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Abstract: Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neo-
plasms (MPN) characterized by clonal erythrocytosis and thrombocytosis, respectively. The main
goal of therapy in PV and ET is to prevent thrombohemorrhagic complications. Despite a debated
notion that red blood cells (RBCs) play a passive and minor role in thrombosis, there has been
increasing evidence over the past decades that RBCs may play a biological and clinical role in PV
and ET pathophysiology. This review summarizes the main mechanisms that suggest the involve-
ment of PV and ET RBCs in thrombosis, including quantitative and qualitative RBC abnormalities
reported in these pathologies. Among these abnormalities, we discuss increased RBC counts and
hematocrit, that modulate blood rheology by increasing viscosity, as well as qualitative changes,
such as deformability, aggregation, expression of adhesion proteins and phosphatidylserine and
release of extracellular microvesicles. While the direct relationship between a high red cell count and
thrombosis is well-known, the intrinsic defects of RBCs from PV and ET patients are new contributors
that need to be investigated in depth in order to elucidate their role and pave the way for new
therapeutical strategies.
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1. Introduction

Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are a group of
blood disorders characterized by clonal expansion of abnormal hematopoietic stem/progenitor
cells resulting in an overabundance of erythrocytes, white blood cells (WBCs) and platelets.
The two most common MPNs are polycythemia vera (PV), in which patients present in-
creased red cell mass, often associated with increased platelet and white cell counts, and
essential thrombocythemia (ET), which is defined by an elevated platelet count but normal
red cell mass [1]. The dysregulation of the JAK/STAT pathway is the mechanistic hallmark
of MPNs and is caused by somatic mutations in driver genes including JAK2, CALR and
MPL. In 95% of patients with PV and 60% of those with ET, a single somatically acquired
mutation is found in the gene encoding JAK2 [2–5], resulting in the V617F substitution at
the protein level that dysregulates the kinase activity and drives the ligand-independent
activation of receptor signaling. In JAK2V617F-negative PV cases, somatic gain-of-function
mutations were found in JAK2 exon 12 conferring EPO-independent autonomous growth
and EPO-hypersensitivity to bone marrow colonies, both in vitro and in vivo [6]. Com-
pared to the V617F mutation, the exon 12 mutation results in stronger ligand-independent
signaling and patients are characterized by higher hemoglobin levels and isolated erythro-
cytosis [7].

The major causes of morbidity and mortality in PV and ET are arterial and venous
complications, progression to myelofibrosis and transformation to acute leukemia.

The pathogenesis of thrombosis results from a complex interplay of clinical and
disease-related factors. Abnormalities of blood cells arising from the clonal proliferation of
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mutated hematopoietic stem cells involve not only quantitative changes but also qualitative
modifications that characterize the switch of these cells from a resting to a procoagulant
phenotype. Several studies indicate that vascular risk is substantially increased in PV
and ET patients, even in relatively young patients with no previous vascular history, and
becomes very high in older patients with a prior vascular event. The incidence range of
arterial and venous thrombosis is 12–39% in PV and 11–25% in ET [8], with continuous
efforts to disclose the underlying mechanisms. In many instances, thrombosis first occurs
at the time of diagnosis, but cardiovascular events continue to occur during follow-up,
even in treated patients. Thromboses are both arterial and venous and may occur virtually
in any area. Arterial thrombosis, including acute myocardial infarction, cerebrovascular
ischemic episodes and peripheral arterial occlusion, represent 60 to 70% of all cardiovascular
events in PV. PV patients also experience deep vein thrombosis and pulmonary embolism.
Moreover, they show a high prevalence of rare forms of thrombosis, such as abdominal
vein thrombosis, including extrahepatic portal vein occlusion, Budd–Chiari syndrome and
mesenteric vein thrombosis [9].

Risk stratification in PV and ET has been designed to estimate the likelihood of
thrombotic complications [10]. Predictors of arterial complications include age > 60 years,
leukocytosis >11 G/L, prior history of thrombosis, and cardiovascular risk factors [11].
High-risk PV and ET patients require cytoreductive therapy, while low-risk patients require
daily aspirin therapy [10]. The first-line drug of choice for cytoreductive therapy, in both
PV and ET, is hydroxycarbamide (HC), while the second-line drugs of choice include
pegylated-interferon alpha (IFN) [10].

