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1. Introduction

Choquet beliefs, or capacities, generalizes the notion of probability by relaxing additivity.
Since a number of economic problems involve not only uncertainty, but also sequential reso-
lution of it, we have to integrate sequential arrivals of information in the decision process. In
the Choquet framework, we have to specify an updating rule, saying how to calculate updated
capacities. Several updating rules have been proposed in the literature. For instance, Gilboa
and Schmeidler (1993) identify f -Bayesian updating rules1 and Eichberger et al. (2007) ax-
iomatically characterize the Full Bayesian updating rule. In these works, updating rules are
obtained by specifying a link between unconditional and conditional preferences. But the study
of the update of Choquet capacities is not limited to axiomatic approaches. For instance, Jaffray
(1992) and Denneberg (1994) adopt a statistical approach, in the sense that capacities are rather
seen as a way of representing objective but imprecise information.

The core of our approach is to consider several relations between unconditional and condi-
tional expectations. Hence a behavioral characterization of updating rules is implicitly made.
These relations are equivalent in the additive case and then each of them may serve as a defini-
tion of the conditional expectation, that is obtained thanks to the Bayes update rule. Neverthe-
less, for non-additive measures, the equivalence does not hold and one get different updating
rules. Then the definition of conditional expectations may be used to update Choquet capaci-
ties. Furthermore, linking unconditional and conditional expectations involves a specific way
of resolving a decision problem and therefore our approach allows to determine which updating
rule should be used depending on the decision context (insurance, financial...).

The paper is organized as follows. In the next section, we introduce our set-up and notations.
In section 3, we present our results. Finally, section 4 concludes. Proofs are relegated to the
appendix.

2. Set-up, notations and definitions

Let S be a finite state space and let Σ be its power set. For all A ∈ Σ, the event S−A is
denoted by Ac. The objects of choice are bounded Σ-measurable random variables of the form
X : S→ R. We denote by A the set of such functions. The characteristic function of an event
A∈ Σ is the binary random variable 1A such that 1A(s) = 1 when s∈ A and 1A(s) = 0 otherwise.
Two random variables X and Y are said to be comonotonic if [X(s)−X(s′)][Y (s)−Y (s′)] ≥ 0
for all s and s′ in S and antimonotonic if ≥ is replaced by ≤.

In this paper, we assume that the DM’s preferences are represented by a Choquet expecta-
tion noted I(.) (see for instance Chateauneuf 1991). This model assumes the DM’s beliefs be
represented by a Choquet capacity, i.e. a set function ν : Σ→ R such that (i) ν(.) is normal-
ized, i.e. ν(S) = 1 and ν( /0) = 0, and (ii) ν(.) is monotonic with respect to set inclusion, i.e.
A ⊆ B⇒ ν(A) ≤ ν(B) for all A,B ∈ Σ. The conjugate capacity of ν(.), noted ν̄(.), is defined
by ν̄(A) = 1−ν(Ac) for all A ∈ Σ. We note ν(.|E) the conditional capacity for ν(.) given any
E ∈ Σ such that ν(.|E) is a Choquet capacity, ν(E|E) = 1 and ν(Ec|E) = 0. The Choquet inte-
gral w.r.t. ν(.) of any X ≡ (xi,Ai)

n
i=1

2 taking n distinct values, w.l.o.g. x1 ≤ ...≤ xn, is defined
by:

I(X) =
n

∑
i=1

xi · [ν(Ai∪ ...∪An)−ν(Ai+1∪ ...∪An)]+ xn ·ν(An)

1See also Horie (2007).
2That is, X is measurable w.r.t. the partition {A1, ...,An} of S.
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Let I(X/1E = 1) and I(X/1E = 0) be conditional Choquet expectations of X on E and Ec.
They use ν(.|E) and ν(.|Ec), respectively. Hence 1E designates the information function, since
it can take two values, 1 or 0, depending on whether E is observed or if it is Ec. Then I(X/1E)
designates the binary random variable yielding conditional Choquet expectations of X .

