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Abstract: This paper addresses the distributed formation control problem of networked robot
manipulators in end-effector coordinates. We propose a distributed bipartite formation controller
that guarantees collision avoidance and maximum distance maintenance for cooperative and
competitive manipulators’ end-effectors. In the considered setting, two groups of manipulators
are formed and reach bipartite consensus. On the other hand, the end-effectors in the same group
achieve formation. We design a gradient-based control law using barrier-Lyapunov functions to
ensure that the constraints on the end-effectors are satisfied. Moreover, we establish asymptotic
stability of the bipartite formation manifold. Finally, we illustrate our theoretical results via
numerical simulations.
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1. INTRODUCTION

In formation control, a group of robots has to undertake
a task, such as reaching a consensus point or tracking
targets, while keeping a geometric pattern between agents.
This problem has been extensively studied in the liter-
ature, but most works consider only cooperative agents,
in which case the resulting network can be modeled by
a graph containing only positive weighted edges. Yet, in
many scenarios some agents may be in competition. For
instance, in the context of herding control (Chipade and
Panagou, 2020); (Grover et al., 2022); of social-networks
theory (Altafini, 2013), and of aerospace applications
(Zhao et al., 2022).

The presence of both cooperative and competitive inter-
actions in a network may be modeled using signed net-
works, in which the edges have both positive and negative
weights—see (Altafini, 2013). For so-called structurally
balanced networks 1 the attainable goal, in general, is
bipartite consensus, which consists in all the agents con-
verging to the same state in modulus but opposite in signs.
See, e.g., (Altafini, 2013); (Du et al., 2018), and (Valcher
and Misra, 2014).

Now, the above-mentioned references focus on generic
first-, second-, or higher-order linear models, which are
1 A signed network is called structurally balanced if the nodes may
be split into two disjoint subsets, where cooperative agents are in the
same subset and competitive agents are in different ones.

less suited to model the dynamics of robot manipula-
tors. The latter are most often modeled by the Euler-
Lagrange equations, which are inherently nonlinear. Now,
multi-agent Euler-Lagrange systems are well-studied in
the literature, but mostly for cooperative systems. The
synchronization of multiple robot manipulators in joint
coordinates is addressed, e.g., in (Nijmeijer and Rodŕıguez-
Angeles, 2003) and the formation of manipulators in end-
effector coordinates is studied in (Sakurama, 2021); (Wu
et al., 2022). For signed networks, the bipartite consensus
of networked robot manipulators is addressed, e.g., in (Liu
et al., 2019); (Hu et al., 2019); (Zhang et al., 2023), while
the leader-follower bipartite consensus is studied in (Liu
et al., 2022); (Liang and Huang, 2020); (Li et al., 2022),
all in joint coordinates. In end-effector coordinates the
bipartite formation-control problem is considered in (Pan
et al., 2023).

This paper addresses the bipartite formation-control prob-
lem of end-effectors for robot manipulators while ensuring
inter-agent end-effector collision avoidance and maximum
distance maintenance for task requirements. These inter-
agent constraints are commonly addressed using artifi-
cial potential functions—see e.g., (Dimarogonas and Kyr-
iakopoulos, 2008); (Panagou et al., 2013) for cooperative
networks. For signed networks, (Fan et al., 2014) addresses
the bipartite flocking problem with collision avoidance
and connectivity maintenance, using artificial potential
functions. In (Şekercioğlu et al., 2023), a controller based



on the gradie nt of a barrier-Lyapunov function is proposed
for the problem of constrained bipartite formation over
undirected signed networks of simple integrators. Nonethe-
less, all the references mentioned above consider only first
and second-order integrators.

In this paper, we consider robot manipulators modeled
by the Euler-Lagrange equations. The contributions are
twofold: firstly, in contrast with (Nijmeijer and Rodŕıguez-
Angeles, 2003); (Sakurama, 2021); (Wu et al., 2022), we
consider networks containing both cooperative and com-
petitive robot manipulators. The resulting graph is signed,
structurally balanced, and undirected. Such a scenario is
motivated by applications in industrial robotics where ma-
nipulators in the same workspace are assigned symmetric
tasks or are working on opposite surfaces of a product.
By putting signs on the edges, one group of manipula-
tors is forced to perform the task on one side and the
other group on the symmetric side. Then, we address
the bipartite formation problem of end-effectors under
collision avoidance and maximum distance maintenance
constraints using barrier-Lyapunov functions. Relative to
(Fan et al., 2014), which focuses on bipartite flocking with
collision avoidance, in our work, a minimal safety distance
is ensured between any two agents. Moreover, in contrast
to (Şekercioğlu et al., 2023) and (Fan et al., 2014), we
consider Euler-Lagrange systems, not simple integrators.
Our control design and analysis rely on the edge-based
formulation for signed networks—see (Du et al., 2018),
which allows to recast the problem into one of stabilization
of the origin in error coordinates. We establish asymp-
totic stability of the bipartite formation manifold using
Lyapunov’s direct method. To the best of our knowledge,
similar results are not available in the literature for robot
manipulators containing competitive interactions.

