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ABSTRACT

Image denoising is probably the oldest and still one of the most active research topic in image
processing. Many methodological concepts have been introduced in the past decades and have im-
proved performances significantly in recent years, especially with the emergence of convolutional
neural networks and supervised deep learning. In this paper, we propose a survey of guided tour
of supervised and unsupervised learning methods for image denoising, classifying the main prin-
ciples elaborated during this evolution, with a particular concern given to recent developments in
supervised learning. It is conceived as a tutorial organizing in a comprehensive framework current
approaches. We give insights on the rationales and limitations of the most performant methods in
the literature, and we highlight the common features between many of them. Finally, we focus on on
the normalization equivariance properties that is surprisingly not guaranteed with most of supervised
methods. It is of paramount importance that intensity shifting or scaling applied to the input image
results in a corresponding change in the denoiser output.

1 Introduction

In the realm of digital image acquisition, two significant independent types of noise can degrade the quality of captured
images [50, 108, 11, 143, 42]. On the first hand, shot noise stems from the inherent random nature of light. Classically,
the number of photons detected by an image sensor is described by a Poisson distribution whose parameter is propor-
tional to both the true signal value and the time exposure. On the other hand, read noise is typically independent of the
light intensity hitting the sensor and is introduced during the process of converting the analog signal from the camera
sensor into a digital representation. Read noise is caused by various factors, including the electronic components of the
sensor, circuitry, and analog-to-digital conversion process. Traditionally, this type of noise is mathematically modeled
by an additive white Gaussian noise, justified by the application of the central limit theorem.

Therefore, image noise is commonly described by a mixed Poisson-Gaussian model. Formally, representing a
grayscale image with n pixels by a vector of Rn where each entry encodes the pixel intensity, the noise model is:

y ∼ aP(x/a) +N (0n, bIn) , (1)

where y ∈ Rn is the observed noisy image, x ∈ Rn is the noise-free image (true signal), and a, b ∈ R+
∗ are the

parameters relative to shot and read noise, respectively, depending in particular on the acquisition system and on
the exposure time. A widespread simpler alternative to the mixed Poisson-Gaussian model (1) is the additive white
Gaussian noise (AWGN) model:

y ∼ N (x, σ2In) , (2)

where σ2 is the signal-independent variance of the noise. The formulation (2) can be seen as an approximation of (1)
where the signal-dependent shot noise is neglected. Although it may seem to be a limitation of this model, formulation
(1) actually transposes to (2) when using a variance-stabilizing transformation (VST) such as the Anscombe transform
[128] and its generalizations [127, 9, 94] that amount to applying per-pixel nonlinearities that effectively reduce the
signal dependence. Ultimately, due to its mathematical convenience, the AWGN model is the most widely-used one.
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Figure 1: Execution time on CPU for images of size 512 × 512 v.s the average PSNR results on the union of Set12
and BSD68 datasets for Gaussian noise with σ = 25 for popular methods.

From the noisy observation y, which follows either (1) or (2) but also any other, possibly unknown, noise distribution,
the aim of image denoising is to design a method for estimating the original unknown signal x as faithfully as possible
[39]. This amounts to identifying a function f : Rn 7→ Rn such that a noisy observation y can be mapped to a
satisfactory estimate of x, i.e. f(y) ≈ x. Over the years, a rich variety of strategies, tools and theories have emerged
to address the issue of image denoising at the intersection of statistics, signal processing, optimization and functional
analysis. The performance and the limitations of resulting single-shot methods are generally well understood. But this
field has been recently immensely influenced by the development of machine learning techniques and artificial intelli-
gence. Viewing denoising as a simple regression problem, this task ultimately amounts to learn to match the corrupted
image to its source. The very best methods in image denoising leverage deep neural networks which are trained on
large external datasets consisting of clean/noisy image pairs (see Fig. 1). However, though fast and efficient, these su-
pervised networks suffer from their lack of interpretability and usually have fewer good mathematical properties than
their conventional counterparts. Therefore, it is of paramount importance to examine several mathematical properties
which are desirable in image denoising, especially the so-called normalization-equivariance, which ensures that any
change of the input noisy image, whether by shifting or scaling, results in a corresponding change in the denoising
response. While this property is partially fulfilled by single-shot methods, current deep neural networks surprisingly
do not guarantee such a property, which can be detrimental in many situations (source of misinterpretation in critical
applications).

The remainder of the paper is organized as follows. In Section II, we take the reader on a guided tour of supervised
learning methods for image denoising. In Section III, we review the unsupervised denoising methods and focus on
the most performant methods. In Section IV, we study the normalization equivariance (NE) properties of the reviewed
methods and provide cues so that NE holds by design.

2 Review of supervised learning methods

Starting from a general framework based on empirical risk minimization, we present the three main classes of parame-
terized functions, also known as neural network architectures in artificial intelligence. For each architecture, we study
a popular state-of-the-art representative for image denoising. Next, we address the issue of finding the best function
for denoising among a given family of parametric functions, more commonly known as parameter training. Finally,
we study the special case of weakly supervised learning, which does not require noise-free images for training

2.1 Principle of supervised learning

The holy grail in image denoising is to find a universal function f that, given a noisy observation y ∈ Y , maps the
corresponding noise-free image x ∈ X . Unfortunately, such a function is purely hypothetical as image denoising is
an ill-posed inverse problem in the sense that the mere experimental observation of a noisy image is not enough to
perfectly determine the unknown true image. In order to narrow down the space of possibilities and arrive at a unique
solution, a risk minimization point of view has been widely adopted in past years. More precisely, let us define the
risk of function f as:

R(f) = Ex,y∥f(y)− x∥ , (3)

2



where (x, y) ∈ X × Y model all possible pairs of clean/noisy natural images, with the associated joint probability
distribution p(x, y). One wants ideally to find:

f∗ ∈ argmin
f

R(f). (4)

Usually the squared ℓ2 norm or the ℓ1 norm are used to measure closeness in (3) and are examples of so-called loss
functions. In the case of the squared ℓ2 norm, f∗(y) is nothing else than the minimum mean square error (MMSE)
estimator. Restricting f to be a member of a sufficiently general class of parameterized functions (fθ), the problem
(4) transposes to the following parameter optimization problem:

θ∗ ∈ argmin
θ

R(fθ) . (5)

In general, as the joint distribution p(x, y) is unknown, an empirical sample consisting of a finite number S of pairs of
clean/noisy images, called training set, is used as a surrogate. The empirical risk is then defined as:

Remp(fθ) =
1

S

S∑
s=1

∥fθ(ys)− xs∥ . (6)

Note that, depending on the standard chosen to measure proximity, minimizing the empirical risk (6) with respect to
θ actually amounts to minimizing the mean square error (MSE) or the mean absolute error (MAE), in most cases,
over a finite set of image pairs. This approach is said to be supervised in the sense that it relies on an external dataset
of clean/noisy pairs of images on which the model is optimized. However, minimizing the risk on a finite subset of
X × Y , designating all possible pairs of clean/noisy images, cannot guarantee that the model will provide also good
performance on unseen samples. Indeed, a function fθ that presents a low empirical risk (6) may sometimes be far
from optimality with regard to the true risk defined in (3). This well-known phenomenon is called overfitting and
may basically occur either when the training set is not enough representative of the true distribution p(x, y) of data in
X × Y , or when (fθ) is over-parameterized such that it may match too closely or even exactly the training set (in this
latter case, we say that the function interpolates the data points). In that respect, optimization needs to be differentiated
from machine learning which is precisely concerned with minimizing the loss on samples outside the training set.

Machine learning theory states that a necessary condition for good generalization beyond the training set, is that this
latter must provide sufficiently diverse, abundant and representative examples of X × Y . Collecting high-quality
training sets may be very challenging in some situations, but the success of supervised learning depends on it, and
image denoising is no exception [11, 143, 17, 144, 1]. In order to assess the generalization capabilities of the learned
model, a test set is used, consisting of a finite subset drawn randomly from X × Y and strictly disjoint from the
training set on which optimization is done. The performance of the model on the test set is an imperfect measure of
its generalization as there exists no finite subset of X × Y that represents perfectly the true distribution p(x, y) but it
is the only metric at our disposal.

From this very general paradigm, several issues need be addressed. First of all, the choice of the class of parameterized
functions (fθ) is an important part of the success of supervised machine learning. The chosen class must indeed be
sufficiently large for a chance to contain high-performance functions for the denoising task; but at the same time,
oversized classes may lead to an overfitted model. Then, once the parameterized class of functions has been chosen,
solving the inherent optimization problem defined in (5) can be particularly cumbersome and one would like to be
able to rely on efficient and general heuristics to deal with it. Finally, the quality of the training set is crucial but,
in numerous contexts, sufficiently many diverse and abundant noise-free images are unfortunately not available. A
recent line of research proposes to relax the need for clean images by adopting a so-called weakly supervised learning
approach. Below, we show how all these issues are commonly addressed in the case of image denoising.

2.2 Classes of parameterized functions

In this section, we review the most three major classes of parameterized functions (fθ) that were successfully experi-
mented in image denoising. All of them are in fact subcategories of the general class of parameterized functions that
are called (improperly?) “artificial neural networks”.

2.2.1 Multi-layer perceptron (MLP)

Historically, the first class of parameterized functions used in supervised machine learning is the multi-layer perceptron
(MLP) proposed by F. Rosenblatt [116]. The seminal work from H. C. Burger et al. [14] constitutes the first successful
attempt of learning the mapping from a noisy image to its corresponding noise-free one with such an artificial neural
network. For the first time in the field of image denoising, learning approaches have been compared favorably with
unsupervised (a.k.a non-learning) methods, without making any assumptions about natural images or about noise type.
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Mathematical description Formally, a multi-layer perceptron with L ≥ 1 hidden layers is a nonlinear function
fθ : y ∈ Rn0 7→ RnL+1 of the following form:

fθ(y)=
[
φΘL+1,bL+1

◦ ξL◦φΘL,bL ◦. . .◦ ξ1◦φΘ1,b1

]
(y), (7)

composed of:

• L + 1 parameterized affine functions φΘl,bl : z ∈ Rnl−1 7→ Θlz + bl, where Θl ∈ Rnl×nl−1 and bl ∈ Rnl

are the weight matrices and bias vectors, respectively, that parameterize the MLP: θ =
⋃L+1

l=1 {Θl, bl},
• L nonlinear functions ξl that operate component-wise.

Interestingly, any function fθ belonging to the MLP class in (7) can be viewed as a neural network. Indeed, by
definition, the L intermediate vectors

h(l) = [ξl ◦ φΘl,bl ◦ . . . ◦ ξ1 ◦ φΘ1,b1 ] (y) ∈ Rnl (8)

are called hidden layers and their components are referred to as hidden neurons. In the same way, vectors h(0) = y
and h(L+1) = fθ(y) are called input layer and output layer, respectively, and their components are named neurons as
well, for the sake of consistency. Moreover, the components of matrices Θl can be viewed as neural connections since
the ith row of Θl basically maps all the neurons from the layer h(l) to the ith neuron of the following layer h(l+1).
Finally, the nonlinear functions ξl are called activation functions because they aim to mimic the frequency of action
potentials, or “firing”, of real biological neurons.