An updating rule is a formula associating, for each E ∈ Σ, a specific ν(.|E) to the capacity
ν(.). The value of each conditional expectation is crucially dependent on the updating rule used
by the DM. Three updating rules are commonly used to update Choquet capacities:

• The Full Bayesian (FB) update rule of ν(.) conditional on any E ∈ Σ such that E 6= /0 is
given by:

ν(A|E) = ν(A∩E)
1+ν(A∩E)−ν(A∪Ec)

, A ∈ Σ

• The Naive Bayesian (NB) update rule of ν(.) conditional on any E ∈ Σ such that ν(E)> 0
is given by:

ν(A|E) = ν(A∩E)
ν(E)

, A ∈ Σ

• The Dempster-Shafer (DS) update rule of ν(.) conditional on any E ∈ Σ such that ν̄(E)>
0 is given by:

ν(A|E) = ν((A∩E)∪Ec)−ν(Ec)

1−ν(Ec)
, A ∈ Σ

The following assumption is made throughout:

Assumption 1 (Conditioning event). There exists at least one event E ∈ Σ such that ν(.|E) is
well defined for each updating rule.

3. Results

We begin this section by examining some relations between comotonicity of the information
with the valued random variable and updating. The comonotonic link between the valued asset
and the information function is often encountered in insurance economics, and more generally
cover a wide range of applications. Consider the binary random variable

I(1A/1E)≡
(

I(1A/1E = 1) i f s ∈ E
I(1A/1E = 0) i f s ∈ Ec

)
where I(1A/1E = 1) = ν(A|E) and I(1A/1E = 0) = ν(A|Ec). It expresses the DM’s willingness
to pay for ”betting on event A”, but it may take two distinct values, depending on the information
function 1E . In the additive case, the relation

I(1A) = I[I(1A/1E)] (1)

is straightforwardly satisfied if and only if conditional probabilities are calculated by Bayesian
updating. It means that the value of 1A is not affected by information available at time 1. The
following proposition states the corresponding updating rule for the non-additive case.

Proposition 1. The solution of relation (1) is given by the NB rule when 1A and 1E are comono-
tonic and by the DS rule when 1A and 1E are antimonotonic.
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The general case where 1A and 1E are neither comonotonic nor antimonotonic cannot be
resolved by relation (1). Indeed, one should obtain one equation for two unknowns, I(1A/1E =
0) and I(1A/1E = 1), which are not necessarily equal to 0 nor to 1 as in the two previous
cases and cannot be ranked, in general, to compute the Choquet integral. That is why the
characterization of ν(.|E) is only partial in the non-additive case. If we consider arbitrary
random variables instead of characteristic functions, relation (1) becomes

I(X) = I[I(X/1E)]

Statement of proposition 1 may be enlarged to any X ∈ A with 1E and is not only valid for
characteristic functions (see notably Chateauneuf et al. 2001). That is, if X is comonotonic
with the information function 1E , I(X) = I[I(X/1E)] holds if and only if ν(.|E) is given by the
NB rule, and ν(.|Ec) is given by the DS rule. Hence this way of updating Choquet capacities
may be used to resolve a wide range of economic situations involving sequential resolution of
uncertainty.

In the additive case, an equivalent definition to relation (1) is

I[1A− I(1A/1E)] = 0, (2)

Nevertheless, the equivalence does not holds for non-additive measures, and we obtain a dif-
ferent (partial) characterization of ν(.|E) for non-additive measures. Relation (2) expresses the
fact that I(1A/1E) nullifies the value of ”betting on A” (1A). Hence it corresponds to the maxi-
mal price that the DM is ready to put in 1A. This price then may take two values depending on
E or Ec.

Proposition 2. The solution of relation (2) is given by the FB rule when 1A and 1E are comono-
tonic or antimonotonic.

As for relation (1), the general case where 1A and 1E are not comonotonic neither nor an-
timonotonic random variables cannot be solved by relation (2). But contrarily to relation (1),
this one cannot be hold for more general random variables. It does not hold for more structured
random variables, i.e., for any X such that the range of X contains more than three outcomes.
Therefore, the FB rule cannot resolved, in general, equations of the form I[X − I(X/1E)] = 0,
even for comonotonic or antimonotonic X and 1E .

Finally, an other additively equivalent relation between 1A and I(1A/1E) is

I[I(1A/1E)−1A)] = 0 (3)

Proposition 3. The solution of relation (3) is given by the FB rule applied to ν̄(.) when 1A and
1E are comonotonic or antimonotonic.