The pathophysiology of thrombosis in PV and ET is multifactorial and complex, a
variety of blood cells have been reported to participate in this mechanism. In PV, platelets
and leukocytes show a number of morphological, functional and biochemical abnormal-
ities. PV platelets have increased surface expression of P-selectin, thrombospondin and
activated fibrinogen receptor GPIIb/IIIa [12,13]. Moreover, they show an abnormal ac-
tivation associated with modified cell surface localization and the stability of the cMPL
receptor [14]. As a matter of fact, it has been shown that JAK2 mutations impair cMPL
signal transduction for TPO-induced platelet priming leading to chronic platelet hyper-
responsiveness [15]. Increased WBC count is associated with vascular risk in PV and
ET patients [16]. In addition to the cell count, abnormal leukocyte activation is found
in these patients. Activated leukocytes release an array of substances as reactive oxygen
species (ROS) and proteolytic enzymes contributing to the activation of the hemostatic
system, the inactivation of physiological inhibitors of coagulation and the formation of
neutrophil/platelet complexes [17]. Platelet and leukocyte activation perturb the resting
state of the endothelium and turns it into a prothrombotic surface. This damage triggers the
release of Von Willebrand factor (vWF) in the circulation which in turn binds to platelets
and activates their aggregation and the subsequent reinforcement of the clot in an amplifi-
cation loop [18]. The presence of the JAK2V617F mutation was reported in endothelial cells
(ECs) [19], with in vivo and in vitro studies showing the pro-thrombotic nature of the cells
bearing the mutation [20,21]. In these studies, mice with endothelial-specific JAK2V617F
expression displayed a higher propensity for thrombus formation due to the pro-adhesive
phenotype of mutated ECs, associated with the increased expression levels of vWF and
P-selectin (CD62P) [20,21].

For a long time, red blood cells (RBCs) were considered to be passive contributors to
thrombotic events [22]. In recent years, clinical and epidemiological studies have associated
quantitative and qualitative abnormalities of RBCs with both arterial and venous throm-
bosis. A growing body of mechanistic studies suggests that RBCs can promote thrombus
formation and enhance thrombus stability. These findings suggest that RBCs may con-
tribute to the pathophysiology of thrombosis, paving the way to potential therapeutical
strategies targeting RBCs to prevent thrombosis or reduce its incidence [23]. In the context
of MPNs, several RBC-related abnormalities have been reported, such as increased RBC
count, altered RBC deformability, abnormal expression and activation of adhesion proteins,
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and release of extracellular microvesicles. These abnormalities contribute to increased
vascular resistance and enhanced interaction of RBCs with the vascular wall, which may
contribute to thrombus formation. In this review, we summarize the main findings of the
literature that suggest an active role for RBCs in PV and ET thrombotic complications.

2. Quantitative and Qualitative Features of PV and ET RBCs in Relation to Thrombosis

RBCs are the most abundant cell type in the body. Their primary role is to transport
oxygen to the tissues and carbon dioxide to the lungs. With their flexible structure, RBCs
are capable of deforming in order to travel through all blood vessels including very small
capillaries. Throughout the 120 days of their lifespan in circulation, RBCs travel in the
bloodstream and come in direct or indirect contact with almost all of the cell types of the
organism. For a long time, RBCs were considered to be passive carriers of respiratory
gases; however, emerging evidence highlights a more complex physiological role. This
was brought by recent discoveries demonstrating altered RBC functions in the context of
hematological and non-hematological disorders.