Historically, the first activation functions that were investigated are the sigmoid functions, characterized by their “S”-
shaped curves. In particular the hyperbolic tangent:

tanh : t 7→ et − e−t

et + e−t
=

1− e−2t

1 + e−2t
, (9)

ranging from −1 to 1, and its variants such as the standard logistic function were favored because they are mathemati-
cally convenient (easily computable and differentiable as tanh′(t) = 1− tanh2(t)) and are close to linear near origin
while saturating rather quickly when getting away from it. In recent developments of deep learning the rectified linear
unit (ReLU) is more frequently used as a cost-efficient alternative:

ReLU : t 7→ max(0, t) . (10)

A particularly important result [57, 45, 29] states that any continuous function f : Rn 7→ Rm can be approximated to
any given accuracy by a MLP on any compact subspace of Rn, provided that sufficiently many neurons are available.
This result and its derivatives were subsequently named “universal approximation theorems”. They all imply that
neural networks can represent a wide variety of interesting functions when given appropriate weights. On the other
hand, they typically do not provide a construction for the weights, but merely state that such a construction is possible.

MLP applied on patches for image denoising Given the strong mathematical guaranties provided by the “universal
approximation theorems”, the parameterized functions (fθ) belonging to the MLP class are particularly suitable for
approximating the ideal function f minimizing the risk defined in (3). H. C. Burger et al. [14] were among the first
to investigate the potential of such functions in the field of image denoising. They proposed to use a MLP to denoise
the overlapping patches of noisy images, assuming that noise removal is a local issue in the images. This choice is
supported by two technical observations. First of all, if MLPs were used on the entire image instead, they would be
dependent on the image size which is unintended. Second, and not least, MLPs applied on the complete image would
require an intractable number of parameters. Indeed, since a transition from one layer to the next requires a matrix Θl

of parameters, the total number of parameters of a MLP is of the order of the square of the input size, in the case of
constant width MLP. Transposed to images, this represents as many parameters as the square of the number of pixels!
This large number of parameters makes its use prohibitive in most cases.

The retained architecture is made up of 4 hidden layers of size 2047 each and is intended to be applied to patches of
size 17× 17 = 289. The resulting parameterized function is:

fMLP
θ : y ∈ R289 7→

[
φΘL+1,bL+1

◦ ξ ◦ . . .◦ ξ◦φΘ1,b1

]
(y), (11)

where L = 4, the nonlinear activation function ξ is the hyperbolic tangent (9), and the dimensions of the weights
and biases are Θ1 ∈ R2047×289, Θl ∈ R2047×2047 for 2 ≤ l ≤ 4, Θ5 ∈ R289×2047, bl ∈ R2047 for l ≤ 4 and
b5 ∈ R289. The total number of trainable parameters for this MLP is then: dim(θ) = 2× 2047× 289 + 3× 2047×
2047 + 4 × 2047 + 289 = 13, 762, 270 . For training, H. C. Burger et al. [14] used a large training set of pairs of
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Figure 2: A 3× 3 2D convolution (without padding) producing 4 output neurons.

clean/noisy flattened patches (362 million training samples in their experiments of size 17× 17 taken from the union
of the LabelMe dataset [119], containing approximately 150, 000 images, and the Berkeley Segmentation Dataset [99]
composed of 400 images) on which the empirical quadratic risk (6) is minimized. At inference, a given noisy image
is decomposed into its overlapping flattened patches and each patch is denoised separately with the learned MLP. The
final denoised image is obtained by averaging the numerous estimates available for each pixel.

H. C. Burger et al. [14] achieved state-of-the-art results on homoscedastic Gaussian noise that compared favorably
with BM3D [30], the most cited unsupervised denoiser, at the cost of a full month of training on a GPU at the time.
While promising, the resulting denoiser was not yet competitive in terms of inference time and flexibility, as the model
handled a single noise level and did not generalize well to other noise levels compared to other denoising methods
(although solutions were proposed [136]). Moreover, the multiple artifacts induced by the method as well as its lack
of interpretability made it less usable in practice than its conventional counterparts.

2.2.2 Convolutional neural networks (CNN)

Convolutional neural networks is a class of parameterized functions (fθ) that can be described essentially as a sparse
version of multi-layer perceptrons dedicated to two-dimensional inputs. This architecture is widely used in all areas
of image processing for its lightness compared to MLPs and its increased performance, image denoising being no
exception [25, 97, 145, 146, 148, 147, 87, 5].

Mathematical description The 2D convolution, or 2D cross-correlation, of an image y ∈ RH×W×C , or feature
map, of size H ×W composed of C channels (color components for instance but also any abstract embedding of the
input pixels) with a weight kernel Θ ∈ Rk1×k2×C (restricted to be smaller than the dimensions of the feature map:
k1 ≤ H and k2 ≤ W ), denoted y ⊗ Θ, is defined as a sliding dot product between Θ and the local features of y.
This operation produces a single-channel output feature map of size (H − k1 + 1)× (W − k2 + 1). More precisely,
a 2D convolution y ⊗ Θ consists in splitting the input feature map y into its overlapping 3D blocks of the same size
as the kernel Θ – there are (H − k1 + 1) × (W − k2 + 1) overlapping blocks – and computing the dot product with
kernel Θ for all of them: each dot product creates a pre-activated neuron. Figure 2 illustrates the process of a 2D
convolution. In practice, numerous 2D convolutions are performed successively, involving a different weight kernel
Θi each time, and their results are concatenated along channels to produce a multi-channel output, or layer. Note that
the channel size C ′ of the output layer is strictly equal to the number of 2D convolutions that were performed. For the
sake of notation simplicity, the C ′ convolutional kernels relative to a same layer are gathered together into a unique
4D kernel, denoted by the same symbol Θ ∈ Rk1×k2×C×C′

. Finally, a trainable vector (“bias”) b ∈ RC′
is generally

added channel-wisely, leading to the general form of function for 2D convolutions:

ψΘ,b(y) = y ⊗Θ+ b , (12)

where addition applies along channels.

In some cases, it is desirable that the size H×W of the input image y stays unchanged after a convolutional operation
(which is generally not the case, unless k1 = k2 = 1). A common trick to ensure size preservation is to artificially
extend the size of the input image both horizontally and vertically beforehand. This operation is called padding,
and the most commonly used padding strategy is simply to add zero-intensity pixels around the edges of the image:
zero-padding.

5



X 15

Denoised Image

<latexit sha1_base64="T1FUT+BdC1WQH3WclpVoVasIjpY=">AAAEzniclVNNb9NAEJ0UAyV8tXDkYpEicYqcFDfkVsGFA4cgNW2kNEK2sy1Wba+1uy5EUcSVM1f4YfAP4F/wdrIGckgKtmzPvpn3vPN2Ny6zVJsg+N7YuuZdv3Fz+1bz9p279+7v7D441rJSiRgmMpNqFEdaZGkhhiY1mRiVSkR5nImT+OKlzZ9cCqVTWRyZWSkmeXRepGdpEhlAo71TWWaV3nu70wra3YN+GPb9oP2sH4T9HoLefi8I9/1OO+CrRe4ayN3GNzqlKUlKqKKcBBVkEGcUkcY9pg4FVAKb0ByYQpRyXtCCmuBWqBKoiIBe4H2O0dihBcZWUzM7wV8yPApMn56AI1GnENu/+ZyvWNmi67TnrGnnNsM3dlo5UEPvgF7Fqyv/nadRkXPvMzzT/2BOgZ6hK+vpKmuTcwac5+xYCmbJiPUycRoVr4H1yf/LQwOFEpiNp8grxAkz61X1maPZadtNxPkfXGlRO05cbUU/N3Zm35KVDfvypzuFnJ33em7BO0g4LxRGHzbspTn7ZVda/q4rgL9nXPB+slpjes2eLasXiI5W8gtUaOdJymsyWas1Z6dynqHlLTWt+gAVkl3XUKmV7Kw27bsMkeRO69ldVV1yrnInU+Ir3F+aOOP1QfbXB8fdduegHb7ptg5fuNO+TY/oMT3Fie7RIb1CL0M+yZ/pC331Bt6lt/A+Lku3Go7zkFYu79MvE4z4HQ==</latexit>�

Residual connection

Figure 3: The architecture of DnCNN denoising network. Source: [146].

Formally, a (feed-forward) convolutional neural network with L ≥ 1 hidden layers is a nonlinear function fθ : y ∈
RH0×W0×C0 7→ RHL+1×WL+1×CL+1 that chains 2D convolutions interspersed with nonlinear element-wise opera-
tions:

fθ(y)=
[
ψΘL+1,bL+1

◦ξL◦ψΘL,bL ◦. . .◦ξ1◦ψΘ1,b1

]
(y), (13)

composed of:

• L+1 parameterized convolutional functions ψΘl,bl : z 7→ z⊗Θl+bl, where Θl and bl are the weight kernels
and bias, respectively, that parameterize the CNN: θ =

⋃L+1
l=1 {Θl, bl},

• L nonlinear functions ξl that operate component-wise.

Just like MLPs, the L intermediate vectors:

h(l)=[ξl◦ψΘl,bl ◦. . .◦ξ1◦ψΘ1,b1 ] (y) ∈ RHl×Wl×Cl (14)

are called hidden layers and their components are referred to as hidden neurons. Essentially, a CNN is a MLP where
affine functions are replaced with convolutional ones. A direct advantage of CNNs over MLPs is that the number of
parameters is generally much smaller, as neural connections are local and identical, whatever the pixel position in the
image.

Note that the basic parameterized form (13) of CNNs can be made more complex by adding, amongst others, strided
or dilated convolutions [139], skip or residual connections [51], downscaling operations via pooling layers (e.g. max
pooling, average pooling...) and upscaling operations via bilinear or bicubic interpolation. A general architecture
possibly incorporating all of theses features is the famous U-Net architecture [115], widely used in computer vision.

Receptive field In a convolutional layer as shown in Fig. 2, each neuron receives input from only a restricted area of
the previous layer called the neuron’s receptive field. The receptive field has typically a 3D rectangle shape. When the
network processes the input data through multiple convolutional layers, the receptive field of a neuron in deeper layers
becomes larger as it incorporates information from a broader area of the input. For instance, the receptive field of a
network chaining two successive 3×3 convolutional layers is the same as the receptive field of a 5×5 convolution. The
receptive field of a CNN is determined by its architectural characteristics, such as the size of the convolutional filters
or the downscaling pooling operations. As moving deeper into the network, each neuron’s receptive field expands
due to the cascading effect of the multiple layers. Consequently, neurons in the deeper layers capture more global
and complex features that encompass larger regions of the input image. Understanding the receptive field is crucial
in CNNs, as it determines the spatial context that a network can capture, which is particularly essential in image
denoising. Indeed, the spatial context may potentially be very useful to detect repeated patterns and denoise them
properly. This is why deep CNNs with small convolutional kernels (3 × 3) are widely used in computer vision; the
receptive field is directly proportional to the width of the network, while the number of parameters is contained with
small kernels.

