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High-dimensional Bayesian Optimization with a
Combination of Kriging models

Tanguy Appriou∗†‡, Didier Rullière†, David Gaudrie‡

Abstract

Bayesian Optimization (BO) is a popular approach to solve optimization problems
using as few function evaluations as possible. In particular, Efficient Global Optimiza-
tion (EGO) based on Kriging surrogate models has been successfully applied to many
real-world applications in low dimensions (less than 30 design parameters). However,
in high dimension, building an accurate Kriging model is difficult, especially when
the number of samples is limited as is the case when dealing with numerical simula-
tors. This is due to the inner optimization of the Kriging length-scale hyperparameters
which can lead to inaccurate models and impacts the performances of the optimization.
In this paper, we introduce a new method for high-dimensional BO which bypasses the
length-scales optimization by combining sub-models with random length-scales, and
whose expression, obtained in closed-form, avoids any inner optimization. We also de-
scribe how to sample suitable length-scales for the sub-models using an entropy-based
criterion, in order to avoid degenerated sub-models having either too large or too small
length-scales. Finally, the variance of the combination being not directly available, we
present a method to compute the prediction variance for any weighting method. We
apply our combined Kriging model to high-dimensional BO for analytical test func-
tions and for the design of an electric machine. We show that our method builds more
accurate surrogate models than ordinary Kriging when the number of samples is small.
This results in faster convergence for BO using the combination.

Keywords— Bayesian Optimization, Kriging, Gaussian Process Regression, High Dimension,
Maximum Likelihood Estimation, Model Aggregation.

1 Introduction

In engineering design optimization, surrogate models (also called metamodels) are widely
used to emulate black-box functions we want to optimize (Forrester et al., 2008) because
such functions are often obtained via a computationally expensive computer simulation
(e.g. computational fluid dynamics or finite-elements solvers). This makes the optimization
prohibitively expensive to perform with usual optimization methods, such as evolutionary
algorithmsor gradient-based approaches, due to the large number of function evaluations
required. Global Bayesian optimization (BO) strategies hinging on surrogate models were
developed to solve this type of optimization problems. In particular, Efficient Global
Optimization (EGO) introduced by Jones et al. (1998) has been applied to a wide variety
of design optimization problems (e.g. Candelieri et al., 2018; Meliani et al., 2019; Picheny
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et al., 2019). This algorithm uses a non-parametric class of statistical models called Kriging
models (Cressie, 1993; Stein, 1999) as a surrogate. Kriging models have proven to be
effective in modelling black-box functions, not only for the approximation of numerical
experiments (Sacks et al., 1989; Santner et al., 2003), but also in other fields such as
machine learning (Rasmussen and Williams, 2006), where it is known as Gaussian Process
regression.

Although EGO has been applied successfully to a number of low-dimensional applica-
tions (dimension d < 20), one of its main drawback is that Kriging scales poorly to high-
dimensional cases. Originating from geostatistics (Krige, 1951; Matheron, 1963) where it
was used as an interpolator for spatial fields, Kriging was initially devised for problems
with dimension limited to either d = 2 or 3. However in real-world design optimization,
engineering designs may commonly be parametrized by 50 or more parameters (Shan and
Wang, 2010; Gaudrie et al., 2020). In higher dimensions, Kriging suffers from the curse of
dimensionality (Bellman, 1966) and building an accurate surrogate model is met with var-
ious setbacks. This, in turn, is problematic for design optimization since the convergence
speed of EGO is related to the accuracy of the surrogate. Thus, using accurate models
is instrumental in order to reduce the number of function evaluations to reach the opti-
mum. One of the main challenges in Kriging is the inner optimization of the covariance
length-scale hyperparameters. The latter regulate the decay of the correlation between
observations when their distance increases. Usually Kriging models implement anisotropy
by considering one length-scale per dimension. Estimating these hyperparameters correctly
is essential to obtain a model with a good accuracy and they are typically determined by
Maximum Likelihood Estimation (MLE), an extremely popular method for fitting Krig-
ing models whose theoretical properties have been studied extensively (e.g. Stein, 1999;
Zhang, 2004; Van Der Vaart and Van Zanten, 2011; Kaufman and Shaby, 2013; Karvonen
et al., 2020). However, most of these results are based on asymptotic considerations on the
number of samples, and fewer works study practical cases where the number of samples
is limited. For example, Karvonen and Oates (2023) showed that, in certain conditions,
MLE is ill-posed in the sense that it leads to an infinite estimate of the length-scales.
Practical MLE of the Kriging hyperparameters is difficult, especially for high-dimensional
problems, in particular because the volume of the search space grows exponentially with
the dimension. Since the optimization is typically solved using gradient-based methods
(e.g BFGS) with multi-start or evolutionary algorithms (Roustant et al., 2012), there is
no better solution than increasing the number of iterations which might result in an in-
creased computational effort as the cost of the likelihood and its gradient scale with O(n3).
However, most of the times in design optimization, the number of samples is very limited
and the cost of the length-scale optimization remains negligible compared to the cost of
obtaining the samples. In these cases where the number of samples is small, Ginsbourger
et al. (2009) and Mohammed and Cawley (2017) showed empirically that MLE can lead to
very dispersed results, and Appriou et al. (2023) that it can fail to recover the true hyper-
parameters. While not as frequently used as MLE, other methods exist to determine the
length-scales. For example, Bachoc (2013) suggested that cross-validation is more adapted
than MLE when the model is ill-specified. Li and Sudjianto (2005) and Yi et al. (2011)
proposed penalized versions of the likelihood to reduce the variance of the length-scale
estimator, and Gu et al. (2018) used maximum a posteriori estimation with a reference
prior to obtain a robust estimator avoiding the setting of lower and upper bounds which
can also be a tricky point of the length-scale optimization. However, all these length-scale
estimation procedures also face difficulties in high-dimension.
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High-dimensional Kriging and Bayesian optimization has recently gained attention. The
methods in the literature to handle the high-dimensionality can generally be divided in
two broad categories. The first category consists in reducing the problem’s dimension by
embedding the design space into a lower dimension space, and then building the Krig-
ing model in this low-dimension space. Screening is a way to achieve this. It consists in
selecting the important design variables and removing the others. For example, Marrel
et al. (2008) uses model selection with the Akaibe Information Criterion (AIC) to sequen-
tially add design variables. In the context of reliability analysis, methods based on the
first or second order reliability method can also be used to identify important inputs (Yin
and Du, 2022b). In the context of optimization, Chen et al. (2012) performs screening
using hierarchical diagonal sampling, Li et al. (2018) uses a dropout strategy to select a
subset of variables at each iteration, and Spagnol et al. (2019) uses the Hilbert-Schmidt
Independence Criterion (HSIC) to select important design variables. More generally, other
sensitivity analysis techniques (see Iooss and Lemaître, 2015, for a review) can be used
to rank the design variables in order of importance. Instead of selecting some design
variables, different types of linear embedding have also been proposed to reduce the di-
mension. Examples include active subspaces (Constantine, 2015) when the gradient of the
function is available, weighted Principal Component Analysis (PCA) (Raponi et al., 2020),
Sliced Inverse Regression (SIR) (Zhang et al., 2019; Yin and Du, 2022a), Partial Least-
Square (PLS) (Bouhlel et al., 2016, 2018). Non-linear embeddings methods have also been
proposed using autoencoders for instance (Gómez-Bombarelli et al., 2018; Li and Wang,
2020). The other class of high-dimensional Kriging revolves around additive models and
High-Dimensional Model Representation (HDMR) in general. The simpler additive models
assume a decomposition of the function into a sum of one-dimensional components (Dur-
rande et al., 2012; Sadoughi et al., 2018). Muehlenstaedt et al. (2012) and Wu et al. (2019)
also consider the second-order interaction terms of the HDMR decomposition, and other
works identify groups of variables (e.g. Gardner et al., 2017; Wang et al., 2018). For a more
complete overview of high-dimensional Bayesian optimization methods, we refer to the re-
view in Binois and Wycoff (2022). Other methods which do not rely on these additional
assumptions (low dimension representation or additive structure) also exist. For example,
Hvarfner et al. (2024) showed that classical BO with a full-Bayesian Gaussian Process can
work well even in high-dimension if the length-scale prior scales appropriately with the
dimension. Appriou et al. (2023) also introduced another method for high-dimensional
surrogates based on a combination of Kriging sub-models, each one having length-scales
fixed at random values, thus bypassing the difficult hyperparameter optimization, with no
additional assumption on the black-box.