2.1. Elevated Hematocrit and Rheological Parameters

Being the major cellular component of blood, RBCs play a central role in defining and
regulating the rheological parameters of the bloodstream. Hematocrit (HCT) represents the
ratio of the volume of RBCs to the total volume of the blood [24]. Walton et al. showed that
mice with high HCT, irrespective of platelet count and thrombin generation, had a reduced
bleeding time after injury and a faster artery occlusion arising from accelerated platelet
accumulation in the vicinity of the clot [25]. One of the major criteria in PV diagnosis is the
presence of elevated HCT resulting from excessive erythrocytosis. The prothrombotic role
of elevated HCT has been clearly demonstrated in PV [26,27], as patients maintaining an
HCT target of less than 45% showed a lower rate of thrombotic complications as compared
to those with a target of 45 to 50% [28]. Moreover, using a PV mouse model, it was shown
that stalled blood flow in brain capillaries was correlated with high HCT [29]. Elevated
HCT contributes to thrombotic complications by increasing blood viscosity, reducing
blood return through the venous system and increasing platelet adhesion. Increased
blood viscosity promotes blood clot formation and increases platelet activation at the
vessel wall. Under low shear rates, as in the venous bed, hyperviscosity causes a major
disturbance to the blood flow and at high shear rates, as in the arteries, the increase in the
red cell mass displaces platelets toward the vessel wall, thus facilitating shear-induced
platelet activation and enhancing platelet–platelet interactions. The pathogenesis of a
thrombus is multifactorial, and it is admitted that its occurrence is mainly determined by
the interrelation of the three physiological factors of Virchow’s triad: the hypercoagulability
of the blood, the stasis of blood flow and the intravascular damage of the vessel wall.
Erythrocytosis has a negative effect on all components of Virchow’s triad (Figure 1). The
elevated RBC count in PV is responsible for increased viscosity, slowing down the blood
flow, acting as a strong prothrombotic factor. All together, these observations suggest that
preserving a normal hematocrit in these patients might further diminish the occurrence of
serious thrombotic complications. However, thrombotic events could be still observed in
some patients under cytoreductive treatment [30] suggesting that besides hematocrit, other
parameters contribute to thrombosis physiopathology in PV.

2.2. Altered Deformability

The rheological properties of RBCs play an important role in their microcirculation.
Deformability is an essential feature of RBCs that enables them to circulate through the
smallest capillaries of the human body. Physiologically, RBCs, that have a 7–8 µm diameter,
change their native biconcave shape to a bullet-like shape every time they squeeze through
1–3 µm blood vessels. This deformation is critical to ensure a high interface area with
the vessel wall that is necessary for the efficient exchange of oxygen and carbon dioxide
between the blood and tissues. Deformability is a function of (i) the structural proteins of
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the cytoskeleton, (ii) processes controlling intracellular ion and water handling and (iii) the
membrane surface-to-volume ratio.
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The deformability of RBCs is critical for the blood flow, even a slight decrease in
RBC deformability may cause a significant increase in microvascular flow resistance and
blood viscosity, which may lead to thrombotic complications. Investigations of PV RBC
morphodynamics using laser-assisted approaches have shown a significant reduction in
PV RBC deformability [31]. Dąbrowski and colleagues showed an elevated activity of
glucose-6-phosphate dehydrogenase and acetylcholinesterase in PV RBCs that together
with elevated levels of glutathione and malonyldialdehyde can explain their increased
rigidity [32] (Figure 2). Ektacytometry experiments using LoRRca (laser-optical rotational
red cell analyzer), confirmed the reduced deformability and elasticity of PV RBCs and
showed increased aggregation amplitude compared to those from heathy donors [31].
Interestingly, this increased aggregation discriminates patients with a high risk of stroke
among PV patients [33].
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Intracellular Ca2+ is a potent effector of RBC biophysical and rheological properties
that may play a role in thrombus formation [34]. Several studies have shown that calcium
homeostasis may be altered in PV RBCs, with (i) higher levels of free intracellular Ca2+

as compared to healthy RBCs [35], (ii) elevated levels of Ca2+-binding proteins, such
as calnexin and calreticulin and (iii) reduced levels of ATPase plasma membrane Ca2+

transporting 4 (PMCA4B), responsible for Ca2+ export [36]. Increased free intracellular Ca2+

levels in PV RBCs may lead to increased Gárdos channel activity, promoting potassium
efflux and subsequent cell dehydration and rigidification (Figure 2). Intracellular Ca2+

accumulation in PV RBCs seems to be associated with the presence of JAK2V617F, which
attributes a role for this mutation in the alteration of RBC biochemical and biomechanical
properties, that in turn may contribute to thrombosis.

