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Adaptive input redundancy of polynomial parameter-dependent systems

Valessa V. Viana, Jérémie Kreiss, and Marc Jungers. ∗

Abstract

The concept of adaptive input redundancy is introduced
in this paper to extend the notion of input redundancy to
parameter-dependent systems. Sufficient conditions to ver-
ify the adaptive input redundancy of polynomial parameter-
dependent systems are provided. It is important to point
out that although the obtained conditions depend on the pa-
rameter, they can be practically verified in a computational
algorithm. The developed strategy uses concepts from the
geometric control theory, such as the notion of controlled in-
variant and output invisible subspaces. Another crucial tool
to derive the results of this work is the Smith Normal form
of a matrix. A numerical example is provided to illustrate
the strategy.

1 Introduction

The output of a system might not be uniquely generated
by one specific input. In contrast, two or more different
input functions may produce the same output trajectory.
This concept is known as input redundancy [1–3]. An input
redundant system exhibits several degrees of freedom con-
cerning the selection of inputs responsible for generating the
desired output. These degrees of freedom can be leveraged
to meet additional requirements beyond the main control
task, as investigated in the context of the control allocation
problems [4,5]. The system inputs can be allocated with the
aim of, for example, minimizing the total energy required,
strengthening the resistance to failure, or promoting one in-
put over another to reduce power consumption [6].

The characterization of input redundancy of the system
plays an important role in how the control allocation prob-
lem is defined. These techniques use the redundancy infor-
mation of the system to state the control allocation problem.
Therefore, an inadequate characterization of input redun-
dancy can result in a control allocation strategy that will
potentially demonstrate limitations due to the lack of full
access to the redundancy of the system [3].

In this context, [1] proposed an input redundancy charac-
terization for linear time-invariant (LTI) systems. The con-
cepts of strong and weak input redundancy were introduced
along with their characterization based on the null space
dimension of the input matrices and the steady state plant
transfer function matrix, respectively. Subsequently, [2] pro-
posed a new characterization of these concepts under the as-
sumption that the system is right-invertible, strictly proper,
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and minimal. Geometric control theory tools began to be
used in this context. More recently, [3] proposed a reformu-
lation of the input redundancy definition based on the idea
that an output can be generated by at least two different
inputs from the same initial condition. A formal framework
is proposed to support this idea, along with a tractable and
complete characterization of this concept for LTI systems
using geometric control tools. This paper aims to provide
a unified definition among the various ones proposed in the
literature. See [3] for more details on the differences between
the mentioned works.

In the last decades, systems whose operation is influenced
by parameters have gained significant importance in the
field of control theory. These parameters that affect the sys-
tem may be responsible for representing non-deterministic
parameters, unmodeled dynamics, or non-linearities. Conse-
quently, this representation is recognized as a more realistic
model compared to the LTI representation. In the context
of the characterization of input redundancy for parameter-
dependent systems, [7] introduced the notion of robust in-
put redundancy for systems subject to unknown parameters.
This concept means that the input redundancy property
and the degrees of freedom associated are not parameter-
dependent. [7] also provided a characterization of this con-
cept by using geometric control tools.

Differently from [7], in this paper, we deal with
parameter-dependent systems in which the parameter is ac-
cessible for measurement, i.e., the parameter is known. In
this context, an input redundancy that depends on the pa-
rameter can be considered. A parameter-dependent sys-
tem might not be robust input redundant but still manifests
some input redundancy that may depend on the parameter
values. For instance, a system may present input redun-
dancy properties for some values of parameters but not for
others. Therefore, a more comprehensive notion of input
redundancy for parameter-dependent systems emerges, in
which the redundancy adapts according to the parameter.

In this paper, we aim to introduce a new definition of
input redundancy in the context of parameter-dependent
systems, which is called adaptive input redundancy. Ob-
taining a complete characterization of this concept is a dif-
ficult problem. Therefore, the core idea of the paper is to
propose a practical approach to verify the adaptive input
redundancy of linear parameter-dependent systems. The
strategy is developed for systems with polynomial depen-
dence on the parameter, where the parameter is subject to
variations in time. The geometric concepts of controlled
invariant subspaces are used to meet the results. In partic-
ular, the contributions of the article are: (i) the extension
of the concept of input redundancy to a new one that ex-
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ploits the parameter to have a more general notion of input
redundancy for parameter-dependent systems, (ii) the de-
velopment of practically tractable sufficient conditions to
check if a polynomial parameter-dependent system is adap-
tive input redundant.