Again, the general case cannot be resolved hence it can be applied only when the valued
random variable 1A and the information function 1E are comonotonic. Furthermore, as for the
previous one, the equality does not hold true for more general functions.

In order to generalize our approach of conditioning, it may be relevant to consider only the
restriction of any X to the conditioning event E:

I(X1E) = I[I(X/1E)1E ]

Firstly, note that relation (1) becomes:

I[1A1E ] = I[I(1A/1E)1E ] (4)
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Proposition 4. The solution of relation (4) is given by the NB rule.

Secondly, relation (2) is now expressed as:

I [[1A− I(1A/1E)]1E ] = 0 (5)

Proposition 5. The solution of relation (5) is given by the FB rule.

Proof See Denneberg (1994), proposition 2.2.
Finally, relation (3) may be rewritten as:

I [[I(1A/1E)−1A]1E ] = 0 (6)

Proposition 6. The solution of relation (6) is given by the FB rule applied to ν̄(.).

Contrarily to the three first relations, conditional capacities obtained here can always be
defined. Proposition 6 shows that relation (4) holds if and only if ν(.|E) is given by the NB
rule and proposition 4 shows that relation (5) holds if and only if ν(.|E) is given by the FB
rule. Nevertheless, it does not show that these relations are satisfied for more general random
variables, i.e. random variables that are not necessarily characteristic functions. Indeed, the
relation

I(X1E) = I[I(X/1E)1E ]

is satisfied by the NB rule only when X ≥ 0. Further, relations

I[[X− I(X/1E)]1E ] = 0
I[[I(X/1E)−X ]1E ] = 0

are satisfied by the FB rule applied to ν(.) and ν̄(.), respectively, only when the range of X
contains less than four distinct outcomes.

In order to generalize our approach of conditioning to any random variable X , let us define
νE(.) as the restriction of ν(.) to σ(E), that is the sigma-algebra generated by E:

∀A ∈ Σ, νE(A) := ν(A∩E)

Then IE(.) denotes the Choquet integral w.r.t. νE(.), that is, for X ≡ (xi,Ai)
n
i=1 such that x1 ≤

...≤ xn,

IE(X) =
n

∑
i=1

xi · [ν((Ai∪ ...∪An)∩E)−ν((Ai+1∪ ...∪An)∩E)]+ xn ·ν(An∩E)

Further, In the non-additive case, IE(X) 6= I(X1E) in general. Nevertheless, one have IE(X) =
IE(X1E).

Theorem 1. Assume that assumption 1 holds. The following statements are equivalent:

(i) For any X ∈A and any E ∈ Σ, IE(X) = IE [I(X/1E)];

(ii) For any X ∈A and any E ∈ Σ, IE [X− I(X/1E)] = 0;

(iii) For any E ∈ Σ such that ν(E) > 0, the conditional capacity ν(.|E) is well defined and it
is given by the NB rule.
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Notice that theorem 1 is a representation result, since relations IE(X) = IE [I(X/1E)] and
IE [X − I(X/1E)] = 0 work for any X ∈ A and then the NB rule characterizes conditional ex-
pectations I(X/1E). A direct implication of theorem 1 is that the NB rule is the unique updating
rule allowing to a Choquet DM to satisfy both statements (i) and (ii). As well as a Bayesian
DM, a ”naive” Choquet DM is able to resolve dynamic decision problems in a consistent way,
as described by these relations. Contrarily to relation (1), statement (i) only allows the use of
backward induction on σ(E). Finally, the relation

IE [I(X/1E)−X ] = 0

is resolved by the DS rule applied to ν̄(.).

Proposition 7. For any X ∈A and any E ∈ Σ such that ν(E)> 0, we have IE [I(X/1E)−X ] = 0
if and only if, for any A ∈ Σ,

ν(A|E) = ν̄((A∩E)∪Ec)− ν̄(Ec)

1− ν̄(Ec)
(7)

4. Conclusion

We summarize the previous results in the table 1. Each result gives a characterization of the
conditional capacity. FB/C and DS/C refer, respectively, to the FB rule and the DS rule applied
to the conjugate capacity.

