprising two rodent species (Rattus tanezumi, Rattus losea), and one comprising three carnivore species (Paguma larvata,

Paradoxurus hermaphroditus, Viverricula indica).

https://doi.org/10.1371/journal.pone.0294397.g005
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