In this paper, we expand the combined Kriging with random length-scales to high-dimensional
BO. To this end, we introduce a new method to sample suitable length-scales for the sub-
models using an entropy-based criterion, in order to avoid degenerated sub-models having
either too large or too small length-scales. We also present a way to compute the prediction
variance for any weighting method which is essential to compute the acquisition criterion
in BO, and which is not readily available since the correlation between the sub-models
is unknown. Notation and main concepts of Kriging and Bayesian optimization are in-
troduced in Section 2. Then, in Section 3, we present a motivating example illustrating
how classical MLE fails to correctly identify length-scales yielding a good model when only
few observations are available. In Section 4, we detail our new model for high-dimensional
Bayesian optimization: in Section 4.1, we present the new entropy-based criterion to sample
suitable length-scales for the sub-models; in Section 4.2 we describe the weighting method
to combine the sub-models; and in Section 4.3 and 4.4, we explain how we compute the
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prediction variance of the combination. Finally, Section 5 discusses the performances of
our method for the optimization on a benchmark of analytical test functions and for one
real-world application when compared to vanilla BO and state of the art high-dimensional
BO techniques.

2 Kriging surrogate models and Bayesian optimization

2.1 Ordinary Kriging

Originally, Ordinary Kriging (OK) was developed for interpolation of spatial data by
Matheron (1963) who named the method after the South African mining engineer D.G.
Krige. The method was later applied to the approximation of computer experiments
(Sacks et al., 1989; Santner et al., 2003). This method is also known as Gaussian Pro-
cess Regression (Rasmussen and Williams, 2006). This section briefly covers the basics
of the method and introduces the notation used throughout this paper. We denote by
y : x ∈ X ⊂ Rd → y(x) ∈ R the d-dimensional black-box function that we want to ap-
proximate by a surrogate model. We have n training points X = (x1, . . . ,xn)

⊤ where the
function y is known, and we denote Y = (y(x1), . . . , y(xn))

⊤ the function values at these
locations. In Kriging, y is assumed to be the realization of a Gaussian process (GP) on X :

Y (.) ∼ GP
(
µ(.), σ2kθ(., .)

)
.

µ(.) is the mean function of the GP which we consider constant in this paper: µ(.) = µ.
This is a standard choice for the approximation of computer codes where no we have prior
knowledge about the true function (Forrester et al., 2008; Ginsbourger et al., 2009) known
as ordinary Kriging. Note, that more complex trends, such as polynomial (e.g. Schobi et al.,
2015), can also be considered. kθ : X × X → [−1, 1] is the positive definite correlation
function indexed by the hyperparameters θ ∈ Rd, called the correlation length-scales vector
(also range or scale parameters), with one length-scale per dimension of the input space.
Finally, σ2 ∈ R+ is another hyperparameter calibrating the amplitude of the variance, and
σ2k(., .) is called the covariance function or kernel. A stationary GP with a Matérn-class
covariance function is often recommended (Stein, 1999; Rasmussen and Williams, 2006).
One example of which, used throughout this paper, is the radial Matérn 5/2 correlation
defined as:

kθ(x,x
′) :=

(
1 +
√
5

∥∥∥∥x− x′

θ

∥∥∥∥+ 5

3

∥∥∥∥x− x′

θ

∥∥∥∥2
)
exp

(
−
√
5

∥∥∥∥x− x′

θ

∥∥∥∥) , (1)

where
∥∥∥x−x′

θ

∥∥∥ is the scaled distance between two points x,x′ ∈ X using component-wise

division:
∥∥∥x−x′

θ

∥∥∥2 :=
∑d

ℓ=1

(
x(ℓ)−x′(ℓ)

θ(ℓ)

)2
. This is a typical choice for design optimization

(Roustant et al., 2012) when there is no prior information on the function. This is because
GP trajectories with this correlation are twice differentiable (Abrahamsen, 1997), which
may be better suited than the Gaussian kernel (infinitely differentiable trajectories) or than
the exponential correlation (trajectories not differentiable). Other covariance functions
can be used if prior knowledge about the unknown function is available (e.g. cylindrical
kernels), and, notice that even when the covariance is misspecified, a proper estimation of
the hyperparameters can still yield a model with good predictive capacities (Bachoc, 2013).

The ordinary Kriging predictor is a linear combination of the observations which is obtained
by conditioning the Gaussian process Y over D = (X,Y ):

ŷ(x) := E(Y (x)|D) = µ+ kθ(x,X)kθ(X,X)−1(Y − µ), (2)
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where k(x,X) is the vector of correlations between the prediction point x and the sample
points X, and k(X,X) is the n× n matrix of correlations between the components of X.
Note that this predictor does not depend on σ2. One of the main advantage of Kriging
is that it not only provides a prediction, but also the prediction variance, interpreted
as a model uncertainty. This is particularly important in Bayesian optimization where,
alongside with the prediction, this model uncertainty helps exploring under-visited parts
of the design space. The prediction variance is:

ŝ2(x) := Var(Y (x)|D) = σ2
(
kθ(x,x)− kθ(x,X)kθ(X,X)−1kθ(X,x)

)
. (3)

In the following, we will sometimes denote the correlation matrix as Kθ := kθ(X,X).

2.2 Hyperparameter estimation

The estimation of the covariance hyperparameters of a Kriging model drastically affects
its precision. As illustrated in Figure 1, an appropriate choice of length-scales yields much
better accuracy than arbitrary length-scales. As often in parametric statistic models, the
usual approach to estimate the hyperparameters is to use maximum likelihood estima-
tion (MLE) (Rasmussen and Williams, 2006), which consists in maximizing the marginal
likelihood of the model:

L(σ,θ) := 1

(2π)n/2 det(σ2Kθ)1/2
exp

(
− 1

2σ2
(Y − µ)⊤K−1

θ (Y − µ)

)
. (4)

This is equivalent to minimizing − log(L(σ,θ)). Given a fixed θ, the maximum likelihood
estimator for µ and σ2 are:

µ̂ =
1⊤K−1

θ Y

1⊤K−1
θ 1

, and σ̂2
MLE =

(Y − µ̂)⊤Kθ
−1(Y − µ̂)

n
, (5)

The length-scales θ are estimated by minimizing the concentrated log-likelihood obtained
by injecting (5) into (4):

θ̂MLE = argmin
θ

n

2
log
(
σ̂2
MLE

)
+

1

2
log (det(Kθ)) . (6)

In this expression, the length-scales are involved in both terms σ̂2
MLE and det(Kθ) through

the correlation matrix. The inner optimization (6) is solved numerically, typically using
a gradient-based method (e.g BFGS) with multi-start as the gradient of the likelihood
with respect to the length-scales can be in closed-form, or using evolutionary algorithms
(Roustant et al., 2012).

2.3 Bayesian optimization

As presented in the previous section, Kriging gives a way to build a surrogate model to
approximate a black-box function based on some observations. Bayesian Optimization
(BO) aims at finding the global optimum of this function x∗ = argminx y(x) in as few
evaluations of the black-box as possible. One common Bayesian optimization framework
is the Efficient Global Optimization (EGO) algorithm introduced by Jones et al. (1998),
summarized in Algorithm 1.

The EGO algorithm begins by evaluating a small set of designs xi called the initial design
of experiments (DoE), usually space-filling, and sequentially adds new observations by
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(a) Random length-scale (b) MLE length-scale

Figure 1: Example of an ordinary Kriging model in 1D. Left: model with an arbitrary length-scale
θ = 0.03, right: model with length-scale obtained by MLE.

Algorithm 1 Efficient Global Optimization (EGO) algorithm

Create an initial design plan: X = (x1, . . . ,xn)
⊤.

Compute the associated values: Y = (y(x1), . . . , y(xn))
⊤.