Focus on DnCNN architecture DnCNN [146] (Denoising Convolutional Neural Network) is the most cited artificial
neural network for image denoising so far. Its widespread popularity is due to both its simplicity and its effectiveness.
Although it was developed in the early years of deep learning for image denoising, it is still considered a reference
today. DnCNN is basically a feed-forward denoising convolutional neural network that chains “conv+ReLU” blocks,
and where residual learning [51] and batch normalization [60] are utilized to speed up the training process as well as
boost the denoising performance. Its architecture is illustrated in Figure 3. Formally, DnCNN encodes the following
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Residual	connection

Figure 4: The architecture of DRUNet denoising network. It takes an additional noise level map as input and com-
bines both U-Net [115] and ResNet [51]. “SConv” and “TConv” represent 2 × 2 strided convolution and transposed
convolution, respectively. Source: [145].

parameterized function for grayscale images:

fDnCNN
θ : y ∈ RH×W×1 7→ (15)[

ψΘL+1,bL+1
◦ ξ ◦ ψΘL,bL ◦ . . . ◦ ξ ◦ ψΘ1,b1

]
(y) + y ,

where L = 16, the nonlinear activation function ξ is the ReLU function (10), and the dimensions of the kernels and
biases are Θ1 ∈ R3×3×1×64, Θl ∈ R3×3×64×64 for 2 ≤ l ≤ 16, Θ17 ∈ R3×3×64×1, bl ∈ R64 for l ≤ 16 and b17 ∈ R.
Note that the width of the hidden layers (number of channels) is arbitrarily set to 64 for each and neither spatial
upscaling, nor downscaling is used (zero-padding is leveraged all along the layers to preserve the spatial input size
H×W ). The total number of trainable parameters for DnCNN is then: dim(θ) = 3×3×64×64×15+3×3×64×2+
64× 16 + 1 = 555, 137 , making it much lighter than the MLP proposed by H. C. Burger et al. [14]. For training, the
authors [146] used the 400 clean images from the Berkeley Segmentation Dataset [99] (BSD400) that they corrupted
artificially with additive white Gaussian noise (AWGN) to create pairs of clean/noisy images on which the MSE is
minimized. Unlike existing denoising models, which typically trained a specific set of parameters for AWGN for each
noise level, DnCNN is also able, at the cost of a relatively small drop in terms of performance, to handle Gaussian
denoising with an unknown noise level using a single set of parameters. This characteristic is generally referred to
as “blind” Gaussian denoising, since the network has no knowledge of the input noise level. Moreover, the authors
showed that this architecture is actually much more versatile, and can be efficiently used beyond Gaussian denoising
to tackle several other inverse problems close to Gaussian image denoising. In particular, they trained a single model
for three general tasks at once, namely blind Gaussian denoising, single image super-resolution (SISR) and JPEG
image deblocking. For SISR, a high-resolution image is generated by first applying the bicubic upscaling on the low
resolution image and then treating the inherent remaining “error noise” with DnCNN. Likewise, the unavoidable JPEG
artifacts produced by a JPEG encoder during lossy compression are viewed as a particular type of additive noise and
treated as such with the general model. Note that treating JPEG deblocking with a denoiser dedicated to Gaussian
noise was already studied in [41].

Focus on DRUNet architecture More recently, DRUNet [145] (Denoising Residual U-Net) is an architecture that
was proposed as an even more competitive alternative to DnCNN [146], at the price of an increased number of param-
eters and a longer training on a larger dataset. It achieves state-of-the-art performances for Gaussian noise removal.
Contrary to DnCNN, DRUNet adopts a U-Net architecture [115], and as such has an encoder-decoder type pathway,
with residual connections [51] all along the network. Spatial downscaling is performed using 2× 2 convolutions with
stride 2 (“SConv”), while spatial upscaling leverages 2 × 2 transposed convolutions with stride 2 (“TConv”) (which
is equivalent to a 1 × 1 sub-pixel convolution [124]). The number of channels in each layer from the first scale to
the fourth scale are 64, 128, 256 and 512, respectively and each scale is composed of 4 successive residual blocks
“3 × 3 conv + ReLU + 3 × 3 conv”. In total, the retained architecture presents 32, 638, 656 parameters, which is
approximately 60 times more than the number of parameters of DnCNN [146], but thanks to the spatial downscaling
operations, the computational complexity is contained. DRUNet architecture is illustrated in Figure 4. Contrary to
DnCNN, DRUNet is a “non-blind” denoiser and thus achieve increased performance over ‘blind” models [146, 147],
by passing an additional noisemap as input. In the case of additive white Gaussian noise of variance σ2, the noisemap
is constant equal to σ. Note that this feature was first proposed by FFDNet [148], which is more or less the flexible
“non-blind” variant of DnCNN [146].
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Training plays a major role in the success of DRUNet. Indeed, it is widely acknowledged that convolutional neural
networks generally benefit from the availability of large training data. Therefore, the training dataset BSD400 [99]
has been considerably enriched with the addition of many high-definition images, namely 4, 744 images from the
Waterloo Exploration Database [92], 900 images from the DIV2K dataset [3], and 2, 750 images from the Flick2K
dataset [82]. Moreover, the authors recommend to train it by minimizing the ℓ1 loss instead of the mean squared error
(MSE), supposedly due to its outlier robustness properties. DRUNet was trained to deal with images corrupted with
noise levels up to σ = 50.

2.2.3 Transformers

Originally stemming from the field of natural language processing (NLP), where their introduction have led to sig-
nificant improvements over convolutional neural networks, transformer-based models [133] have recently been inves-
tigated in image denoising [107, 84, 149, 81, 142, 144, 22]. This type of artificial neural network is based on the
mechanism of self-attention, which allows a model to decide how important each part of an input sequence is, making
it possible to find complex correlations in the data.

Mathematical description From a multi-channel input Y ∈ Rn×m, where n denotes the number of pixels, in
the case of image denoising, and m denotes the channel-size (color components for instance but also any abstract
embedding of input pixels), a self-attention module produces at first three different embeddings of Y : queries Q ∈
Rn×l, keys K ∈ Rn×l, and values V ∈ Rn×k. Traditionally, matrices Q, K and V are learned via three projection
matrices ΘQ ∈ Rm×l, ΘK ∈ Rm×l and ΘV ∈ Rm×k, such that Q = YΘQ, K = YΘK and V = YΘV ; but any
transformation that produces the desired output shapes from Y is actually suitable. Then, the self-attention is defined
as:

Attention(Q,K, V ) = softmax(QK⊤)V (16)
where softmax : Rn 7→ Rn is such that softmax(z)i = ezi/

∑n
j=1 e

zj and is applied over the horizontal axis in (16).
Note that softmax(QK⊤) is nothing else than a right stochastic matrix of size n, which aims at encoding the attention
weights. In others words, a self-attention module processes each entry, or “token”, by a convex combination of all the
values Vi,·, weighted by the degree of attention or similarity. Moreover, it is worth noticing that the fact that Q and K
are a priori different matrices allows attention matrix softmax(QK⊤) to be non-symmetric: token i may be strongly
related to token j and, at the same time, token j may be weakly related to token i on the contrary.

The self-attention operation can actually be viewed as a general learned version of the popular NL-means [13] denoiser,
when rewritten as follows:

Attention(Q,K, V )i,· =Wi
−1 ∑n

j=1 e
−d(Qi,·,Kj,·)Vj,·

Wi =
∑n

j=1 e
−d(Qi,·,Kj,·) ,

where the pseudo distance metric d between Qi,· and Kj,· is defined as d(Qi,·,Kj,·) = −⟨Qi,·,Kj,·⟩. Indeed, as
observed by [84], the NL-Means denoiser [13] is basically a transformer from the matrix of noisy patches Y ∈ Rn×m

(m = p × p where p denotes the patch size), with identity embeddings Q = K = Y and values V = Y e⌈m/2⌉ =

y ∈ Rn×1 equal to the input noisy image, and with d replaced by the squared Euclidean distance: d(Qi,·,Kj,·) =
∥Qi,· − Kj,·∥22/h2, with the hyperparameter h, often chosen to be proportional to the noise level σ [12, 96, 35].
As a matter of fact, even if the distance metric d was originally chosen as the opposite of the dot product between
two embedded vectors for the sake of computational efficiency, the squared Euclidean distance yields comparable
performance in image denoising [84].

In practice, self-attention operations cannot be applied on the entire image for the reason that the attention matrix
softmax(QK⊤) in (16) has as many entries as the squared of the input size n, which is in general intractable. That is
why, just like MLPs (7), self-attention modules are deployed on subparts of the image. In general, it is used to process
non-overlapping groups of neighboring embedded patches of the image [81, 142, 144]. Finally, self-attention modules
are usually combined with convolutional layers (12) to get the best of both [107, 84, 149, 81, 142, 144].

Focus on SCUNet architecture Relying heavily on the DRUNet architecture (see Fig. 4), the Swin-Conv-UNet
(SCUNet) denoising network [144] has recently been proposed as a successful attempt to incorporate self-attention
modules into a convolutional neural network in order to achieve state-of-the-art performances in supervised image
denoising. SCUNet basically adopts the same U-Net backbone of DRUNet and replaces the residual convolutional
blocks “3 × 3 conv + ReLU + 3 × 3 conv” by Swin-Conv (SC) hybrid blocks. Figure 5 summarizes the overall
architecture. As illustrated, a Swin-Conv (SC) block divides in half along the channels the feature map of a 1 × 1
convolution to feed two independent branches, namely the “RConv” branch and the “SwinT” branch. The “RConv”
branch is simply a residual convolutional block “3 × 3 conv + ReLU + 3 × 3 conv”, already used in DRUNet [145],
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Figure 5: The architecture of SCUNet denoising network. “SConv”, “TConv”, “RConv” and “SwinT” represent 2× 2
strided convolution, 2× 2 strided transposed convolution, residual “3× 3 conv + ReLU + 3× 3 conv” block and swin
transformer block, respectively. Source: [144].
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Figure 6: Performance evolution of supervised models [144, 146, 5, 14, 145, 87, 25] with the number of parameters
(left) and execution time at inference (right), respectively, for grayscale Gaussian denoising on the Set12 dataset at
σ = 25 (CPU: 2,3 GHz Intel Core i7). A general trend can be observed: increased performance is achieved at the
cost of an increase in the number of parameters and execution time (the linear trend, in dashed line, is estimated with
Theil-Sen method).

with twice less parameters as in the original network, since the channel size has been halved due to the split of the
feature map. As for the “SwinT” branch, it implements the swin transformer block described in [81], in turn based on
the standard multi-head self-attention of the original Transformer layer [133]. Essentially, it consists in partitioning
the input feature map of sizeH×W ×C into multiple non-overlapping groups, or windows, of equal size (h×w)×c,
with h < H , w < W and c < C, and processing them independently by leveraging self-attention (see formula (16)),
with shared projection matrices across different windows. In the retained architecture, all windows are of equal size
(8× 8)× 32, involving self-attention matrices of size 64× 64. Finally, in order to enable cross-window connections,
regular and shifted window (swin) partitioning are used alternately [88], where shifted window partitioning means
shifting the feature map by (⌊h

2 ⌋, ⌊w
2 ⌋) pixels before partitioning. In the end, the outputs of the two branches “RConv”

and “SwinT” are concatenated channel-wisely and then passed through a 1×1 convolution to produce the final residual
of the input.

Although the number of parameters of SCUNet is approximately reduced by half compared to DRUNet [145], since
the number of parameters of “SwinT” blocks is negligible in relation to “RConv” blocks, the complexity is slightly
increased, though contained. Training basically follows the instructions of DRUNet [145]. Unlike DRUNet, SCUNet
was not trained as a ”non-blind” denoiser (i.e. with an additional noise level map as input), and requires instead a
specific set of parameters for each noise level in the case of AWGN.

In summary, within a decade of research in supervised image denoising, the quality has been considerably enhanced,
but at the price of an increased number of parameters and increased execution time (see Fig. 6). Nonetheless, the very
best methods [144, 145] are now capable of recovering details barely perceptible to the human eye.
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2.3 Parameter optimization

Once the class of parameterized functions (fθ) – that is the architecture of the neural network – has been chosen, it still
remains to select the best member of this class for the task of image denoising. As explained in the previous section,
a proven heuristic consists in finding the optimal parameters θ∗ that best minimize the empirical risk (6), for want
of knowing the true risk (3). In this section, we present the technique commonly adopted to solve this optimization
problem, which is essentially based on the gradient descent algorithm.

2.3.1 Back-propagation

In most of cases, the minimization of the empirical risk (6) cannot be performed analytically for the reason that the
chosen class of parameterized functions is in general very complex. Indeed, the resulting optimization problem (5)
is usually highly non-convex and the only fast and efficient algorithms that remain at our disposal to solve it are
first-order gradient-based optimization algorithms. Calculating the gradient ∇θRemp(fθ) then becomes essential.