Table 1: Summary of the results
Definition of conditional expectations Updating rule Condition

1 I(X) = I[I(X/1E)] NB or DS X and 1E co. or anti.
2 I[X− I(X/1E)] = 0 FB X and 1E co. or anti.,|X(S)| ≤ 3
3 I[I(X/1E)−X ] = 0 FB/C X and 1E co. or anti., |X(S)| ≤ 3
4 I(X1E) = I[I(X/1E)1E ] NB X ≥ 0
5 I[[X− I(X/1E)]1E ] = 0 FB |X(S)| ≤ 3
6 I[[I(X/1E)−X ]1E ] = 0 FB/C |X(S)| ≤ 3
7 IE(X) = IE [I(X/1E)] NB None
8 IE [X− I(X/1E)] = 0 NB None
9 IE [I(X/1E)−X ] = 0 DS/C None

We have studied how updating rules for Choquet preferences could be characterized, de-
pending of the link between unconditional and conditional expectations. We have firstly consid-
ered situations in which the valued random variable and the information function are comono-
tonic (relations 1, 2 and 3). Such situations are rather common, notably in insurance economics.
Then we have tried to enlarge the approach to non-necessarily comonotonic functions. In rela-
tions 4, 5 and 6, only consequences yielded by the valued r.v. X on E are taking into account,
whereas consequences outside of E take a null value. Finally, we have restrict the capacity to
the conditioning event. Then relations 7, 8 and 9 may hold for any X ∈A . It allows to obtain a
characterization, in terms of preference, of the NB rule. Restricting the capacity to conditioning
events may be relevant in applications, where individual beliefs are often defined only on events
directly involved by the decision problem.
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Appendix: Mathematical appendix and proofs

Proof of proposition 1 By definition, I(1A) = ν(A).
(i) If 1A and 1E are comonotonic, then A ⊂ E or E ⊂ A. We consider the non-trivial case

where A⊂ E. Then,

I(1A/1E) =

(
I(1A/1E = 1) i f s ∈ E

0 i f s ∈ Ec

)
hence, relation (1) yields ν(A) = I(1A/1E = 1)ν(E) that is equivalent to the NB rule.

(ii) If 1A and 1E are antimonotonic, then Ec ⊂ A or A⊂ Ec. We consider the non-trivial case
where Ec ⊂ A. Then,

I(1A/1E) =

(
I(1A/1E = 1) i f s ∈ E

1 i f s ∈ Ec

)
hence, since 1A = 1(A∩E)∪Ec , relation (1) yields ν((A ∩ E) ∪ Ec) = I(1A/1E = 1) + [1−
I(1A/1E = 1)]ν(Ec) that is equivalent to the DS updating rule.

Proof of proposition 2 As in proof of proposition 1, we consider two cases: A ⊂ E and
Ec ⊂ A. In both cases,

1A− I(1A/1E) =

 −I(1A/1E = 1) i f s ∈ Ac∩E
0 i f s ∈ Ec

1− I(1A/1E = 1) i f s ∈ A∩E

 (8)

hence I[1A− I(1A/1E)] = I(1A/1E = 1)[ν(A∪Ec)− 1]+ [1− I(1A/1E = 1)]ν(A∩E). Under
relation (2), this is equal to zero, and then it is resolved by the FB updating rule.

Proof of proposition 3 With the same method as in the proof of proposition 2, we consider
two cases: A⊂ E and Ec ⊂ A. In both cases,

I(1A/1E)−1A =

I(1A/1E = 1)−1 i f s ∈ A∩E
0 i f s ∈ Ec

I(1A/1E = 1) i f s ∈ Ac∩E

 (9)

hence

I[I(1A/1E)−1A] = I(1A/1E = 1)[1−ν(Ac∪Ec)+ν(Ac∩E)]−1+ν(Ac∪Ec) (10)

and then relation (3) implies I(1A/1E = 1) = [1−ν(Ac∪Ec)]/[1−ν(Ac∪Ec)+ν(Ac∩E)] that
corresponds to the FB rule applied to ν̄(.).