Fit the Kriging model to the data D = (X,Y ): find µ̂, σ̂2, and θ̂.
repeat

xn+1 = argmaxxEI(x).
X ←X ∪ xn+1.
Y ← Y ∪ y(xn+1).
Re-estimate the hyperparameters µ̂, σ̂2, and θ̂.

until convergence or budget exhaust

maximizing a so-called acquisition criterion which quantifies the worth of any unevaluated
x. The most popular one is the Expected Improvement (EI), which is the expectation of
the improvement I(x) = max(0, ymin−Y (x)) over ymin = min(Y ), the best value observed
so far. For x ∈ X , the EI can be easily computed as:

EI(x) := E [I(x)] = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
, (7)

where which Φ(.) and ϕ(.) are respectively the cumulative distribution function and the
density of a standard normal distribution. Note that the EI is computed using both the
mean predictor ŷ and the prediction variance ŝ. It allows for a trade-off between exploita-
tion and exploration by selecting new points near the current optimum (where ŷ is small)
and far from any observation (where ŝ is large).

However, in high-dimensional problems, EGO suffers from some drawbacks related to the
geometry of high-dimensional spaces. With a quick calculation, one can see that the volume
of a thin layer of thickness ε in the border of the hypercube [0, 1]d tends to 1 when d grows
to infinity. In other words, in high-dimensional spaces, most of the volume is located on
the sides of the hypercube. Added the fact that the EI is a highly multi-modal function,
its optimization can also be difficult and often leads to new points located on one face
of the hypercube, resulting in a optimizer too explorative. To avoid this behavior, it is
common practice in high-dimensional Bayesian optimization to use trust regions in order
to reduce the size of the search space (see e.g. Eriksson et al., 2019; Diouane et al., 2023;
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Binois and Wycoff, 2022). In these methods, the surrogate model and the optimization are
restricted to a local neighborhood of the current best solution whose size increases if a new
best solution is discovered, or decreases otherwise.

3 An example of Kriging failing in high dimension

In this section, we illustrate the importance of correctly estimating the length-scale hy-
perparameters, as well as the inability of MLE to identify good length-scale values for the
classical Kriging approach in high-dimension when not enough observations are available.
While having too few observations can occur in any dimension, it is especially prevalent in
higher dimensions where the thumb rule of 10d observations to build the model (Forrester
et al., 2008) is often not affordable. In the context of Bayesian optimization, it is also
common practice to start with a small initial DoE (about 2-3d) (Gaudrie, 2019; Garnett,
2023) and to allocate most of the budget for the acquisition points.

For this example, we consider two test functions for which we fit a Kriging model. First,
the sphere test function defined as:

fsphere(x1, . . . , xd) :=

√√√√ d∑
ℓ=1

(xℓ − 0.5)2, 0 ≤ xℓ ≤ 1, ℓ = 1, . . . , d. (8)

This function is simply a parabola centered in the middle of the hypercube [0, 1]d, and it is
thus reasonable to expect a Kriging model to accurately approximate this simple smooth
and convex function. Second, we consider trajectory samples of an isotropic GP:

Yiso(.) ∼ GP (0, kiso(., .)) , (9)

where kiso is a Matérn 5/2 covariance with isotropic length-scale θtrue = 3 and ampli-
tude σ2

true = 1. These GP trajectories correspond to functions where the Kriging prior
assumption is exactly satisfied. For the numerical experiment, we consider a dimension
d = 50, and we build an anisotropic Ordinary Kriging model using a varying number of
samples n ∈ [100, 1000]. The d hyperparameters are optimized using the DiceKriging R
package (Roustant et al., 2012) by MLE using a maximum of 500 L-BFGS-B iterations and
3 restarts. We compare the estimated hyperparameters with “real” ones, the latter being
obtained after fitting a “reference GP” to 5000 samples of the Sphere function. For the
GP trajectories, these reference hyperparameters are simply those used for sampling the
trajectory, θtrue = 3. To measure the global accuracy of the models, we compute the Q2

coefficient based on ntest = 10000 random test points x
(t)
1 , . . . ,x

(t)
ntest ∈ [0, 1]d:

Q2 := 1−

∑ntest
k=1

(
ŷ(x

(t)
k )− f(x

(t)
k )
)2

∑ntest
k=1

(
f(x

(t)
k )− 1

ntest

∑ntest
l=1 f(x

(t)
l )
)2 , (10)

in which f is either of the test functions.

The results for 10 different initial DoEs are shown in Figure 2. Figures 2a and 2c show
that the Ordinary Kriging fails in approximating the simple sphere function in the small
data regime as highlighted by the very poor global accuracy, the Q2 being even negative
for less than 200 observations. This is especially problematic in early stages of Bayesian
optimization since first surrogates with a poor global accuracy will negatively impact the
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discovery of areas of interest and decrease the convergence speed of the optimization.
The good performance of the reference hyperparameters (blue boxplots), able to achieve
a very good accuracy with only 100 observations, shows that the issue does not lie in
the modelling capability of Kriging surrogates but rather in the hyperparameter values.
Moreover, the log-likelihood plots in Figure 2b and 2d inform us that the issue does not
reside in the convergence of the 50 dimensional hyperparameter optimization as the log-
likelihood of the estimated hyperparameters is superior to the log-likelihood of the reference
hyperparameters as expected. It rather seems that with few points, maximum likelihood is
no longer a relevant metric to select good hyperparameters, since high likelihoods do not
correspond to accurate models.

Finally, although the experiment was performed for high-dimensional test functions (d =
50), the issue is not directly the dimension itself, but rather the low number of observations
relative to the dimension. In fact, while there exist length-scale values yielding good
models with very few points (reference hyperparameters), we retrieve in Figure 2 the usual
empirical rule of 10d observations to obtain a precision close to that of the model with
reference hyperparameters using MLE. As such, similar results can be obtained in lower
dimension by scaling down the number of samples. However, while it seems reasonable to
obtain more than 10d samples to build the model in lower dimension, it is more difficult
in higher dimensions with limited observations. Therefore, the described lack-of-accuracy
issue is more prevalent for high-dimensional problems.

To avoid this issue, a usual solution is to reduce the dimension of the problem. While
this facilitates the hyperparameter optimization, it raises the question of the accurate
representation of the true function in a lower dimension space and of the information loss
incurred. In the next section, an alternative approach based on a combination of Kriging
models with random length-scales is presented. This method keeps the information about
correlations among all variables and generalizes to any problem since it does not require
the low-dimensional representation hypothesis.

4 Combination of Kriging models with random length-scales

To address the issues raised in the previous section, Appriou et al. (2023) introduced a
method to bypass the hyperparameter optimization by using a combination of Kriging
models with random length-scales. The idea was to replace the difficult and sometimes
costly length-scale estimation by the easier optimization of the weights in the combination.
This results in an easier-to-build model, and which is more accurate in such cases where
the length-scales are wrongly estimated by maximum likelihood estimation. In the afore-
mentioned paper, the focus was on the weighting methods and on studying the impact of
the number of sub-models. In the present paper, we develop a more effective methodology
to sample the random sub-models length-scales, and the combination is further developed
to accommodate to Bayesian optimization by providing a method to obtain the prediction
variance.

The combined model Mtot proposed in Appriou et al. (2023) writes as:

Mtot(x) :=

p∑
i=1

wi(x)Mi(x), (11)

where wi, i = 1, . . . , p, are the weights of the p sub-models Mi. In the following sub-sections,
we first discuss the choice of the sub-models, and in particular how to sample their random
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Sphere function

(a) Q2 (b) Log-likelihood

GP trajectories

(c) Q2 (d) Log-likelihood

Figure 2: Q2 of Kriging models (the higher the better) and corresponding log-likelihood for different
number of training points over 10 independent runs. The top two figures give the results for the
Sphere test function and the bottom two figures the results for GP trajectories. On the left are the
accuracies of the models measured by the Q2, on the right are the corresponding log-likelihood.
The results in red correspond to the Kriging model with hyperparameters estimated by maximum
likelihood, those in blue to the model with reference hyperparameters.

length-scales. Then, the second sub-section describes how the sub-models are weighted,
and finally, the last two sub-sections detail how the prediction variance of the combined
model is obtained, by modeling the correlation between sub-models and discussing the
estimation of the variance amplitude hyperparameter.