The paper is organized as follows. In Section II, we
present the system description and the adaptive input re-
dundancy concept. We recall some tools from the geometric
control theory for parameter-dependent systems in Section
III. Section IV presents the Smith Normal form and some
mathematical preliminaries related to parameter-dependent
subspaces. A technical result and the main results related
to the adaptive input redundancy are presented in Section
V. Section VI provides a numerical example to highlight the
applicability of our strategy. Finally, in Section VII, some
concluding remarks are presented.
Notation. Let R, R+, N, and N∗ be, respectively, the
set of (i) real numbers, (ii) real positive numbers includ-
ing zero, (iii) natural numbers including zero, and (iv) nat-
ural numbers without zero. For a matrix M , M⊤ means
its transpose. 0n×m stands for the zero matrix of n rows
and m columns, and In stands for the identity matrix of
dimension n. The notation diagNi=0Mi denotes the block
diagonal matrix where Mi is the i-th block. Im{V } is
the vector space spanned by the columns of matrix V .
The inverse map of set V by an application B is given by
B−1V := {u ∈ Rm; Bu ∈ V}, where B is not necessarily
invertible. The kernel of a parameter-dependent matrix is
given by ker{B(θ)} := {u ∈ Rm; B(θ)u = 0}, which de-
pends on the parameter θ. For polynomial functions β1(·)
and β2(·), the notation β1 | β2 means that β2 is divisible
by β1. The term yua denotes the output trajectory pro-
duced by the system when excited by an input trajectory
ua. For time functions, the notation ua ̸= ub means that∫
||ua(τ, θ(τ)) − ub(τ, θ(τ))||dτ > 0. In order not to make

notations heavy, depending on the context, θ will denote
sometimes a time function and sometimes just a real value.

2 System description and input re-
dundancy

Consider a linear parameter-dependent system:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),

y(t) = C(θ(t))x(t) +D(θ(t))u(t),
(1)

where x(t) ∈ Rn is the state with initial condition x(0) :=
x0 ∈ Rn, u(t) ∈ Rm is the input, y(t) ∈ Rp is the
output of the system, θ(t) ∈ Θ ⊂ R is a known
scalar time-varying parameter, and Θ a bounded set. The
parameter θ(t) is piecewise continuous with a finite num-
ber of discontinuities in a finite length interval. Moreover,
A(θ(t)), B(θ(t)), C(θ(t)), D(θ(t)) are matrices of appro-
priate dimension depending polynomially on the parameter
θ(t). Since the system has linear dynamics on the state x(t),
the system matrices are polynomial on θ(t), Θ is bounded,
and t 7→ θ(t) is piecewise continuous, the existence and
uniqueness of the solutions of system (1) are ensured [8].

In this work, we would like to investigate the input redun-
dancy of parameter-dependent systems, represented by sys-
tem (1). The parameter affects the input redundancy of the
system, which means that the redundancy adapts according
to the parameter. Therefore, based on the definitions given
in [3] and [7], we introduce the definition of adaptive input
redundancy.

Definition 1. The parameter-dependent system (1) is
adaptive input redundant if there exists an output y that can
be produced by, at least, two distinct parameter-dependent
inputs, for some function θ and some initial condition, i.e.,
there exist θ : t → θ(t), x0 ∈ Rn, and two distinct input
functions ua ̸= ub, where ua : (t, θ) → ua(t, θ) and ub :
(t, θ) → ub(t, θ), such that yua

(t, θ(t), x0) = yub
(t, θ(t), x0)

for all t ≥ 0.

This paper aims to provide tractable conditions for which
a system is adaptive input redundant, i.e., when the input
redundancy of the system depends on the parameter.