The practical computation of the gradient of any weakly differentiable function at a given point θ has recently been
considerably facilitated by the advent of modern machine learning libraries such as Pytorch [106]. Indeed, these novel
frameworks are equipped with an automatic differentiation engine that powers the computation of partial derivatives.
Automatic differentiation exploits the fact that the computation of a scalar value (e.g., the empirical risk 6) executes
a sequence of elementary arithmetic operations (addition, multiplication, etc) and elementary functions (exp, square,
etc). By keeping a record of data and all executed operations, partial derivatives can be computed automatically,
accurately to working precision, by applying the chain rule repeatedly to these operations.

2.3.2 Stochastic gradient descent

Provided with the gradient of the empirical risk with respect to the parameters ∇θRemp(fθ), the most basic first-
order gradient-based optimization algorithm to solve (5) is the gradient descent algorithm. However, it is in practice
computationally very expensive, especially for large training sets. An alternative method for more frequent updating
is the stochastic gradient descent (SGD) [113]. Its principle is simple: an approximation of the gradient is computed
using a different random subset (mini-batch) of the entire training set at each step. With the same notations as (6),
Remp(fθ) can be approximated by:

RB
emp(fθ) =

1

|B|
∑
s∈B

∥fθ(ys)− xs∥ , (17)

where B denotes a random subset of {1, . . . , S}, so that ∇θRB
emp(fθ) ≈ ∇θRemp(fθ). Then, ∇θRB

emp(fθ) can be
viewed as a noisy version of the true gradient ∇θRemp(fθ). Note that, computing the gradient over a single pair of
clean/noisy images (xs, ys), can still be computationally expensive when dealing with high resolution images. This is
why, RB

emp(fθ) is usually further approximated by replacing the image pairs (xs, ys) in (17) by pairs of small image
patches, typically of size 128 × 128, randomly cropped from the same images. The procedure is summarized in
Algorithm 1.

Algorithm 1 Stochastic Gradient Descent (SGD) algorithm
Require: Initial parameters θ0, learning rate α, batch size b, number of iterations T .
Ensure: Updated parameters θT

for t = 1, . . . , T do
Select a random subset B ⊂ {1, . . . , S} of size b.
Compute gradient at point θt−1: gt ← ∇θRB

emp(fθt−1).
Update parameters: θt ← θt−1 − αgt.

end for

2.3.3 Adam optimization algorithm

Adam [69] (Adaptive Moment Estimation) is a popular extension of the stochastic gradient descent algorithm [113],
widely used in the field of image denoising [146, 145, 144, 148, 107, 84] for its computational efficiency and little
memory requirements. Adam combines the concepts of adaptive learning rates and momentum to provide faster
convergence compared to traditional gradient descent methods, while making it less sensitive to the choice of initial
learning rate. To do so, the algorithm keeps track of statistics of the first and second moment vectors, that is the
gradient and its per-element square, via an exponentially decaying average. The first order moment incorporates
the momentum and helps in maintaining the direction of the gradients, while the second order moment captures the
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magnitudes of the gradients for better adjusting the learning rates. The algorithm 2 provides an update rule similar to
SGD [113].

Algorithm 2 Adam algorithm
Require: Initial parameters θ0, learning rate α, batch size b, number of iterations T , running average parameters (β1, β2) =

(0.9, 0.999), additional term for numerical stability ε = 10−8.
Ensure: Updated parameters θT

Initialize first and second moment vectors: m0 ← 0 and v0 ← 0.
for t = 1, . . . , T do

Select a random subset B ⊂ {1, . . . , S} of size b.
Compute gradient at point θt−1: gt ← ∇θRB

emp(fθt−1).
Update running averages: mt ← β1mt−1 + (1− β1)gt and vt ← β2vt−1 + (1− β2)g

⊙2
t .

Compute bias-corrected moments: m̂t ← mt/(1− βt
1) and v̂t ← vt/(1− βt

2).
Update parameters: θt ← θt−1 − αm̂t/(

√
v̂t + ε)

end for

Unfortunately, the best neural network architecture for image denoising, combined with the best optimization proce-
dure, is powerless if high-quality clean/noisy image pairs are lacking for learning in some respects. A recent line of
research tries to relax the need for clean images by adopting a so-called weakly supervised learning approach.

2.4 Weakly supervised learning

In numerous contexts, the availability of sufficiently many noise-free images is not guaranteed and supervised learning
cannot be applied effectively. To circumvent this problem, attempts have been made recently to adapt empirical risk
minimization (6) with neural networks without ground truth. Note that, in the following, we make the arbitrary
distinction between a supervised approach – for which the training set consists in a subset of X × Y , designating all
possible pairs of clean/noisy images, whether it is physically acquired or synthetically generated (approximated) – and
a weakly supervised approach, for which the training set present solely representative images from Y .

2.4.1 Learning from noisy image pairs

A pioneer work in this spirit is Noise2Noise [77] that assumes that, for the same underlying ground truth image xs, two
independent noisy observations ys and ȳs are available. It was observed that replacing the clean/noisy pairs (xs, ys)
by the noisy/noisy ones (ȳs, ys) in the empirical quadratic risk (6) enables comparable performance to be achieved
without the need for ground truths, provided that the noise is zero-mean.

A typical use case is for example fluorescence microscopy where biological cells can be fixed using a fixative agent
which causes cell death, while maintaining cellular structure. By taking two successive shots of the same scene, as-
suming that the noise realizations are independent between them and zero-mean, it is possible to constitute a dataset
composed of noisy/noisy pairs (ȳs, ys) to train a neural network fθ. Once optimized for specifically denoising fluores-
cence microscopy images, the network can be deployed in a complete image processing pipeline, where noisy image
pairs are no longer required (in particular, cells no longer need to be fixed).

Formally, let fθ be a parameterized function, x following the distribution of natural images, and y and ȳ two inde-
pendent random vectors following the same noise distribution from x (for instance y ∼ N (x, σ2In) or y ∼ P(x)).
Assuming that Ey|x(y) = Eȳ|x(ȳ) = x, we have, by developing the squared ℓ2 norm:

∥fθ(y)−ȳ∥22 = ∥(fθ(y)−x)− (ȳ−x)∥22
= ∥fθ(y)−x∥22 + ∥ȳ−x∥22−2⟨fθ(y)−x, ȳ−x⟩.

Therefore, by taking the expected value over x, y and ȳ:

N2N(fθ) := Ey,ȳ∥fθ(y)− ȳ∥22
= Ex,y∥fθ(y)− x∥22 + Ex,ȳ∥ȳ − x∥22

− 2Ex(Ey,ȳ|x⟨fθ(y)− x, ȳ − x⟩)
= R(fθ) + const ,

(18)

where R(fθ) := Ex,y∥fθ(y) − x∥22 is the quadratic risk already defined in (3). Note that the expected value of the
dot product cancels out since the components of y and ȳ are independent, and the noise is assumed to be zero-mean.
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In the end, minimizing the risk R(fθ) amounts to minimizing the surrogate N2N(fθ) insofar as they differ by a con-
stant value. The advantage of using N2N(fθ) is that this expression depends only on the observations (y, ȳ) and
does not involve the clean images x anymore. Consequently, minimizing the Noise2Noise loss is formally equiva-
lent to minimizing the usual supervised quadratic risk. For a given neural network fθ, assuming ideal optimization,
the Noise2Noise approach leads to the exact same weights θ∗ as the supervised approach and so yields exact same
performances even if it is trained without ground truth.

However, the above reasoning assumes that an infinite amount of noisy training data is provided. In practice, for want
of knowing the true risk (3), the empirical risk (6) is minimized instead, and the equality (18) does not hold for finite
samples. Indeed, the average of dot product in (18) is as close to zero as the number of noisy data increases. Conse-
quently, the performance of Noise2Noise drops when the amount of training data is reduced, limiting its capability in
practical scenarios. In order to get the best out of Noise2Noise potential with limited noisy data, A. F. Calvarons [18]
recently proposed to exploit the duplicity of information in the noisy pairs to generate some sort of data augmentation.

2.4.2 Learning from single noisy images

In certain denoising tasks, however, the acquisition of two or more noisy copies per image can be very expensive
or impractical, in particular in medical imaging where patients are moving during the acquisition, or in videos with
moving objects, etc. An even more remarkable line of research focuses on the possibility to train neural networks on
datasets composed only of single noisy observations ys.

SURE Assuming an additive white Gaussian noise model of variance σ2, a classical result from estimation theory –
Stein’s unbiased risk estimate (SURE) [129] – was investigated for training neural networks on datasets composed only
of single noisy observations (ys) [125]. Formally, let x follow the distribution of natural images and y ∼ N (x, σ2In).
According to [129], we have:

SURE(fθ) :=Ey∥fθ(y)− y∥22 + 2σ2 div(fθ)(y)− nσ2

= Ex,y∥fθ(y)− x∥22 = R(fθ) ,
(19)

where n is the dimension of images y (i.e. number of pixels). The advantage of using SURE is that the risk is expressed
in such a way that it depends only on the observations y. Nevertheless, the SURE loss requires the computation of
the divergence of fθ at points y which is cumbersome. To overcome this difficulty, the use of a fast Monte-Carlo
approximation to compute the divergence term defined in [112] is leveraged in [125]:

div(fθ)(y) ≈ ε⊤
fθ(y + hε)− fθ(y)

h
, (20)

where ε is one single realization of the standard normal distribution N (0, In) and h is a fixed small positive value.

As in the case of the N2N loss (18), minimizing the SURE loss is strictly equivalent to minimizing the usual supervised
quadratic risk only if an infinite amount of training data is provided, which in practice does not happen. Indeed, the
equality (19) does not hold for finite samples for similar reasons. For a sufficiently large number of data samples
however, it is possible to obtain performances close to those of networks trained with ground truths.

Blind-spot networks A radical way to get rid of the divergence term is to force fθ to be divergence-free, i.e
div(fθ)(y) = 0 for all y. To that end, Noise2Self [6] introduces the concept of J -invariance. Namely, a function
fθ is said to be J -invariant if for each subset of pixels J ∈ J , the pixel values of fθ(y) at J are computed such that
they do not depend on the values of y at J . Note that such functions are in particular divergence-free since ∂fi

θ

∂yi
(y) = 0

for all y, where f iθ denotes the ith component of fθ. In the literature, divergence-free networks are more often referred
to as blind-spot networks [70], as they are constrained to estimate the pixel value based on the neighboring pixels only.

Contrary to SURE loss which is limited to additive white Gaussian noise, blind-spot networks can be leveraged in a
more general context. Indeed, provided that the noise is independent between pixels and is zero-mean, the minimizer
the so-called self-supervised loss N2S(fθ) := Ey∥fθ(y) − y∥22 is exactly the minimizer of the quadratic risk (3)
[6]. Formally, let x follow the distribution of natural images and let y follow a noise distribution from x which is
independent between pixels (for example y ∼ N (x, σ2In) or y ∼ P(x)). Assuming that Ey|x(y) = x, we have, by
developing the squared ℓ2 norm:

∥fθ(y)−y∥22 = ∥fθ(y)−x∥22 + ∥y−x∥22 − 2⟨fθ(y)−x, y−x⟩ .
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Therefore, by taking the expected value over x and y:

N2S(fθ) := Ey∥fθ(y)− y∥22
= Ex,y∥fθ(y)− x∥22 + Ex,y∥y − x∥22

− 2Ex(Ey|x⟨fθ(y)− x, y − x⟩)
= R(fθ) + const ,

(21)

where R(fθ) := Ex,y∥fθ(y) − x∥22 is the quadratic risk already defined in (3). Note that the expected value of the
dot product cancels out since fθ is blind-spot, the components of y are independent between pixels, and the noise is
assumed to be zero-mean. Therefore, minimizing the risk R(fθ) amounts to minimizing the surrogate N2S(fθ) insofar
as they differ by a constant value. An ingenious example of a divergence-free network is proposed by Noise2Kernel
[76] that exploits donut kernels for the first layer and dilated convolutional kernels for the next layers. Finally, note that
Noise2Void [70] proposed before Noise2Self [6] the idea of using the self-supervised loss with a blind-spot network,
although the theoretical justification provided was not as strong as that of [6].