4.1 Choice of the sub-models

The sub-models we consider are ordinary Kriging models with length-scales θi chosen
randomly, hence not as the result of a maximum likelihood estimation:

Mi(x) := E(Yθi(x)|Di) = µi + kθi(x,Xi)kθi(Xi,Xi)
−1(Yi − µi),

In the following, we will assume that the training data set of each sub-model is the entire
data set: Di = (Xi,Yi) = (X,Y ) though each sub-model could consider a specific subset
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of (X,Y ). The sampling of the length-scales θi is therefore critical as it is the only source
of variability between the sub-models.

The sampling of length-scales should enable a wide diversity of sub-model behaviors so
that the combination can select the appropriate ones through their weights wi. To this
aim, the length-scales must be dissimilar enough, but at the same time, they need to
lie in an appropriate range to avoid degenerated sub-models occurring when the length-
scales are either too large or too small compared to observed distances between samples.
In particular, small length-scales will result in all cross-correlations being close to 0. In
this case, as illustrated in Figure 3a, the Kriging prediction equals to its mean function
µ(.) almost everywhere with spikes to interpolate the observations. In the contrary, too
large length-scales will result in all correlation being close to 1 resulting in a correlation
matrix which can be ill-conditioned and inverting it - when possible - can cause numerical
instabilities. This issue can be resolved by adding a small nugget term in the diagonal of Kθ

at the cost of loosing the interpolating property as illustrated in Figure 3b. The sampling
procedure must not produce such non-informative sub-models. Note that this corresponds
to only accepting robust sub-models as defined in Gu et al. (2018). In the original random
length-scales combination paper (Appriou et al., 2023), to avoid the degenerated cases, the
length-scales were sampled uniformly in a bounded interval computed according to their
influence on the correlations. However, this method tended to produce too many length-
scales on the smaller side of the acceptable range which tends to worsen the sub-models.
Instead of trying to design a more suited distribution to sample from, we propose an other
non-parametric approach to better sample the length-scales based on the entropy of the
correlation.

(a) Small length-scale (b) Large length-scale

Figure 3: Examples of the two degenerated cases in 1D. Left: ordinary Kriging with a small length-
scale θ = 10−2, right ordinary Kriging with a large length-scale θ = 3 and a small nugget term
ε2 = 10−8.

First, we will derive the entropy for a Gaussian correlation and detail the sampling strategy.
Then we will extend the method to any other correlation. Let us consider that design
points are distributed as a random vector X = (X(1), . . . , X(d)), with i.i.d components
with common variance σ2

X and kurtosis κX. Let D2 be the random squared distance
between two independent points X and X′. For a large enough dimension d:

D2 :=
d∑

ℓ=1

(
Xℓ −X ′

ℓ

)2 ∼ N (2dσ2
X, 2dσ4

X(κX + 1)
)
. (12)
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Figure 4: Entropy of a Gaussian correlation as a function of the length-scale θ. In this example,
d = 50 and X are uniformly distributed (σ2

X = 1
12 and κX = 9

5 ).

For a Gaussian correlation function, the random correlation between these two points for
a given length-scale θ is then:

Rθ := exp

(
−D2

2θ2

)
∼ logN

(
−
σ2
X

θ2
d,

σ4
X

2θ4
(κX + 1)d

)
. (13)

Finally, the entropy of the correlation isthe entropy of the log-normal distribution in (13):

H(Rθ) := E[− log fRθ
(Rθ)] = −

σ2
X

θ2
d+

1

2
log

(
2π

σ4
X

2θ4
(κX + 1)d

)
+

1

2
, (14)

where fRθ
is the density of Rθ. Figure 4 shows the entropy as a function of the length-scale

θ for a dimension d = 50. The entropy decreases rapidly for length-scales below a critical
value, while its drop is less pronounced for large length-scales. It is therefore especially
important to avoid too small length-scales. Additionally, we can remark on the length-scale
θ∗ which maximizes the entropy:

θ∗ := argmax
θ

H(Rθ) = σX
√
d.

This is the length-scale which maximizes the potential to capture the information of the
training set, prior to any observation. We also note that this length-scale is such that the
square of the length-scale is of the same order as the squared-distances between samples:
2θ∗2 = E[D2]. Obrezanova et al. (2007) used this definition as an initial value prior to any
observation.

The entropy obtained in equation (14) measures the variability of the correlations. The
two degenerated cases described above (correlation is always 0 for small length-scales or
always 1 for large length-scales) correspond to cases where there is no variability and where
the entropy is small:

lim
θ→0

H(Rθ) = −∞, and lim
θ→∞

H(Rθ) = −∞.

For a general non-Gaussian correlation function, e.g. a Matérn one, the entropy cannot be
obtained analytically. In this case, we use instead a non-parametric estimate of the entropy
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(Ahmad and Lin, 1976; Beirlant et al., 1997) given by:

Ĥ(Rθ) = −
1

ncorr

ncorr∑
k=1

log f̂Rθ

(
k
(k)
θ

)
, (15)

where ncorr =
n(n−1)

2 is the number of observed correlations k
(k)
θ , k = 1, . . . , ncorr between

distinct samples, and f̂Rθ
is a kernel density estimate of correlations density fRθ

.

To obtain varied length-scales in an appropriate range for the sub-models, we sample
length-scales corresponding to high entropies:

f(θ(ℓ)) ∝ exp (H(Rθ(ℓ))) , ℓ = 1, . . . , d, (16)

where f(θ(ℓ)) is the density from which θ(ℓ) is sampled. Note that each of the d length-
scales of the vector θ = (θ(1), . . . , θ(d)) are sampled independently. Note also that since
the differential entropy can be negative (contrarily to the entropy for discrete random
variables), a positive transformation of the entropy (exponential) is used in equation (16).

4.2 Weighting scheme

To obtain the weights of the sub-models, Appriou et al. (2023) compared different methods
coming from the model combination literature (see e.g. Ginsbourger et al., 2008; Cao and
Fleet, 2014; Deisenroth and Ng, 2015; Rullière et al., 2018). In this paper, we follow the
definition proposed in Acar and Rais-Rohani (2009) and Viana et al. (2009) which aim at
minimizing the global mean-square error (MSE) of the combination given by:

E
[
(Mtot(X)− y(X))2

]
. (17)

As the MSE is a global measure, we keep the weights constant throughout the design
space: w(x) = w. Since we only have access to a finite number of observations, a discrete
approximation of the MSE is obtained using leave-one-out cross-validation (LOOCV):

eLOOCV (Mtot) :=
1

n

n∑
k=1

(
p∑

i=1

wiMi−k
(xk)− y(xk)

)2

= w⊤Cw, (18)

where Mi−k
is the ith Kriging sub-model built by removing the kth sample xk. The

components of the matrix C ∈ Rp×p are cij = 1
ne

⊤
i ej with ei the LOOCV vector for the

ith sub-model: ei = (e
(1)
i , . . . , e

(n)
i ). For Kriging models, these residuals can be computed

easily without the need to build n distinct models using the conditional Gaussian and
block-matrix inversion formulas (Dubrule, 1983; Ginsbourger and Schärer, 2021):

e
(k)
i =

[K−1
θi

(Y − µi)]k

[K−1
θi

]k,k
. (19)

The weights w are obtained by minimizing (18):

w∗ = argmin
w

w⊤Cw, subject to
p∑

i=1

wi = 1.

Using a Lagrange multiplier and setting the derivatives to zero:

w∗ =
C−11

1⊤C−11
. (20)
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One issue pointed out in Viana et al. (2009) and Appriou et al. (2023) is that w can be
negative or greater than one, which can lead to over-fitting, especially when the number of
sub-models p is large. To solve this issue, instead of combining all sub-models at once, we
combine them two-by-two, following a binary tree structure illustrated in Figure 5. With
this definition, we can enforce w ∈ [0, 1] by imposing w = 0 when w < 0 and w = 1 when
w > 1, while keeping the sum of weights equal to one. In practice, it is also possible to
implement a threshold to induce more sparsity in the weights. In addition, this two-by-
two combination scheme will also prove itself convenient in the following subsection for
computing the variance of the combination.