3 Background on geometric control
theory

The fundamental concepts for characterizing input redun-
dancy originate from the geometric control theory [9, 10].
The controlled invariant and output invisible subspaces have
been one of the main tools used in the problem [2,3,7]. Then,
let us recall this concept of the geometric control theory for
parameter-dependent systems. We can mention the defini-
tions of generalized and generalized adaptively controlled in-
variant and output invisible subspaces [7,11–13]. Both sub-
spaces are independent of the parameters. The differences
between them rely on the fact that the input trajectories
making the subspace invariant and output invisible must be
independent of the parameters in the generalized subspaces,
whereas they are allowed to depend on them for the gener-
alized adaptively ones. The generalized subspaces can be
considered as a particular case of the generalized adaptively
ones. Here we are interested in inputs that possibly depend
on the parameter, so we focus on the generalized adaptively
subspaces. The definition of such a subspace is presented in
the following.

Definition 2. [13] A subspace V ⊆ Rn is a generalized
adaptively controlled invariant and output invisible subspace
if for any x0 ∈ V, there exists an input function u(t, θ(t)),
where θ : R+ → Rρ, such that xu(t, θ(t), x0) ∈ V and
yu(t, θ(t), x0) = 0, for all θ(t) ∈ Rρ and t ≥ 0.

For system (1), a subspace V ⊆ Rn is called generalized
adaptively controlled invariant and output invisible if there
exists a matrix F : Θ → Rm×n such that, for all θ ∈ Θ ⊂ R,

(A(θ) +B(θ)F (θ))V ⊆ V,
(C(θ) +D(θ)F (θ))V = 0.

(2)

The set of these subspaces admits a maximal element which
is called here V∗ that is the largest generalized adaptively
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controlled invariant and output invisible subspace. Char-
acterizing this subspace is not an easy task. Some works
have proposed practical techniques for computing this sub-
space [11, 12, 14, 15]. Recently, [13] proposed a practical
way to compute this subspace for parameter-dependent sys-
tems depending polynomially on the parameter and under
the assumption that the friend also depends polynomially
on θ. This work also developed an iterative algorithm to
compute V∗ and a procedure to compute a friend of this
subspace. Note that a matrix F (θ) verifying (2) is not nec-
essarily unique. Accordingly, we denote here F(V) as the
set of all the friends, depending on θ, of the subspace V.

For the remaining part of the paper, we will consider the
following assumption.

Assumption 1. We assume that the largest generalized
adaptively controlled invariant and output invisible subspace
is already known.

Remark 1. It is important to highlight that to use the tech-
nique from [13] to compute the largest subspace V∗, Θ has
to be a compact set since [13] develops its results based on
the assumption that the parameters lie in a compact set.

4 Preliminaries

This section presents some concepts and relations that will
be useful to derive the results. First, we recall the Smith
normal form. After, we present a practical way of computing
the kernel of parameter-dependent matrices using the Smith
normal form. To finish, we also present a practical way to
compute the inverse map of a subspace V by a parameter-
dependent matrix.

4.1 Smith normal form

The Smith normal form can be derived for matrices with
polynomial entries as matrices of system (1) [16].

Definition 3. [17] Let θ ∈ R. Consider a matrix
θ 7→ W (θ) ∈ Rn×m of normal rank r, this matrix is
equivalent to a matrix in the following form:

S(θ) =


β1(θ) 0 · · · 0 0
0 β2(θ) · · · 0 0
...

...
. . .

...
...

0 0 · · · βr(θ) 0
0 0 · · · 0 0n−r×m−r

 , (3)

where βi(θ) for i = {1, . . . , r} are non-null polynomial func-
tions on θ such that βi | βi+1, 1 ≤ i ≤ r − 1. S(θ) is called
the Smith normal form of W (θ).

The Smith normal form of W (θ) can be obtained after
a combination of a finite number of elementary operations
applied over the rows and columns of W (θ). Moreover, non-
singular applications P : R → Rn×n and Q : R → Rm×m

can be defined, such that

P (θ)W (θ)Q(θ) = S(θ). (4)

This form is valid for matrices that depend polynomially
only on one scalar parameter, which allows to use Euclidian
division of polynomials, corresponding with the framework
of this paper, where Θ ⊂ R.