Nevertheless, the performance of divergence-free functions is considerably limited by the constraint of not voluntarily
using the information of key pixels. Indeed, except from the parts of the signal that are easily predictable (for example
uniform regions), counting exclusively on the information provided by the neighborhood to denoise the pixels is an
inefficient strategy. Think for example of the extreme case of a uniform black image with a single white pixel on its
center. With a blind-spot network, the central white pixel will be lost and wrongly replaced by a black one.

Probabilistic blind-spot networks To improve the performance of blind-spot networks, several authors [71, 72,
110] propose to refine the predictions during inference when the noise model is known. For this purpose, they adopt
a Bayesian point of view, different from the risk minimization point of view (3), used until now. Following this
paradigm, a network fθ is trained so that, given exclusively the noisy surroundings Ωy of a noisy pixel y (the central
noisy pixel y is excluded), it outputs a (parameterized) probability distribution pθ(x|Ωy) of the central clean pixel.
In other words, fθ is such that fθ(Ωy) predicts a learned prior probability distribution of the expected central clean
value, instead of just predicting a value without taking uncertainty into account, as in the risk minimization paradigm.
Equipped with such a function fθ, Bayes’ rule can be applied to update the prior with new information of the noisy
central pixel y, provided that the noise model is known, to obtain the posterior distribution:

p(x|y,Ωy)︸ ︷︷ ︸
posterior

∝ p(y|x,Ωy)︸ ︷︷ ︸
likelihood

p(x|Ωy)︸ ︷︷ ︸
prior

≈ p(y|x)︸ ︷︷ ︸
noise
model

pθ(x|Ωy)︸ ︷︷ ︸
learned
prior

. (22)

From the posterior, the Minimum Mean Squared Error (MMSE) estimate (i.e. the conditional expectation) or the
Maximum A Posteriori (MAP) is produced, which can be considered as an improved version of the prediction given
by Noise2Self [6], since it is refined with the information of the central pixel. Note that the adopted Bayesian point of
view enables to efficiently combine the knowledge learned on an external dataset composed of noisy images and the
information of the input noisy image, which would not have been possible with a risk minimization paradigm.

The remaining questions are now how to construct fθ and how to train it. First of all, an arbitrary parametric model for
the prior pθ(x|Ωy) needs to be chosen. In [71], fθ is built in such a way that fθ(Ωy) outputs a vector of the size of the
number of different intensities of the image (a 256-dimensional vector when images are coded on 8 bits for example)
where all entries are non-negative and sum to one, interpreted as the histogram of a discrete probability distribution.
In [72], fθ(Ωy) is constrained to follow a Gaussian model and so the output simply consists in a two-dimensional
vector, encoding the mean fθ(Ωy)1 and standard deviation fθ(Ωy)2 of a Gaussian distribution. As for training, they
both use the method of Maximum Likelihood Estimation (MLE). For a data sample {ys}s∈{1,...,S} of S noisy central
pixels surrounded by neighborhoods {Ωys

}s∈{1,...,S}, the log-likelihood function reads (using the formula of total
probability):

lnL(θ; {ys}) =
S∑

s=1

ln

∫ +∞

−∞
p(ys|x)pθ(x|Ωys

)︸ ︷︷ ︸
pθ(ys|Ωys )

dx. (23)

In the case of an additive white Gaussian noise model of variance σ2 and when fθ(Ωy) is constrained to output a
Gaussian model [72], we have: p(ys|x) = N (ys;x, σ

2) and pθ(x|Ωys) = N (x; fθ(Ωys)1, fθ(Ωys)
2
2). It follows that

pθ(ys|Ωys
) =

∫ +∞

−∞
p(ys|x)pθ(x|Ωys

)dx

= N (ys; fθ(Ωys)1, σ
2 + fθ(Ωys)

2
2) .

(24)
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Finally, the solution θ∗ ∈ argmaxθ lnL(θ; {ys}) is as follows:

θ∗=argmin
θ

S∑
s=1

ln(σ2+fθ(Ωys
)22) +

(ys−fθ(Ωys)1)
2

σ2+fθ(Ωys
)22

, (25)

which is solved using Adam algorithm [69].

Experiments on artificially noisy images [72] but also on real-world noisy images [71] tend to show that weakly
supervised probabilistic approaches are almost on par with their supervised counterparts.

Noisier2Noise An ingenious way of dispensing with the probabilistic approach, while making full use of the central
pixel, was proposed by Noisier2Noise [103] and Recorrupted-to-Recorrupted [105]. Their approach is based on adding
more noise to single noisy images in the dataset, although this may seem counter-intuitive. The idea of Noisier2Noise
[103] is to train a network fθ that maps the original noisy images y from noisier versions z synthetically generated
by adding extra noise. The authors argue that, with this strategy, the network is encouraged to predict E(y|z); and
E(x|z) can be estimated thereafter during the inference step via a linear combination of E(y|z) ≈ fθ∗(z) and z. For
example, in the most simple case where y = x + ε with ε ∼ N (0, σ2In) and z = y + ε′ with ε′ ∼ N (0, σ2In) with
ε′ independent from ε , we have, by linearity of expectation and by noticing that E(ε|z) = E(ε′|z):

2E(y|z) = E(x|z) + (E(x|z) + E(ε|z) + E(ε′|z))
= E(x|z) + E(z|z) = E(x|z) + z ,

hence E(x|z) = 2E(y|z)−z. Therefore, at inference, for a noisy observation y, the denoised image is finally estimated
by 2fθ∗(y + ε′)− (y + ε′) where ε′ is a realization of N (0, σ2In).

More recently, still in the setting of additive white Gaussian noise (AWGN) of variance σ2, i.e. y ∼ N (x, σ2In),
Recorrupted-to-recorrupted [105] showed that it is possible, from a noisy image y, to construct an artificial pair of
independent noisier images (z, z̄), centered in x, that can be exploited to train a neural network, just like in [77] (see
equation (18)). In the end, a Noise2Noise-like equality holds:

R2R(fθ) := Ez,z̄∥fθ(z)− z̄∥22 = Ex,z∥fθ(z)− x∥22 + const , (26)

where Ex,z∥fθ(z) − x∥22 is a “noisier” risk close to the target risk R(fθ) defined in (3). Minimizing the R2R loss is
then equivalent to minimizing the “noisier” risk. To denoise an input noisy image y at inference, it is first renoised
according to the recorruption model z to get the final estimate fθ∗(z). Provided that the artificial z is not much noisier
than y, this strategy achieves performances close to those of networks trained with ground truths.

Interestingly, among the different possible recorruption models, there is the straightforward setting z = y + αε and
z̄ = y − ε/α, with ε ∼ N (0, σ2In) and α ∈ R∗. According to the property of affine transformation of Gaussian
vectors, we have: (

z
z̄

)
∼ N

((
x
x

)
,

(
(1 + α2)σ2In0 0n×n

0n×n (1 + 1/α2)σ2In

))
, (27)

meaning that z and z̄ are independent from each other. In practice, α = 0.5 is recommended for training to balance
the noise of z and z̄ [105].

Noise2Score Finally, another original and versatile method for learning without ground truths was proposed by
Noise2Score [68]. In this novel approach, the conditional mean of the posterior distribution E(x|y) (posterior ex-
pectation of x given noisy observation y) is calculated leveraging a classical result from Bayesian statistics, namely
Tweedie’s formula [37], which involves the so-called score function. Formally, assuming that the likelihood p(y|x)
can written under the form p(y|x) = a(x)b(y) exp(x⊤T (y)) with a : Rn 7→ R, b : Rn 7→ R and T : Rn 7→ Rn

(subset of the exponential family which covers a large class of important distributions such as the Gaussian, binomial,
multinomial, Poisson, gamma, and beta distributions, as well as many others), then the following equality holds:

JT (y)
⊤E(x|y) = ∇y ln(p(y))−∇y ln(b(y)) , (28)

where JT denotes the Jacobian matrix of function T . In particular, when T has the simple form T (y) = cy, with
c ∈ R∗, JT (y)⊤ = cIn and finally the conditional mean of the posterior distribution is:

E(x|y) = (∇y ln(p(y))−∇y ln(b(y))) /c , (29)

where ∇y ln(p(y)) is referred to as the score (gradient of the marginal distribution of y).
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As it stands, the formula (29) is purely theoretical since the distribution of natural noisy images p(y) is at least as
difficult to know as the distribution of natural images p(x). However, capitalizing on the recent finding that the score
function can be stably estimated from the noisy images [83], Noise2Score [68] suggests to use a residual denoising
autoencoder fθ for approximating the score:

∇y ln(p(y)) ≈ fθ∗(y),

θ∗ ∈ argmin E
y∼p(y),ε∼N (0,1)

α∼N (0,δ2)

∥fθ(y + αε) + ε/α∥22 (30)

with δ → 0 (note the similarity with Recorrupted-to-recorrupted [105] for recorrupted images y+αε). The advantage
of Noise2Score [68] is that, provided that the noise model belongs to the exponential family distribution, the problem
comes down to estimating the score function always approximated by the same universal training (30).

In the case of an additive white Gaussian noise model of variance σ2, we have:

p(y|x) = a(x)b(y) exp(x⊤T (y)) , (31)

with a(x) =
(
σ
√
2π

)−n
exp

(
− 1

2σ2 ∥x∥22
)
, b(y) = exp

(
− 1

2σ2 ∥y∥22
)

and T (y) = y/σ2. As ∇y ln(b(y)) = −y/σ2,
Tweedie’s formula then reads:

E(x|y) = y + σ2∇y ln(p(y)) ≈ y + σ2fθ∗(y) . (32)

2.5 Discussion and conclusion

In spite of their great theoretical interest, weakly supervised approaches for image denoising, which are designed
to learn without ground truths, are unfortunately of limited practical value. Indeed, if collecting a dataset of noisy
image pairs is assumed to be possible as in Noise2Noise [77], why not collect several n-tuples of noisy images instead
which, once averaged, would constitute ground truth images for use in a supervised framework (approach retained for
the datasets of [110] for example). As for learning from datasets of single noisy images, the proposed approaches are
either disappointing in terms of performance [6, 70] due to strong architectural constraints, or, require the noise model
to be known [125, 71, 72, 103, 105, 68] in order to achieve performance comparable to that of supervised models. As a
consequence, weakly supervised learning is far from being the preferred strategy for tackling challenging benchmarks
such as the Darmstadt Noise Dataset [108] where only single real-world noisy images are available, for which the
real noise can only be roughly approximated mathematically by a mixed Poisson-Gaussian model. Instead, the best-
performing methods [11, 143, 17, 144] simulate a large amount of realistic noisy images from clean ones by carefully
considering the noise properties of image sensors, on which any denoising neural network can be trained on. The
same observation can be made in fluorescence microscopy, where the most popular denoising neural network [137]
was trained in a supervised way, whether on physically acquired or synthetic training data.