2. MODEL AND PROBLEM FORMULATION

2.1 Agents’ dynamics

Consider a network of N n-degrees-of-freedom robot ma-
nipulators modeled by the Euler-Lagrange equations.

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τi, i ≤ N, (1)

where qi, q̇i, q̈i ∈ Rn are the generalized joint position,
velocity, and acceleration respectively, Mi(qi) ∈ Rn×n
is the inertia matrix, U : Rn → R is the potential
energy function and τi ∈ Rp is the control input. As it
is customary, we assume the following.

Assumption 1. The following properties hold.

1. There exist ci and c̄i > 0 such that, ciI ≤ Mi(qi) ≤
c̄iI for all qi ∈ Rn.

2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

3. The Coriolis matrix Ci(qi, q̇i) is uniformly bounded
in qi. Moreover |Ci(qi, q̇i)q̇i| ≤ kci |q̇i|2 for kci > 0.

2.2 Problem statement

The bipartite formation-control problem of the manipu-
lators’ end-effectors consists in ensuring that the posi-
tions of the end-effectors, in cooperation with each other,
achieve a desired geometric shape around a consensus

value. Meanwhile, the end-effector positions of the com-
peting agents converge on another spatial configuration,
which is symmetrical. Let xi ∈ Rp be the position of the ith
manipulator’s end-effector in the task space. The position
of the end effector xi can be mapped to its generalized
joint coordinates using a nonlinear forward kinematics
mapping—see (Murray et al., 1994)

xi = xi0 + hi(qi), (2)

where xi0 is the position of the manipulator’s base and
hi : Rn → Rp is the mapping from joint-space to the task
space. Differentiating (2) with respect to time, we obtain
the relation between the task space and joint velocities

ẋi = Ji(qi)q̇i, Ji(qi) :=
∂hi(qi)

∂qi
q̇i, (3)

with Ji(qi) ∈ Rn×p the Jacobian matrix of the forward
kinematics. The shape of the end-effector formation is
defined by the relative biases bi and bj with respect to the
two consensus points. Therefore, we can mathematically
define the bipartite formation control objective as

lim
t→∞

x̄i(t)− sgn(aij)x̄j(t)→ 0, i, j ≤ N, (4)

where x̄i := xi − bi, and aij ∈ R is the adjacency weight
between the two agents. Moreover, for agents to achieve
the objective in (4), we assume the following.

Assumption 2. The systems described in (1), which are in-
terconnected via inputs τi, form a structurally balanced 2 ,
undirected, and connected signed graph.

Remark 1. If we consider a structurally unbalanced undi-
rected graph, all agents converge to the same state (the
origin), which does not respect the imposed constraints.
Thus, we only consider structurally balanced graphs.

In the case that all the agents in the network are coopera-
tive, all of the x̄i converge to the same value. However, in
this case, given that some robot manipulators are compet-
itive, there appear to be two competing groups of agents.
Therefore, all x̄i reach two symmetrical values, resulting in
all end-effectors adopting a desired formation around two
symmetrical consensus points. For the purposes of control
design and analysis, this is equivalent to making synchro-
nization errors converge to zero. These errors correspond
to the edges of the graph and are defined as

ēk := x̄i − sgn(aij)x̄j , k ≤M, (5)

where k denotes the index of the interconnection between
the ith and jth end-effectors.