4.2 Kernel of a parameter-dependent ma-
trix

Computing the kernel of a parameter-dependent matrix is
not an easy task since we have an infinite number of values
for the parameter, so we have to analyze the kernel of such
a matrix for each parameter value. An alternative and more
efficient way of computing such a kernel is to use the Smith
normal form.

Lemma 1. Consider a matrix W (θ) ∈ Rn×m. Define its
associated Smith normal form by S(θ) as in (3), Q(θ), and
P (θ) such that (4) holds. Then,

ker{W (θ)} = Q(θ)ker{S(θ)}, (5)

such that

ker {S(θ)} = Im

{[
diagri=1∆i 0r×m−r

0n−r×r In−r×m−r

]}
, (6)

∆i =

d̄i∑
ji=1

∆i,ji , (7)

and

∆i,ji =

{
1, if θ = δi,ji
0, otherwise,

(8)

where δi,ji are the roots of each βi(θ) such that βi(δi,ji) = 0
for i = {1, . . . , r} and ji = {1, . . . , d̄i}, with d̄i equals the
degree of βi(θ).

Proof. From the Smith normal form, W (θ) =
P−1(θ)S(θ)Q−1(θ), then

ker{W (θ)} = {u ∈ Rm, P−1(θ)S(θ)Q−1(θ)u = 0}. (9)

Since Q(θ) is non-singular, by applying a change
of variables z = Q−1(θ)u, we obtain the set
{z ∈ Rm, P−1(θ)S(θ)z = 0} which is equiva-
lent to ker{S(θ)} = {z ∈ Rm, S(θ)z = 0}, then
Q−1(θ)u ∈ ker{S(θ)}. Therefore, back in the original
variable u, the kernel of the parameter-dependent matrix
can be represented as

ker{W (θ)} = Q(θ)ker{S(θ)}. (10)

Furthermore, since matrix S(θ) has some diagonal terms
and zeros elsewhere as shown in (3), its kernel can be ob-
tained from the values of θ such that the diagonal term
βi(θ) = 0 for i = {1, . . . , r}, which are the roots of each
polynomial βi(θ) in the diagonal. Therefore, the direction
related to each non-zero diagonal will be activated when θ
meets one of the roots of the polynomial βi(θ), and the di-
rections related to the zeros will be always active. Then, the
kernel of S(θ) can be defined as in (6), where ∆i represents
a function dependent on θ that will be equal to one only
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when θ meets one of the roots of the correspondent diago-
nal term, activating the direction of the kernel, otherwise is
equal to zero.

Remark 2. Note that, in (8), δi,ji is equal to θ only when
δi,ji is a real value root since θ ∈ R. Hence, when there is a
complex value root δi,ji , the total number of roots that can
be equal to θ is less than the degree of βi(θ). If βi has two
or more equal roots, then only one indicator (8) should be
defined for this specific root value.

Remark 3. Since βi+1 is divisible by βi, all βj with j ≥ i
depending on θ has a common root, then a common ∆i,ji .
Thus, when θ = δi,ji such that ∆i,ji = 1, all ∆i’s in the
kernel diagonal will be one.

Remark 4. It is important to highlight that although ∆i is
defined as a sum of terms as in (7), it can only be zero or
one since when a ∆i,ji is one, all the others in the sum are
zero.

4.2.1 Some properties of the parameter-dependent
kernel

In order to analyze the kernel of a parameter-dependent ma-
trix, let us define L(θ) such that Im{L(θ)} = ker{W (θ)}.
Note that obtaining such a basis is now systematically pos-
sible by using Lemma 1. One can show that the structure
of such a matrix is given by

L(θ) =
[
∆1L1(θ) · · · ∆rLr(θ) L̃(θ)

]
, (11)

where Li(θ), for i = 1 to i = r, and L̃(θ) depend polyno-
mially on θ. All these matrices may be empty. It follows
that both the dimension and directions of such a kernel may
depend on the parameter θ. We can derive three different
cases regarding the kind of dependency w.r.t. θ which are
summarized in the three following points:

• Independence: Some directions are possibly indepen-
dent of θ, i.e., constant directions with a constant di-
mension. In this case, L̃(θ) contains constant columns.