3 Unsupervised denoising methods

Both supervised and weakly supervised learning strategies are extremely dependent on data quality (although they
do not rely on the same type of image pairs), which is a well-established weakness. In some situations, it may be
challenging to gather a large enough dataset for learning. Only unsupervised methods - in which only the noisy input
image is used for training - are operationally available. Historically, these methods were studied before their super-
vised counterparts, partly due to the computational limitations of the time that made resource-intensive supervised
learning unthinkable. In this chapter, we present a non-exhaustive list of well-known unsupervised algorithms, classi-
fied according to four different main principles. As we shall see, the best unsupervised denoisers share key elements,
in particular the property of self-similarity observed in images, whatever their category.

3.1 Weighted averaging methods

The most basic unsupervised methods for image denoising are without a doubt the smoothing filters, among which
we can mention the averaging filter or the Gaussian filter for the linear filters and the median filter for the nonlinear
ones. Interestingly, the linear smoothing filters can actually be viewed formally as elementary convolutional neural
networks fΘ(y) = y ⊗ Θ already defined in Section II with no bias, no hidden layer and no activation function, and
with unique convolutional kernel Θ. In contrast to supervised CNNs, the kernel is non-trainable. Note that symmetric
padding is applied on the noisy image y beforehand to ensure size preservation.

In practice, the smoothing filters act by replacing each intensity value of noisy pixels with a convex combination of
those of its neighboring noisy pixels. Denoising is made possible, at the cost of edge blur, by reducing the variation
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in intensity between neighboring pixels. Although these filters are extremely rudimentary, they are sometimes used as
pre-processing steps in some popular algorithms where performance is not at stake such as the Canny edge detector
[19] due to their unbeatable speed. Building on the idea of convex combinations of noisy pixels, numerous extensions
were proposed by better adapting to the local structure of the images [131, 13, 61, 122, 101, 121]. In what follows, we
review three major unsupervised denoisers [131, 13, 61] processing images via convex combinations of noisy pixels.

Formally, we denote by y a vectorized noisy image patch of size n whose central pixel is yc (the value of index c is
⌈n/2⌉). Each method of this subsection implements a denoising function of the form fθ(y) = y⊤θ aimed at estimating
the noise-free central pixel xc, and where the weights θ ∈ Rn are patch-dependent and are such that 1⊤

n θ = 1 and
θ ⪰ 0.

as the bilateral filter [131] that evaluates the intensity similarity between two neighboring pixels, the seminal work
from A. Buades et al. [13] adopts a more robust approach by exploiting the similarity of patches instead. For each
pixel, an average of the neighboring noisy pixels, weighted by the degree of similarity of patches they belong to, is
leveraged for edge-preserving denoising. The convex weights of the N(on)-L(ocal) Means can be defined as:

θi = Ks
iK

r(∥p(yi)− p(yc)∥)/
n∑

j=1

Ks
jK

r(∥p(yj)− p(yc)∥) (33)

where p(yi) represents the vectorized patch centered at yi (whose size can be different from the size of the image
patch y), and where Ks ∈ Rn

+ is a spatial kernel used to give more weight to pixels closer to the central pixel and
Kr : u 7→ exp(−u2/h2), where h is the range smoothing hyperparameter. As h increases, Kr approaches the
constant function and the filter has a behavior close to a Gaussian smoothing filter. On the contrary, as h decreases,
Kr reinforces the weighting of pixels with high patch similarity and the resulting filter becomes nonlinear and more
edge-preserving.

The resulting N(on)-L(ocal) Means [13] algorithm has had a tremendous influence on the denoising field and above
for the reason that it is capable of effectively process redundant information in images with the help of patches. The
central idea is that, in a natural image, a patch rarely appears alone and that almost perfect copies can be found in
its surroundings [150]. NL Means has paved the way for a brand new class of denoising algorithms that exploits the
self-similarity assumption [30, 67, 73, 48, 93, 33, 34, 58, 65, 31]. Nevertheless, determining the optimal weights θ
of convex combinations for image denoising still remained an open question, although patch self-similarity appears
to be a key element for obtaining competitive results. In [61], Jin et al. addressed this question starting from [13, 65,
66]. They achieved state-of-the-art performances among methods restricted to convex combinations of pixels via the
establishment of an upper bound for the optimal weights θ. Adopting a risk minimization approach and constraining
the weights θ to encode a convex combination of pixels, the optimal weights in the case of Gaussian noise (i.e.,
y ∼ N (x, σ2In)) and in the ℓ2 sense, are:

θ∗ = arg min
θ∈Rn

R(fθ) s.t. 1⊤
n θ = 1 and θ ⪰ 0 , (34)

where R(fθ) := Ey((fθ(y)− xc)
2) is the quadratic risk. By leveraging a bias–variance decomposition, the statistical

risk R(fθ) = (Ey(fθ(y)− xc))
2
+ Vy(fθ(y) − xc), under convex constraints, has a closed-form expression which

can be upper bounded using the triangle inequality:

R(fθ) ≤ fθ(|x− xc|)2 + σ2∥θ∥22 = θ⊤Qθ , (35)

where the subtraction applies element-wise andQ := |x−xc||x−xc|⊤+σ2In is a symmetric positive definite matrix.
Finally, OWF [61] proposes to approximate the optimal weights θ∗ defined in (34) by the ones minimizing the upper
bound (35) under convex constraints. This amounts to solving a quadratic program and the resulting weights have a
closed-form expression [61].

3.2 Sparsity methods

Sparsity methods have emerged as powerful tools for image denoising, offering effective ways to restore images
corrupted by noise while preserving important structural information. These methods exploit the inherent sparsity of
natural images, which implies that most image patches can be efficiently represented by a small number of non-zero
coefficients in a suitable transform domain.

3.2.1 Sparsity in a fixed basis

Sparsity of patches in a fixed basis refers to the property that most image patches can be efficiently represented using
only a small number of non-zero coefficients in a predetermined basis. A basis is a set of linearly independent vectors,
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or patches, that spans the entire signal space. It should be distinguished from the term dictionary, for which the vectors
are not necessarily linearly independent.

Formally, we denote by x ∈ Rn a vectorized clean natural image patch of size n. According to the sparsity assumption,
there exists a fixed basis of vectors {bi}i∈{1,...,n}, where bi ∈ Rn, such that each clean patch x of a noise-free image
can be exactly represented by a linear combination involving only a few basis vectors. Adopting the matrix notation
where B ∈ Rn×n is the matrix formed by stacking the basis vectors {bi}i∈{1,...,n} along columns, the sparsity
assumption reads:

∀x ∈ Rn, x is a natural patch ⇔ ∥B−1x∥0 ≤ t0 , (36)

where ∥ ·∥0 is the ℓ0 pseudo norm counting the non-zero elements of a vector, t0 ≤ n is an hyperparameter controlling
the sparsity and the entries of vector B−1x are the unique coefficients of the linear combination which generate patch
x in basis B.

A general strategy for denoising a noisy patch y under the sparsity paradigm is then to find its closest sparse represen-
tation. The resulting optimization problem is as follows:

arg min
x∈Rn

∥y − x∥ s.t. ∥B−1x∥0 ≤ t0 , (37)

which is equivalent, thanks to the change of variable x = Bθ, to:

arg min
θ∈Rn

∥y −Bθ∥ s.t. ∥θ∥0 ≤ t0 . (38)

Note that denoising under the sparsity assumption involves several poorly defined quantities, namely the number of
non-zero coefficients t0 for being considered sparse, the norm ∥ · ∥ to choose for assessing the patch proximity and
especially the fixed basisB. Common choices for the basisB include the discrete cosine transform (DCT) or wavelets
[140, 27, 91] as discussed below.

Finally, note that solving (38) exactly in the general case where B is a dictionary can be done in a finite amount of
computation but this is a NP-hard problem. The algorithms designed to find an approximate solution of (38) are called
pursuit algorithms and include basis pursuit, FOCUSS, or matching pursuit methods [23, 47, 95].

TV denoising Total variation (TV) denoising [118] is finally one of the most famous image denoising algorithm,
appreciated for its edge-preserving properties. In its original form [118], a TV denoiser is defined as a function
f : Rn × R+

∗ 7→ Rn that solves the following equality-constrained problem:

fTV(y, σ) = argmin
x∈Rn

∥x∥TV s.t. ∥y − x∥22 = nσ2 (39)

where ∥x∥TV := ∥∇x∥2 is the total variation of x ∈ Rn.

DCT and DWT denoiser The discrete cosine transform (DCT) algorithm [140] is a simple and efficient sparsity-
based method for image denoising. The DCT is closely related to the discrete Fourier transform, but involves only
real numbers. This basis yields several pleasant mathematical properties; in particular it is orthogonal, meaning that
B−1 = B⊤, and there exists a fast algorithm [24] for computing the decomposition of any vector in this basis,
just like the FFT algorithm (Fast Fourier Transform). Secondly, the DCT basis is experimentally near optimal to
approximate natural patches in the sense that it ensures maximum energy compression of data in the first components.
In order quickly approach the solution of the sparsity optimization problem (38), a simple procedure [140] consists in
computing the DCT of the noisy patch, that is B−1y, and setting to zero all small coefficients (below 3σ in absolute
value for Gaussian noise). At the end, all denoised patches are repositioned at their initial locations and averaged to
produce the final denoised image. The discrete wavelet transform (DWT) is another example of set of orthogonal bases
B that has been successfully utilized for image denoising [27, 91, 109, 20]. Contrary to the DCT, these bases are itself
sparse, in the sense that a majority of coefficients of the basis vectors are zero. This property makes decomposition
calculations particularly fast. Interestingly, the DWT has the ability to decompose an image into different frequency
subbands at different scales. The high-frequency subbands capture the local details and fine structures, while the low-
frequency subbands represent the global structures and smooth regions. The Bayesian denoising method BLS-GSM
[109] achieved state-of-the-art performance at the time by carefully adapting noise processing to each scale.

BM3D BM3D (Block Matching 3D) [30] is a powerful and widely acclaimed algorithm that has achieved remarkable
success in image denoising. BM3D considerably improves the performance of pure sparsity methods such as [140,
27, 91] by adding another key element, namely the grouping technique, exploiting the redundancy present in natural
images. Figure 7 illustrates this popular technique in image denoising [30, 73, 48, 93, 33, 34, 58]. It basically consists
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Figure 7: Illustration of the grouping technique for image denoising.

in grouping image patches based on patch resemblance into 3D blocks, also referred to as similarity matrices, in
order to perform collaborative filtering. During the first stage of BM3D, the denoising of the independent 3D blocks
is performed by assuming a local sparse representation in a transform domain. Essentially, BM3D solves the same
optimization problem as (38) with the only difference that it involves groups of patches instead of processing each
patch separately. Among the possible bases of decomposition for processing the groups, 3D-DCT is frequently used
and the same fast procedure as [140] that consists in canceling all coefficients below a given threshold is adopted
for fast resolution. As for the second stage, Wiener filtering is leveraged for collaborative denoising. Overall, the
remarkable denoising performance of BM3D algorithm has made it a widely adopted and benchmark denoising method
in applications.

3.2.2 Sparsity on a learned dictionary

The use of a fixed basis such as the DCT or the DWT for sparsity-based image denoising has the advantage of being
both general and fast. However, it is not easy to know in advance which basis to choose for achieving the best denoising
results on a given image, although some attempts have been made in this direction [90, 8]. A more flexible approach
is to directly adapt the decomposition to the input image by unsupervised learning.