In addition, to ensure the safety of the manipulators and
the success of their task, the controller τi must ensure
that the end-effectors do not collide and that they remain
within the range of their sensors. This amounts to ensuring
that for any pair of communicating nodes νi and νj ∈ V,
given Rk > 0 and ∆k > 0 with k ≤ M , and setting
δk := xi − xj , the following sets be invariant:

Ir := {δk ∈ Rn : |δk| < Rk, k ∈ Em} (6a)

Ic := {δk ∈ Rn : |δk| > ∆k k ≤M}. (6b)

Here, Em contains the indices of m < M cooperative edges
(edges with strictly positive weights) since the maximum

2 We recall that a signed graph is structurally balanced if it may be
split into two disjoint sets of vertices V1 and V2, where V1 ∪ V2 = V,
V1 ∩ V2 = ∅ such that for every i, j ∈ Vp, p ∈ {1, 2}, if aij ≥ 0,
while for every i ∈ Vp, j ∈ Vq , with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0.
Otherwise, it is structurally unbalanced (Altafini, 2013).



distance constraints are only for cooperative agents, Ir
is the set of proximity constraints and Ic is the set of
collision-avoidance constraints. Under these conditions, it
is required to design a distributed bipartite formation
control law of the form

τi = fi(ēk, qi, q̇i),

to achieve bipartite formation of the end-effectors, i.e.,
such that,

lim
t→∞

ēk(t) = 0, lim
t→∞

q̇i(t) = 0, k ≤M, i ≤ N, (7)

and the manipulators’ end-effector’s trajectories satisfy
the proximity and collision-avoidance constraints, that is,
δ(t) ∈ I for all t ≥ 0, where δ := [δ1 δ2 · · · δM ]>, I := Ir∩
Ic for cooperative agents and I := Ic for competitive
agents.

3. MAIN RESULT

To solve the problem posed above, we recast it as one of
stabilization of the origin in edge coordinates, which cor-
respond to the synchronization errors in (5)—cf (Mesbahi
and Egerstedt, 2010); (Du et al., 2018). Then, in order to
respect the inter-agent distance constraints, the control in-
put is designed based on the gradient of a so-called barrier-
Lyapunov function—cf. (Panagou et al., 2013); (Mesbahi
and Egerstedt, 2010); (Restrepo-Ochoa, 2021). Finally, we
analyze the stability of the bipartite formation manifold.

3.1 Control design

A barrier-Lyapunov function (BLF) is defined as follows—
cf. (Panagou et al., 2013), (Mesbahi and Egerstedt, 2010),
(Restrepo-Ochoa, 2021).

Definition 1. Consider the system ẋ = f(x) and let I be
an open set containing the origin. A BLF is a positive
definite C1 function W : I → R≥0, x 7→ W (x), satisfies
∇W (x)f(x) ≤ 0, where ∇W (x) := ∂V/∂x, and has the
property that W (x)→∞, and ∇W (x)→∞ as x→ ∂I.

We introduce a barrier-Lyapunov function expressed in
terms of the synchronization errors ēk for the purposes of
this paper. To that end, for a couple of cooperative agents,
we express ēk in (5) as

ēk = x̄i − x̄j = δk − b̄k, i, j ∈ Vp, (8)

and for a couple of competitive agents, we have

ēk = x̄i + x̄j = δk − b̄k + 2xj , i ∈ Vp, j ∈ Vq, (9)

where p, q ∈ {1, 2}, p 6= q and b̄k = bi − sgn(aij)bj . Then,
in terms of synchronization errors, the constraint sets in
(6) can be redefined as follows

Ir = {ēk ∈ Rn : |ēxk
+ αk| < Rk, k ∈ Em}, (10a)

Ic = {ēk ∈ Rn : ∆k < |ēxk
+ αk|, k ≤M}, (10b)

where αk is defined as

αk := δk − ēk. (11)

Notice that, in the case of two cooperative agents, we have
αk = b̄k, which is constant. Then, we define the BLF
Wk : R→ R≥0 for each k ≤M ,

Wk(ēk) =
1

2
[|ēk|2 +Bk(ēk)], (12)

where 3 Bk(ēk) is the sum of two functions satisfying
Definition 1, encoding the constraints in (10), respectively,
Bk(ēk) = 1

2 (1+σk)Brk(ēk)+Bck(ēk), where Bck(ēk)→∞
as |ēk| → ∆k and Brk(ēk) → ∞ as |ēk| → Rk for all k.
In the latter, since the maximum distance constraints are
imposed only on cooperative agents, σk = 1 if k ∈ Em, and
σk = −1 otherwise. Furthermore, Bk(ēk) is non-negative
and satisfies Bk(0) = 0. Additionally, it tends to infinity
as |ēk| → ∆k for all edges and as |ēk| → Rk for k ∈ Em.
However, considering the constraints defined in (10), the
barrier function has to be adjusted to ensure that the
solution lies within the interior of the constraint sets in
(10) and to guarantee the system’s convergence to the
desired point—cf. (Wills and Heath, 2002). We define

Ŵk(αk, ēk) := Wk(ēk + αk)−Wk(αk)− ∂Wk

∂s
(αk)ēk.