• Isolated dimension drop: When directions depend on
the value of θ, such directions can be time-varying if θ
varies in time. The respective basis adapts according
to the parameter value. The directions depend continu-
ously on the parameter θ. For some isolated values of θ,
some directions may vanish or be a linear combination
of the others, leading to drops in the kernel dimension.
This is represented by the columns of matrix L̃(θ) that
depend on θ.

• Isolated dimension increase: Differently from the sec-
ond case, some directions are only active for a finite
number of parameter values. It means that when θ
takes some specific values, a direction appears in the
kernel. In Lemma 1, this is represented by the indicator
∆i in (7). Therefore, it influences the kernel dimension
which can change when such directions appear or not.
This is represented by the columns ∆iLi(θ), for i = 1
to i = r, of L(θ) in (11).

To conclude, even with an unusual geometric structure due
to the parameter dependence that leads to changes in the
subspace dimension, the kernel of a parameter-dependent
can be efficiently computed by obtaining the Smith normal
form of the matrix and by defining the kernel of matrix S(θ)
which is given in (6).

4.3 Parameter-dependent inverse map

In the following, for a subspace V ⊆ Rn with V⊥ as an
orthonormal basis of the orthogonal complement V⊥ of V
(i.e. Im{V⊥} = V⊥), we define

WV(θ) =

[
V⊥B(θ)
D(θ)

]
. (12)

Similar to the kernel of parameter-dependent matrices,
computing the inverse map of a subspace by a parameter-
dependent matrix (B−1(θ)V), is not straightforward. There-
fore, we also use the Smith normal form and the result from
Lemma 1 to help us in computing it.

Lemma 2. Consider a subspace V ⊆ Rn. The following
relation holds:

B−1(θ)V ∩ ker {D(θ)} = ker {WV(θ)} , (13)

where WV(θ) is given by (12).

Proof. Let V⊥ be the orthogonal complement of V. Let
V and V⊥ be a basis of V and V⊥, respectively, so that
Im{V } = V and Im{V⊥} = V⊥. First, we know that
B−1(θ)V = {u ∈ Rm, B(θ)u ∈ V}. Then, since V is a
basis of V, B−1(θ)V = {u ∈ Rm,∃z ∈ Rq, B(θ)u = V z}.
Multiplying at the left the expression B(θ)u = V z by V ⊤

⊥ ,
we obtain V ⊤

⊥ B(θ)u = V ⊤
⊥ V z = 0, then it follows that, as

shown in [18, Property 3.1.3],

B−1(θ)V = {u ∈ Rm, V ⊤
⊥ B(θ)u = 0} = ker{V ⊤

⊥ B(θ)}.

Therefore, B−1(θ)V ∩ ker{D(θ)} = ker{V ⊤
⊥ B(θ)} ∩

ker{D(θ)} which can be rewritten as ker {WV(θ)}, then we
can conclude that relation (13) holds.

Therefore, the subspace B(θ)−1V∗ ∩ ker{D(θ)} can be
practically computed since we can compute the kernel of a
parameter-dependent matrix by Lemma 1 using the Smith
normal form.

5 adaptive input redundancy

Here, we present a technical result that will be helpful for
the adaptive input redundancy result.

Lemma 3. Let V∗ ⊆ Rn, F : Θ → Rm×n ∈ F(V∗), and
L : Θ → Rm×q such that

Im{L(θ)} = Q(θ)ker{S(θ)}, (14)

where Q(θ) and S(θ) are the matrices of the Smith normal
form of matrix WV∗(θ) defined in (12), and ker {S(θ)} is
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defined in (6). Let x0(θ) ∈ V∗ and u be an input function
of the form:

u(t, θ) = F (θ)x(t) + L(θ)w(t), (15)

for some function w, then the output resulting from u and
x0 is zero.