KSVD KSVD [38] is a popular unsupervised learning algorithm for creating an adaptive dictionary for sparse rep-
resentations. Formally, let Y ∈ Rn×N be the matrix gathering all the N overlapping vectorized patches of size n of a
noisy image, D ∈ Rn×d an overcomplete dictionary (a set of d ≥ n patches, also referred to as atoms, spanning the
entire signal space), and Θ ∈ Rd×N the sparse coefficients of the linear combinations. The optimization problem at
the heart of KSVD [38] is the following:

argmin
D,Θ

∥Y −DΘ∥2F s.t. ∥Θ·,j∥0 ≤ t0,∀j ∈ {1, . . . , N}, (40)

where t0 ≤ n is an hyperparameter controlling the sparsity of the linear combinations. Note that this objective is
very similar with (38), with the difference that the dictionary D is no longer fixed but fully integrated to the learning
process. The resolution of (40) is achieved via an alternating optimization algorithm by iteratively fixing dictionary D
and coefficients Θ as follows:

SPARSE CODING: For a dictionary D fixed, solving (40) amounts to solving N independent subproblems for which
any pursuit algorithm [23, 47, 95] can be leveraged for resolution. Indeed, we have:

∥Y −DΘ∥2F =

N∑
j=1

∥Y·,j −DΘ·,j∥22 . (41)

DICTIONARY UPDATING: Assuming that both D and Θ are fixed, except one column in the dictionary D·,k (atom k)
and its corresponding coefficients Θk,·, (41) can be rewritten as:

∥Y −DΘ∥2F = ∥Y −
d∑

j=1

D·,jΘj,·∥2F = ∥Ek−D·,kΘk,·∥2F , (42)
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Figure 8: Example of the learned dictionary by KSVD algorithm [38] (left), the overcomplete separable Haar dictio-
nary (middle) and the overcomplete DCT dictionary (right). Source: [4].

where Ek := Y −∑
j ̸=kD·,jΘj,·. In other words, it amounts to finding a matrix of rank 1 minimizing the ℓ2 distance

with Ek. The solution can be computed using the singular value decomposition (SVD) according to Eckart-Young
theorem [36]. Formally, let u, v and s be the first left-singular vector, right-singular vector and singular value of Ek,
respectively. Then, its closest matrix of rank 1, in the ℓ2 sense, is simply suv⊤. However, it is very likely that the
first right-singular value of Ek is not sparse; therefore, it cannot be used to update coefficients Θj,·. The trick of
KSVD [38] consists in modifying only the nonzero entries of Θj,·, thus ensuring that it stays sparse. Mathematically,
it comes down to computing the SVD of Ek for which the columns corresponding to a zero coefficient in Θj,· have
been deleted.

Following this alternating optimization procedure, KSVD [38] converges after a few iterations. At the end, all denoised
patches are repositioned at their initial locations and averaged to produce the final denoised image. Interestingly,
the dictionary learned in an unsupervised fashion can be displayed (see Fig. 8). In spite of its great theoretical
interest, KSVD [38] is unfortunately little used in practice, due to its tedious optimization procedure, its difficult-to-
set hyperparameters and its limited performance compared to BM3D [30].

Simultaneous sparse coding (SSC) from a low-rank view point While KSVD [38] tries to learn a general over-
complete dictionary, for which every patch of the input image can be reconstructed using only a few atoms, some
authors argue that the dictionary should be adaptive to groups of similar patches to improve the performance of sparse
representation models [93, 33, 48, 58]. Indeed, a major drawback of (40) is the assumption about the independence
between sparsely-coded patches. In order to better exploit the self-similarity of patches in an image, a refinement con-
sists in constraining the similar patches to share the same atoms in their sparse coding.To that end, the optimization
problem (40) can be slightly adapted to groups of similar patches, making it even more restricted:

argmin
D,Θ

∥Y −DΘ∥2F s.t. ∥Θ∥0 ≤ t0 , (43)

where Y ∈ Rn×k is a similarity matrix, D ∈ Rn×d a dictionary, Θ ∈ Rd×k the sparse coding, and where the matrix
pseudo ℓ0 norm counts the number of non-zero rows. Note in particular that, subject to dimensional compatibility, any
admissible point Θ for (43) is also admissible for (40). Moreover, it is worth noting that the dictionary becomes strictly
local under the group sparse representation contrary to (40). As a matter of fact, solving (43) amounts to solving a
low-rank approximation of Y if we denote X = DΘ:

argmin
X

∥Y −X∥2F s.t. rank(X) ≤ t0 , (44)

for which the solution is expressed with the help of the singular value decompostion (SVD) of Y according to Eckart-
Young theorem [36]. In particular, considering the Lagrangian unconstrained formulation of (44) with hyperparameter
γ ≥ 0, we have (see proof in [56, 58]):

Uφhard,
√
γ(S)V

⊤ = argmin
X

∥Y −X∥2F + γ rank(X) , (45)

where Y = USV ⊤ is the SVD of Y and φhard,γ denotes the hard shrinkage operator that applies element-wise
φhard,γ(x) = x1R\[−γ,γ](x). Equation (45) is at the core of PLR algorithm [58] where the value of γ = 2.25 k σ2

is recommended experimentally for denoising Y when it is corrupted by additive white Gaussian noise (AWGN) of
variance σ2.

A relaxation of (43) is proposed by LSSC [93] through a so-called grouped-sparsity regularizer to encourage the
alignment of sparse coefficients along the row direction, without imposing it as a hard constraint. Interestingly, this
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relaxation has also a low-rank interpretation from a variance estimation perspective [33]. Specifically, it amounts to
solving a nuclear norm minimization problem (NNM) which has a closed-form solution [16]:

Uφsoft,γ(S)V
⊤ = argmin

X

1

2
∥Y −X∥2F + γ∥X∥∗ , (46)

where ∥X∥∗ denotes nuclear norm (sum of the singular values) and φsoft,γ denotes the soft shrinkage operator that
applies element-wise φsoft,γ(x) = sign(x) ·max(|x| − γ, 0). More recently, WNNM [48] refines the NNM problem
(46) by assigning different weights to the singular values. Combined with iterative regularization technique [104] and
multiple passes of denoising, WNNM achieves state-of-the-art performances.

3.3 Bayesian methods coupled with a Gaussian model

Bayesian methods coupled with a Gaussian model form a powerful framework for probabilistic modeling in image
denoising [2, 151, 73, 85, 141, 74]. The Gaussian model (or a mixture of Gaussians) is widely used due to its simplicity
and flexibility in capturing a wide range of continuous data, signal being no exception. In this section, we review two
algorithms [151, 73] that are major representatives of Bayesian modeling under Gaussian prior.

EPLL Based on the observation that learning good image priors over whole images is challenging, EPLL [151]
proposes to transpose the modeling of an image prior back to the prior modeling of small image patches, which is
assumed to be an easier task. Specifically, in the case of additive white Gaussian noise (AWGN) of variance σ2, the
maximum a posteriori (MAP) of the clean patch xi given its noisy patch yi ∼ N (x, σ2In) and an arbitrary image
patch prior p leads to the minimization of an energy (via Bayes’ rule):

Ei(xi, yi) :=
1

2σ2
∥xi − yi∥22 − log p(xi) . (47)

In order to extend this energy to the whole image, EPLL [59] defines the global energy of a full image x, given y, by
the average energy of energies all its N overlapping patches:

E(x, y) :=
1

N

N∑
i=1

Ei(xi, yi) ≈
n

2σ2N
∥x− y∥22 − EPLLp(x) , (48)

where EPLLp(x) :=
∑

i log p(xi)/N is the expected patch log likelihood (EPLL). Note that the approximation is
legitimate because a noisy pixel belongs to exactly n overlapping patches, with the exception of pixels located close
to the borders, which are neglected for the sake of simplicity. Searching for the image x with smallest global energy,
the resulting optimization problem finally reads [151]:

argmin
x

n

2Nσ2
∥x− y∥22 − EPLLp(x) . (49)

Thus, the expected patch log likelihood (EPLL) acts as a regularization term in (49). Direct optimization of the cost
function (49) may be very hard, depending on the prior used. That is why, half quadratic splitting [46] is leveraged for
efficient resolution by introducing auxiliary variables. Note that this iterative optimization method shares close links
with the alternating direction method of multipliers (ADMM) [10].

Although this framework allows the use of patch priors p of any sort, the authors [151] propose to leverage a surpris-
ingly simple Gaussian mixture model: p(x) =

∑K
k=1 πkN (x;µk,Σk), where πk are the mixing weights for each of

the mixture component and the µk and Σk are the corresponding mean and covariance matrix. In the original paper
[151], the parameters πk, µk and Σk for K = 200 components are estimated in a supervised fashion by maximum
likelihood estimation (MLE) over a set of two millions clean patches collected from BSD dataset [99] using the ex-
pectation–maximization (EM) algorithm for optimization. However, a recent work [85] shows that Gaussian mixture
parameters can also be estimated unsupervisedly directly from the noisy input image itself, resulting in even better
image denoising performance than its supervised counterpart.

Despite their significant theoretical relevance, EPLL [151] and its variants [85, 32] have not gained much popularity
in practical applications primarily due to their cumbersome optimization procedures when compared to the well-
established BM3D [30] algorithm. Finally, note that the EPLL approach [151] shares some similarities with the
Field-of-Experts framework [117] designed previously where the parameterized density function, namely the Gaus-
sian mixture model, is replaced by a Product-of-Experts [55] that exploits non-linear functions of many linear filter
responses and where optimization is essentially performed through gradient ascent.
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NL-Bayes: The N(on)-L(ocal) Bayes [73] algorithm combines the concepts of Bayesian modeling and self-similarity
[150] which appears to be key element for achieving state-of-the-art results. Formally, let y ∼ N (x, σ2In) be a noisy
image patch corrupted by Gaussian noise of variance σ2. Arbitrarily setting a multivariate Gaussian prior on the clean
patch x, i.e. p(x) = N (x;µ,Σ), where the mean µ and covariance matrix Σ are to be estimated, the maximum a
posteriori (MAP), computed using Bayes’ rule, is the solution of the following optimization problem:

x̂MAP = argmax
x

1

2σ2
∥x− y∥22 +

1

2
(x− µ)⊤Σ−1(x− µ)

= µ+Σ
(
Σ+ σ2In

)−1
(y − µ) .

(50)

NL-Bayes [73] proposes to construct the prior p(x) from the group of image patches similar to x. Specifically, let
X ∈ Rn×k be the similarity matrix of x. Then, µ is estimated by the average patch and Σ is estimated by the empirical
covariance matrix of the group, that is:

µX :=
1

k
X1k and ΣX :=

1

k
(X − µX1⊤

k )(X − µX1⊤
k )

⊤. (51)

But of course, the true similarity matrix X is unknown and can only be deduced from its noisy version Y . To that
end, unbiased estimates are leveraged as a first approximation, namely µY = 1

kY 1k and ΣY = 1
k (Y − µY 1

⊤
k )(Y −

µY 1
⊤
k )

⊤−σ2In. Using equation (50) and the two estimates µY and ΣY , each noisy patch of a given similarity matrix
can then be denoised. Viewing this denoising step as a function f that processes similarity matrices, NL-Bayes falls
into the category of non-local denoisers (see Fig. 7).

After reprojection and aggregation by average of all patch estimates, a first denoised image is built which is exploited to
refine the priors p(x) for each group of similar patches. Actually, using the equation (51) with approximate similarity
matrices gives better results in practice than with the unbiased estimates of the first step. Repeating this second stage
again and again, taking advantage of the availability of a supposedly better image estimate than in the previous step,
does not bring experimentally any improvements unfortunately. That is why, the algorithm stops after two steps.

NL-Bayes [73] compares favorably with BM3D [30] and is as competitive as in terms of speed which makes it an
interesting alternative for practical image denoising [74].