Mtot

M12

M1

w1

M2

w2

w12

M34

M3

w3

M4

w4

w34

. . . . . .

. . .

Figure 5: Illustration of the sub-models combination following a binary tree structure (3 levels for
4 sub-models here).

4.3 Variance of the combination

As noted in section 2.3, the prediction error is essential in Bayesian optimization as it
is used inside most acquisition functions. For Kriging models, it is obtained naturally in
analytical form through the variance of the prediction as in equation (3). Each individual
model in the combination is a Kriging model with Yi ∼ GP

(
µi, σ

2kθi(., .)
)

and has a
prediction variance:

ŝ2i (x) = E
[
(Mi(x)− Yi(x))

2
]
= σ2

(
kθi(x,x)− kθi(x,X)kθi(X,X)−1kθi(X,x)

)
.

However, since the correlation structure between the sub-models is unspecified, we cannot
access directly to the variance of the combination. In the literature, several works aim at
estimating prediction errors for surrogate models where the latter is not readily available.
For example, Viana et al. (2013) and Viana and Haftka (2009) import the uncertainty
estimate of a Kriging sub-model to sub-models not equipped with a measure of uncertainty
(e.g. RBFs) to perform Bayesian optimization. Den Hertog et al. (2006) use parametric
bootstrapping instead of the classical formula to estimate the variance of a Kriging model.
Bootstrapping is also used in Kleijnen et al. (2012) and Kleijnen (2014) to perform EGO
using this corrected error estimate. In the field of neural networks, various methods were
also developed to estimate the uncertainty of the prediction (see for instance Papadopoulos
et al., 2001; Khosravi et al., 2010; Pearce et al., 2018; Abdar et al., 2021). Conformal
prediction (Lei et al., 2018; Romano et al., 2019) is an other empirical approach to build
prediction interval without making distributional assumptions. Berk et al. (2013) and
Bachoc et al. (2020) propose a procedure to construct valid confidence intervals post model
selection for linear models. Acharki et al. (2023) use cross-validation to calibrate prediction
intervals for GPs in the case of model misspecification. Another related class of method
are the mixture models (see Yuksel et al., 2012, for a review) which is a Bayesian approach
to combining models in which the posterior predictive distribution of the combination
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is given as a mixture of posterior predictive distributions of several sub-models. In the
context of Kriging, Pronzato and Rendas (2017) builds a fully-Bayesian mixture of sub-
models with different covariances to obtain a non-stationary model, and Ginsbourger et al.
(2008) uses a mixture of Kriging models in the context of Bayesian optimization. While
the mixture models give the same mean prediction as the linear combination of models
used in this paper, their variance differs. The variance of a mixture of Kriging models
can be obtained analytically and the mixed expected improvement can be expressed as the
convex combination of the individual expected improvements. However, the variance of a
mixture is larger than that of a linear combination of models. In addition, the weights
of the mixture can be interpreted as the probability to randomly select one model among
all others, even in high-dimension where no individual sub-model is expected to be clearly
better than all others. It is preferable to have a combination as it outperforms the best sub-
model as shown in Appriou et al. (2023). In this section, we introduce a method to obtain
the variance of the linear combination of Kriging models introduced in the previous section.
This approach is based on a LOOCV strategy and can be seen as a natural extension of
the linear combination of models hypothesis.

The variance of the combination depends on the global covariance structure between sub-
models. We make the hypothesis that the underlying Gaussian process Ytot is also a linear
combination of independent Gaussian processes Yi, i = 1, . . . , p with the same fixed length-
scales as those of the Mi:

Ytot = σ2
tot

p∑
i=1

αiYi, with Yi ∼ GP (µtot, kθi(., .)) ,

p∑
i=1

αi = 1. (21)

Here, σ2
tot is the amplitude of the variance whose estimation is discussed in the next sub-

section. Without loss of generality, we consider centered GPs (µtot = 0) as we are only
interested in the associated covariance:

Cov(Ytot(x), Ytot(x
′) := σ2

totktot(x,x
′) = σ2

tot

p∑
i=1

α2
i kθi(x,x

′). (22)

Note that the weights αi in the combination of GPs (21) are different from the weights wi of
the combination of models in (11). Similarly to the combination of models in Figure 5, we
also assume that the GPs are combined two-by-two as illustrated in Figure 6. This enables
the derivation of an analytical expression for the weights α using a LOOCV procedure.
Notice the link between this approach and a mixture of models. Indeed, if α2 = w, the
MSE of a mixture equals the MSE of the combination:

E
[
(Mmix(x)− Ymix(x))

2
]
= E

[
(Mtot(x)− Ytot(x))

2
]
, when ktot(x,x

′) =

p∑
i=1

wikθi(x,x
′).

(23)
Details on the proof of this proposition are given in Appendix A.1.

To obtain the weights α, we aim at minimizing the discrepancy between the combination of
sub-models that we obtained, and the new hypothesis we introduced about the combination
of GPs. This discrepancy can be measured as the expected MSE of the combined model
with respect to Ytot. For a combination of two models, with Ytot = αY1 + (1 − α)Y2, the
discrepancy is minimal for:

α∗ = argmin
α

E
[
E
[
(wM1(x) + (1− w)M2(x)− αY1(x)− (1− α)Y2(x))

2 |Y1, Y2
]]

. (24)
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Figure 6: Illustration of the two-by-two GPs combination following a binary tree structure (3 levels
for 4 individuals GPs here) with weights α (right) associated to the two-by-two combination of
sub-models with weights w (left).

Finally, by approximating the global MSE using the LOOCV error as in equation (18), we
obtain an analytical expression for α∗:

α∗ =
a1(w)

a1(w) + a2(w)
, (25)

where a1(w) and a2(w) depend on the weight w of the combination of models and on the
LOOCV vector of the sub-models, and are given by:

a1(w) = w2E(eLOOCV (M1)|Y2) + (1− w2)E(eLOOCV (M2)|Y2), (26)

a2(w) = (1− w2)E(eLOOCV (M1)|Y1) + (1− (1− w2))E(eLOOCV (M2)|Y1). (27)

Here, eLOOCV (Mi)|Yj , i, j ∈ {1, 2}, is the LOOCV error of the model Mi when the global
GP is Yj(.) ∼ GP(0, kθj (., .)), which can be obtained with the Kriging LOO formula (19):

eLOOCV (Mi)|Yj =
n∑

k=1

(
[K−1

θi
]k,

[K−1
θi

]k,k
Yj(X)

)2

, with Yj(X) ∼ N (0, kθj (X,X)). (28)

Details of the proof are given in Appendix A.2.

Finally, the variance of the combination is the standard Kriging variance using the global
covariance in (22) with the weights α computed with (25):

ŝ2tot(x) = Var(Ytot(x)|D) = σ2
tot

(
ktot(x,x)− ktot(x,X)ktot(X,X)−1ktot(X,x)

)
. (29)

Notice that if the combined GP hypothesis in (21) was used from the start to obtain the
mean prediction, we would have recovered an additive Kriging model (Durrande et al.,
2012):

M̃(x) := E(Ytot(x)|D) = µtot + ktot(x,X)ktot(X,X)−1(Y − µtot). (30)

However, the issue in (30) is that it involves ktot(X,X)−1, the inverse of a sum of correlation
matrices. As no direct formula exists for the inverse of a sum of matrices, the optimization
of the weights for this alternative model (using a LOOCV procedure for instance) would
involve a large number of matrix inversions and an inner optimization loop similarly to the
classical hyperparameter optimization in ordinary Kriging. This is precisely what we aim
at avoiding with the proposed method, in which both the weights of the combination in
(20) and the weights for the variance in (25) are obtained analytically.
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4.4 Amplitude of the variance

The final step to completely obtain the variance of the combination is to set the hyperpa-
rameter σ2

tot in (21) which is used to calibrate the amplitude of the variance. In leave-one-
out strategies, this hyperparameter is typically set by observing that the normalized LOO
residuals should be normally distributed if the model is well-specified. Based on this, the
usual method is to set the empirical variance of the normalized LOO residuals to 1 (see for
instance Cressie, 1993, p. 102; Bachoc, 2013):

σ̂2
LOO =

1

n

n∑
k=1

(
e
(k)
LOO

s
(k)
LOO

)2

, (31)

where, for k = 1, . . . , n, e(k)LOO are the LOO residuals of the model that can be obtained
using the LOO formula (19) for the combination of Kriging models. s

(k)
LOO are the LOO

standard deviations, obtained similarly:

e
(k)
LOO := y(xk)−M−k(xk) =

p∑
i=1

wi

[K−1
θi

(Y − µi)]k

[K−1
θi

]k,k
, and s

(k)
LOO := ŝ−k(xk) =

1√
[K−1

tot ]k,k

.