2.3. Enhanced RBC Adhesion to the Vascular Endothelium

In physiological conditions, interactions and adhesion events between circulating
RBCs, endothelial cells and other circulating cells are minimal. In some pathological
conditions, RBCs were reported to be sticky and to activate the cells of the vascular bed
resulting in vaso-occlusion, as observed in sickle-cell disease [37–40]. Unexpectedly for
a circulating non-adhesive cell, the RBC expresses a panel of adhesion molecules at its
surface. These proteins play an important role in normal red cell development and some of
them contribute to clinical complications in pathophysiology. Selectin receptors expressed
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on RBCs actively participate in leukocytes “rolling” on endothelial cells whereas intercel-
lular adhesion molecule 4 (ICAM-4), CD44, and Lutheran/basal cell adhesion molecule
(Lu/BCAM) are involved in firm interactions. It was shown that sickle RBCs could bind to
the subendothelial matrix exposed after endothelial damage, partly through an interaction
involving Lu/BCAM [41,42]. Of note, the phosphorylation of serine 621 in the cytoplasmic
tail of Lu/BCAM is responsible for the activation of Lu-mediated cell adhesion to laminin
511/521 [43]. Wautier et al. showed increased adhesion of RBCs from PV patients to
endothelial cells under static and flow conditions [44] (Figure 2). This increased adhesion
was mediated by erythroid Lu/BCAM and endothelial laminin 511/521. Moreover, they
showed that in PV RBCs Lu/BCAM was overexpressed and constitutively phosphorylated
through a JAK2V617F/Rap1/Akt-signaling pathway targeting serine 621 [45] (Figure 2).
In vivo, the shear stress in the postcapillary venules varies from 0.1 to 0.5 Pa; the adhesion
of PV RBCs is established in this range and a proportion of adherent cells could withstand
such forces suggesting the existence of a high-affinity adhesive interaction. In addition
to Lu/BCAM, PV RBCs show the abnormal expression of several proteins, including pro-
teins from the endoplasmic reticulum, such as calreticulin and calnexin, and transporters,
like ATP binding cassette Subfamily G member 2 (ABCG2) [36], that could directly or
indirectly affect cell surface properties. Moreover, elevated values of malonyldialdehyde
associated with lipid peroxidation and reactive oxygen species (ROS) production were
described in PV RBCs [32] (Figure 2). Such high values in a PV context may promote RBC
adhesion to endothelial cells as ROS production is known to increase the expression of cell
adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1) on the vascular endothelium through NF-kB activation [46] (Figure 2).
Pegylated-interferon alpha (IFN) and hydroxycarbamide (HC) are commonly used to treat
PV and ET. HC efficacy in preventing thrombosis was suggested in several randomized
clinical trials but is still not proven [28]. HC but not IFN enhances the expression of several
proteins in PV red cell ghosts, including Lu/BCAM and CD147 adhesion proteins, and
further exacerbates RBC adhesion to laminin in vitro [47].

2.4. Phosphatidylserine Exposure

Phosphatidylserine (PS) is an amino-phospholipid known to play a crucial role in
mediating the recognition of senescent RBCs, serving as an eat-me signal. During aging,
upon injury of cells or under certain pathological conditions, scramblase translocates PS
from the inner to the outer leaflet, leading to increased concentrations on the external
surface [48]. Peyrou et al. suggested that these PS-expressing RBCs may be a source
of thrombin generation through the meizothrombin pathway and may play an active
role in clot formation and stabilization [49] (Figure 2). PS-expressing RBCs could also
contribute to thrombus formation via platelet activation. In anemic mice, a small population
of RBCs was located in platelet thrombi and RBC/platelet interaction via FasL/FasR
induced externalization of PS on the RBC membrane and enhanced platelet activation were
observed [50].

PV patients are characterized by increased PS exposing RBCs/platelets, which could
contribute to their hypercoagulable state [51]. While ~0.5–0.6% of the RBC population
normally express PS in healthy subjects, the contribution of RBCs in pathological conditions
may reach 40% of the thrombin-generating potential of whole blood [52]. Several studies
using static adhesion assays or flow-based adhesion models have indicated that PS could
participate to RBC adherence to endothelium [53–55]: RBCs can directly bind to CD36 and
PS-receptor (PSR) on ECs [56] as well as to Chemokine (C-X-C motif) ligand 16 (CXCL16)
or CD36 present on activated platelets [57] (Figure 2). The levels of PS-exposing RBCs are
also higher in ET patients compared to healthy donors, with the highest levels observed
in ET patients harboring JAK2 mutations. PS exposing RBCs were shown to contribute to
the hypercoagulable state in ET patients by increasing the production of Factor Xa (FXa),
thrombin and fibrin [58] (Figure 2).
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2.5. RBC-Derived Microvesicles