(13)

This function satisfies Ŵk(αk, 0) = 0, ∇ēkŴk(αk, 0) = 0,

where ∇ēkŴk = ∂Ŵk

∂ēk
, and Ŵk(αk, ēk)→∞ as |δk| → ∆k

for all k ≤ M , and as |δk| → Rk for all k ∈ Em. The
gradient of the BLF vanishes at the origin and at another
isolated saddle point e∗k, separated from the origin. Then,
we define the disjoint set Wk := {0} ∪ {e∗k}, which

corresponds to the critical points of Ŵk(αk, ēk).

Then, we introduce the BLF-gradient-based bipartite for-
mation control law given by

τi =− k1i
Ji(qi)

>

[
M∑
k=1

[Es]ik∇ēkŴk +

M∑
k=1

[E]ik∇αk
Ŵ

]

− k2i q̇i +
∂

∂qi
Ui(qi), (14)

where k1i
> 0, k2i

> 0 for all i ≤ N ,

E = E − Es, (15)

where E denotes the incidence matrix of the network if
all interactions were cooperative 4 , and Es the incidence
matrix of the considered signed network. For a structurally
balanced signed network, Es is defined as follows:

[Es]ik :=



+1, if vi is the initial node of the edge εk;
−1, if vi, vj are cooperative such that

vi, vj ∈ Vl, l ∈ {1, 2} and vi is the
terminal node of the edge εk;

+1, if vi, vj are competitive such that
vi ∈ Vp, vj ∈ Vq, p, q ∈ {1, 2}, p 6= q and
vi is the terminal node of the edge εk;

0, otherwise,

where εk = {vi, vj}, k ≤ M, i, j ≤ N are arbitrarily
oriented edges and V1 and V2 are the two disjoint sets of
vertices.

The first two terms of the control law in (14) are needed
to ensure the bipartite formation of end-effectors while
respecting the inter-agent constraints imposed on the task
space. The second term is needed specifically because of
the use of the gradient recentered barrier function and the
presence of competitive interactions between agents. The
third term is needed to control the joint velocity. It consists
3 A particular choice for Bk(ēk) is given in Section 4.
4 A structurally balanced signed graph may be transformed into a
cooperative one using the gauge transformation—see (Altafini, 2013;
Du et al., 2018).



of a damping term to stabilize the joint velocities at zero.
The last term is to compensate for the gravitational force.

3.2 Asymptotic stability

We analyze the stability of the bipartite formation mani-
fold for the closed-loop system (1) interconnected by the
control law (14). To that end, using the definition of the
incidence matrix, we represent the synchronization errors
in (5), and αk in (11), in the vector form

ē = [E>s ⊗ In]x̄, (16a)

α = [E> ⊗ In]x− [E>s ⊗ In]x̄. (16b)

Then, after (13), we define

W̄ (α, ē) =

M∑
k=1

Ŵk(αk, ēk), (17)

and we write the closed-loop system (1)–(14) in the com-
pact form

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Es ⊗ In]∇ēW̄ (α, ē)

+K1J(q)>[E⊗ In]∇αW̄ (α, ē) + [K2 ⊗ In]q̇
]
, (18)

where q = [qi], M(q) = blkdiag[Mi(qi)], C(q, q̇) =
blkdiag[Ci(qi, q̇i)], K1 = diag(k1i

), K2 = diag(k2i
) and

J(q)> = blkdiag[Ji(qi)
>], for all i ≤ N .

On the other hand, after Assumption 2, the resulting graph
of the considered network is undirected and connected, so
it contains a spanning tree. Then, the closed-loop system
can be expressed only in terms of the errors corresponding
to the spanning tree. In order to obtain the closed-loop
equations in spanning-tree coordinates, we recall that
the incidence matrix of the considered network can be
partitioned into

Es = [Ets Ecs ], (19)

where Ets ∈ RN×N−1 is the incidence matrix representing
the edges corresponding to the spanning tree, and Ecs ∈
RN×M−(N−1) is the incidence matrix representing the re-
maining edges. Following the same reasoning, the synchro-
nization errors can also be expressed as ē = [ē>t ē>c ]>,
where ēt corresponds to the spanning-tree errors. More-
over, for a structurally balanced signed graph, there exists
a matrix Rs such that