Proof of proposition 4 First observe that I(1A1E) = ν(A∩E). Further,

I(1A/1E) =

(
I(1A/1E = 0) i f s ∈ Ec

I(1A/1E = 1) i f s ∈ E

)
(11)

Then,
I[I(1A/1E)1E ] = I(1A/1E = 1)ν(E) (12)

and then relation (4) entails that ν(A∩E) = I(1A/1E = 1)ν(E) that is equivalent to the NB
rule.
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Proof of proposition 6 We have:

I(1A/1E)−1A ≡


I(1A/1E = 1)−1 i f s ∈ A∩E
I(1A/1E = 0)−1 i f s ∈ A∩Ec

I(1A/1E = 1) i f s ∈ Ac∩E
I(1A/1E = 0) i f s ∈ Ac∩Ec

 (13)

Then,

I [[I(1A/1E)−1A]1E ] = I(1A/1E = 1)[1+ν(Ac∩E)−ν(Ac∪Ec)]−1+ν(Ac∪Ec)

that is equal to 0 if and only if νE(A) is given by the FB updating rule applied to ν̄(.).
The two following properties of Choquet integrals are needed for proofs of theorem 1 and

proposition 7:

Property 1 (Comonotonic additivity). For all X ,Y ∈A and E ∈ Σ, if X and Y are comonotonic
on E, that is [X(s)−X(s′)][Y (s)−Y (s′)]≥ 0 for all s,s′ ∈ E, then IE(X)+ IE(Y ) = IE(X +Y ).

Comonotonic additivity means that a Choquet DM behaves like a Bayesian one when deal-
ing with comonotonic random variables. This is commonly stated with ν(.) instead of νE(.),
and then it requires X and Y be comonotonic on S. Nevertheless, this property is trivially satis-
fied for νE(.) and we omit the proof.

Proof of theorem 1 We first prove that statements (i) and (ii) are equivalent. Statement (i)
holds if and only if

IE(X) = I(X/1E = 1)ν(E), (14)

that holds if I(X/1E = 1) ≤ I(X/1E = 0) or if I(X/1E = 1) ≥ I(X/1E = 0). Eq. (14) holds if
and only if

IE

(
X

ν(E)

)
= I(X/1E = 1) (15)

hence we have proved that (i) if and only if (iii). Now we prove that statements (ii) and (iii) are
equivalent. Statement (ii) holds if and only if

IE [X− I(X/1E)] = 0 (16)

that is equivalent to

IE

(
X− I(X/1E = 1) i f s ∈ E
X− I(X/1E = 0) i f s ∈ Ec

)
= 0 (17)

Since the random variable −I(X/1E) yields the outcome −I(X/1E = 1) for all s ∈ E, it is
comonotonic with the r.v. X on E hence, by comonotonic additivity, eq. (17) becomes

IE(X) = IE [I(X/1E = 1)] (18)

that is equivalent to IE(X) = IE [I(X/1E)] and then we have proved that (ii) if and only if (iii).

We denote by νE(.) the conjugate capacity of νE(.) such that for all A ∈ Σ, νE(A) = ν(E)−
ν(Ac ∩E). Hence we denote by IE(.) the Choquet integral w.r.t. νE(.). The second property,
proposed for instance by Denneberg (1994), is purely technical.

Property 2 (Asymmetry). For all X ∈A and E ∈ Σ, IE(−X) =−IE(X)
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Proof of proposition 7 We have:

IE [I(X/1E)−X ] = 0 (19)

that is equivalent to

IE

(
I(X/1E = 1)−X i f s ∈ E
I(X/1E = 0)−X i f s ∈ Ec

)
= 0 (20)

Since the random variable I(X/1E) yields the outcome I(X/1E = 1) for all s ∈ E, it is comono-
tonic with the r.v. −X on E hence, by comonotonic additivity, eq. (20) becomes

IE [I(X/1E = 1)]+ IE(−X) = 0 (21)

if and only if, by asymmetry, I(X/1E = 1)ν(E) = IE(X), that is equivalent to

I(X/1E = 1) = IE

(
X

ν(E)

)
(22)

Finally, note that νE(.)/ν(E) is equal to [ν̄(.∪Ec)− ν̄(Ec)]/[1− ν̄(Ec)] and thus it is equivalent
to apply the DS rule to ν̄(.).
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