Proof. Consider the input in the form (15), the system tra-
jectories have the following dynamics,

ẋu(t, θ, x0) = (A(θ) +B(θ)F (θ))xu(t, θ, x0) +B(θ)v(t, θ),

yu(t, θ, x0) = (C(θ) +D(θ)F (θ))xu(t, θ, x0) +D(θ)v(t, θ),

where v(t, θ) = L(θ)w(t). Since B−1(θ)V∗ ∩
ker{D(θ)} = ker{WV∗(θ)} by Lemma 2 and
ker{WV∗(θ)} = Q(θ)ker{S(θ)} by Lemma 1, then
Im{L(θ)} = B−1(θ)V∗ ∩ ker{D(θ)}. It follows that

v(t, θ) ∈ B−1(θ)V∗ ∩ ker{D(θ)}. (16)

Therefore, B(θ)v(t, θ) ∈ V∗ and D(θ)v(t, θ) = 0, ∀t ∈ R+.
Thus, we can conclude that yu(t, θ, x0) = C(θ)xu(t, θ, x0) +
D(θ)u(t) = 0,∀t ∈ R+.

Now, the main result of the paper is presented in Theo-
rem 1, where we develop conditions to verify the adaptive
input redundancy of parameter-dependent systems in the
form (1).

Theorem 1. The parameter-dependent system (1) is adap-
tive input redundant if there exists a parameter θ ∈ Θ, such
that

dim
(
B−1(θ)V∗ ∩ ker{D(θ)}

)
> 0, (17)

or equivalently,

dim (Q(θ)ker{S(θ)}) > 0, (18)

where Q(θ) and S(θ) are the matrices of the Smith normal
form of matrix WV∗(θ) defined in (12), and ker {S(θ)} is
defined in (6).

Proof. Let us consider two trajectories of system (1), xa

and xb, related to two inputs ua and ub, respectively, and a
parameter θ(t) = θ ∈ Θ, ∀t ≥ 0. We consider two trajec-
tories starting from the same initial condition xa(0, θ(0)) =
xb(0, θ(0)) = x0 ∈ Rn. The error between the two trajecto-
ries satisfies the following dynamics:

ẋa(t, θ)− ẋb(t, θ) =A(θ)(xa(t, θ)− xb(t, θ))+

B(θ)(ua(t, θ)− ub(t, θ)),

ya(t, θ)− yb(t, θ) =C(θ)(xa(t, θ)− xb(t, θ))+

D(θ)(ua(t, θ)− ub(t, θ)),

for all t ≥ 0, where the initial condition xa(0, θ(0)) −
xb(0, θ(0)) = 0. In view of input redundancy, we have
to impose ya(t, θ(t)) = yb(t, θ(t)) for all t ≥ 0, leading to
ya(t, θ(t))− yb(t, θ(t)) = 0 for all t ≥ 0, which is the output
of the error dynamics. Then, since xa(0, θ(0))−xb(0, θ(0)) =
0 ∈ V∗, applying Lemma 3, we have that the output trajec-
tory of the error, ya(t, θ(t))− yb(t, θ(t)), is zero if

ua(t, θ)− ub(t, θ) = F (θ)(xa(t, θ)− xb(t, θ)) + L(θ)w(t),

for some function w. Hence, if there exists a parame-
ter θ such that Im {L(θ)} does not have a zero dimen-
sion thus system (1) is adaptive input redundant. By
Lemma 2, and Lemma 3, Im {L(θ)} = Q(θ)ker{S(θ)} =
B(θ)−1V∗ ∩ ker{D(θ)}, then these subspaces do not have
a zero dimension either, and conditions (17) and (18) are
equivalent.

5.1 Some properties of adaptive input re-
dundancy

Theorem 1 establishes conditions to verify if a parameter-
dependent system is input redundant. This is represented
by the dimension of B(θ)−1V∗∩ker{D(θ)}, sometimes called
the input unobservability subspace, being greater than zero.
This subspace is derived from the kernel of a parameter-
dependent matrix. As discussed in Section 4.2, the kernel
of a parameter-dependent matrix presents an unusual ge-
ometric structure that can be described by three distinct
characteristics. The input unobservability subspace of an
adaptive input redundant system follows the same geomet-
ric structure.

The input unobservability subspace plays a role not only
in verifying if a system is adaptive input redundant but also
in the ability to compute the invisible inputs through the
L(θ) matrix. This matrix is related to unobservable inputs
since the difference between the two distinct inputs leading
to the same output is:

ua(t)− ub(t) = F (θ)(xa(t)− xb(t)) + L(θ)w(t).