However, when the model is ill-defined (which is often the case in practice), the LOO
residuals are not normally distributed and in particular, the presence of outliers can lead
to an over-estimation the variance amplitude. Thus, we propose a similar approach more
robust to outliers by fitting the amplitude hyperparameter using the empirical interquartile
distance instead of the empirical variance:

σ̂tot =
IQ
(
eLOO
sLOO

)
IQnorm

, (32)

where IQ(.) designates the empirical interquartile distance, and IQnorm is the interquartile
distance of a standard normal distribution.

4.5 Complexity of the method

The complexity of building the combination of Kriging models can be divided into three
terms. First, the cost of building the p sub-models is O

(
pn3
)

which is the cost of invert-
ing the covariance matrix (with fixed length-scale) of each sub-model. Then, thanks to
the formula (19), the leave-one-out residuals of the combination can be obtained with no
additional cost from quantities already computed to build the sub-models, and the cost to
obtain the weights w of the combination in equation (20) is simply O

(
p2n+ p3

)
. Finally,

computing the weights α for the variance in equation (25) require p−1 additional covariance
matrix inversions (one for each node of the tree in figure 6, except for the base nodes where
the inverse is already computed) resulting in a cost of O

(
(p− 1)n3

)
. Thus, adding all these

contributions, the total cost of building the combination is O
(
(2p− 1)n3 + p2n+ p3

)
. In

cases where p ≪ n, which is the case in practice, the complexity is then O
(
(2p− 1)n3

)
.

This is can be compared with the cost of building an ordinary Kriging model which is
O(βitern3) where βiter is the number of matrix inversions, i.e. the number of iterations
in the inner hyperparameter optimization since each iteration require the inversion of a
covariance matrix with different length-scales values. Typically, βiter is of order 100 (often

16



more in high-dimension), while the number of sub-models is p = 16 in the numerical re-
sults of next section. Thus building the combination is considerably faster than building
an ordinary Kriging model.

However, we must also point out that the prediction using the combination is p times
more expensive than the prediction for ordinary Kriging in O

(
n2
)
, even if is straight-

forward to parallelized the prediction of each sub-model. This is particularly important in
Bayesian optimization where optimizing the acquisition criterion requires tens of thousands
of predictions at each iteration. Moreover, as the number n of training data is often
limited in BO with at most a few thousands points, the prediction cost is often dominant
in optimization loop. Nevertheless, one must keep in mind that BO is mostly applied to
computationally expensive black-box functions whose cost usually dominates that of the
surrogate models.

5 Numerical results

In this section, we investigate the performances of the combination of Kriging models in-
troduced in the previous section, and we compare it to ordinary Kriging and two state of
the art high-dimensional BO techniques. The focus is on high-dimensional problems where
the number of samples used to build the model is limited, since we showed in section 3
that ordinary Kriging can fail to provide accurate models when the length-scales hyper-
parameters are estimated using MLE. First, for a fixed number of observations, we will
compare the global accuracy of the combination to ordinary Kriging and assess the quality
of the prediction intervals constructed. We will show that the combination can produce
globally accurate models with well-calibrated confidence intervals. These two aspects are
important in Bayesian optimization as an accurate surrogate model with correct error es-
timation should result in faster convergence, thus requiring less function evaluations to
reach the optimum. Finally, since we are rather interested in faster convergence towards
optimal designs than in obtaining a better global accuracy, we compare the performance of
Bayesian optimization (EGO procedure) using different surrogates. Here, we compare the
combination to ordinary Kriging and two other high-dimensional BO methods: Kriging
PLS (KPLS) (Bouhlel et al., 2018) which is a dimension reduction method, and simple
additive Kriging (Durrande et al., 2012) which is a method based on HDMR.

As in section 3, we consider the two analytical test functions in dimension 15 to 50 which are
the sphere function (equation (8)) and trajectory samples from an isotropic GP (equation
(9)). The sphere function is an example of a simple convex function which should be simple
to model and to optimize. The GP trajectories are more complex multimodal functions,
more difficult to optimize, and closer to practical usecases. For BO, we also compare the
methods on 9 multimodal functions from the COCO Black-box Optimization Benchmark
(BBOB) (Hansen et al., 2021; Finck et al., 2010) (function F15 to F22 and F24). In addition
to these analytical functions, to validate the methods on a more realistic problem, we also
compare the methods on a real-world application: the design of an electrical machine.
The shape of the machine is parameterized by d = 37 design variables representing the
position and size of air holes and magnets as well as the radius of the machine. The
layout of the machine is illustrated in Figure 7. The performance of a machine is assessed
by two objective functions which are its consumption and its cost. In addition, a valid
machine must satisfy 10 constraints related to the dynamic of the car (e.g. maximum
speed, acceleration, ...), to the dynamic of the machine (e.g. oscillation amplitudes, ...),
and to the dimensioning of the reducer, obtained through a finite element simulation.
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Figure 7: Layout of the electrical machine. The 37 design parameters are the size and position of
the air holes (in white) and of the magnets (in black), as well as the radius of the machine.

5.1 Model precision and confidence intervals assessment

The global accuracy and confidence interval precision of the different methods are evaluated
for three of the test functions described above in dimension d = 50. The reference method is
ordinary Kriging using a Matérn 5/2 covariance with hyperparameters estimated by MLE.
The optimization is performed using the package DiceKriging in the R language (Roustant
et al., 2012) with 300 maximum iterations of L-BFGS-B, and the length-scales lower and
upper bounds are fixed to 0.1 and 20 respectively. The second method is the combination
introduced in this paper using p = 16 sub-models (5 levels in the tree structure) with
length-scales fixed at random values sampled following the procedure in section 4.1, with
weights given by equation (20), and with variance obtained using equations (25), (22), (29)
and (32). Finally, for the GP trajectories where the true length-scale θtrue = 3 is known,
we also compare both methods to a Kriging model with length-scales θtrue as a reference.
Each model is built using the same space-filling set of training points x1, . . . ,xntrain ∈ [0, 1]d

obtained with Latin Hypercube Sampling (LHS). For the sphere function, the number of
training points is ntrain = 250, and for the GP trajectories and the real-world application
which are more complex we have ntrain = 500. The accuracy of each model is evaluated
by computing the Q2 (10) on a set of ntest = 5000 test points x

(t)
1 , . . . ,x

(t)
ntest ∈ [0, 1]d

sampled uniformly on the design space. To assess the precision of the confidence intervals,
the coverage probabilities, corresponding to the proportion of test data that lies in the α%
confidence interval, are computed on this same test set. For different levels of confidence
α, we plot the coverage probabilities which should be equal to their theoretical level if
the confidence intervals are well-calibrated. Each experiment is repeated for 10 different
random seeds and theresults are presented in boxplots. For the electrical machine, as
there are 12 functions to model (2 objectives and 10 constraints), the boxplot shows the
performance averaged over the 12 functions.