Es = EtsRs, (20)

where Rs := [IN−1 Ts] and Ts := (E>tsEts)−1E>tsEcs—
see Proposition 1 in (Şekercioğlu et al., 2023). Thus, we
can also express all synchronization errors in terms of the
spanning-tree errors as

ē = [(EtsRs)
> ⊗ In]x̄ = [R>s ⊗ In]ēt. (21)

Next, we express the control law in spanning-tree coor-
dinates, for which we introduce W̃ (α, ēt) := W̄ (α, [R>s ⊗
In]ēt). That is, in view of (21), W̃ (α, ēt) denotes the same
quantity as the right-hand-side of (17), but in spanning-
tree coordinates. Thus, Eq. (18) becomes

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ētW̃ (αt, ēt)

+ K1J(q)>[E⊗ In]∇αW̃ (α, ēt) + [K2 ⊗ In]q̇
]
. (22)

Remark 2. Notice that, using (20), the gradient-based

control term reads ∇ētW̃ ≡ ∂W̄
∂ē

> ∂ē
∂ēt

= ∇ēW̄>[R>s ⊗ In].

Then, we have the following.

Proposition 3. Consider N robot manipulators modeled
by (1) and satisfying the Assumptions 1 and 2, in closed-
loop with the distributed control law (14), with k1i, k2i >

0, for all i ≤ N and Ŵk as defined in (13). Then, for any
given formation shape reachable by the end-effectors, the
set {(ē, q̇) = (0, 0)} is asymptotically stable for almost all
initial conditions such that (ē(0), q̇(0)) ∈ I × RnN and
|αk(0)| > ∆k for any k ≤M .

Sketch of proof: The proof may be constructed using the
Lyapunov function candidate

V (α, ēt, q̇) = W̃ (α, ēt) +
1

2
q̇>M(q)q̇,

where M(q) = M(q)>, whose derivative satisfies

V̇ = −q̇>[K2 ⊗ In]q̇ ≤ 0.

Next, using LaSalle’s invariance principle, it follows that
∇ētW̃ = 0, which holds if and only if ēt ∈ Wt, where
Wt = {0, e∗t }, and e∗t is a saddle point. Since e∗t is a
saddle point, the set of initial conditions that converge to
(e∗t , 0) has zero Lebesgue measure. Thus, almost all initial
conditions converge to the origin. Asymptotic stability
follows.

Furthermore, forward invariance of the set It×RnN , where
It := Ict ∩ Irt for cooperative agents, It := Ict for
competitive agents, while

Irt := {ētk ∈ Rn : |r>sk ētk + αk| < Rk, k ∈ Em}, (23)

Ict := {ētk ∈ Rn : ∆k < |r>sk ētk + αk|, k ≤M}, (24)

and rsk is the kth column of Rs, follows by observing
that V is non-increasing along the trajectories of (22) and
V → ∞ as |r>sk ētk + αk| → ∆k, k ≤ M or |r>sk ētk +
αk| → Rk, k ∈ Em. Thus, we conclude that the origin is
asymptotically stable for almost all trajectories starting in
It × RnN .

4. SIMULATION RESULTS

ν1 ν2

ν3

ν4

ν5

ν6

ν7 ν8

e1

e2

e3

e4

e5

e6 e8

e7 e9

Fig. 1. An undirected signed network of 8 robot manipulators.

The black lines represent cooperative edges, and the red lines

represent the competitive edges.

We provide a numerical example to show the performance
of our control law in (14). For that, we consider a system
of 8 two-link robot manipulators interconnected over a
structurally balanced undirected signed network, modeled
by a graph as the one depicted in Figure 1. For the
corresponding graph, we define the orientation of the nine
edges as e1 = ν1+ν2, e2 = ν1−ν3, e3 = ν1−ν4, e4 = ν2−ν5,
e5 = ν2 − ν6, e6 = ν3 + ν7, e7 = ν4 + ν7, e8 = ν5 + ν8 and
e9 = ν6+ν8. The set of nodes may be split into two disjoint
subgroups as V1 = {ν1, ν3, ν4, ν8} and V2 = {ν2, ν5, ν6, ν7},
so the network is structurally balanced. From (19), the
edges ei, i ≤ 5 correspond to the edges of the spanning tree,
and the remaining edges, e6, e7 , e8 and e9, correspond to
the cycles.



The corresponding incidence matrix is given by

Es =



1 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 −1 0 0 0 −1 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1


.