Therefore, the different features in the input unobservabil-
ity subspace lead us to a matrix L(θ) that has the same
structure as the basis defined in (11). Hence, an adaptive
input redundant system can have invisible inputs from the
output that depend polynomially on the parameter or exist
only for specific parameter values.

6 Numerical Example

Consider the following parameter-dependent system,

ẋ(t)=

[
−1 0
θ3(t) −1

]
x(t) +

[
1 0 θ(t)

θ(t) 2θ(t) −θ2(t)

]
u(t),

y(t)=
[
0 1

]
x(t),

(19)

where 0 ≤ θ(t) ≤ 1 for all t ≥ 0. To verify the adap-
tive input redundancy of this system we need first to com-
pute the largest generalized adaptively controlled invariant
and output invisible subspace of this system, denoted V∗.
Since θ lies in a compact set, we can apply the strategy pro-
posed in [13] to compute V∗ of system (19), as mentioned in
Remark 1. Therefore, by applying the algorithm proposed
in [13], the largest generalized adaptively subspace is given
by V∗ = [1 0]⊤R and one of the friends of the subspace is

F (θ) =

[
0 0 θ
0 0 0

]⊤
.
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Now, to verify the input redundancy by applying The-
orem 1, we have to compute the subspace Q(θ)ker{S(θ)},
where Q(θ) and S(θ) are the matrices of the Smith normal
form of the matrix WV∗(θ) in (12), where V⊥ is the basis
of the orthogonal complement of V∗, and ker {S(θ)} is de-
fined in (6). Since V∗ = [1 0]⊤R, a basis of this subspace
is V = [1 0]⊤ and a basis of the orthogonal complement of
V∗ is V⊥ = [0 1]⊤. Therefore,

WV∗(θ) =

[
θ 2θ −θ2

0 0 0

]
.

The Smith normal form of WV∗(θ), is given by
P−1S(θ)Q−1(θ), where

S(θ) =

[
θ 0 0
0 0 0

]
, P = I2, and Q(θ) =

1 −2 θ
0 1 0
0 0 1

 .

Now that we have the matrix in the Smith normal form, we
can determine the kernel of S(θ). First, we should identify
the roots of the polynomials in each diagonal component
of S(θ). In this case, we have only one polynomial in the
diagonal that is θ, then the root of this diagonal term is
δ1,1 = 0, and we can define the indicator ∆1 = ∆1,1, where

∆1,1 =

{
1, if θ = 0

0, otherwise.
(20)

Then, from (6),

ker {S(θ)} = Im


∆1 0 0

0 1 0
0 0 1

 ,

such that

Q(θ)ker{S(θ)} = Im


∆1 −2 θ

0 1 0
0 0 1

 . (21)

The subspace Q(θ)ker{S(θ)} has a dimension greater than
zero, then system (19) is adaptive input redundant. This
subspace presents constant, θ-dependent, and ∆i-dependent
directions. Hence, we can define a matrix

L(θ) =

∆1 −2 θ
0 1 0
0 0 1

 ,

such that the first column is only different from zero when
θ = 0, the second column is constant, and the third column
depends on θ.

In order to verify the adaptive input redundancy of sys-
tem (19) concerning a parameter θ, let us present practical
simulations. We are going to analyze two different scenarios
where the parameter influences the input redundancy, which
are given by the ∆1-dependent and θ-dependent directions
of the subspace (21). The main objective is to understand
how the parameter influences the input redundancy in each
of these cases. Then, we define distinct inputs, a parame-
ter function, and an initial condition x0 = [1 1]⊤ in each
scenario.
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Figure 1: Input trajectories (23).
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Figure 2: Output trajectories for inputs in given (23) and
θ(t) given in (22).

For the first scenario, let us consider only the ∆1-
dependent direction. Then, we define a parameter function:

θ(t) =

{
0, if 0 ≤ t < 2,

1, if t ≥ 2,
s.t. ∆1(t) =

{
1, if 0 ≤ t < 2,

0, if t ≥ 2,

(22)
and three distinct inputs:

ua(t) = F (θ)xa(t),

ub(t) = F (θ)xb(t) +
[
∆1 0 0

]⊤
sin(t),

uc(t) = F (θ)xc(t) +
[
1 0 0

]⊤
sin(t).