Microvesicles (MVs) derived from RBCs are membranous extracellular structures
shed into plasma with a diameter of 50–200 nm. They play an important role as key
mediators of intercellular communication and consequently have an impact on various
physiological processes such as blood homeostasis [59]. RBC-derived MVs expose on
their surface antigens derived from the RBC membrane such as Glycophorin A (GPA)
and Band 3, as well as PS (Figure 2). It was shown that RBC-derived MVs accumulate
during blood storage and might be responsible for an increased incidence of deep vein
thrombosis or other thrombotic conditions after transfusion of blood units that have been
stored for a long duration [60]. Moreover, higher levels of MVs are associated with a
dose- and time-dependent increase of thrombin generation and a reduction in clotting
time, suggesting that they enhance hypercoagulability [61]. This enhanced thrombin gen-
eration has been associated with the expression of PS [62]. Alternatively, RBC-derived
MVs can initiate thrombin formation either via a factor XII-dependent pathway or via
the direct activation of FIX in a kallikrein-dependent manner [63] without tissue factor
activity [64] (Figure 2). The circulating MVs can also promote vaso-occlusion by internaliz-
ing free heme and transferring it to the vascular endothelium or activating the complement
system [65].

MPN patients have higher plasmatic levels of MVs than healthy individuals, with
the MVs being derived from RBCs, platelets and endothelial cells. MV levels were shown
to be higher in MPN patients having experienced thrombotic events [66,67]. In addition
to this quantitative parameter related to their concentration in the circulation, MVs show
a membrane and content composition that is specific to PV patients. As a matter of fact,
JAK2V617F RBC-derived MVs were shown to be responsible for increased endothelial
oxidative stress and nitric oxide (NO) pathway inhibition, increasing arterial contraction
that accounts for the arterial events associated with the disease. At the molecular level,
PV RBC-derived MVs have a defect in glutathione S-transferase theta 1 (GSTT1) and
an overexpression of myeloperoxidase (MPO) [68] (Figure 2). MPO disrupts vascular
endothelium by destabilizing the glycocalyx, resulting in neutrophil recruitment and the
generation of neutrophil extracellular traps (NETs) [69]. NETs are directly involved in
thrombus generation via various mechanisms that have been reviewed elsewhere [70].
A various number of clinical studies have shown that serum MPO and DNA levels are
associated with an increased risk of deep vein thrombosis and pulmonary embolism in
humans [71–74] suggesting that MPO levels might be used as a biomarker in patients with
PV and ET.

A recent paper associates increased levels of RBC-derived MVs with pro-thrombotic
microenvironment in patients with type 2 diabetes mellitus and suggests monitoring RBC-
derived MVs levels by flow-cytometry as a biomarker of thrombotic risk [75]; the possibility
needs to be further investigated in PVs and ETs.

2.6. Clinical Relevance of RBC Properties in Thrombotic Risk

In MPNs, thrombotic risk correlates with age, prior thrombosis, hypertension, hy-
perlipidemia, leukocytosis, JAK2V617F allele burden and therapy in some, but not all,
studies, but only age and prior thrombosis are included in thrombosis risk stratification.
Recently, several studies reported that RBC distribution width (RDW) predicts thrombosis
in patients with PV [76–79]. RDW is a parameter that measures the size and the volume
of RBCs, but the relation between RDW values and thrombotic events remains unclear.
However, it has been demonstrated that higher RDW values are associated with decreased
RBC deformability [80] leading to erythrocytes aggregation, increased blood viscosity and
thrombotic susceptibility [81,82].
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3. Conclusions and Perspectives

The ability of RBCs to promote thrombosis is multifactorial, with several underlying
mechanisms that are probably needed in concert. Although RBCs are not known to be
the drivers of thrombotic events, the studies cited in this review are important elements
supporting the active role of RBCs in this pathological manifestation in PV and ET. While
the direct relationship between a high red cell count and thrombosis is well-known, the
intrinsic defects of RBCs from PV and ET patients are new contributors that need to be
investigated in depth in order to elucidate their role and pave the way for new biomarkers
(Table 1) and therapeutical strategies.

Table 1. RBC-related biomarkers for prediction of thrombotic events in PV and ET patients.

Parameter Read Out Clinical Routine Compatible

Hematocrit Blood count yes
RBCs deformability LoRRca yes

Ca2+ concentration Fluorescence/Ca2+ chelator/
atomic absorption microscopy

difficult

Intracellular proteins Western Blot/FACS no
Adhesion molecules FACS difficult

PS exposure FACS yes
RBC derived MVs FACS yes

Serum MPO ELISA yes
Oxidative stress qPCR/fluorescence difficult
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