The results for the three test functions are given in Figure 8. In each case, the combination
of Kriging models is globally more accurate than ordinary Kriging with hyperparameters
estimated by MLE as measured by the Q2 indicator. In Figure 8d, the combination even
manages to achieve a precision similar to that of the reference model (with the true length-
scales θtrue). The poor performances of ordinary Kriging can be explained by what was
observed in Figure 2: MLE-optimal hyperparameters do not necessarily correspond to good
Q2 for high-dimensional problems with a limited number of observations. This is verified
explicitly for the GP trajectories test case where the MLE-estimated hyperparameters differ
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from their true values resulting in a worse accuracy. In addition, unlike in Section 3 where
the parameters of the hyperparameters optimizer were set to ensure convergence with 500
iterations and several restarts, here we take a lighter though more common setting in BO,
with 300 iterations and no restart. This can lead to additional variability in the results for
ordinary Kriging as the difficult length-scale optimization may not have fully converged
in every cases. Still, for the GP trajectories, the log-likelihood at the end of the inner
optimization is superior to the log-likelihood of the reference hyperparameters, even if the
maximum likelihood optimization may not have fully converged. Overall, this shows that
estimating the hyperparameters by MLE may not guarantee a good model.

Regarding the prediction intervals, we see in Figures 8b and 8e that the ordinary Kriging is
overconfident in its predictions as all probability levels CPs are lower than their theoretical
values. This phenomenon was expected as the Kriging variance (3) usually underestimates
the true prediction variance since it is obtained using an estimated covariance whose un-
certainty on the estimation is not considered (Cressie, 1993, p. 127; Den Hertog et al.,
2006). In contrast, the prediction intervals for the combination in Figures 8c and 8f are
well calibrated as the CPs are aligned with the line y = x. For the electrical machine in
Figure 8h and 8i, we observe a different behavior: the CPs are higher than their theoretical
values at low probability levels and lower at high probability levels. One possible expla-
nation is that the true prediction distribution is better approximated by a heavier-tailed
distribution rather than by a Gaussian one. Still, we see that the confidence intervals for
the combination are better calibrated than the original ones.

5.2 Bayesian optimization

The previous results show that the combination of Kriging models produces more accurate
surrogates than ordinary Kriging with few points in high-dimension, with well-calibrated
confidence intervals. In this section, we investigate how this translates into faster conver-
gence in BO. We perform EGO for the same three test functions: the sphere function given
in equation 8, GP trajectories in equation 9, and the real-world application of an electrical
machine. Note that in this paper, we only consider single-objective problems. As such, for
the optimization of the electrical machine, we will only maximize on the first constraint
which gives the maximum speed of the vehicle, as high values of this constraint are well
correlated with good performances of the machine in general. Furthermore, the maximum
speed is a multimodal and non-linear function and its optimization is more challenging
than that of some of the other quantities of the machine (such as the cost for example
which is linear in the design variables). However, as for ordinary Kriging, the combination
can also be employed for constrained multi-objective Bayesian optimization using adapted
acquisition criterion such as the Expected Hypervolume Improvement (EHVI) (see for in-
stance Forrester and Keane, 2009). In addition, we also perform EGO on 9 multimodal
functions of the COCO BBOB benchmark (functions F15 to F22 and F24). For the an-
alytical functions, we consider 3 cases with varying dimension d = 15, 30, and 50. Each
time, an initial design plan with ninit = 2d is built by LHS, then niter iterations of EGO
are performed to add new samples. For the dimensions d = 15 and 30, we take niter = 10d
and for d = 50, we take niter = 8d. At each iteration, the different surrogates used are the
ordinary Kriging model and the combination built using the same settings as described in
the Section 5.1, a KPLS model built using the Python library smt (Bouhlel et al., 2019),
and an additive Kriging model built with the R package kergp. In order to have a fair
comparison between the methods from different packages, we extract the surrogates built
with their corresponding package and perform the acquisition criterion optimization using

19
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(a) Q2 (b) CPs (ordinary Kriging) (c) CPs (combination)
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(d) Q2 (e) CPs (ordinary Kriging) (f) CPs (combination)
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Figure 8: Left column: accuracy of the models measured by the Q2. Central and right column:
precision of the confidence intervals for the ordinary Kriging (center) and the combination (right),
the closest to the y = x line the better. First row: sphere function, middle row: GP trajectories,
bottom row: electrical machine. Red boxes stand for Kriging models with hyperparameters ob-
tained by MLE and blue boxes for the combination of Kriging models.

a code common to all methods. This ensures that differences in performance are only due
to the surrogate techniques used and not to different implementation of the BO. The ac-
quisition criterion we use is the Expected Improvement given in equation (7), and the EI
maximization is performed with the R package DiceOptim (Roustant et al., 2012). To im-
prove the performances, especially for high dimensions, we also use the TREGO (Diouane
et al., 2023) algorithm to implement trust regions. For each test function, the optimization
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is repeated for 10 different random seeds, with different initial design of experiments each
time.

Figure 9 shows the evolution of the current best solution during the EGO iterations for
all methods. For the sphere function (Figure 9a, 9b and 9c) all methods are able to
approach the global optimum of the function. However, for all dimensions, EGO with
ordinary Kriging converges slower than the three high-dimensional Kriging methods which
all give similar results on this test function. For instance, the solution found after niter

iterations with ordinary Kriging is obtained within 2 to 3 times less iterations with the
combination. Figure 10 gives the evolution of the global accuracy of each model during
the EGO optimization for the sphere function with d = 30. After only a few iterations,
both the combination and the additive model are able to achieve a good global accuracy
in contrast to ordinary Kriging where the Q2 is still negative. For KPLS, while the global
accuracy is good at the beginning, the accuracy near the edge of the domain rapidly drops
during the optimization when many new points are added around the minimum of the
sphere function. This does not impact the performances for the optimization but could
be detrimental if the surrogate model where to be used for another purpose after the
optimization (i.e. sensitivity analysis, ...). Figures 9d, 9e and 9f gives the optimization
results for the GP trajectories, and Figures 9g, 9h and 9i the results for the COCO BBOB
benchmark. In the latter, the results are normalized and averaged over the 9 functions of
the benchmark, individual results for each function are given in appendix B. All these test
functions are multimodal and, in addition to a slower convergence, ordinary Kriging also
gives a worst local optimum than the one found by the combined Kriging or KPLS. These
functions are also non-additive with important cross-variables interactions. This explain
why the additive model performs poorly (sometimes worse than ordinary Kriging) in these
cases. Finally, the combined Kriging and the KPLS model give similar results, with slightly
better performances for the combination in the higher dimensions. Similar observations
can be made for the real-world application in Figure 9j (maximization problem in this case)
which is also a multimodal problem.

Sphere function

(a) d = 15 (b) d = 30 (c) d = 50
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GP trajectories

(d) d = 15 (e) d = 30 (f) d = 50

COCO BBOB benchmark

(g) d = 15 (h) d = 30 (i) d = 50

Electrical machine

(j) d = 37

Figure 9: Evolution of the current best solution during the EGO iterations. The x-axis corresponds
to the number of function evaluations. First row: sphere function, second row: GP trajectories,
third row: average of the normalized results for the 9 COCO BBOB functions, bottom row: elec-
trical machine. Red: EGO using an ordinary Kriging model, blue: EGO using the combination of
Kriging models, green: KPLS, magenta: additive Kriging, black: random search.
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Figure 10: Q2 during the optimization (sphere function with d = 30, Figure 9b). Red: ordinary
Kriging model, blue: combination of Kriging models, green: KPLS model, magenta: additive
Kriging.

6 Conclusion

In this paper, we have proposed a method to build a combination of Kriging sub-models
for Bayesian optimization. We have presented a way to sample the sub-models suitably
to avoid degenerate cases. A simple method based on LOOCV provides weights for the
sub-models in closed-form, avoiding any costly inner optimization. Finally, we presented
an approach to compute the prediction variance of the model, which is not available di-
rectly, by introducing a global covariance whose weights are computed analytically from the
weights of the sub-models using an LOOCV strategy. An approach based on the empirical
interquartile distance of the normalized LOO residuals, found to be more robust to out-
liers than the commonly employed empirical variance, was used to provide the amplitude
hyperparameter of the variance.