3.4 Deep learning-based methods

In recent years, attempts have been made to reconcile unsupervised learning and deep neural networks in image
denoising [111, 78, 6]. Major representatives are Deep Image Prior (DIP) [78] and Self2self [111].

Deep Image Prior Deep Image Prior [78] adopts a non-intuitive strategy which consists in training a convolutional
neural network with U-net architecture fθ to predict the input noisy image y ∈ Rn from a single realization of pure
uniform noise u ∼ U([0, 1]n×C), where C denotes the number of feature maps (e.g. C = 32):

argmin
θ

∥fθ(u)− y∥22 . (52)

By early stopping the optimization process based on gradient descent in order to avoid perfect reconstruction of the
noisy image y, it is observed that fθ(u) may be surprisingly very close to the true image x in practice. According
to the authors [78], this intriguing phenomenon is an evidence that realistic images are naturally promoted by certain
types of neural networks. Indeed, equation (52) is only composed of the data-fidelity term without any regularizer,
which suggests that network architectures actually encode an implicit image prior.

Some refinements of (52) were proposed afterwards to enhance the performance of DIP [78] by adding nevertheless
an explicit prior. For example, combining DIP [78] with the traditional TV regularization [118] was investigated in
[86] with relative quality improvement, at the price of an extra hyperparameter balancing the data-fidelity term and the
regularization term. Another interesting alternative [100] consists in explicitly regularizing DIP [78] using an existing
unsupervised denoising algorithm such as BM3D [30]. The concept of regularization by denoising (RED) [114] is
indeed an alternative to Plug-and-Play Prior [135] which enables to harness the implicit prior learned by a denoiser
to any data-fidelity term, while avoiding the need to differentiate the chosen denoiser. Other variants of DIP [78] for
improved performance include [40, 62, 26, 120].

Self2Self More recently, Self2Self [111] considers the pretext task of inpainting to tackle image denoising, namely:

θ∗ = argmin
θ

Eb∥(1− b)⊙ (fθ(b⊙ y)− y)∥22 , (53)
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where ⊙ denotes the Hadamard product and b ∈ {0, 1}n is a random vector whose components follow independent
Bernoulli distributions with probability p ∈ (0, 1). This time, droupout [126] and sampling are exploited as regular-
ization techniques for avoiding the convergence to the constant function fθ(.) = y. During the inference step, about a
hundred of artificially simulated samples fθ∗(b⊙y) are averaged for final estimation. Note that Self2Self [111] shares
some similarities with Noise2Self [6] as fθ is learned following the blind-spot strategy. To our knowledge, Self2Self
[111] is the current state-of-the-art unsupervised deep learning-based denoiser.

Although promising, the aforementioned deep unsupervised learning methods are still limited in terms of performance
and especially in terms of computational cost compared to the patch-based and non-local methods [30, 73, 52, 48, 33,
34, 64, 61]. Indeed, deep learning-based methods use the time-consuming gradient descent algorithm for optimization,
whereas traditional ones have in general closed-form solutions, which speeds up learning.

4 Normalization-equivariance property of denoising methods

In many information processing systems, it may be desirable to ensure that any change of the input, whether by shifting
or scaling, results in a corresponding change in the system response. While deep neural networks are gradually replac-
ing all traditional automatic processing methods, they surprisingly do not guarantee such normalization-equivariance
(scale and shift) property, which can be detrimental in many applications.

Sometimes wrongly confused with the invariance property which designates the characteristic of a function f not to
be affected by a specific transformation T applied beforehand, the equivariance property, on the other hand, means
that f reacts in accordance with T . Formally, invariance is f ◦ T = f whereas equivariance reads f ◦ T = T ◦ f ,
where ◦ denotes the function composition operator. Both invariance and equivariance play a crucial role in many
areas of study, including computer vision and signal processing and have recently been studied in various settings for
deep-learning-based models [28, 63, 123, 7, 98, 138, 134, 49, 130, 43, 15, 44, 75].

In this section, we focus on the equivariance of superivised and unsupervised image denoising methods fθ to a specific
transformation T , namely normalization.

4.1 Normalization-equivariance of conventional denoisers

We start with formal definitions of the different types of equivariances studied in this chapter. Please note that our
definition of “scale” and “shift” may differ from the definition given by some authors in the image processing literature.
Definition 1. A function f : Rn 7→ Rm is said to be:

• T -equivariant if f ◦ T = T ◦ f,
• scale-equivariant if ∀x ∈ Rn,∀a ∈ R+

∗ , f(ax) = af(x),

• shift-equivariant if ∀x ∈ Rn,∀b ∈ R, f(x+ b) = f(x) + b,

• normalization-equivariant if it is both scale-equivariant and shift-equivariant:

∀x ∈ Rn,∀a ∈ R+
∗ ,∀b ∈ R, f(ax+ b) = af(x) + b,

where addition with the scalar shift b is applied element-wise.

Note that the scale-equivariance property is more often referred to as positive homogeneity in pure mathematics. S.
Mohan et al. [102] revealed that scale-equivariant neural networks could simply be built by removing the additive
constant (”bias”) terms in CNNs with ReLU activation functions without affecting performance. Moreover, they
showed that a much better generalization at noise levels outside the training range was ensured by these networks as a
spectacular outcome.

A (“blind”) denoiser is basically a function f : Rn 7→ Rn which, given a noisy image y ∈ Rn, tries to map the
corresponding noise-free image x ∈ Rn. Since scaling up an image by a positive factor a or adding it up a constant
shift b does not change its contents, it is natural to expect scale and shift equivariance, i.e. normalization equivariance,
from the denoising procedure emulated by f .

The most basic methods for image denoising are the smoothing filters (see Section III.A). It turns out that these “blind”
denoisers process images by convex combinations of pixels and therefore all implement a normalization-equivariant
function. More generally, one can prove that a linear filter is normalization-equivariant if and only if its coefficients
add up to 1. In others words, normalization-equivariant linear filters process images by affine combinations of pixels.
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Table 1: Equivariance properties of several image denoisers (left: traditional, right: deep learning-based)

Traditional
TV NLM NL-Ridge LIChI DCT BM3D WNNM

Scale-eq ✓ ✓ ✓ ✓ ✓ ✓ ✓
Shift-eq ✓ ✓ ✓ ✓ ✗ ✗ ✗

Deep-learning
DnCNN NLRN SCUNet Restormer DCT2net DRUNet

Scale-eq ✗ ✗ ✗ ✗ ✓ ✓
Shift-eq ✗ ✗ ✗ ✗ ✗ ✗

Figure 9: Impact of normalization for deep-learning-based denoising (DnCNN). All four intervals are subsets of the
interval [0, 1]. Source: [54].

As such, fNLM = y⊤θ (with the weights θ given in (33)) is a normalization-equivariant function. More recently,
NL-Ridge [52] and LIChI [53] propose to process images by linear combinations of similar patches and achieves state-
of-the-art performance in unsupervised denoising. When restricting the coefficients of the combinations to sum to 1,
that is imposing affine combination constraints, the resulting algorithms encode normalization-equivariant functions
as well.

4.2 The case of neural networks

Deep learning hides a subtlety about normalization equivariance that deserves to be highlighted. Usually, the weights
of neural networks are learned on a training set containing data all normalized to the same arbitrary interval [s0, t0].
At inference, unseen data are processed within the interval [s0, t0] via a s-t linear normalization with s0 ≤ s < t ≤ t0
denoted Ts,t and defined by:

Ts,t : y 7→ (t− s)
y −min(y)

max(y)−min(y)
+ s . (54)

Note that this transform is actually the unique linear one with positive slope that exactly bounds the output to [s, t].
The data is then passed to the trained network and its response is finally returned to the original range via the inverse
operator T −1

s,t . This proven pipeline is actually relevant in light of the following proposition.

Proposition 1. ∀ s < t ∈ R,∀ f : Rn 7→ Rm, T −1
s,t ◦ f ◦ Ts,t is a normalization-equivariant function.

Thus, if f is not normalization-equivariant, T −1
s,t ◦ f ◦ Ts,t is guaranteed to be. While normalization-equivariance

appears to be solved, a question is still remaining: how to choose the hyperparameters s and t for a given function
f ? Obviously, a natural choice for neural networks is to take the same parameters s and t as in the learning phase
whatever the input image is, i.e. s = s0 and t = t0, but are they really optimal ? The answer to this question is
generally negative. It is particularly true in image denoising when the noise level at inference differs from the noise
level on which the neural network was trained on. Indeed, as showed by [136], careful choices on parameters s > s0
and t < t0 can strongly mitigate the effect of the distribution gap (see Figure 9 and Figure 5 in [54]). This suggests that
there are always inherent performance leaks for deep neural networks due to the two degrees of freedom induced by the
normalization (i.e., choice of s and choice of t). In addition, this poor conditioning can be a source of misinterpretation
in critical applications.
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Figure 10: Illustration of the alternative for replacing the traditional scheme “convolution + element-wise activation
function” in CNNs: affine convolutions supersede ordinary ones by restricting the coefficients of each kernel to sum
to one and the proposed sort pooling patterns introduce nonlinearities by sorting two by two the pre-activated neurons
along the channels. Source: [54].

4.3 Categorizing image denoisers

Table 1 summarizes the equivariance properties of several popular denoisers, either conventional [118, 13, 52, 53,
140, 30, 48] or deep-learning-based [146, 145, 84, 81]. Interestingly, if scale-equivariance is generally guaranteed for
traditional denoisers, not all of them are equivariant to shifts. In particular, the widely used algorithms DCT [140] and
BM3D [30] are sensitive to offsets, mainly because the hard thresholding function at their core is not shift-equivariant.

Regarding the deep-learning-based networks, only DRUNet [145] is insensitive to scale because it is a bias-free
convolutional neural network with only ReLU activation functions [102]. In particular, all transformer models
[142, 107, 84, 81, 22, 144], even bias-free, are not scale-equivariant due to their inherent attention-based modules.
To solve this issue, an approach was proposed in [54] to adapt the architecture of existing neural networks so that
normalization equivariance holds by design. The authors argue that the classical pattern ”conv+ReLU” can be fa-
vorably replaced affine convolutions that ensure that all coefficients of the convolutional kernels sum to one in one
hand, and the other hand, channel-wise sort pooling nonlinearities as a substitute for all activation functions that apply
element-wise, including ReLU or sigmoid functions (see Fig. 10). These two architectural modifications do preserve
normalization-equivariance without loss of performance, and provide much better generalization across noise levels in
practice because they can naturally adapt to the best-performing interval [54] (see Figure 9 and Figure 5 in [54]).

5 Conclusion

In this paper, we have surveyed supervised and unsupervised image denoising methods, categorized the methods based
on their equivariance properties, and summarized quantitatively their performances assessed on popular benchmarks,
such as Set12 and BSD68. It is clearly established that the traditional unsupervised methods [30, 73, 48, 53] out-
perform the deep-learning counterparts, so far. They are particularly recommended when it is not possible to collect
enough high-quality dataset for training denoising models or too much time consuming. In return, it is also clear
that supervised methods based on CNNs boosted with attention modules [144] surpass top-rank traditional methods
[48, 53] (see Fig. 1), capable of recovering details barely perceptible by an human. The question is which architecture
will prevail over the next ten years. Transformer-based methods show great promise for image denoising and are likely
to play an important role in the future. Meanwhile, let us not bury too quickly the other architectures as comebacks are
still possible [89, 132]. The potential of all these frameworks has not yet been fully explored and open challenges and
promising research directions for image denoising in the coming years. Neverthelss, in view of the recent spectacular
results, it is legitimate to wonder whether we are approaching the theoretical limit of denoising performance, which
could reopen the debate on whether image denoising is close to death [21, 79, 80]
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