(23)

For 0 ≤ t < 2, the term [∆1 0 0]⊤sin(t) in input ub(t) is
equal to the term [1 0 0]⊤sin(t) in uc(t), then inputs ub(t)
and uc(t) are equal and different of ua(t), as verified in Fig 1.
Since the term [∆1 0 0]⊤sin(t) is in the ∆1-dependent di-
rection of (21), by Theorem 1, the outputs generated by
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the three inputs should be equal for 0 ≤ t < 2, and this
is verified in Fig 2. On the other hand, for t ≥ 2, the pa-
rameter takes the value of one, so ∆1 becomes zero. The
term [∆1 0 0]⊤sin(t) is not anymore equal to [1 0 0]⊤sin(t),
thus input ub(t) is now different from uc(t) and it is equal to
ua(t). Then, ya(t) = yb(t) for t ≥ 2, while yc(t) has a differ-
ent trajectory, as we verify in Fig 2. This happens because
[1 0 0]⊤sin(t) is not in the ∆1-dependent direction of (21)
for a θ(t) ̸= 0. Thus, the two outputs ya(t) = yb(t) for all
t ≥ 0.
For the second scenario, let us consider the θ-dependent

direction. Then, we define a parameter function:

θ(t) =


0.2, if 0 ≤ t < 2,

0.2(t− 2) + 0.2, if 2 ≤ t < 6,

1, if t ≥ 6,

(24)

and three distinct inputs:

ua(t) = F (θ)xa(t),

ub(t) = F (θ)xb(t) +
[
θ 0 1

]⊤
sin(t),

uc(t) = F (θ)xc(t) +
[
0.2 0 1

]⊤
sin(t).

(25)

For 0 ≤ t < 2, the term [θ 0 1]⊤sin(t) in input ub(t)
is equal to the term [0.2 0 1]⊤sin(t) in uc(t), then inputs
ub(t) and uc(t) are equal and different of ua(t), as shown
in Fig 3. The term [θ 0 1]⊤sin(t) is in the θ-dependent
direction of (21). Hence, by Theorem 1, the outputs gener-
ated by the three inputs should be equal for 0 ≤ t < 2, as
verified in Fig 4. On the other hand, for t ≥ 2, the term
[θ 0 1]⊤sin(t) is not anymore equal to [0.2 0 1]⊤sin(t). How-
ever, it is still in the θ-dependent direction of (21). Then,
ya(t) still equals yb(t), but yc(t) has a different trajectory
since [0.2 0 1]⊤sin(t) is not in one of the directions of (21)
for a θ(t) ̸= 0.2. This is verified in Fig 4. In this case, we
also have ya(t) = yb(t) for t ≥ 0.

To conclude, in the two presented scenarios, we verified
that there are different inputs leading to the same output
trajectory for some parameter θ(t) and for the same initial
condition, confirming that the system is adaptive input re-
dundant. Furthermore, we verify that the parameter influ-
ences the invisible inputs from the output so that an implicit
or explicit dependence on the parameter may appear.

7 Conclusion

In this paper, we introduced the concept of adaptive in-
put redundancy for parameter-dependent systems. In the
context where the parameter of the system is known, the
input redundancy of the system can be characterized as de-
pendent on the parameter. Hence, we have provided a suffi-
cient condition to verify the input redundancy of parameter-
dependent systems. This condition is described by the di-
mension of the subspace B−1(θ)V∗∩ker{D(θ)} being greater
than zero. By considering that the system matrices depend
polynomially on the parameter and using its Smith normal
form, we provide a practical way to compute this parameter-
dependent subspace. So, a tractable condition to verify
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Figure 3: Input trajectories (25).
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Figure 4: Output trajectories for inputs in given (25) and
θ(t) given in (24).

adaptive input redundancy is obtained. It is important to
highlight that since we consider subspaces that do not de-
pend on the parameter, it restrains us from providing a com-
plete characterization of input redundancy for this type of
system. However, we can deal with all the previous results
from the literature as particular cases. Future work should
explore the possibility of considering parameter-dependent
subspaces so that a complete characterization of adaptive
redundancy can be provided.
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