Each manipulator is modeled by the Euler-Lagrange equa-
tions in (1), with inertia and Coriolis matrices given by

Mi(qi) =

[
αi + 2βi cos(q2i) δi + βi cos(q2i)
δi + βi cos(q2i) δi

]
,

Ci(qi, q̇i) = δi

[
− sin(q2i

)q̇2i
− sin(q2i

)(q̇1i
+ q̇2i

)
− sin(q2i

)q̇1i
0

]
,

where αi = l22i
m2i

+ l21i
(m1i

+ m2i
), βi = l1i

l2i
m2i

and

δi = l22i
m2i

with l1i
, l2i

and m1i
,m2i

are the length and
the mass of links 1 and 2. The physical parameters are
m1 = 1.2kg, m2 = 1kg, and l1 = l2 = 1m for all i ≤ N .
The kinematic model for each manipulator is given by

xi =

[
l1 cos(qi1) + l2 cos(q1i

+ q2i
)

l1 sin(qi1) + l2 sin(q1i
+ q2i

)

]
+ xi0 ,

and the Jacobian matrix

Ji(qi) =[
−l1 sin(qi1)− l2 sin(q1i + q2i) −l2 sin(q1i + q2i)
l1 cos(qi1) + l2 cos(q1i + q2i) l2 cos(q1i + q2i)

]
.

Consider the system (1) with the bipartite formation
control law (14), where k1i

= 15, k2i
= 10 for all

i ≤ N and the barrier-Lyapunov function in (13), with

Brk(s) = ln
(

R2
k

R2
k
−|s|2

)
, Bck(s) = ln

(
|s|2

|s|2−∆2
k

)
. The bases

of eight robot manipulators are located at x10
= [0.8, 1]>,

x20
= [2, −0.5]>, x30

= [−0.5, −1]>, x40
= [−3, 0.5]>,

x50
= [−1, −2]>, x60

= [3, −1]>, x70
= [1, −3]>,

x80
= [−2.5, −0.5]>.
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Fig. 2. Bipartite formation of system (1) with control input (14) on

joint trajectories.

The initial conditions for each agent are q1(0) = [π, π/3]>,
q2(0) = [2π/3, π/3]>, q3(0) = [π, π/3]>, q4(0) =
[0, π/2]>, q5(0) = [π, π/3]>, q6(0) = [0, −π/3]>,
q7(0) = [π, π/3]>, q8(0) = [0, −π/3]>, q̇1(0) = q̇2(0) =
q̇3(0) = q̇4(0) = q̇5(0) = q̇6(0) = q̇7(0) = q̇8(0) = [0, 0]>,
with q = [q1, q2]> and q̇ = [q̇1, q̇2]> and the relative
displacements of the end-effectors are b1 = [0.4, 0.4]>,

b2 = [−0.4, 0.4]>, b3 = [0.4, −0.4]>, b4 = [−0.4, 0.4]>,
b5 = [−0.4, −0.4]>, b6 = [0.4, 0.4]>, b7 = [0.4, −0.4]>,
b8 = [−0.4, −0.4]>, with b = [bx, by]>. The constraint
sets are ∆k = 0.1 for all k ≤M and Rk = 7 for all k ∈ Em.
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Fig. 3. Bipartite formation of system (1) with control input (14) on

joint velocities.
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Fig. 4. Evolution of the manipulators’ end-effector from the initial

positions (o) to the final positions (*). Each group of end-

effectors forms a triangle around the symmetric consensus

points.
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Fig. 5. Trajectories of the norm of inter-agent distances with control

input (14). The black dashed line is the minimum distance

constraint for all end-effectors, and the red dashed line is the

maximum distance constraint for cooperative end-effectors.

The joint positions and velocities are depicted in Figures
2 and 3, respectively, and all velocities converge to zero.
The paths of each end-effector up to bipartite formation
are depicted in Figure 4, and their final configuration is
depicted in Figure 6. Moreover, it is clear from Figure
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Fig. 6. Final positions of the manipulators and their end-effector.

5 that collision avoidance and maximum distance main-
tenance among the manipulators’ end-effectors are both
guaranteed.

5. CONCLUSION

We addressed the problem of constrained bipartite for-
mation of cooperative-competitive robot manipulators’
end-effectors, modeled by Euler-Lagrange equations. We
considered a structurally balanced and undirected signed
graph. We presented a bipartite formation control law
based on the gradient of a barrier-Lyapunov function
that guarantees that end-effectors do not collide and stay
within their sensing regions. Further research aims to ex-
tend these results to directed signed networks.
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