The main advantage of the proposed method is to avoid the cumbersome optimization of the
Kriging length-scales hyperparameters, which often fails to provide correct values in high-
dimensional cases or when the number of training samples is limited as was demonstrated
in a first numerical experiment. This is of interest for Bayesian optimization as such
low samples regimes are common in design optimization, especially at the start of the
optimization. The numerical results we obtained on varied test functions show that the
combination of Kriging models enables both the construction of more accurate models and
the faster convergence towards optimal solutions in Bayesian optimization compared to
ordinary Kriging, especially in the start when the number of samples is very limited. 2 to 3
times less expensive function evaluations are required with our method and in multimodal
cases, better solutions never found by the original method are obtained. When compared
to other state of the art high-dimensional BO methods, our method was found to perform
similarly to dimension reduction with KPLS, and even slightly better when the dimension
increases. Compared to additive Kriging, the combination gives similar results for the test
function with few cross-variables interaction (sphere function), and is better in all other
non-additive test cases. Moreover, contrarily to other high-dimensional BO methods no
additional hypothesis on the underlying function, such as a low dimension representation
or an additive structure, is required. Thus, the proposed method is easily generalizable to
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any design engineering problem.

Several aspects still need to be explored in further research. First, in this paper only one
type of combination of ordinary Kriging models was studied. It would be interesting to
study other combinations (with more complex trend terms, with other weighting methods,
with different number of sub-models, with other types of trust regions, ...). We could also
consider comparing against more of the existing high-dimensional BO techniques such as
more complex HDMR models than the additive model we used which does not perform
well for non-additive test functions. Furthermore, we have only considered single objective
optimization here. Extending the method to multi-objective and/or constrained problems
is a perspective that would allow it to tackle a wider range of realistic problems such as
the complete electrical machine design optimization.
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A More details on the variance of the combination

A.1 Relation between mixture and combination

In this appendix, we will detail the proof of the statement in equation 23 that the MSE of
a mixture model is equal to the MSE of the linear combination of the same models when
the weights α2 of the global covariance in equation (21) are equal to the weights w of the
combination. First, for the combination of Kriging models, we have:

Mtot(x) :=

p∑
i=1

wiMi(x), with Mi(x) = kθi(x,X)kθi(X,X)−1Y, i = 1, . . . , p.

Here, without loss of generality, we suppose the models centered. Using the definition for
the global GP in equation (21), we obtain the following global covariance:

Cov(Y (x), Y (x′)) = σ2
tot

p∑
i=1

α2
i kθi(x,x

′). (33)

Then the MSE of the combination is:

E
[
(Mtot(x)− Y (x))2

]
= Var (Y (x)) +Var (Mtot(x))− 2Cov (Mtot(x), Y (x))

= σ2
tot

(
p∑

i=1

α2
i kθi(x,x) +w⊤KM (x)w − 2w⊤kM (x)

)
,

(34)

with:

(KM (x))i,j = kθi(x,X)kθi(X,X)−1
p∑

ℓ=1

α2
ℓkθℓ(X,X)kθj (X,X)−1kθj (X,x), i, j = 1, . . . , p,

(kM (x))i = kθi(x,X)kθi(X,X)−1
p∑

ℓ=1

α2
ℓkθℓ(X,x), , i = 1, . . . , p.

For the mixture now, we have a mixture of posterior GPs:

YI(x)|YI(X), with density
p∑

i=1

wip(Yi(x)|Yi(X)),

where I is the indicator such that P (I = i) = wi, i = 1, . . . , p. The corresponding
mixture model is equal to the combination:

Mmix(x) = E (YI(x)|YI(X)) =

p∑
i=1

wiMi(x).

The MSE of the mixture model is obtained by:

E
[
(Mmix(x)− YI(x))

2
]
= Var(YI(x)) +Var(Mmix(x))− 2Cov(Mmix(x), YI(x)). (35)

Using the lax of total variance:

Var(YI(x)) = E(Var(YI(x)|I)) +Var(E(YI(x)|I))

= σ2
tot

p∑
i=1

wikθi(x,x) + 0,
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and:

Cov(Mmix(x), YI(x)) = E(Cov(Mmix(x), YI(x)|I)) +Cov(E(Mmix(x)|I),E(YI(x)|I))

=

p∑
i=1

wiCov(Mmix(x), Yi(x)) + 0

=

p∑
i=1

p∑
j=1

wiwjCov(Mi(x), Yj(x)).

Re-injecting these two expressions into (35):

E
[
(Mmix(x)− YI(x))

2
]
= σ2

tot

(
p∑

i=1

wikθi(x,x) +w⊤KM (x)w − 2w⊤kM (x)

)
, (36)

with:

(KM (x))i,j = kθi(x,X)kθi(X,X)−1
p∑

ℓ=1

wℓkθℓ(X,X)kθj (X,X)−1kθj (X,x), i, j = 1, . . . , p,

(kM (x))i = kθi(x,X)kθi(X,X)−1
p∑

ℓ=1

wℓkθℓ(X,x), , i = 1, . . . , p.

We have equality of the MSE of the combination in (34) and of the mixture model in (36)
if α2 = w, hence the result announced.

A.2 Coefficients for the variance of the combination

In this appendix, we give the proof for the analytical expression of the optimal weights α
of the global covariance given in equations (25), (26) and (27).

As defined in equation (24), the optimal weights are obtained by minimizing the expected
MSE of the combined model with respect to Ytot. For a combination of two models, with
Ytot = αY1 + (1− α)Y2, we recall the expression:

α∗ = argmin
α

E
[
E
[
(wM1(x) + (1− w)M2(x)− αY1(x)− (1− α)Y2(x))

2 |Y1, Y2
]]

.

Similarly to the derivation of the combination weights w in equations (17) and (18), the
global MSE is approximated using the LOOCV error:

α∗ = argmin
α

E [eLOOCV (wM1 + (1− w)M2)|Y1, Y2] , (37)

where the LOOCV error is obtained using the Kriging LOO formula (19):

eLOOCV (wM1 + (1− w)M2) =
n∑

k=1

(
wM1−k

(x) + (1− w)M2−k
(x)− αY1(xk)− (1− α)Y2(xk)

)2
=

n∑
k=1

(WkYtot(X))2 ,

where:

Wk := w
[K−1

θ1
]k,

[K−1
θ1

]k,k
+ (1− w)

[K−1
θ2

]k,

[K−1
θ2

]k,k
. (38)
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Let Ktot := α2Kθ1 + (1 − α)2Kθ2 be the global correlation matrix. Then, Ytot(X) ∼
N (0,Ktot), and WkYtot(X) ∼ N (0,WkKtotW

⊤
k ). Thus, the expected LOOCV error is:

E [eLOOCV (wM1 + (1− w)M2)] =
n∑

k=1

WkKtotW
⊤
k .

Taking the derivative with respect to α:

∂E [eLOOCV (wM1 + (1− w)M2)]

∂α
= 2α

n∑
k=1

Wk(Kθ1 +Kθ2)W
⊤
k − 2

n∑
k=1

WkKθ2W
⊤
k . (39)

Plugging back the expression for Wk (38) in (39):

WkKθ1W
⊤
k = (1− w)2

[K−1
θ2

]k,Kθ1 [K
−1
θ2

],k

[K−1
θ2

]2k,k
+ (1− (1− w)2)

1

[K−1
θ1

]k,k
,

and:

WkKθ2W
⊤
k = w2

[K−1
θ1

]k,Kθ2 [K
−1
θ1

],k

[K−1
θ1

]2k,k
+ (1− w2)

1

[K−1
θ2

]k,k
.

We can also rewrite these results using the expected LOOCV error seeing that:

E(eLOOCV (Mi)|Yj) =


∑n

k=1
1

[K−1
θ2

]k,k
, if i = j∑n

k=1

[K−1
θi

]k,Kθj
[K−1

θi
],k

[K−1
θi

]2k,k
, if i ̸= j

, i, j ∈ {1, 2}. (40)

Finally, by setting the partial derivative equal to 0 in (39), and using the expression in
(40), we obtain the result given in equations (24) for the optimal weights α∗ solution of
(37).

B Detailed results on the COCO BBOB benchmark
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Ordinary Kriging Combination
KPLS Additive Kriging

Random search

Dimension 15

F15 F16 F17 F18 F19

F20 F21 F22 F24

Dimension 30

F15 F16 F17 F18 F19

F20 F21 F22 F24

Dimension 50

F15 F16 F17 F18 F19

F20 F21 F22 F24

Figure 11: Detailed EGO results for the 9 test functions of the COCO BBOB benchmark.
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